uipc_usrreq.c revision 1.190 1 /* $NetBSD: uipc_usrreq.c,v 1.190 2019/02/04 10:11:34 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.190 2019/02/04 10:11:34 mrg Exp $");
100
101 #ifdef _KERNEL_OPT
102 #include "opt_compat_netbsd.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/proc.h>
108 #include <sys/filedesc.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/unpcb.h>
114 #include <sys/un.h>
115 #include <sys/namei.h>
116 #include <sys/vnode.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include <sys/mbuf.h>
120 #include <sys/kauth.h>
121 #include <sys/kmem.h>
122 #include <sys/atomic.h>
123 #include <sys/uidinfo.h>
124 #include <sys/kernel.h>
125 #include <sys/kthread.h>
126 #include <sys/compat_stub.h>
127
128 #include <compat/sys/socket.h>
129
130 /*
131 * Unix communications domain.
132 *
133 * TODO:
134 * RDM
135 * rethink name space problems
136 * need a proper out-of-band
137 *
138 * Notes on locking:
139 *
140 * The generic rules noted in uipc_socket2.c apply. In addition:
141 *
142 * o We have a global lock, uipc_lock.
143 *
144 * o All datagram sockets are locked by uipc_lock.
145 *
146 * o For stream socketpairs, the two endpoints are created sharing the same
147 * independent lock. Sockets presented to PRU_CONNECT2 must already have
148 * matching locks.
149 *
150 * o Stream sockets created via socket() start life with their own
151 * independent lock.
152 *
153 * o Stream connections to a named endpoint are slightly more complicated.
154 * Sockets that have called listen() have their lock pointer mutated to
155 * the global uipc_lock. When establishing a connection, the connecting
156 * socket also has its lock mutated to uipc_lock, which matches the head
157 * (listening socket). We create a new socket for accept() to return, and
158 * that also shares the head's lock. Until the connection is completely
159 * done on both ends, all three sockets are locked by uipc_lock. Once the
160 * connection is complete, the association with the head's lock is broken.
161 * The connecting socket and the socket returned from accept() have their
162 * lock pointers mutated away from uipc_lock, and back to the connecting
163 * socket's original, independent lock. The head continues to be locked
164 * by uipc_lock.
165 *
166 * o If uipc_lock is determined to be a significant source of contention,
167 * it could easily be hashed out. It is difficult to simply make it an
168 * independent lock because of visibility / garbage collection issues:
169 * if a socket has been associated with a lock at any point, that lock
170 * must remain valid until the socket is no longer visible in the system.
171 * The lock must not be freed or otherwise destroyed until any sockets
172 * that had referenced it have also been destroyed.
173 */
174 const struct sockaddr_un sun_noname = {
175 .sun_len = offsetof(struct sockaddr_un, sun_path),
176 .sun_family = AF_LOCAL,
177 };
178 ino_t unp_ino; /* prototype for fake inode numbers */
179
180 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
181 static void unp_discard_later(file_t *);
182 static void unp_discard_now(file_t *);
183 static void unp_disconnect1(struct unpcb *);
184 static bool unp_drop(struct unpcb *, int);
185 static int unp_internalize(struct mbuf **);
186 static void unp_mark(file_t *);
187 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
188 static void unp_shutdown1(struct unpcb *);
189 static void unp_thread(void *);
190 static void unp_thread_kick(void);
191
192 static kmutex_t *uipc_lock;
193
194 static kcondvar_t unp_thread_cv;
195 static lwp_t *unp_thread_lwp;
196 static SLIST_HEAD(,file) unp_thread_discard;
197 static int unp_defer;
198
199 /* Compat interface */
200
201 struct mbuf * stub_compat_70_unp_addsockcred(lwp_t *, struct mbuf *);
202
203 struct mbuf * stub_compat_70_unp_addsockcred(struct lwp *lwp,
204 struct mbuf *control)
205 {
206
207 /* just copy our initial argument */
208 return control;
209 }
210
211 bool *compat70_ocreds_valid = false;
212
213 /*
214 * Initialize Unix protocols.
215 */
216 void
217 uipc_init(void)
218 {
219 int error;
220
221 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
222 cv_init(&unp_thread_cv, "unpgc");
223
224 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
225 NULL, &unp_thread_lwp, "unpgc");
226 if (error != 0)
227 panic("uipc_init %d", error);
228 }
229
230 static void
231 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
232 {
233 unp->unp_connid.unp_pid = l->l_proc->p_pid;
234 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
235 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
236 unp->unp_flags |= flags;
237 }
238
239 /*
240 * A connection succeeded: disassociate both endpoints from the head's
241 * lock, and make them share their own lock. There is a race here: for
242 * a very brief time one endpoint will be locked by a different lock
243 * than the other end. However, since the current thread holds the old
244 * lock (the listening socket's lock, the head) access can still only be
245 * made to one side of the connection.
246 */
247 static void
248 unp_setpeerlocks(struct socket *so, struct socket *so2)
249 {
250 struct unpcb *unp;
251 kmutex_t *lock;
252
253 KASSERT(solocked2(so, so2));
254
255 /*
256 * Bail out if either end of the socket is not yet fully
257 * connected or accepted. We only break the lock association
258 * with the head when the pair of sockets stand completely
259 * on their own.
260 */
261 KASSERT(so->so_head == NULL);
262 if (so2->so_head != NULL)
263 return;
264
265 /*
266 * Drop references to old lock. A third reference (from the
267 * queue head) must be held as we still hold its lock. Bonus:
268 * we don't need to worry about garbage collecting the lock.
269 */
270 lock = so->so_lock;
271 KASSERT(lock == uipc_lock);
272 mutex_obj_free(lock);
273 mutex_obj_free(lock);
274
275 /*
276 * Grab stream lock from the initiator and share between the two
277 * endpoints. Issue memory barrier to ensure all modifications
278 * become globally visible before the lock change. so2 is
279 * assumed not to have a stream lock, because it was created
280 * purely for the server side to accept this connection and
281 * started out life using the domain-wide lock.
282 */
283 unp = sotounpcb(so);
284 KASSERT(unp->unp_streamlock != NULL);
285 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
286 lock = unp->unp_streamlock;
287 unp->unp_streamlock = NULL;
288 mutex_obj_hold(lock);
289 membar_exit();
290 /*
291 * possible race if lock is not held - see comment in
292 * uipc_usrreq(PRU_ACCEPT).
293 */
294 KASSERT(mutex_owned(lock));
295 solockreset(so, lock);
296 solockreset(so2, lock);
297 }
298
299 /*
300 * Reset a socket's lock back to the domain-wide lock.
301 */
302 static void
303 unp_resetlock(struct socket *so)
304 {
305 kmutex_t *olock, *nlock;
306 struct unpcb *unp;
307
308 KASSERT(solocked(so));
309
310 olock = so->so_lock;
311 nlock = uipc_lock;
312 if (olock == nlock)
313 return;
314 unp = sotounpcb(so);
315 KASSERT(unp->unp_streamlock == NULL);
316 unp->unp_streamlock = olock;
317 mutex_obj_hold(nlock);
318 mutex_enter(nlock);
319 solockreset(so, nlock);
320 mutex_exit(olock);
321 }
322
323 static void
324 unp_free(struct unpcb *unp)
325 {
326 if (unp->unp_addr)
327 free(unp->unp_addr, M_SONAME);
328 if (unp->unp_streamlock != NULL)
329 mutex_obj_free(unp->unp_streamlock);
330 kmem_free(unp, sizeof(*unp));
331 }
332
333 static int
334 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
335 {
336 struct socket *so2;
337 const struct sockaddr_un *sun;
338
339 /* XXX: server side closed the socket */
340 if (unp->unp_conn == NULL)
341 return ECONNREFUSED;
342 so2 = unp->unp_conn->unp_socket;
343
344 KASSERT(solocked(so2));
345
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
348 else
349 sun = &sun_noname;
350 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
351 control = unp_addsockcred(curlwp, control);
352 if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
353 MODULE_CALL_HOOK(uipc_unp_70_hook, (curlwp, control),
354 stub_compat_70_unp_addsockcred(curlwp, control), control);
355 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
356 control) == 0) {
357 unp_dispose(control);
358 m_freem(control);
359 m_freem(m);
360 /* Don't call soroverflow because we're returning this
361 * error directly to the sender. */
362 so2->so_rcv.sb_overflowed++;
363 return ENOBUFS;
364 } else {
365 sorwakeup(so2);
366 return 0;
367 }
368 }
369
370 static void
371 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
372 {
373 const struct sockaddr_un *sun = NULL;
374 struct unpcb *unp;
375
376 KASSERT(solocked(so));
377 unp = sotounpcb(so);
378
379 if (peeraddr) {
380 if (unp->unp_conn && unp->unp_conn->unp_addr)
381 sun = unp->unp_conn->unp_addr;
382 } else {
383 if (unp->unp_addr)
384 sun = unp->unp_addr;
385 }
386 if (sun == NULL)
387 sun = &sun_noname;
388
389 memcpy(nam, sun, sun->sun_len);
390 }
391
392 static int
393 unp_rcvd(struct socket *so, int flags, struct lwp *l)
394 {
395 struct unpcb *unp = sotounpcb(so);
396 struct socket *so2;
397 u_int newhiwat;
398
399 KASSERT(solocked(so));
400 KASSERT(unp != NULL);
401
402 switch (so->so_type) {
403
404 case SOCK_DGRAM:
405 panic("uipc 1");
406 /*NOTREACHED*/
407
408 case SOCK_SEQPACKET: /* FALLTHROUGH */
409 case SOCK_STREAM:
410 #define rcv (&so->so_rcv)
411 #define snd (&so2->so_snd)
412 if (unp->unp_conn == 0)
413 break;
414 so2 = unp->unp_conn->unp_socket;
415 KASSERT(solocked2(so, so2));
416 /*
417 * Adjust backpressure on sender
418 * and wakeup any waiting to write.
419 */
420 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
421 unp->unp_mbcnt = rcv->sb_mbcnt;
422 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
423 (void)chgsbsize(so2->so_uidinfo,
424 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
425 unp->unp_cc = rcv->sb_cc;
426 sowwakeup(so2);
427 #undef snd
428 #undef rcv
429 break;
430
431 default:
432 panic("uipc 2");
433 }
434
435 return 0;
436 }
437
438 static int
439 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
440 {
441 KASSERT(solocked(so));
442
443 return EOPNOTSUPP;
444 }
445
446 static int
447 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
448 struct mbuf *control, struct lwp *l)
449 {
450 struct unpcb *unp = sotounpcb(so);
451 int error = 0;
452 u_int newhiwat;
453 struct socket *so2;
454
455 KASSERT(solocked(so));
456 KASSERT(unp != NULL);
457 KASSERT(m != NULL);
458
459 /*
460 * Note: unp_internalize() rejects any control message
461 * other than SCM_RIGHTS, and only allows one. This
462 * has the side-effect of preventing a caller from
463 * forging SCM_CREDS.
464 */
465 if (control) {
466 sounlock(so);
467 error = unp_internalize(&control);
468 solock(so);
469 if (error != 0) {
470 m_freem(control);
471 m_freem(m);
472 return error;
473 }
474 }
475
476 switch (so->so_type) {
477
478 case SOCK_DGRAM: {
479 KASSERT(so->so_lock == uipc_lock);
480 if (nam) {
481 if ((so->so_state & SS_ISCONNECTED) != 0)
482 error = EISCONN;
483 else {
484 /*
485 * Note: once connected, the
486 * socket's lock must not be
487 * dropped until we have sent
488 * the message and disconnected.
489 * This is necessary to prevent
490 * intervening control ops, like
491 * another connection.
492 */
493 error = unp_connect(so, nam, l);
494 }
495 } else {
496 if ((so->so_state & SS_ISCONNECTED) == 0)
497 error = ENOTCONN;
498 }
499 if (error) {
500 unp_dispose(control);
501 m_freem(control);
502 m_freem(m);
503 return error;
504 }
505 error = unp_output(m, control, unp);
506 if (nam)
507 unp_disconnect1(unp);
508 break;
509 }
510
511 case SOCK_SEQPACKET: /* FALLTHROUGH */
512 case SOCK_STREAM:
513 #define rcv (&so2->so_rcv)
514 #define snd (&so->so_snd)
515 if (unp->unp_conn == NULL) {
516 error = ENOTCONN;
517 break;
518 }
519 so2 = unp->unp_conn->unp_socket;
520 KASSERT(solocked2(so, so2));
521 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
522 /*
523 * Credentials are passed only once on
524 * SOCK_STREAM and SOCK_SEQPACKET.
525 */
526 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
527 control = unp_addsockcred(l, control);
528 }
529 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
530 /*
531 * Credentials are passed only once on
532 * SOCK_STREAM and SOCK_SEQPACKET.
533 */
534 unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
535 MODULE_CALL_HOOK(uipc_unp_70_hook, (curlwp, control),
536 stub_compat_70_unp_addsockcred(curlwp, control),
537 control);
538 }
539 /*
540 * Send to paired receive port, and then reduce
541 * send buffer hiwater marks to maintain backpressure.
542 * Wake up readers.
543 */
544 if (control) {
545 if (sbappendcontrol(rcv, m, control) != 0)
546 control = NULL;
547 } else {
548 switch(so->so_type) {
549 case SOCK_SEQPACKET:
550 sbappendrecord(rcv, m);
551 break;
552 case SOCK_STREAM:
553 sbappend(rcv, m);
554 break;
555 default:
556 panic("uipc_usrreq");
557 break;
558 }
559 }
560 snd->sb_mbmax -=
561 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
562 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
563 newhiwat = snd->sb_hiwat -
564 (rcv->sb_cc - unp->unp_conn->unp_cc);
565 (void)chgsbsize(so->so_uidinfo,
566 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
567 unp->unp_conn->unp_cc = rcv->sb_cc;
568 sorwakeup(so2);
569 #undef snd
570 #undef rcv
571 if (control != NULL) {
572 unp_dispose(control);
573 m_freem(control);
574 }
575 break;
576
577 default:
578 panic("uipc 4");
579 }
580
581 return error;
582 }
583
584 static int
585 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
586 {
587 KASSERT(solocked(so));
588
589 m_freem(m);
590 m_freem(control);
591
592 return EOPNOTSUPP;
593 }
594
595 /*
596 * Unix domain socket option processing.
597 */
598 int
599 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
600 {
601 struct unpcb *unp = sotounpcb(so);
602 int optval = 0, error = 0;
603
604 KASSERT(solocked(so));
605
606 if (sopt->sopt_level != 0) {
607 error = ENOPROTOOPT;
608 } else switch (op) {
609
610 case PRCO_SETOPT:
611 switch (sopt->sopt_name) {
612 case LOCAL_OCREDS:
613 if (!*compat70_ocreds_valid) {
614 error = ENOPROTOOPT;
615 break;
616 }
617 /* FALLTHROUGH */
618 case LOCAL_CREDS:
619 case LOCAL_CONNWAIT:
620 error = sockopt_getint(sopt, &optval);
621 if (error)
622 break;
623 switch (sopt->sopt_name) {
624 #define OPTSET(bit) \
625 if (optval) \
626 unp->unp_flags |= (bit); \
627 else \
628 unp->unp_flags &= ~(bit);
629
630 case LOCAL_CREDS:
631 OPTSET(UNP_WANTCRED);
632 break;
633 case LOCAL_CONNWAIT:
634 OPTSET(UNP_CONNWAIT);
635 break;
636 case LOCAL_OCREDS:
637 OPTSET(UNP_OWANTCRED);
638 break;
639 }
640 break;
641 #undef OPTSET
642
643 default:
644 error = ENOPROTOOPT;
645 break;
646 }
647 break;
648
649 case PRCO_GETOPT:
650 sounlock(so);
651 switch (sopt->sopt_name) {
652 case LOCAL_PEEREID:
653 if (unp->unp_flags & UNP_EIDSVALID) {
654 error = sockopt_set(sopt, &unp->unp_connid,
655 sizeof(unp->unp_connid));
656 } else {
657 error = EINVAL;
658 }
659 break;
660 case LOCAL_CREDS:
661 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
662
663 optval = OPTBIT(UNP_WANTCRED);
664 error = sockopt_setint(sopt, optval);
665 break;
666 case LOCAL_OCREDS:
667 if (*compat70_ocreds_valid) {
668 optval = OPTBIT(UNP_OWANTCRED);
669 error = sockopt_setint(sopt, optval);
670 break;
671 }
672 #undef OPTBIT
673 /* FALLTHROUGH */
674 default:
675 error = ENOPROTOOPT;
676 break;
677 }
678 solock(so);
679 break;
680 }
681 return (error);
682 }
683
684 /*
685 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
686 * for stream sockets, although the total for sender and receiver is
687 * actually only PIPSIZ.
688 * Datagram sockets really use the sendspace as the maximum datagram size,
689 * and don't really want to reserve the sendspace. Their recvspace should
690 * be large enough for at least one max-size datagram plus address.
691 */
692 #ifndef PIPSIZ
693 #define PIPSIZ 8192
694 #endif
695 u_long unpst_sendspace = PIPSIZ;
696 u_long unpst_recvspace = PIPSIZ;
697 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
698 u_long unpdg_recvspace = 16*1024;
699
700 u_int unp_rights; /* files in flight */
701 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
702
703 static int
704 unp_attach(struct socket *so, int proto)
705 {
706 struct unpcb *unp = sotounpcb(so);
707 u_long sndspc, rcvspc;
708 int error;
709
710 KASSERT(unp == NULL);
711
712 switch (so->so_type) {
713 case SOCK_SEQPACKET:
714 /* FALLTHROUGH */
715 case SOCK_STREAM:
716 if (so->so_lock == NULL) {
717 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
718 solock(so);
719 }
720 sndspc = unpst_sendspace;
721 rcvspc = unpst_recvspace;
722 break;
723
724 case SOCK_DGRAM:
725 if (so->so_lock == NULL) {
726 mutex_obj_hold(uipc_lock);
727 so->so_lock = uipc_lock;
728 solock(so);
729 }
730 sndspc = unpdg_sendspace;
731 rcvspc = unpdg_recvspace;
732 break;
733
734 default:
735 panic("unp_attach");
736 }
737
738 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
739 error = soreserve(so, sndspc, rcvspc);
740 if (error) {
741 return error;
742 }
743 }
744
745 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
746 nanotime(&unp->unp_ctime);
747 unp->unp_socket = so;
748 so->so_pcb = unp;
749
750 KASSERT(solocked(so));
751 return 0;
752 }
753
754 static void
755 unp_detach(struct socket *so)
756 {
757 struct unpcb *unp;
758 vnode_t *vp;
759
760 unp = sotounpcb(so);
761 KASSERT(unp != NULL);
762 KASSERT(solocked(so));
763 retry:
764 if ((vp = unp->unp_vnode) != NULL) {
765 sounlock(so);
766 /* Acquire v_interlock to protect against unp_connect(). */
767 /* XXXAD racy */
768 mutex_enter(vp->v_interlock);
769 vp->v_socket = NULL;
770 mutex_exit(vp->v_interlock);
771 vrele(vp);
772 solock(so);
773 unp->unp_vnode = NULL;
774 }
775 if (unp->unp_conn)
776 unp_disconnect1(unp);
777 while (unp->unp_refs) {
778 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
779 if (unp_drop(unp->unp_refs, ECONNRESET)) {
780 solock(so);
781 goto retry;
782 }
783 }
784 soisdisconnected(so);
785 so->so_pcb = NULL;
786 if (unp_rights) {
787 /*
788 * Normally the receive buffer is flushed later, in sofree,
789 * but if our receive buffer holds references to files that
790 * are now garbage, we will enqueue those file references to
791 * the garbage collector and kick it into action.
792 */
793 sorflush(so);
794 unp_free(unp);
795 unp_thread_kick();
796 } else
797 unp_free(unp);
798 }
799
800 static int
801 unp_accept(struct socket *so, struct sockaddr *nam)
802 {
803 struct unpcb *unp = sotounpcb(so);
804 struct socket *so2;
805
806 KASSERT(solocked(so));
807 KASSERT(nam != NULL);
808
809 /* XXX code review required to determine if unp can ever be NULL */
810 if (unp == NULL)
811 return EINVAL;
812
813 KASSERT(so->so_lock == uipc_lock);
814 /*
815 * Mark the initiating STREAM socket as connected *ONLY*
816 * after it's been accepted. This prevents a client from
817 * overrunning a server and receiving ECONNREFUSED.
818 */
819 if (unp->unp_conn == NULL) {
820 /*
821 * This will use the empty socket and will not
822 * allocate.
823 */
824 unp_setaddr(so, nam, true);
825 return 0;
826 }
827 so2 = unp->unp_conn->unp_socket;
828 if (so2->so_state & SS_ISCONNECTING) {
829 KASSERT(solocked2(so, so->so_head));
830 KASSERT(solocked2(so2, so->so_head));
831 soisconnected(so2);
832 }
833 /*
834 * If the connection is fully established, break the
835 * association with uipc_lock and give the connected
836 * pair a separate lock to share.
837 * There is a race here: sotounpcb(so2)->unp_streamlock
838 * is not locked, so when changing so2->so_lock
839 * another thread can grab it while so->so_lock is still
840 * pointing to the (locked) uipc_lock.
841 * this should be harmless, except that this makes
842 * solocked2() and solocked() unreliable.
843 * Another problem is that unp_setaddr() expects the
844 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
845 * fixes both issues.
846 */
847 mutex_enter(sotounpcb(so2)->unp_streamlock);
848 unp_setpeerlocks(so2, so);
849 /*
850 * Only now return peer's address, as we may need to
851 * block in order to allocate memory.
852 *
853 * XXX Minor race: connection can be broken while
854 * lock is dropped in unp_setaddr(). We will return
855 * error == 0 and sun_noname as the peer address.
856 */
857 unp_setaddr(so, nam, true);
858 /* so_lock now points to unp_streamlock */
859 mutex_exit(so2->so_lock);
860 return 0;
861 }
862
863 static int
864 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
865 {
866 return EOPNOTSUPP;
867 }
868
869 static int
870 unp_stat(struct socket *so, struct stat *ub)
871 {
872 struct unpcb *unp;
873 struct socket *so2;
874
875 KASSERT(solocked(so));
876
877 unp = sotounpcb(so);
878 if (unp == NULL)
879 return EINVAL;
880
881 ub->st_blksize = so->so_snd.sb_hiwat;
882 switch (so->so_type) {
883 case SOCK_SEQPACKET: /* FALLTHROUGH */
884 case SOCK_STREAM:
885 if (unp->unp_conn == 0)
886 break;
887
888 so2 = unp->unp_conn->unp_socket;
889 KASSERT(solocked2(so, so2));
890 ub->st_blksize += so2->so_rcv.sb_cc;
891 break;
892 default:
893 break;
894 }
895 ub->st_dev = NODEV;
896 if (unp->unp_ino == 0)
897 unp->unp_ino = unp_ino++;
898 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
899 ub->st_ino = unp->unp_ino;
900 return (0);
901 }
902
903 static int
904 unp_peeraddr(struct socket *so, struct sockaddr *nam)
905 {
906 KASSERT(solocked(so));
907 KASSERT(sotounpcb(so) != NULL);
908 KASSERT(nam != NULL);
909
910 unp_setaddr(so, nam, true);
911 return 0;
912 }
913
914 static int
915 unp_sockaddr(struct socket *so, struct sockaddr *nam)
916 {
917 KASSERT(solocked(so));
918 KASSERT(sotounpcb(so) != NULL);
919 KASSERT(nam != NULL);
920
921 unp_setaddr(so, nam, false);
922 return 0;
923 }
924
925 /*
926 * we only need to perform this allocation until syscalls other than
927 * bind are adjusted to use sockaddr_big.
928 */
929 static struct sockaddr_un *
930 makeun_sb(struct sockaddr *nam, size_t *addrlen)
931 {
932 struct sockaddr_un *sun;
933
934 *addrlen = nam->sa_len + 1;
935 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
936 memcpy(sun, nam, nam->sa_len);
937 *(((char *)sun) + nam->sa_len) = '\0';
938 return sun;
939 }
940
941 static int
942 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
943 {
944 struct sockaddr_un *sun;
945 struct unpcb *unp;
946 vnode_t *vp;
947 struct vattr vattr;
948 size_t addrlen;
949 int error;
950 struct pathbuf *pb;
951 struct nameidata nd;
952 proc_t *p;
953
954 unp = sotounpcb(so);
955
956 KASSERT(solocked(so));
957 KASSERT(unp != NULL);
958 KASSERT(nam != NULL);
959
960 if (unp->unp_vnode != NULL)
961 return (EINVAL);
962 if ((unp->unp_flags & UNP_BUSY) != 0) {
963 /*
964 * EALREADY may not be strictly accurate, but since this
965 * is a major application error it's hardly a big deal.
966 */
967 return (EALREADY);
968 }
969 unp->unp_flags |= UNP_BUSY;
970 sounlock(so);
971
972 p = l->l_proc;
973 sun = makeun_sb(nam, &addrlen);
974
975 pb = pathbuf_create(sun->sun_path);
976 if (pb == NULL) {
977 error = ENOMEM;
978 goto bad;
979 }
980 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
981
982 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
983 if ((error = namei(&nd)) != 0) {
984 pathbuf_destroy(pb);
985 goto bad;
986 }
987 vp = nd.ni_vp;
988 if (vp != NULL) {
989 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
990 if (nd.ni_dvp == vp)
991 vrele(nd.ni_dvp);
992 else
993 vput(nd.ni_dvp);
994 vrele(vp);
995 pathbuf_destroy(pb);
996 error = EADDRINUSE;
997 goto bad;
998 }
999 vattr_null(&vattr);
1000 vattr.va_type = VSOCK;
1001 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
1002 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
1003 if (error) {
1004 vput(nd.ni_dvp);
1005 pathbuf_destroy(pb);
1006 goto bad;
1007 }
1008 vp = nd.ni_vp;
1009 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1010 solock(so);
1011 vp->v_socket = unp->unp_socket;
1012 unp->unp_vnode = vp;
1013 unp->unp_addrlen = addrlen;
1014 unp->unp_addr = sun;
1015 VOP_UNLOCK(vp);
1016 vput(nd.ni_dvp);
1017 unp->unp_flags &= ~UNP_BUSY;
1018 pathbuf_destroy(pb);
1019 return (0);
1020
1021 bad:
1022 free(sun, M_SONAME);
1023 solock(so);
1024 unp->unp_flags &= ~UNP_BUSY;
1025 return (error);
1026 }
1027
1028 static int
1029 unp_listen(struct socket *so, struct lwp *l)
1030 {
1031 struct unpcb *unp = sotounpcb(so);
1032
1033 KASSERT(solocked(so));
1034 KASSERT(unp != NULL);
1035
1036 /*
1037 * If the socket can accept a connection, it must be
1038 * locked by uipc_lock.
1039 */
1040 unp_resetlock(so);
1041 if (unp->unp_vnode == NULL)
1042 return EINVAL;
1043
1044 unp_connid(l, unp, UNP_EIDSBIND);
1045 return 0;
1046 }
1047
1048 static int
1049 unp_disconnect(struct socket *so)
1050 {
1051 KASSERT(solocked(so));
1052 KASSERT(sotounpcb(so) != NULL);
1053
1054 unp_disconnect1(sotounpcb(so));
1055 return 0;
1056 }
1057
1058 static int
1059 unp_shutdown(struct socket *so)
1060 {
1061 KASSERT(solocked(so));
1062 KASSERT(sotounpcb(so) != NULL);
1063
1064 socantsendmore(so);
1065 unp_shutdown1(sotounpcb(so));
1066 return 0;
1067 }
1068
1069 static int
1070 unp_abort(struct socket *so)
1071 {
1072 KASSERT(solocked(so));
1073 KASSERT(sotounpcb(so) != NULL);
1074
1075 (void)unp_drop(sotounpcb(so), ECONNABORTED);
1076 KASSERT(so->so_head == NULL);
1077 KASSERT(so->so_pcb != NULL);
1078 unp_detach(so);
1079 return 0;
1080 }
1081
1082 static int
1083 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1084 {
1085 struct unpcb *unp = sotounpcb(so);
1086 struct unpcb *unp2;
1087
1088 if (so2->so_type != so->so_type)
1089 return EPROTOTYPE;
1090
1091 /*
1092 * All three sockets involved must be locked by same lock:
1093 *
1094 * local endpoint (so)
1095 * remote endpoint (so2)
1096 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1097 */
1098 KASSERT(solocked2(so, so2));
1099 KASSERT(so->so_head == NULL);
1100 if (so2->so_head != NULL) {
1101 KASSERT(so2->so_lock == uipc_lock);
1102 KASSERT(solocked2(so2, so2->so_head));
1103 }
1104
1105 unp2 = sotounpcb(so2);
1106 unp->unp_conn = unp2;
1107
1108 switch (so->so_type) {
1109
1110 case SOCK_DGRAM:
1111 unp->unp_nextref = unp2->unp_refs;
1112 unp2->unp_refs = unp;
1113 soisconnected(so);
1114 break;
1115
1116 case SOCK_SEQPACKET: /* FALLTHROUGH */
1117 case SOCK_STREAM:
1118
1119 /*
1120 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1121 * which are unp_connect() or unp_connect2().
1122 */
1123
1124 break;
1125
1126 default:
1127 panic("unp_connect1");
1128 }
1129
1130 return 0;
1131 }
1132
1133 int
1134 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1135 {
1136 struct sockaddr_un *sun;
1137 vnode_t *vp;
1138 struct socket *so2, *so3;
1139 struct unpcb *unp, *unp2, *unp3;
1140 size_t addrlen;
1141 int error;
1142 struct pathbuf *pb;
1143 struct nameidata nd;
1144
1145 unp = sotounpcb(so);
1146 if ((unp->unp_flags & UNP_BUSY) != 0) {
1147 /*
1148 * EALREADY may not be strictly accurate, but since this
1149 * is a major application error it's hardly a big deal.
1150 */
1151 return (EALREADY);
1152 }
1153 unp->unp_flags |= UNP_BUSY;
1154 sounlock(so);
1155
1156 sun = makeun_sb(nam, &addrlen);
1157 pb = pathbuf_create(sun->sun_path);
1158 if (pb == NULL) {
1159 error = ENOMEM;
1160 goto bad2;
1161 }
1162
1163 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1164
1165 if ((error = namei(&nd)) != 0) {
1166 pathbuf_destroy(pb);
1167 goto bad2;
1168 }
1169 vp = nd.ni_vp;
1170 pathbuf_destroy(pb);
1171 if (vp->v_type != VSOCK) {
1172 error = ENOTSOCK;
1173 goto bad;
1174 }
1175 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1176 goto bad;
1177 /* Acquire v_interlock to protect against unp_detach(). */
1178 mutex_enter(vp->v_interlock);
1179 so2 = vp->v_socket;
1180 if (so2 == NULL) {
1181 mutex_exit(vp->v_interlock);
1182 error = ECONNREFUSED;
1183 goto bad;
1184 }
1185 if (so->so_type != so2->so_type) {
1186 mutex_exit(vp->v_interlock);
1187 error = EPROTOTYPE;
1188 goto bad;
1189 }
1190 solock(so);
1191 unp_resetlock(so);
1192 mutex_exit(vp->v_interlock);
1193 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1194 /*
1195 * This may seem somewhat fragile but is OK: if we can
1196 * see SO_ACCEPTCONN set on the endpoint, then it must
1197 * be locked by the domain-wide uipc_lock.
1198 */
1199 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1200 so2->so_lock == uipc_lock);
1201 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1202 (so3 = sonewconn(so2, false)) == NULL) {
1203 error = ECONNREFUSED;
1204 sounlock(so);
1205 goto bad;
1206 }
1207 unp2 = sotounpcb(so2);
1208 unp3 = sotounpcb(so3);
1209 if (unp2->unp_addr) {
1210 unp3->unp_addr = malloc(unp2->unp_addrlen,
1211 M_SONAME, M_WAITOK);
1212 memcpy(unp3->unp_addr, unp2->unp_addr,
1213 unp2->unp_addrlen);
1214 unp3->unp_addrlen = unp2->unp_addrlen;
1215 }
1216 unp3->unp_flags = unp2->unp_flags;
1217 so2 = so3;
1218 /*
1219 * The connector's (client's) credentials are copied from its
1220 * process structure at the time of connect() (which is now).
1221 */
1222 unp_connid(l, unp3, UNP_EIDSVALID);
1223 /*
1224 * The receiver's (server's) credentials are copied from the
1225 * unp_peercred member of socket on which the former called
1226 * listen(); unp_listen() cached that process's credentials
1227 * at that time so we can use them now.
1228 */
1229 if (unp2->unp_flags & UNP_EIDSBIND) {
1230 memcpy(&unp->unp_connid, &unp2->unp_connid,
1231 sizeof(unp->unp_connid));
1232 unp->unp_flags |= UNP_EIDSVALID;
1233 }
1234 }
1235 error = unp_connect1(so, so2, l);
1236 if (error) {
1237 sounlock(so);
1238 goto bad;
1239 }
1240 unp2 = sotounpcb(so2);
1241 switch (so->so_type) {
1242
1243 /*
1244 * SOCK_DGRAM and default cases are handled in prior call to
1245 * unp_connect1(), do not add a default case without fixing
1246 * unp_connect1().
1247 */
1248
1249 case SOCK_SEQPACKET: /* FALLTHROUGH */
1250 case SOCK_STREAM:
1251 unp2->unp_conn = unp;
1252 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1253 soisconnecting(so);
1254 else
1255 soisconnected(so);
1256 soisconnected(so2);
1257 /*
1258 * If the connection is fully established, break the
1259 * association with uipc_lock and give the connected
1260 * pair a seperate lock to share.
1261 */
1262 KASSERT(so2->so_head != NULL);
1263 unp_setpeerlocks(so, so2);
1264 break;
1265
1266 }
1267 sounlock(so);
1268 bad:
1269 vput(vp);
1270 bad2:
1271 free(sun, M_SONAME);
1272 solock(so);
1273 unp->unp_flags &= ~UNP_BUSY;
1274 return (error);
1275 }
1276
1277 int
1278 unp_connect2(struct socket *so, struct socket *so2)
1279 {
1280 struct unpcb *unp = sotounpcb(so);
1281 struct unpcb *unp2;
1282 int error = 0;
1283
1284 KASSERT(solocked2(so, so2));
1285
1286 error = unp_connect1(so, so2, curlwp);
1287 if (error)
1288 return error;
1289
1290 unp2 = sotounpcb(so2);
1291 switch (so->so_type) {
1292
1293 /*
1294 * SOCK_DGRAM and default cases are handled in prior call to
1295 * unp_connect1(), do not add a default case without fixing
1296 * unp_connect1().
1297 */
1298
1299 case SOCK_SEQPACKET: /* FALLTHROUGH */
1300 case SOCK_STREAM:
1301 unp2->unp_conn = unp;
1302 soisconnected(so);
1303 soisconnected(so2);
1304 break;
1305
1306 }
1307 return error;
1308 }
1309
1310 static void
1311 unp_disconnect1(struct unpcb *unp)
1312 {
1313 struct unpcb *unp2 = unp->unp_conn;
1314 struct socket *so;
1315
1316 if (unp2 == 0)
1317 return;
1318 unp->unp_conn = 0;
1319 so = unp->unp_socket;
1320 switch (so->so_type) {
1321 case SOCK_DGRAM:
1322 if (unp2->unp_refs == unp)
1323 unp2->unp_refs = unp->unp_nextref;
1324 else {
1325 unp2 = unp2->unp_refs;
1326 for (;;) {
1327 KASSERT(solocked2(so, unp2->unp_socket));
1328 if (unp2 == 0)
1329 panic("unp_disconnect1");
1330 if (unp2->unp_nextref == unp)
1331 break;
1332 unp2 = unp2->unp_nextref;
1333 }
1334 unp2->unp_nextref = unp->unp_nextref;
1335 }
1336 unp->unp_nextref = 0;
1337 so->so_state &= ~SS_ISCONNECTED;
1338 break;
1339
1340 case SOCK_SEQPACKET: /* FALLTHROUGH */
1341 case SOCK_STREAM:
1342 KASSERT(solocked2(so, unp2->unp_socket));
1343 soisdisconnected(so);
1344 unp2->unp_conn = 0;
1345 soisdisconnected(unp2->unp_socket);
1346 break;
1347 }
1348 }
1349
1350 static void
1351 unp_shutdown1(struct unpcb *unp)
1352 {
1353 struct socket *so;
1354
1355 switch(unp->unp_socket->so_type) {
1356 case SOCK_SEQPACKET: /* FALLTHROUGH */
1357 case SOCK_STREAM:
1358 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1359 socantrcvmore(so);
1360 break;
1361 default:
1362 break;
1363 }
1364 }
1365
1366 static bool
1367 unp_drop(struct unpcb *unp, int errno)
1368 {
1369 struct socket *so = unp->unp_socket;
1370
1371 KASSERT(solocked(so));
1372
1373 so->so_error = errno;
1374 unp_disconnect1(unp);
1375 if (so->so_head) {
1376 so->so_pcb = NULL;
1377 /* sofree() drops the socket lock */
1378 sofree(so);
1379 unp_free(unp);
1380 return true;
1381 }
1382 return false;
1383 }
1384
1385 #ifdef notdef
1386 unp_drain(void)
1387 {
1388
1389 }
1390 #endif
1391
1392 int
1393 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1394 {
1395 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1396 struct proc * const p = l->l_proc;
1397 file_t **rp;
1398 int error = 0;
1399
1400 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1401 sizeof(file_t *);
1402 if (nfds == 0)
1403 goto noop;
1404
1405 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1406 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1407
1408 /* Make sure the recipient should be able to see the files.. */
1409 rp = (file_t **)CMSG_DATA(cm);
1410 for (size_t i = 0; i < nfds; i++) {
1411 file_t * const fp = *rp++;
1412 if (fp == NULL) {
1413 error = EINVAL;
1414 goto out;
1415 }
1416 /*
1417 * If we are in a chroot'ed directory, and
1418 * someone wants to pass us a directory, make
1419 * sure it's inside the subtree we're allowed
1420 * to access.
1421 */
1422 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1423 vnode_t *vp = fp->f_vnode;
1424 if ((vp->v_type == VDIR) &&
1425 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1426 error = EPERM;
1427 goto out;
1428 }
1429 }
1430 }
1431
1432 restart:
1433 /*
1434 * First loop -- allocate file descriptor table slots for the
1435 * new files.
1436 */
1437 for (size_t i = 0; i < nfds; i++) {
1438 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1439 /*
1440 * Back out what we've done so far.
1441 */
1442 while (i-- > 0) {
1443 fd_abort(p, NULL, fdp[i]);
1444 }
1445 if (error == ENOSPC) {
1446 fd_tryexpand(p);
1447 error = 0;
1448 goto restart;
1449 }
1450 /*
1451 * This is the error that has historically
1452 * been returned, and some callers may
1453 * expect it.
1454 */
1455 error = EMSGSIZE;
1456 goto out;
1457 }
1458 }
1459
1460 /*
1461 * Now that adding them has succeeded, update all of the
1462 * file passing state and affix the descriptors.
1463 */
1464 rp = (file_t **)CMSG_DATA(cm);
1465 int *ofdp = (int *)CMSG_DATA(cm);
1466 for (size_t i = 0; i < nfds; i++) {
1467 file_t * const fp = *rp++;
1468 const int fd = fdp[i];
1469 atomic_dec_uint(&unp_rights);
1470 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1471 fd_affix(p, fp, fd);
1472 /*
1473 * Done with this file pointer, replace it with a fd;
1474 */
1475 *ofdp++ = fd;
1476 mutex_enter(&fp->f_lock);
1477 fp->f_msgcount--;
1478 mutex_exit(&fp->f_lock);
1479 /*
1480 * Note that fd_affix() adds a reference to the file.
1481 * The file may already have been closed by another
1482 * LWP in the process, so we must drop the reference
1483 * added by unp_internalize() with closef().
1484 */
1485 closef(fp);
1486 }
1487
1488 /*
1489 * Adjust length, in case of transition from large file_t
1490 * pointers to ints.
1491 */
1492 if (sizeof(file_t *) != sizeof(int)) {
1493 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1494 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1495 }
1496 out:
1497 if (__predict_false(error != 0)) {
1498 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1499 for (size_t i = 0; i < nfds; i++)
1500 unp_discard_now(fpp[i]);
1501 /*
1502 * Truncate the array so that nobody will try to interpret
1503 * what is now garbage in it.
1504 */
1505 cm->cmsg_len = CMSG_LEN(0);
1506 rights->m_len = CMSG_SPACE(0);
1507 }
1508 rw_exit(&p->p_cwdi->cwdi_lock);
1509 kmem_free(fdp, nfds * sizeof(int));
1510
1511 noop:
1512 /*
1513 * Don't disclose kernel memory in the alignment space.
1514 */
1515 KASSERT(cm->cmsg_len <= rights->m_len);
1516 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1517 cm->cmsg_len);
1518 return error;
1519 }
1520
1521 static int
1522 unp_internalize(struct mbuf **controlp)
1523 {
1524 filedesc_t *fdescp = curlwp->l_fd;
1525 struct mbuf *control = *controlp;
1526 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1527 file_t **rp, **files;
1528 file_t *fp;
1529 int i, fd, *fdp;
1530 int nfds, error;
1531 u_int maxmsg;
1532
1533 error = 0;
1534 newcm = NULL;
1535
1536 /* Sanity check the control message header. */
1537 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1538 cm->cmsg_len > control->m_len ||
1539 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1540 return (EINVAL);
1541
1542 /*
1543 * Verify that the file descriptors are valid, and acquire
1544 * a reference to each.
1545 */
1546 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1547 fdp = (int *)CMSG_DATA(cm);
1548 maxmsg = maxfiles / unp_rights_ratio;
1549 for (i = 0; i < nfds; i++) {
1550 fd = *fdp++;
1551 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1552 atomic_dec_uint(&unp_rights);
1553 nfds = i;
1554 error = EAGAIN;
1555 goto out;
1556 }
1557 if ((fp = fd_getfile(fd)) == NULL
1558 || fp->f_type == DTYPE_KQUEUE) {
1559 if (fp)
1560 fd_putfile(fd);
1561 atomic_dec_uint(&unp_rights);
1562 nfds = i;
1563 error = EBADF;
1564 goto out;
1565 }
1566 }
1567
1568 /* Allocate new space and copy header into it. */
1569 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1570 if (newcm == NULL) {
1571 error = E2BIG;
1572 goto out;
1573 }
1574 memcpy(newcm, cm, sizeof(struct cmsghdr));
1575 files = (file_t **)CMSG_DATA(newcm);
1576
1577 /*
1578 * Transform the file descriptors into file_t pointers, in
1579 * reverse order so that if pointers are bigger than ints, the
1580 * int won't get until we're done. No need to lock, as we have
1581 * already validated the descriptors with fd_getfile().
1582 */
1583 fdp = (int *)CMSG_DATA(cm) + nfds;
1584 rp = files + nfds;
1585 for (i = 0; i < nfds; i++) {
1586 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1587 KASSERT(fp != NULL);
1588 mutex_enter(&fp->f_lock);
1589 *--rp = fp;
1590 fp->f_count++;
1591 fp->f_msgcount++;
1592 mutex_exit(&fp->f_lock);
1593 }
1594
1595 out:
1596 /* Release descriptor references. */
1597 fdp = (int *)CMSG_DATA(cm);
1598 for (i = 0; i < nfds; i++) {
1599 fd_putfile(*fdp++);
1600 if (error != 0) {
1601 atomic_dec_uint(&unp_rights);
1602 }
1603 }
1604
1605 if (error == 0) {
1606 if (control->m_flags & M_EXT) {
1607 m_freem(control);
1608 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1609 }
1610 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1611 M_MBUF, NULL, NULL);
1612 cm = newcm;
1613 /*
1614 * Adjust message & mbuf to note amount of space
1615 * actually used.
1616 */
1617 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1618 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1619 }
1620
1621 return error;
1622 }
1623
1624 struct mbuf *
1625 unp_addsockcred(struct lwp *l, struct mbuf *control)
1626 {
1627 struct sockcred *sc;
1628 struct mbuf *m;
1629 void *p;
1630
1631 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1632 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1633 if (m == NULL)
1634 return control;
1635
1636 sc = p;
1637 sc->sc_pid = l->l_proc->p_pid;
1638 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1639 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1640 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1641 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1642 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1643
1644 for (int i = 0; i < sc->sc_ngroups; i++)
1645 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1646
1647 return m_add(control, m);
1648 }
1649
1650 /*
1651 * Do a mark-sweep GC of files in the system, to free up any which are
1652 * caught in flight to an about-to-be-closed socket. Additionally,
1653 * process deferred file closures.
1654 */
1655 static void
1656 unp_gc(file_t *dp)
1657 {
1658 extern struct domain unixdomain;
1659 file_t *fp, *np;
1660 struct socket *so, *so1;
1661 u_int i, oflags, rflags;
1662 bool didwork;
1663
1664 KASSERT(curlwp == unp_thread_lwp);
1665 KASSERT(mutex_owned(&filelist_lock));
1666
1667 /*
1668 * First, process deferred file closures.
1669 */
1670 while (!SLIST_EMPTY(&unp_thread_discard)) {
1671 fp = SLIST_FIRST(&unp_thread_discard);
1672 KASSERT(fp->f_unpcount > 0);
1673 KASSERT(fp->f_count > 0);
1674 KASSERT(fp->f_msgcount > 0);
1675 KASSERT(fp->f_count >= fp->f_unpcount);
1676 KASSERT(fp->f_count >= fp->f_msgcount);
1677 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1678 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1679 i = fp->f_unpcount;
1680 fp->f_unpcount = 0;
1681 mutex_exit(&filelist_lock);
1682 for (; i != 0; i--) {
1683 unp_discard_now(fp);
1684 }
1685 mutex_enter(&filelist_lock);
1686 }
1687
1688 /*
1689 * Clear mark bits. Ensure that we don't consider new files
1690 * entering the file table during this loop (they will not have
1691 * FSCAN set).
1692 */
1693 unp_defer = 0;
1694 LIST_FOREACH(fp, &filehead, f_list) {
1695 for (oflags = fp->f_flag;; oflags = rflags) {
1696 rflags = atomic_cas_uint(&fp->f_flag, oflags,
1697 (oflags | FSCAN) & ~(FMARK|FDEFER));
1698 if (__predict_true(oflags == rflags)) {
1699 break;
1700 }
1701 }
1702 }
1703
1704 /*
1705 * Iterate over the set of sockets, marking ones believed (based on
1706 * refcount) to be referenced from a process, and marking for rescan
1707 * sockets which are queued on a socket. Recan continues descending
1708 * and searching for sockets referenced by sockets (FDEFER), until
1709 * there are no more socket->socket references to be discovered.
1710 */
1711 do {
1712 didwork = false;
1713 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1714 KASSERT(mutex_owned(&filelist_lock));
1715 np = LIST_NEXT(fp, f_list);
1716 mutex_enter(&fp->f_lock);
1717 if ((fp->f_flag & FDEFER) != 0) {
1718 atomic_and_uint(&fp->f_flag, ~FDEFER);
1719 unp_defer--;
1720 if (fp->f_count == 0) {
1721 /*
1722 * XXX: closef() doesn't pay attention
1723 * to FDEFER
1724 */
1725 mutex_exit(&fp->f_lock);
1726 continue;
1727 }
1728 } else {
1729 if (fp->f_count == 0 ||
1730 (fp->f_flag & FMARK) != 0 ||
1731 fp->f_count == fp->f_msgcount ||
1732 fp->f_unpcount != 0) {
1733 mutex_exit(&fp->f_lock);
1734 continue;
1735 }
1736 }
1737 atomic_or_uint(&fp->f_flag, FMARK);
1738
1739 if (fp->f_type != DTYPE_SOCKET ||
1740 (so = fp->f_socket) == NULL ||
1741 so->so_proto->pr_domain != &unixdomain ||
1742 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1743 mutex_exit(&fp->f_lock);
1744 continue;
1745 }
1746
1747 /* Gain file ref, mark our position, and unlock. */
1748 didwork = true;
1749 LIST_INSERT_AFTER(fp, dp, f_list);
1750 fp->f_count++;
1751 mutex_exit(&fp->f_lock);
1752 mutex_exit(&filelist_lock);
1753
1754 /*
1755 * Mark files referenced from sockets queued on the
1756 * accept queue as well.
1757 */
1758 solock(so);
1759 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1760 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1761 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1762 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1763 }
1764 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1765 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1766 }
1767 }
1768 sounlock(so);
1769
1770 /* Re-lock and restart from where we left off. */
1771 closef(fp);
1772 mutex_enter(&filelist_lock);
1773 np = LIST_NEXT(dp, f_list);
1774 LIST_REMOVE(dp, f_list);
1775 }
1776 /*
1777 * Bail early if we did nothing in the loop above. Could
1778 * happen because of concurrent activity causing unp_defer
1779 * to get out of sync.
1780 */
1781 } while (unp_defer != 0 && didwork);
1782
1783 /*
1784 * Sweep pass.
1785 *
1786 * We grab an extra reference to each of the files that are
1787 * not otherwise accessible and then free the rights that are
1788 * stored in messages on them.
1789 */
1790 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1791 KASSERT(mutex_owned(&filelist_lock));
1792 np = LIST_NEXT(fp, f_list);
1793 mutex_enter(&fp->f_lock);
1794
1795 /*
1796 * Ignore non-sockets.
1797 * Ignore dead sockets, or sockets with pending close.
1798 * Ignore sockets obviously referenced elsewhere.
1799 * Ignore sockets marked as referenced by our scan.
1800 * Ignore new sockets that did not exist during the scan.
1801 */
1802 if (fp->f_type != DTYPE_SOCKET ||
1803 fp->f_count == 0 || fp->f_unpcount != 0 ||
1804 fp->f_count != fp->f_msgcount ||
1805 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1806 mutex_exit(&fp->f_lock);
1807 continue;
1808 }
1809
1810 /* Gain file ref, mark our position, and unlock. */
1811 LIST_INSERT_AFTER(fp, dp, f_list);
1812 fp->f_count++;
1813 mutex_exit(&fp->f_lock);
1814 mutex_exit(&filelist_lock);
1815
1816 /*
1817 * Flush all data from the socket's receive buffer.
1818 * This will cause files referenced only by the
1819 * socket to be queued for close.
1820 */
1821 so = fp->f_socket;
1822 solock(so);
1823 sorflush(so);
1824 sounlock(so);
1825
1826 /* Re-lock and restart from where we left off. */
1827 closef(fp);
1828 mutex_enter(&filelist_lock);
1829 np = LIST_NEXT(dp, f_list);
1830 LIST_REMOVE(dp, f_list);
1831 }
1832 }
1833
1834 /*
1835 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1836 * wake once per second to garbage collect. Run continually while we
1837 * have deferred closes to process.
1838 */
1839 static void
1840 unp_thread(void *cookie)
1841 {
1842 file_t *dp;
1843
1844 /* Allocate a dummy file for our scans. */
1845 if ((dp = fgetdummy()) == NULL) {
1846 panic("unp_thread");
1847 }
1848
1849 mutex_enter(&filelist_lock);
1850 for (;;) {
1851 KASSERT(mutex_owned(&filelist_lock));
1852 if (SLIST_EMPTY(&unp_thread_discard)) {
1853 if (unp_rights != 0) {
1854 (void)cv_timedwait(&unp_thread_cv,
1855 &filelist_lock, hz);
1856 } else {
1857 cv_wait(&unp_thread_cv, &filelist_lock);
1858 }
1859 }
1860 unp_gc(dp);
1861 }
1862 /* NOTREACHED */
1863 }
1864
1865 /*
1866 * Kick the garbage collector into action if there is something for
1867 * it to process.
1868 */
1869 static void
1870 unp_thread_kick(void)
1871 {
1872
1873 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1874 mutex_enter(&filelist_lock);
1875 cv_signal(&unp_thread_cv);
1876 mutex_exit(&filelist_lock);
1877 }
1878 }
1879
1880 void
1881 unp_dispose(struct mbuf *m)
1882 {
1883
1884 if (m)
1885 unp_scan(m, unp_discard_later, 1);
1886 }
1887
1888 void
1889 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1890 {
1891 struct mbuf *m;
1892 file_t **rp, *fp;
1893 struct cmsghdr *cm;
1894 int i, qfds;
1895
1896 while (m0) {
1897 for (m = m0; m; m = m->m_next) {
1898 if (m->m_type != MT_CONTROL ||
1899 m->m_len < sizeof(*cm)) {
1900 continue;
1901 }
1902 cm = mtod(m, struct cmsghdr *);
1903 if (cm->cmsg_level != SOL_SOCKET ||
1904 cm->cmsg_type != SCM_RIGHTS)
1905 continue;
1906 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1907 / sizeof(file_t *);
1908 rp = (file_t **)CMSG_DATA(cm);
1909 for (i = 0; i < qfds; i++) {
1910 fp = *rp;
1911 if (discard) {
1912 *rp = 0;
1913 }
1914 (*op)(fp);
1915 rp++;
1916 }
1917 }
1918 m0 = m0->m_nextpkt;
1919 }
1920 }
1921
1922 void
1923 unp_mark(file_t *fp)
1924 {
1925
1926 if (fp == NULL)
1927 return;
1928
1929 /* If we're already deferred, don't screw up the defer count */
1930 mutex_enter(&fp->f_lock);
1931 if (fp->f_flag & (FMARK | FDEFER)) {
1932 mutex_exit(&fp->f_lock);
1933 return;
1934 }
1935
1936 /*
1937 * Minimize the number of deferrals... Sockets are the only type of
1938 * file which can hold references to another file, so just mark
1939 * other files, and defer unmarked sockets for the next pass.
1940 */
1941 if (fp->f_type == DTYPE_SOCKET) {
1942 unp_defer++;
1943 KASSERT(fp->f_count != 0);
1944 atomic_or_uint(&fp->f_flag, FDEFER);
1945 } else {
1946 atomic_or_uint(&fp->f_flag, FMARK);
1947 }
1948 mutex_exit(&fp->f_lock);
1949 }
1950
1951 static void
1952 unp_discard_now(file_t *fp)
1953 {
1954
1955 if (fp == NULL)
1956 return;
1957
1958 KASSERT(fp->f_count > 0);
1959 KASSERT(fp->f_msgcount > 0);
1960
1961 mutex_enter(&fp->f_lock);
1962 fp->f_msgcount--;
1963 mutex_exit(&fp->f_lock);
1964 atomic_dec_uint(&unp_rights);
1965 (void)closef(fp);
1966 }
1967
1968 static void
1969 unp_discard_later(file_t *fp)
1970 {
1971
1972 if (fp == NULL)
1973 return;
1974
1975 KASSERT(fp->f_count > 0);
1976 KASSERT(fp->f_msgcount > 0);
1977
1978 mutex_enter(&filelist_lock);
1979 if (fp->f_unpcount++ == 0) {
1980 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1981 }
1982 mutex_exit(&filelist_lock);
1983 }
1984
1985 void
1986 unp_sysctl_create(struct sysctllog **clog)
1987 {
1988 sysctl_createv(clog, 0, NULL, NULL,
1989 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1990 CTLTYPE_LONG, "sendspace",
1991 SYSCTL_DESCR("Default stream send space"),
1992 NULL, 0, &unpst_sendspace, 0,
1993 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
1994 sysctl_createv(clog, 0, NULL, NULL,
1995 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1996 CTLTYPE_LONG, "recvspace",
1997 SYSCTL_DESCR("Default stream recv space"),
1998 NULL, 0, &unpst_recvspace, 0,
1999 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2000 sysctl_createv(clog, 0, NULL, NULL,
2001 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2002 CTLTYPE_LONG, "sendspace",
2003 SYSCTL_DESCR("Default datagram send space"),
2004 NULL, 0, &unpdg_sendspace, 0,
2005 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2006 sysctl_createv(clog, 0, NULL, NULL,
2007 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2008 CTLTYPE_LONG, "recvspace",
2009 SYSCTL_DESCR("Default datagram recv space"),
2010 NULL, 0, &unpdg_recvspace, 0,
2011 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2012 sysctl_createv(clog, 0, NULL, NULL,
2013 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2014 CTLTYPE_INT, "inflight",
2015 SYSCTL_DESCR("File descriptors in flight"),
2016 NULL, 0, &unp_rights, 0,
2017 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2018 sysctl_createv(clog, 0, NULL, NULL,
2019 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2020 CTLTYPE_INT, "deferred",
2021 SYSCTL_DESCR("File descriptors deferred for close"),
2022 NULL, 0, &unp_defer, 0,
2023 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2024 }
2025
2026 const struct pr_usrreqs unp_usrreqs = {
2027 .pr_attach = unp_attach,
2028 .pr_detach = unp_detach,
2029 .pr_accept = unp_accept,
2030 .pr_bind = unp_bind,
2031 .pr_listen = unp_listen,
2032 .pr_connect = unp_connect,
2033 .pr_connect2 = unp_connect2,
2034 .pr_disconnect = unp_disconnect,
2035 .pr_shutdown = unp_shutdown,
2036 .pr_abort = unp_abort,
2037 .pr_ioctl = unp_ioctl,
2038 .pr_stat = unp_stat,
2039 .pr_peeraddr = unp_peeraddr,
2040 .pr_sockaddr = unp_sockaddr,
2041 .pr_rcvd = unp_rcvd,
2042 .pr_recvoob = unp_recvoob,
2043 .pr_send = unp_send,
2044 .pr_sendoob = unp_sendoob,
2045 };
2046