uipc_usrreq.c revision 1.209 1 /* $NetBSD: uipc_usrreq.c,v 1.209 2025/07/16 19:14:13 kre Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.209 2025/07/16 19:14:13 kre Exp $");
100
101 #ifdef _KERNEL_OPT
102 #include "opt_compat_netbsd.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/types.h>
107
108 #include <sys/atomic.h>
109 #include <sys/compat_stub.h>
110 #include <sys/domain.h>
111 #include <sys/file.h>
112 #include <sys/filedesc.h>
113 #include <sys/kauth.h>
114 #include <sys/kernel.h>
115 #include <sys/kmem.h>
116 #include <sys/kthread.h>
117 #include <sys/mbuf.h>
118 #include <sys/namei.h>
119 #include <sys/proc.h>
120 #include <sys/protosw.h>
121 #include <sys/sdt.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/stat.h>
125 #include <sys/systm.h>
126 #include <sys/uidinfo.h>
127 #include <sys/un.h>
128 #include <sys/unpcb.h>
129 #include <sys/vnode.h>
130
131 #include <compat/net/route_70.h>
132 #include <compat/sys/socket.h>
133
134 /*
135 * Unix communications domain.
136 *
137 * TODO:
138 * RDM
139 * rethink name space problems
140 * need a proper out-of-band
141 *
142 * Notes on locking:
143 *
144 * The generic rules noted in uipc_socket2.c apply. In addition:
145 *
146 * o We have a global lock, uipc_lock.
147 *
148 * o All datagram sockets are locked by uipc_lock.
149 *
150 * o For stream socketpairs, the two endpoints are created sharing the same
151 * independent lock. Sockets presented to PRU_CONNECT2 must already have
152 * matching locks.
153 *
154 * o Stream sockets created via socket() start life with their own
155 * independent lock.
156 *
157 * o Stream connections to a named endpoint are slightly more complicated.
158 * Sockets that have called listen() have their lock pointer mutated to
159 * the global uipc_lock. When establishing a connection, the connecting
160 * socket also has its lock mutated to uipc_lock, which matches the head
161 * (listening socket). We create a new socket for accept() to return, and
162 * that also shares the head's lock. Until the connection is completely
163 * done on both ends, all three sockets are locked by uipc_lock. Once the
164 * connection is complete, the association with the head's lock is broken.
165 * The connecting socket and the socket returned from accept() have their
166 * lock pointers mutated away from uipc_lock, and back to the connecting
167 * socket's original, independent lock. The head continues to be locked
168 * by uipc_lock.
169 *
170 * o If uipc_lock is determined to be a significant source of contention,
171 * it could easily be hashed out. It is difficult to simply make it an
172 * independent lock because of visibility / garbage collection issues:
173 * if a socket has been associated with a lock at any point, that lock
174 * must remain valid until the socket is no longer visible in the system.
175 * The lock must not be freed or otherwise destroyed until any sockets
176 * that had referenced it have also been destroyed.
177 */
178 const struct sockaddr_un sun_noname = {
179 .sun_len = offsetof(struct sockaddr_un, sun_path),
180 .sun_family = AF_LOCAL,
181 };
182 ino_t unp_ino; /* prototype for fake inode numbers */
183
184 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
185 static void unp_discard_later(file_t *);
186 static void unp_discard_now(file_t *);
187 static void unp_disconnect1(struct unpcb *);
188 static bool unp_drop(struct unpcb *, int);
189 static int unp_internalize(struct mbuf **);
190 static void unp_mark(file_t *);
191 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
192 static void unp_shutdown1(struct unpcb *);
193 static void unp_thread(void *);
194 static void unp_thread_kick(void);
195
196 static kmutex_t *uipc_lock;
197
198 static kcondvar_t unp_thread_cv;
199 static lwp_t *unp_thread_lwp;
200 static SLIST_HEAD(,file) unp_thread_discard;
201 static int unp_defer;
202 static struct sysctllog *usrreq_sysctllog;
203 static void unp_sysctl_create(void);
204
205 /* Compat interface */
206
207 struct mbuf * stub_compat_70_unp_addsockcred(lwp_t *, struct mbuf *);
208
209 struct mbuf * stub_compat_70_unp_addsockcred(struct lwp *lwp,
210 struct mbuf *control)
211 {
212
213 /* just copy our initial argument */
214 return control;
215 }
216
217 bool compat70_ocreds_valid = false;
218
219 /*
220 * Initialize Unix protocols.
221 */
222 void
223 uipc_init(void)
224 {
225 int error;
226
227 unp_sysctl_create();
228
229 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
230 cv_init(&unp_thread_cv, "unpgc");
231
232 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
233 NULL, &unp_thread_lwp, "unpgc");
234 if (error != 0)
235 panic("uipc_init %d", error);
236 }
237
238 static void
239 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
240 {
241 unp->unp_connid.unp_pid = l->l_proc->p_pid;
242 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
243 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
244 unp->unp_flags |= flags;
245 }
246
247 /*
248 * A connection succeeded: disassociate both endpoints from the head's
249 * lock, and make them share their own lock. There is a race here: for
250 * a very brief time one endpoint will be locked by a different lock
251 * than the other end. However, since the current thread holds the old
252 * lock (the listening socket's lock, the head) access can still only be
253 * made to one side of the connection.
254 */
255 static void
256 unp_setpeerlocks(struct socket *so, struct socket *so2)
257 {
258 struct unpcb *unp;
259 kmutex_t *lock;
260
261 KASSERT(solocked2(so, so2));
262
263 /*
264 * Bail out if either end of the socket is not yet fully
265 * connected or accepted. We only break the lock association
266 * with the head when the pair of sockets stand completely
267 * on their own.
268 */
269 KASSERT(so->so_head == NULL);
270 if (so2->so_head != NULL)
271 return;
272
273 /*
274 * Drop references to old lock. A third reference (from the
275 * queue head) must be held as we still hold its lock. Bonus:
276 * we don't need to worry about garbage collecting the lock.
277 */
278 lock = so->so_lock;
279 KASSERT(lock == uipc_lock);
280 mutex_obj_free(lock);
281 mutex_obj_free(lock);
282
283 /*
284 * Grab stream lock from the initiator and share between the two
285 * endpoints. Issue memory barrier to ensure all modifications
286 * become globally visible before the lock change. so2 is
287 * assumed not to have a stream lock, because it was created
288 * purely for the server side to accept this connection and
289 * started out life using the domain-wide lock.
290 */
291 unp = sotounpcb(so);
292 KASSERT(unp->unp_streamlock != NULL);
293 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
294 lock = unp->unp_streamlock;
295 unp->unp_streamlock = NULL;
296 mutex_obj_hold(lock);
297 /*
298 * Ensure lock is initialized before publishing it with
299 * solockreset. Pairs with atomic_load_consume in solock and
300 * various loops to reacquire lock after wakeup.
301 */
302 membar_release();
303 /*
304 * possible race if lock is not held - see comment in
305 * uipc_usrreq(PRU_ACCEPT).
306 */
307 KASSERT(mutex_owned(lock));
308 solockreset(so, lock);
309 solockreset(so2, lock);
310 }
311
312 /*
313 * Reset a socket's lock back to the domain-wide lock.
314 */
315 static void
316 unp_resetlock(struct socket *so)
317 {
318 kmutex_t *olock, *nlock;
319 struct unpcb *unp;
320
321 KASSERT(solocked(so));
322
323 olock = so->so_lock;
324 nlock = uipc_lock;
325 if (olock == nlock)
326 return;
327 unp = sotounpcb(so);
328 KASSERT(unp->unp_streamlock == NULL);
329 unp->unp_streamlock = olock;
330 mutex_obj_hold(nlock);
331 mutex_enter(nlock);
332 solockreset(so, nlock);
333 mutex_exit(olock);
334 }
335
336 static void
337 unp_free(struct unpcb *unp)
338 {
339 if (unp->unp_addr)
340 free(unp->unp_addr, M_SONAME);
341 if (unp->unp_streamlock != NULL)
342 mutex_obj_free(unp->unp_streamlock);
343 kmem_free(unp, sizeof(*unp));
344 }
345
346 static int
347 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
348 {
349 struct socket *so2;
350 const struct sockaddr_un *sun;
351
352 /* XXX: server side closed the socket */
353 if (unp->unp_conn == NULL)
354 return SET_ERROR(ECONNREFUSED);
355 so2 = unp->unp_conn->unp_socket;
356
357 KASSERT(solocked(so2));
358
359 if (unp->unp_addr)
360 sun = unp->unp_addr;
361 else
362 sun = &sun_noname;
363 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
364 control = unp_addsockcred(curlwp, control);
365 if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
366 MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control),
367 stub_compat_70_unp_addsockcred(curlwp, control), control);
368 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
369 control) == 0) {
370 unp_dispose(control);
371 m_freem(control);
372 m_freem(m);
373 /* Don't call soroverflow because we're returning this
374 * error directly to the sender. */
375 so2->so_rcv.sb_overflowed++;
376 return SET_ERROR(ENOBUFS);
377 } else {
378 sorwakeup(so2);
379 return 0;
380 }
381 }
382
383 static void
384 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
385 {
386 const struct sockaddr_un *sun = NULL;
387 struct unpcb *unp;
388
389 KASSERT(solocked(so));
390 unp = sotounpcb(so);
391
392 if (peeraddr) {
393 if (unp->unp_conn && unp->unp_conn->unp_addr)
394 sun = unp->unp_conn->unp_addr;
395 } else {
396 if (unp->unp_addr)
397 sun = unp->unp_addr;
398 }
399 if (sun == NULL)
400 sun = &sun_noname;
401
402 memcpy(nam, sun, sun->sun_len);
403 }
404
405 static int
406 unp_rcvd(struct socket *so, int flags, struct lwp *l)
407 {
408 struct unpcb *unp = sotounpcb(so);
409 struct socket *so2;
410 u_int newhiwat;
411
412 KASSERT(solocked(so));
413 KASSERT(unp != NULL);
414
415 switch (so->so_type) {
416
417 case SOCK_DGRAM:
418 panic("uipc 1");
419 /*NOTREACHED*/
420
421 case SOCK_SEQPACKET: /* FALLTHROUGH */
422 case SOCK_STREAM:
423 #define rcv (&so->so_rcv)
424 #define snd (&so2->so_snd)
425 if (unp->unp_conn == 0)
426 break;
427 so2 = unp->unp_conn->unp_socket;
428 KASSERT(solocked2(so, so2));
429 /*
430 * Adjust backpressure on sender
431 * and wakeup any waiting to write.
432 */
433 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
434 unp->unp_mbcnt = rcv->sb_mbcnt;
435 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
436 (void)chgsbsize(so2->so_uidinfo,
437 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
438 unp->unp_cc = rcv->sb_cc;
439 sowwakeup(so2);
440 #undef snd
441 #undef rcv
442 break;
443
444 default:
445 panic("uipc 2");
446 }
447
448 return 0;
449 }
450
451 static int
452 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
453 {
454 KASSERT(solocked(so));
455
456 return SET_ERROR(EOPNOTSUPP);
457 }
458
459 static int
460 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
461 struct mbuf *control, struct lwp *l)
462 {
463 struct unpcb *unp = sotounpcb(so);
464 int error = 0;
465 u_int newhiwat;
466 struct socket *so2;
467
468 KASSERT(solocked(so));
469 KASSERT(unp != NULL);
470 KASSERT(m != NULL);
471
472 /*
473 * Note: unp_internalize() rejects any control message
474 * other than SCM_RIGHTS, and only allows one. This
475 * has the side-effect of preventing a caller from
476 * forging SCM_CREDS.
477 */
478 if (control) {
479 sounlock(so);
480 error = unp_internalize(&control);
481 solock(so);
482 if (error != 0) {
483 m_freem(control);
484 m_freem(m);
485 return error;
486 }
487 }
488
489 switch (so->so_type) {
490
491 case SOCK_DGRAM: {
492 KASSERT(so->so_lock == uipc_lock);
493 if (nam) {
494 if ((so->so_state & SS_ISCONNECTED) != 0)
495 error = SET_ERROR(EISCONN);
496 else {
497 /*
498 * Note: once connected, the
499 * socket's lock must not be
500 * dropped until we have sent
501 * the message and disconnected.
502 * This is necessary to prevent
503 * intervening control ops, like
504 * another connection.
505 */
506 error = unp_connect(so, nam, l);
507 }
508 } else {
509 if ((so->so_state & SS_ISCONNECTED) == 0)
510 error = SET_ERROR(ENOTCONN);
511 }
512 if (error) {
513 unp_dispose(control);
514 m_freem(control);
515 m_freem(m);
516 return error;
517 }
518 error = unp_output(m, control, unp);
519 if (nam)
520 unp_disconnect1(unp);
521 break;
522 }
523
524 case SOCK_SEQPACKET: /* FALLTHROUGH */
525 case SOCK_STREAM:
526 #define rcv (&so2->so_rcv)
527 #define snd (&so->so_snd)
528 if (unp->unp_conn == NULL) {
529 error = SET_ERROR(ENOTCONN);
530 break;
531 }
532 so2 = unp->unp_conn->unp_socket;
533 KASSERT(solocked2(so, so2));
534 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
535 /*
536 * Credentials are passed only once on
537 * SOCK_STREAM and SOCK_SEQPACKET.
538 */
539 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
540 control = unp_addsockcred(l, control);
541 }
542 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
543 /*
544 * Credentials are passed only once on
545 * SOCK_STREAM and SOCK_SEQPACKET.
546 */
547 unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
548 MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control),
549 stub_compat_70_unp_addsockcred(curlwp, control),
550 control);
551 }
552 /*
553 * Send to paired receive port, and then reduce
554 * send buffer hiwater marks to maintain backpressure.
555 * Wake up readers.
556 */
557 if (control) {
558 if (sbappendcontrol(rcv, m, control) != 0)
559 control = NULL;
560 } else {
561 switch(so->so_type) {
562 case SOCK_SEQPACKET:
563 sbappendrecord(rcv, m);
564 break;
565 case SOCK_STREAM:
566 sbappend(rcv, m);
567 break;
568 default:
569 panic("uipc_usrreq");
570 break;
571 }
572 }
573 snd->sb_mbmax -=
574 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
575 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
576 newhiwat = snd->sb_hiwat -
577 (rcv->sb_cc - unp->unp_conn->unp_cc);
578 (void)chgsbsize(so->so_uidinfo,
579 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
580 unp->unp_conn->unp_cc = rcv->sb_cc;
581 sorwakeup(so2);
582 #undef snd
583 #undef rcv
584 if (control != NULL) {
585 unp_dispose(control);
586 m_freem(control);
587 }
588 break;
589
590 default:
591 panic("uipc 4");
592 }
593
594 return error;
595 }
596
597 static int
598 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
599 {
600 KASSERT(solocked(so));
601
602 m_freem(m);
603 m_freem(control);
604
605 return SET_ERROR(EOPNOTSUPP);
606 }
607
608 /*
609 * Unix domain socket option processing.
610 */
611 int
612 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
613 {
614 struct unpcb *unp = sotounpcb(so);
615 int optval = 0, error = 0;
616
617 KASSERT(solocked(so));
618
619 if (sopt->sopt_level != SOL_LOCAL) {
620 error = SET_ERROR(ENOPROTOOPT);
621 } else switch (op) {
622
623 case PRCO_SETOPT:
624 switch (sopt->sopt_name) {
625 case LOCAL_OCREDS:
626 if (!compat70_ocreds_valid) {
627 error = SET_ERROR(ENOPROTOOPT);
628 break;
629 }
630 /* FALLTHROUGH */
631 case LOCAL_CREDS:
632 case LOCAL_CONNWAIT:
633 error = sockopt_getint(sopt, &optval);
634 if (error)
635 break;
636 switch (sopt->sopt_name) {
637 #define OPTSET(bit) \
638 if (optval) \
639 unp->unp_flags |= (bit); \
640 else \
641 unp->unp_flags &= ~(bit);
642
643 case LOCAL_CREDS:
644 OPTSET(UNP_WANTCRED);
645 break;
646 case LOCAL_CONNWAIT:
647 OPTSET(UNP_CONNWAIT);
648 break;
649 case LOCAL_OCREDS:
650 OPTSET(UNP_OWANTCRED);
651 break;
652 }
653 break;
654 #undef OPTSET
655
656 default:
657 error = SET_ERROR(ENOPROTOOPT);
658 break;
659 }
660 break;
661
662 case PRCO_GETOPT:
663 sounlock(so);
664 switch (sopt->sopt_name) {
665 case LOCAL_PEEREID:
666 if (unp->unp_flags & UNP_EIDSVALID) {
667 error = sockopt_set(sopt, &unp->unp_connid,
668 sizeof(unp->unp_connid));
669 } else {
670 error = SET_ERROR(EINVAL);
671 }
672 break;
673 case LOCAL_CREDS:
674 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
675
676 optval = OPTBIT(UNP_WANTCRED);
677 error = sockopt_setint(sopt, optval);
678 break;
679 case LOCAL_OCREDS:
680 if (compat70_ocreds_valid) {
681 optval = OPTBIT(UNP_OWANTCRED);
682 error = sockopt_setint(sopt, optval);
683 break;
684 }
685 #undef OPTBIT
686 /* FALLTHROUGH */
687 default:
688 error = SET_ERROR(ENOPROTOOPT);
689 break;
690 }
691 solock(so);
692 break;
693 }
694 return (error);
695 }
696
697 /*
698 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
699 * for stream sockets, although the total for sender and receiver is
700 * actually only PIPSIZ.
701 * Datagram sockets really use the sendspace as the maximum datagram size,
702 * and don't really want to reserve the sendspace. Their recvspace should
703 * be large enough for at least one max-size datagram plus address.
704 */
705 #ifndef PIPSIZ
706 #define PIPSIZ 8192
707 #endif
708 u_long unpst_sendspace = PIPSIZ;
709 u_long unpst_recvspace = PIPSIZ;
710 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
711 u_long unpdg_recvspace = 16*1024;
712
713 u_int unp_rights; /* files in flight */
714 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
715
716 static int
717 unp_attach(struct socket *so, int proto)
718 {
719 struct unpcb *unp = sotounpcb(so);
720 u_long sndspc, rcvspc;
721 int error;
722
723 KASSERT(unp == NULL);
724
725 switch (so->so_type) {
726 case SOCK_SEQPACKET:
727 /* FALLTHROUGH */
728 case SOCK_STREAM:
729 if (so->so_lock == NULL) {
730 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
731 solock(so);
732 }
733 sndspc = unpst_sendspace;
734 rcvspc = unpst_recvspace;
735 break;
736
737 case SOCK_DGRAM:
738 if (so->so_lock == NULL) {
739 mutex_obj_hold(uipc_lock);
740 so->so_lock = uipc_lock;
741 solock(so);
742 }
743 sndspc = unpdg_sendspace;
744 rcvspc = unpdg_recvspace;
745 break;
746
747 default:
748 panic("unp_attach");
749 }
750
751 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
752 error = soreserve(so, sndspc, rcvspc);
753 if (error) {
754 return error;
755 }
756 }
757
758 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
759 nanotime(&unp->unp_ctime);
760 unp->unp_socket = so;
761 so->so_pcb = unp;
762
763 KASSERT(solocked(so));
764 return 0;
765 }
766
767 static void
768 unp_detach(struct socket *so)
769 {
770 struct unpcb *unp;
771 vnode_t *vp;
772
773 unp = sotounpcb(so);
774 KASSERT(unp != NULL);
775 KASSERT(solocked(so));
776 retry:
777 if ((vp = unp->unp_vnode) != NULL) {
778 sounlock(so);
779 /* Acquire v_interlock to protect against unp_connect(). */
780 /* XXXAD racy */
781 mutex_enter(vp->v_interlock);
782 vp->v_socket = NULL;
783 mutex_exit(vp->v_interlock);
784 vrele(vp);
785 solock(so);
786 unp->unp_vnode = NULL;
787 }
788 if (unp->unp_conn)
789 unp_disconnect1(unp);
790 while (unp->unp_refs) {
791 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
792 if (unp_drop(unp->unp_refs, SET_ERROR(ECONNRESET))) {
793 solock(so);
794 goto retry;
795 }
796 }
797 soisdisconnected(so);
798 so->so_pcb = NULL;
799 if (unp_rights) {
800 /*
801 * Normally the receive buffer is flushed later, in sofree,
802 * but if our receive buffer holds references to files that
803 * are now garbage, we will enqueue those file references to
804 * the garbage collector and kick it into action.
805 */
806 sorflush(so);
807 unp_free(unp);
808 unp_thread_kick();
809 } else
810 unp_free(unp);
811 }
812
813 static int
814 unp_accept(struct socket *so, struct sockaddr *nam)
815 {
816 struct unpcb *unp = sotounpcb(so);
817 struct socket *so2;
818
819 KASSERT(solocked(so));
820 KASSERT(nam != NULL);
821
822 /* XXX code review required to determine if unp can ever be NULL */
823 if (unp == NULL)
824 return SET_ERROR(EINVAL);
825
826 KASSERT(so->so_lock == uipc_lock);
827 /*
828 * Mark the initiating STREAM socket as connected *ONLY*
829 * after it's been accepted. This prevents a client from
830 * overrunning a server and receiving ECONNREFUSED.
831 */
832 if (unp->unp_conn == NULL) {
833 /*
834 * This will use the empty socket and will not
835 * allocate.
836 */
837 unp_setaddr(so, nam, true);
838 return 0;
839 }
840 so2 = unp->unp_conn->unp_socket;
841 if (so2->so_state & SS_ISCONNECTING) {
842 KASSERT(so->so_head == NULL || solocked2(so, so->so_head));
843 KASSERT(so->so_head == NULL || solocked2(so2, so->so_head));
844 soisconnected(so2);
845 }
846 /*
847 * If the connection is fully established, break the
848 * association with uipc_lock and give the connected
849 * pair a separate lock to share.
850 * There is a race here: sotounpcb(so2)->unp_streamlock
851 * is not locked, so when changing so2->so_lock
852 * another thread can grab it while so->so_lock is still
853 * pointing to the (locked) uipc_lock.
854 * this should be harmless, except that this makes
855 * solocked2() and solocked() unreliable.
856 * Another problem is that unp_setaddr() expects the
857 * the socket locked. Grabbing sotounpcb(so2)->unp_streamlock
858 * fixes both issues.
859 */
860 mutex_enter(sotounpcb(so2)->unp_streamlock);
861 unp_setpeerlocks(so2, so);
862 /*
863 * Only now return peer's address, as we may need to
864 * block in order to allocate memory.
865 *
866 * XXX Minor race: connection can be broken while
867 * lock is dropped in unp_setaddr(). We will return
868 * error == 0 and sun_noname as the peer address.
869 */
870 unp_setaddr(so, nam, true);
871 /* so_lock now points to unp_streamlock */
872 mutex_exit(so2->so_lock);
873 return 0;
874 }
875
876 static int
877 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
878 {
879 return SET_ERROR(EOPNOTSUPP);
880 }
881
882 static int
883 unp_stat(struct socket *so, struct stat *ub)
884 {
885 struct unpcb *unp;
886 struct socket *so2;
887
888 KASSERT(solocked(so));
889
890 unp = sotounpcb(so);
891 if (unp == NULL)
892 return SET_ERROR(EINVAL);
893
894 ub->st_blksize = so->so_snd.sb_hiwat;
895 switch (so->so_type) {
896 case SOCK_SEQPACKET: /* FALLTHROUGH */
897 case SOCK_STREAM:
898 if (unp->unp_conn == 0)
899 break;
900
901 so2 = unp->unp_conn->unp_socket;
902 KASSERT(solocked2(so, so2));
903 ub->st_blksize += so2->so_rcv.sb_cc;
904 break;
905 default:
906 break;
907 }
908 ub->st_dev = NODEV;
909 if (unp->unp_ino == 0)
910 unp->unp_ino = unp_ino++;
911 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
912 ub->st_ino = unp->unp_ino;
913 ub->st_uid = so->so_uidinfo->ui_uid;
914 ub->st_gid = so->so_egid;
915 return (0);
916 }
917
918 static int
919 unp_peeraddr(struct socket *so, struct sockaddr *nam)
920 {
921 KASSERT(solocked(so));
922 KASSERT(sotounpcb(so) != NULL);
923 KASSERT(nam != NULL);
924
925 unp_setaddr(so, nam, true);
926 return 0;
927 }
928
929 static int
930 unp_sockaddr(struct socket *so, struct sockaddr *nam)
931 {
932 KASSERT(solocked(so));
933 KASSERT(sotounpcb(so) != NULL);
934 KASSERT(nam != NULL);
935
936 unp_setaddr(so, nam, false);
937 return 0;
938 }
939
940 /*
941 * we only need to perform this allocation until syscalls other than
942 * bind are adjusted to use sockaddr_big.
943 */
944 static struct sockaddr_un *
945 makeun_sb(struct sockaddr *nam, size_t *addrlen)
946 {
947 struct sockaddr_un *sun;
948
949 *addrlen = nam->sa_len + 1;
950 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
951 memcpy(sun, nam, nam->sa_len);
952 *(((char *)sun) + nam->sa_len) = '\0';
953 return sun;
954 }
955
956 static int
957 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
958 {
959 struct sockaddr_un *sun;
960 struct unpcb *unp;
961 vnode_t *vp;
962 struct vattr vattr;
963 size_t addrlen;
964 int error;
965 struct pathbuf *pb;
966 struct nameidata nd;
967 proc_t *p;
968
969 unp = sotounpcb(so);
970
971 KASSERT(solocked(so));
972 KASSERT(unp != NULL);
973 KASSERT(nam != NULL);
974
975 if (unp->unp_vnode != NULL)
976 return SET_ERROR(EINVAL);
977 if ((unp->unp_flags & UNP_BUSY) != 0) {
978 /*
979 * EALREADY may not be strictly accurate, but since this
980 * is a major application error it's hardly a big deal.
981 */
982 return SET_ERROR(EALREADY);
983 }
984 unp->unp_flags |= UNP_BUSY;
985 sounlock(so);
986
987 p = l->l_proc;
988 sun = makeun_sb(nam, &addrlen);
989
990 pb = pathbuf_create(sun->sun_path);
991 if (pb == NULL) {
992 error = SET_ERROR(ENOMEM);
993 goto bad;
994 }
995 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
996
997 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
998 if ((error = namei(&nd)) != 0) {
999 pathbuf_destroy(pb);
1000 goto bad;
1001 }
1002 vp = nd.ni_vp;
1003 if (vp != NULL) {
1004 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
1005 if (nd.ni_dvp == vp)
1006 vrele(nd.ni_dvp);
1007 else
1008 vput(nd.ni_dvp);
1009 vrele(vp);
1010 pathbuf_destroy(pb);
1011 error = SET_ERROR(EADDRINUSE);
1012 goto bad;
1013 }
1014 vattr_null(&vattr);
1015 vattr.va_type = VSOCK;
1016 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
1017 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
1018 if (error) {
1019 vput(nd.ni_dvp);
1020 pathbuf_destroy(pb);
1021 goto bad;
1022 }
1023 vp = nd.ni_vp;
1024 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1025 solock(so);
1026 vp->v_socket = unp->unp_socket;
1027 unp->unp_vnode = vp;
1028 unp->unp_addrlen = addrlen;
1029 unp->unp_addr = sun;
1030 VOP_UNLOCK(vp);
1031 vput(nd.ni_dvp);
1032 unp->unp_flags &= ~UNP_BUSY;
1033 pathbuf_destroy(pb);
1034 return (0);
1035
1036 bad:
1037 free(sun, M_SONAME);
1038 solock(so);
1039 unp->unp_flags &= ~UNP_BUSY;
1040 return (error);
1041 }
1042
1043 static int
1044 unp_listen(struct socket *so, struct lwp *l)
1045 {
1046 struct unpcb *unp = sotounpcb(so);
1047
1048 KASSERT(solocked(so));
1049 KASSERT(unp != NULL);
1050
1051 /*
1052 * If the socket can accept a connection, it must be
1053 * locked by uipc_lock.
1054 */
1055 unp_resetlock(so);
1056 if (unp->unp_vnode == NULL)
1057 return SET_ERROR(EINVAL);
1058
1059 unp_connid(l, unp, UNP_EIDSBIND);
1060 return 0;
1061 }
1062
1063 static int
1064 unp_disconnect(struct socket *so)
1065 {
1066 KASSERT(solocked(so));
1067 KASSERT(sotounpcb(so) != NULL);
1068
1069 unp_disconnect1(sotounpcb(so));
1070 return 0;
1071 }
1072
1073 static int
1074 unp_shutdown(struct socket *so)
1075 {
1076 KASSERT(solocked(so));
1077 KASSERT(sotounpcb(so) != NULL);
1078
1079 socantsendmore(so);
1080 unp_shutdown1(sotounpcb(so));
1081 return 0;
1082 }
1083
1084 static int
1085 unp_abort(struct socket *so)
1086 {
1087 KASSERT(solocked(so));
1088 KASSERT(sotounpcb(so) != NULL);
1089
1090 (void)unp_drop(sotounpcb(so), SET_ERROR(ECONNABORTED));
1091 KASSERT(so->so_head == NULL);
1092 KASSERT(so->so_pcb != NULL);
1093 unp_detach(so);
1094 return 0;
1095 }
1096
1097 static int
1098 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1099 {
1100 struct unpcb *unp = sotounpcb(so);
1101 struct unpcb *unp2;
1102
1103 if (so2->so_type != so->so_type)
1104 return SET_ERROR(EPROTOTYPE);
1105
1106 /*
1107 * All three sockets involved must be locked by same lock:
1108 *
1109 * local endpoint (so)
1110 * remote endpoint (so2)
1111 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1112 */
1113 KASSERT(solocked2(so, so2));
1114 KASSERT(so->so_head == NULL);
1115 if (so2->so_head != NULL) {
1116 KASSERT(so2->so_lock == uipc_lock);
1117 KASSERT(solocked2(so2, so2->so_head));
1118 }
1119
1120 unp2 = sotounpcb(so2);
1121 unp->unp_conn = unp2;
1122
1123 switch (so->so_type) {
1124
1125 case SOCK_DGRAM:
1126 unp->unp_nextref = unp2->unp_refs;
1127 unp2->unp_refs = unp;
1128 soisconnected(so);
1129 break;
1130
1131 case SOCK_SEQPACKET: /* FALLTHROUGH */
1132 case SOCK_STREAM:
1133
1134 /*
1135 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1136 * which are unp_connect() or unp_connect2().
1137 */
1138
1139 break;
1140
1141 default:
1142 panic("unp_connect1");
1143 }
1144
1145 return 0;
1146 }
1147
1148 int
1149 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1150 {
1151 struct sockaddr_un *sun;
1152 vnode_t *vp;
1153 struct socket *so2, *so3;
1154 struct unpcb *unp, *unp2, *unp3;
1155 size_t addrlen;
1156 int error;
1157 struct pathbuf *pb;
1158 struct nameidata nd;
1159
1160 unp = sotounpcb(so);
1161 if ((unp->unp_flags & UNP_BUSY) != 0) {
1162 /*
1163 * EALREADY may not be strictly accurate, but since this
1164 * is a major application error it's hardly a big deal.
1165 */
1166 return SET_ERROR(EALREADY);
1167 }
1168 unp->unp_flags |= UNP_BUSY;
1169 sounlock(so);
1170
1171 sun = makeun_sb(nam, &addrlen);
1172 pb = pathbuf_create(sun->sun_path);
1173 if (pb == NULL) {
1174 error = SET_ERROR(ENOMEM);
1175 goto bad2;
1176 }
1177
1178 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1179
1180 if ((error = namei(&nd)) != 0) {
1181 pathbuf_destroy(pb);
1182 goto bad2;
1183 }
1184 vp = nd.ni_vp;
1185 pathbuf_destroy(pb);
1186 if (vp->v_type != VSOCK) {
1187 error = SET_ERROR(ENOTSOCK);
1188 goto bad;
1189 }
1190 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1191 goto bad;
1192 /* Acquire v_interlock to protect against unp_detach(). */
1193 mutex_enter(vp->v_interlock);
1194 so2 = vp->v_socket;
1195 if (so2 == NULL) {
1196 mutex_exit(vp->v_interlock);
1197 error = SET_ERROR(ECONNREFUSED);
1198 goto bad;
1199 }
1200 if (so->so_type != so2->so_type) {
1201 mutex_exit(vp->v_interlock);
1202 error = SET_ERROR(EPROTOTYPE);
1203 goto bad;
1204 }
1205 solock(so);
1206 unp_resetlock(so);
1207 mutex_exit(vp->v_interlock);
1208 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1209 /*
1210 * This may seem somewhat fragile but is OK: if we can
1211 * see SO_ACCEPTCONN set on the endpoint, then it must
1212 * be locked by the domain-wide uipc_lock.
1213 */
1214 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1215 so2->so_lock == uipc_lock);
1216 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1217 (so3 = sonewconn(so2, false)) == NULL) {
1218 error = SET_ERROR(ECONNREFUSED);
1219 sounlock(so);
1220 goto bad;
1221 }
1222 unp2 = sotounpcb(so2);
1223 unp3 = sotounpcb(so3);
1224 if (unp2->unp_addr) {
1225 unp3->unp_addr = malloc(unp2->unp_addrlen,
1226 M_SONAME, M_WAITOK);
1227 memcpy(unp3->unp_addr, unp2->unp_addr,
1228 unp2->unp_addrlen);
1229 unp3->unp_addrlen = unp2->unp_addrlen;
1230 }
1231 unp3->unp_flags = unp2->unp_flags;
1232 so2 = so3;
1233 /*
1234 * The connector's (client's) credentials are copied from its
1235 * process structure at the time of connect() (which is now).
1236 */
1237 unp_connid(l, unp3, UNP_EIDSVALID);
1238 /*
1239 * The receiver's (server's) credentials are copied from the
1240 * unp_peercred member of socket on which the former called
1241 * listen(); unp_listen() cached that process's credentials
1242 * at that time so we can use them now.
1243 */
1244 if (unp2->unp_flags & UNP_EIDSBIND) {
1245 memcpy(&unp->unp_connid, &unp2->unp_connid,
1246 sizeof(unp->unp_connid));
1247 unp->unp_flags |= UNP_EIDSVALID;
1248 }
1249 }
1250 error = unp_connect1(so, so2, l);
1251 if (error) {
1252 sounlock(so);
1253 goto bad;
1254 }
1255 unp2 = sotounpcb(so2);
1256 switch (so->so_type) {
1257
1258 /*
1259 * SOCK_DGRAM and default cases are handled in prior call to
1260 * unp_connect1(), do not add a default case without fixing
1261 * unp_connect1().
1262 */
1263
1264 case SOCK_SEQPACKET: /* FALLTHROUGH */
1265 case SOCK_STREAM:
1266 unp2->unp_conn = unp;
1267 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1268 soisconnecting(so);
1269 else
1270 soisconnected(so);
1271 soisconnected(so2);
1272 /*
1273 * If the connection is fully established, break the
1274 * association with uipc_lock and give the connected
1275 * pair a separate lock to share.
1276 */
1277 KASSERT(so2->so_head != NULL);
1278 unp_setpeerlocks(so, so2);
1279 break;
1280
1281 }
1282 sounlock(so);
1283 bad:
1284 vput(vp);
1285 bad2:
1286 free(sun, M_SONAME);
1287 solock(so);
1288 unp->unp_flags &= ~UNP_BUSY;
1289 return (error);
1290 }
1291
1292 int
1293 unp_connect2(struct socket *so, struct socket *so2)
1294 {
1295 struct unpcb *unp = sotounpcb(so);
1296 struct unpcb *unp2;
1297 int error = 0;
1298
1299 KASSERT(solocked2(so, so2));
1300
1301 error = unp_connect1(so, so2, curlwp);
1302 if (error)
1303 return error;
1304
1305 unp2 = sotounpcb(so2);
1306 switch (so->so_type) {
1307
1308 /*
1309 * SOCK_DGRAM and default cases are handled in prior call to
1310 * unp_connect1(), do not add a default case without fixing
1311 * unp_connect1().
1312 */
1313
1314 case SOCK_SEQPACKET: /* FALLTHROUGH */
1315 case SOCK_STREAM:
1316 unp2->unp_conn = unp;
1317 soisconnected(so);
1318 soisconnected(so2);
1319 break;
1320
1321 }
1322 return error;
1323 }
1324
1325 static void
1326 unp_disconnect1(struct unpcb *unp)
1327 {
1328 struct unpcb *unp2 = unp->unp_conn;
1329 struct socket *so;
1330
1331 if (unp2 == 0)
1332 return;
1333 unp->unp_conn = 0;
1334 so = unp->unp_socket;
1335 switch (so->so_type) {
1336 case SOCK_DGRAM:
1337 if (unp2->unp_refs == unp)
1338 unp2->unp_refs = unp->unp_nextref;
1339 else {
1340 unp2 = unp2->unp_refs;
1341 for (;;) {
1342 KASSERT(solocked2(so, unp2->unp_socket));
1343 if (unp2 == 0)
1344 panic("unp_disconnect1");
1345 if (unp2->unp_nextref == unp)
1346 break;
1347 unp2 = unp2->unp_nextref;
1348 }
1349 unp2->unp_nextref = unp->unp_nextref;
1350 }
1351 unp->unp_nextref = 0;
1352 so->so_state &= ~SS_ISCONNECTED;
1353 break;
1354
1355 case SOCK_SEQPACKET: /* FALLTHROUGH */
1356 case SOCK_STREAM:
1357 KASSERT(solocked2(so, unp2->unp_socket));
1358 soisdisconnected(so);
1359 unp2->unp_conn = 0;
1360 soisdisconnected(unp2->unp_socket);
1361 break;
1362 }
1363 }
1364
1365 static void
1366 unp_shutdown1(struct unpcb *unp)
1367 {
1368 struct socket *so;
1369
1370 switch(unp->unp_socket->so_type) {
1371 case SOCK_SEQPACKET: /* FALLTHROUGH */
1372 case SOCK_STREAM:
1373 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1374 socantrcvmore(so);
1375 break;
1376 default:
1377 break;
1378 }
1379 }
1380
1381 static bool
1382 unp_drop(struct unpcb *unp, int errno)
1383 {
1384 struct socket *so = unp->unp_socket;
1385
1386 KASSERT(solocked(so));
1387
1388 so->so_error = errno;
1389 unp_disconnect1(unp);
1390 if (so->so_head) {
1391 so->so_pcb = NULL;
1392 /* sofree() drops the socket lock */
1393 sofree(so);
1394 unp_free(unp);
1395 return true;
1396 }
1397 return false;
1398 }
1399
1400 #ifdef notdef
1401 unp_drain(void)
1402 {
1403
1404 }
1405 #endif
1406
1407 int
1408 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1409 {
1410 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1411 struct proc * const p = l->l_proc;
1412 file_t **rp;
1413 int error = 0;
1414
1415 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1416 sizeof(file_t *);
1417 if (nfds == 0)
1418 goto noop;
1419
1420 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1421 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1422
1423 /* Make sure the recipient should be able to see the files.. */
1424 rp = (file_t **)CMSG_DATA(cm);
1425 for (size_t i = 0; i < nfds; i++) {
1426 file_t * const fp = *rp++;
1427 if (fp == NULL) {
1428 error = SET_ERROR(EINVAL);
1429 goto out;
1430 }
1431 /*
1432 * If we are in a chroot'ed directory, and
1433 * someone wants to pass us a directory, make
1434 * sure it's inside the subtree we're allowed
1435 * to access.
1436 */
1437 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1438 vnode_t *vp = fp->f_vnode;
1439 if ((vp->v_type == VDIR) &&
1440 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1441 error = SET_ERROR(EPERM);
1442 goto out;
1443 }
1444 }
1445 }
1446
1447 restart:
1448 /*
1449 * First loop -- allocate file descriptor table slots for the
1450 * new files.
1451 */
1452 for (size_t i = 0; i < nfds; i++) {
1453 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1454 /*
1455 * Back out what we've done so far.
1456 */
1457 while (i-- > 0) {
1458 fd_abort(p, NULL, fdp[i]);
1459 }
1460 if (error == ENOSPC) {
1461 fd_tryexpand(p);
1462 error = 0;
1463 goto restart;
1464 }
1465 /*
1466 * This is the error that has historically
1467 * been returned, and some callers may
1468 * expect it.
1469 */
1470 error = SET_ERROR(EMSGSIZE);
1471 goto out;
1472 }
1473 }
1474
1475 /*
1476 * Now that adding them has succeeded, update all of the
1477 * file passing state and affix the descriptors.
1478 */
1479 rp = (file_t **)CMSG_DATA(cm);
1480 int *ofdp = (int *)CMSG_DATA(cm);
1481 for (size_t i = 0; i < nfds; i++) {
1482 file_t * const fp = *rp++;
1483 const int fd = fdp[i];
1484 atomic_dec_uint(&unp_rights);
1485 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1486 fd_set_foclose(l, fd, (flags & O_CLOFORK) != 0);
1487 fd_affix(p, fp, fd);
1488 /*
1489 * Done with this file pointer, replace it with a fd;
1490 */
1491 *ofdp++ = fd;
1492 mutex_enter(&fp->f_lock);
1493 fp->f_msgcount--;
1494 mutex_exit(&fp->f_lock);
1495 /*
1496 * Note that fd_affix() adds a reference to the file.
1497 * The file may already have been closed by another
1498 * LWP in the process, so we must drop the reference
1499 * added by unp_internalize() with closef().
1500 */
1501 closef(fp);
1502 }
1503
1504 /*
1505 * Adjust length, in case of transition from large file_t
1506 * pointers to ints.
1507 */
1508 if (sizeof(file_t *) != sizeof(int)) {
1509 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1510 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1511 }
1512 out:
1513 if (__predict_false(error != 0)) {
1514 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1515 for (size_t i = 0; i < nfds; i++)
1516 unp_discard_now(fpp[i]);
1517 /*
1518 * Truncate the array so that nobody will try to interpret
1519 * what is now garbage in it.
1520 */
1521 cm->cmsg_len = CMSG_LEN(0);
1522 rights->m_len = CMSG_SPACE(0);
1523 }
1524 rw_exit(&p->p_cwdi->cwdi_lock);
1525 kmem_free(fdp, nfds * sizeof(int));
1526
1527 noop:
1528 /*
1529 * Don't disclose kernel memory in the alignment space.
1530 */
1531 KASSERT(cm->cmsg_len <= rights->m_len);
1532 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1533 cm->cmsg_len);
1534 return error;
1535 }
1536
1537 static int
1538 unp_internalize(struct mbuf **controlp)
1539 {
1540 filedesc_t *fdescp = curlwp->l_fd;
1541 fdtab_t *dt;
1542 struct mbuf *control = *controlp;
1543 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1544 file_t **rp, **files;
1545 file_t *fp;
1546 int i, fd, *fdp;
1547 int nfds, error;
1548 u_int maxmsg;
1549
1550 error = 0;
1551 newcm = NULL;
1552
1553 /* Sanity check the control message header. */
1554 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1555 cm->cmsg_len > control->m_len ||
1556 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1557 return SET_ERROR(EINVAL);
1558
1559 /*
1560 * Verify that the file descriptors are valid, and acquire
1561 * a reference to each.
1562 */
1563 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1564 fdp = (int *)CMSG_DATA(cm);
1565 maxmsg = maxfiles / unp_rights_ratio;
1566 for (i = 0; i < nfds; i++) {
1567 fd = *fdp++;
1568 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1569 atomic_dec_uint(&unp_rights);
1570 nfds = i;
1571 error = SET_ERROR(EAGAIN);
1572 goto out;
1573 }
1574 if ((fp = fd_getfile(fd)) == NULL
1575 || fp->f_type == DTYPE_KQUEUE) {
1576 if (fp)
1577 fd_putfile(fd);
1578 atomic_dec_uint(&unp_rights);
1579 nfds = i;
1580 error = SET_ERROR(EBADF);
1581 goto out;
1582 }
1583 }
1584
1585 /* Allocate new space and copy header into it. */
1586 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1587 if (newcm == NULL) {
1588 error = SET_ERROR(E2BIG);
1589 goto out;
1590 }
1591 memcpy(newcm, cm, sizeof(struct cmsghdr));
1592 memset(newcm + 1, 0, CMSG_LEN(0) - sizeof(struct cmsghdr));
1593 files = (file_t **)CMSG_DATA(newcm);
1594
1595 /*
1596 * Transform the file descriptors into file_t pointers, in
1597 * reverse order so that if pointers are bigger than ints, the
1598 * int won't get until we're done. No need to lock, as we have
1599 * already validated the descriptors with fd_getfile().
1600 */
1601 fdp = (int *)CMSG_DATA(cm) + nfds;
1602 rp = files + nfds;
1603 for (i = 0; i < nfds; i++) {
1604 dt = atomic_load_consume(&fdescp->fd_dt);
1605 fp = atomic_load_consume(&dt->dt_ff[*--fdp]->ff_file);
1606 KASSERT(fp != NULL);
1607 mutex_enter(&fp->f_lock);
1608 *--rp = fp;
1609 fp->f_count++;
1610 fp->f_msgcount++;
1611 mutex_exit(&fp->f_lock);
1612 }
1613
1614 out:
1615 /* Release descriptor references. */
1616 fdp = (int *)CMSG_DATA(cm);
1617 for (i = 0; i < nfds; i++) {
1618 fd_putfile(*fdp++);
1619 if (error != 0) {
1620 atomic_dec_uint(&unp_rights);
1621 }
1622 }
1623
1624 if (error == 0) {
1625 if (control->m_flags & M_EXT) {
1626 m_freem(control);
1627 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1628 }
1629 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1630 M_MBUF, NULL, NULL);
1631 cm = newcm;
1632 /*
1633 * Adjust message & mbuf to note amount of space
1634 * actually used.
1635 */
1636 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1637 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1638 }
1639
1640 return error;
1641 }
1642
1643 struct mbuf *
1644 unp_addsockcred(struct lwp *l, struct mbuf *control)
1645 {
1646 struct sockcred *sc;
1647 struct mbuf *m;
1648 void *p;
1649
1650 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1651 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1652 if (m == NULL)
1653 return control;
1654
1655 sc = p;
1656 sc->sc_pid = l->l_proc->p_pid;
1657 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1658 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1659 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1660 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1661 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1662
1663 for (int i = 0; i < sc->sc_ngroups; i++)
1664 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1665
1666 return m_add(control, m);
1667 }
1668
1669 /*
1670 * Do a mark-sweep GC of files in the system, to free up any which are
1671 * caught in flight to an about-to-be-closed socket. Additionally,
1672 * process deferred file closures.
1673 */
1674 static void
1675 unp_gc(file_t *dp)
1676 {
1677 extern struct domain unixdomain;
1678 file_t *fp, *np;
1679 struct socket *so, *so1;
1680 u_int i, oflags, rflags;
1681 bool didwork;
1682
1683 KASSERT(curlwp == unp_thread_lwp);
1684 KASSERT(mutex_owned(&filelist_lock));
1685
1686 /*
1687 * First, process deferred file closures.
1688 */
1689 while (!SLIST_EMPTY(&unp_thread_discard)) {
1690 fp = SLIST_FIRST(&unp_thread_discard);
1691 KASSERT(fp->f_unpcount > 0);
1692 KASSERT(fp->f_count > 0);
1693 KASSERT(fp->f_msgcount > 0);
1694 KASSERT(fp->f_count >= fp->f_unpcount);
1695 KASSERT(fp->f_count >= fp->f_msgcount);
1696 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1697 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1698 i = fp->f_unpcount;
1699 fp->f_unpcount = 0;
1700 mutex_exit(&filelist_lock);
1701 for (; i != 0; i--) {
1702 unp_discard_now(fp);
1703 }
1704 mutex_enter(&filelist_lock);
1705 }
1706
1707 /*
1708 * Clear mark bits. Ensure that we don't consider new files
1709 * entering the file table during this loop (they will not have
1710 * FSCAN set).
1711 */
1712 unp_defer = 0;
1713 LIST_FOREACH(fp, &filehead, f_list) {
1714 for (oflags = fp->f_flag;; oflags = rflags) {
1715 rflags = atomic_cas_uint(&fp->f_flag, oflags,
1716 (oflags | FSCAN) & ~(FMARK|FDEFER));
1717 if (__predict_true(oflags == rflags)) {
1718 break;
1719 }
1720 }
1721 }
1722
1723 /*
1724 * Iterate over the set of sockets, marking ones believed (based on
1725 * refcount) to be referenced from a process, and marking for rescan
1726 * sockets which are queued on a socket. Recan continues descending
1727 * and searching for sockets referenced by sockets (FDEFER), until
1728 * there are no more socket->socket references to be discovered.
1729 */
1730 do {
1731 didwork = false;
1732 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1733 KASSERT(mutex_owned(&filelist_lock));
1734 np = LIST_NEXT(fp, f_list);
1735 mutex_enter(&fp->f_lock);
1736 if ((fp->f_flag & FDEFER) != 0) {
1737 atomic_and_uint(&fp->f_flag, ~FDEFER);
1738 unp_defer--;
1739 if (fp->f_count == 0) {
1740 /*
1741 * XXX: closef() doesn't pay attention
1742 * to FDEFER
1743 */
1744 mutex_exit(&fp->f_lock);
1745 continue;
1746 }
1747 } else {
1748 if (fp->f_count == 0 ||
1749 (fp->f_flag & FMARK) != 0 ||
1750 fp->f_count == fp->f_msgcount ||
1751 fp->f_unpcount != 0) {
1752 mutex_exit(&fp->f_lock);
1753 continue;
1754 }
1755 }
1756 atomic_or_uint(&fp->f_flag, FMARK);
1757
1758 if (fp->f_type != DTYPE_SOCKET ||
1759 (so = fp->f_socket) == NULL ||
1760 so->so_proto->pr_domain != &unixdomain ||
1761 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1762 mutex_exit(&fp->f_lock);
1763 continue;
1764 }
1765
1766 /* Gain file ref, mark our position, and unlock. */
1767 didwork = true;
1768 LIST_INSERT_AFTER(fp, dp, f_list);
1769 fp->f_count++;
1770 mutex_exit(&fp->f_lock);
1771 mutex_exit(&filelist_lock);
1772
1773 /*
1774 * Mark files referenced from sockets queued on the
1775 * accept queue as well.
1776 */
1777 solock(so);
1778 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1779 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1780 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1781 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1782 }
1783 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1784 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1785 }
1786 }
1787 sounlock(so);
1788
1789 /* Re-lock and restart from where we left off. */
1790 closef(fp);
1791 mutex_enter(&filelist_lock);
1792 np = LIST_NEXT(dp, f_list);
1793 LIST_REMOVE(dp, f_list);
1794 }
1795 /*
1796 * Bail early if we did nothing in the loop above. Could
1797 * happen because of concurrent activity causing unp_defer
1798 * to get out of sync.
1799 */
1800 } while (unp_defer != 0 && didwork);
1801
1802 /*
1803 * Sweep pass.
1804 *
1805 * We grab an extra reference to each of the files that are
1806 * not otherwise accessible and then free the rights that are
1807 * stored in messages on them.
1808 */
1809 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1810 KASSERT(mutex_owned(&filelist_lock));
1811 np = LIST_NEXT(fp, f_list);
1812 mutex_enter(&fp->f_lock);
1813
1814 /*
1815 * Ignore non-sockets.
1816 * Ignore dead sockets, or sockets with pending close.
1817 * Ignore sockets obviously referenced elsewhere.
1818 * Ignore sockets marked as referenced by our scan.
1819 * Ignore new sockets that did not exist during the scan.
1820 */
1821 if (fp->f_type != DTYPE_SOCKET ||
1822 fp->f_count == 0 || fp->f_unpcount != 0 ||
1823 fp->f_count != fp->f_msgcount ||
1824 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1825 mutex_exit(&fp->f_lock);
1826 continue;
1827 }
1828
1829 /* Gain file ref, mark our position, and unlock. */
1830 LIST_INSERT_AFTER(fp, dp, f_list);
1831 fp->f_count++;
1832 mutex_exit(&fp->f_lock);
1833 mutex_exit(&filelist_lock);
1834
1835 /*
1836 * Flush all data from the socket's receive buffer.
1837 * This will cause files referenced only by the
1838 * socket to be queued for close.
1839 */
1840 so = fp->f_socket;
1841 solock(so);
1842 sorflush(so);
1843 sounlock(so);
1844
1845 /* Re-lock and restart from where we left off. */
1846 closef(fp);
1847 mutex_enter(&filelist_lock);
1848 np = LIST_NEXT(dp, f_list);
1849 LIST_REMOVE(dp, f_list);
1850 }
1851 }
1852
1853 /*
1854 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1855 * wake once per second to garbage collect. Run continually while we
1856 * have deferred closes to process.
1857 */
1858 static void
1859 unp_thread(void *cookie)
1860 {
1861 file_t *dp;
1862
1863 /* Allocate a dummy file for our scans. */
1864 if ((dp = fgetdummy()) == NULL) {
1865 panic("unp_thread");
1866 }
1867
1868 mutex_enter(&filelist_lock);
1869 for (;;) {
1870 KASSERT(mutex_owned(&filelist_lock));
1871 if (SLIST_EMPTY(&unp_thread_discard)) {
1872 if (unp_rights != 0) {
1873 (void)cv_timedwait(&unp_thread_cv,
1874 &filelist_lock, hz);
1875 } else {
1876 cv_wait(&unp_thread_cv, &filelist_lock);
1877 }
1878 }
1879 unp_gc(dp);
1880 }
1881 /* NOTREACHED */
1882 }
1883
1884 /*
1885 * Kick the garbage collector into action if there is something for
1886 * it to process.
1887 */
1888 static void
1889 unp_thread_kick(void)
1890 {
1891
1892 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1893 mutex_enter(&filelist_lock);
1894 cv_signal(&unp_thread_cv);
1895 mutex_exit(&filelist_lock);
1896 }
1897 }
1898
1899 void
1900 unp_dispose(struct mbuf *m)
1901 {
1902
1903 if (m)
1904 unp_scan(m, unp_discard_later, 1);
1905 }
1906
1907 void
1908 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1909 {
1910 struct mbuf *m;
1911 file_t **rp, *fp;
1912 struct cmsghdr *cm;
1913 int i, qfds;
1914
1915 while (m0) {
1916 for (m = m0; m; m = m->m_next) {
1917 if (m->m_type != MT_CONTROL ||
1918 m->m_len < sizeof(*cm)) {
1919 continue;
1920 }
1921 cm = mtod(m, struct cmsghdr *);
1922 if (cm->cmsg_level != SOL_SOCKET ||
1923 cm->cmsg_type != SCM_RIGHTS)
1924 continue;
1925 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1926 / sizeof(file_t *);
1927 rp = (file_t **)CMSG_DATA(cm);
1928 for (i = 0; i < qfds; i++) {
1929 fp = *rp;
1930 if (discard) {
1931 *rp = 0;
1932 }
1933 (*op)(fp);
1934 rp++;
1935 }
1936 }
1937 m0 = m0->m_nextpkt;
1938 }
1939 }
1940
1941 void
1942 unp_mark(file_t *fp)
1943 {
1944
1945 if (fp == NULL)
1946 return;
1947
1948 /* If we're already deferred, don't screw up the defer count */
1949 mutex_enter(&fp->f_lock);
1950 if (fp->f_flag & (FMARK | FDEFER)) {
1951 mutex_exit(&fp->f_lock);
1952 return;
1953 }
1954
1955 /*
1956 * Minimize the number of deferrals... Sockets are the only type of
1957 * file which can hold references to another file, so just mark
1958 * other files, and defer unmarked sockets for the next pass.
1959 */
1960 if (fp->f_type == DTYPE_SOCKET) {
1961 unp_defer++;
1962 KASSERT(fp->f_count != 0);
1963 atomic_or_uint(&fp->f_flag, FDEFER);
1964 } else {
1965 atomic_or_uint(&fp->f_flag, FMARK);
1966 }
1967 mutex_exit(&fp->f_lock);
1968 }
1969
1970 static void
1971 unp_discard_now(file_t *fp)
1972 {
1973
1974 if (fp == NULL)
1975 return;
1976
1977 KASSERT(fp->f_count > 0);
1978 KASSERT(fp->f_msgcount > 0);
1979
1980 mutex_enter(&fp->f_lock);
1981 fp->f_msgcount--;
1982 mutex_exit(&fp->f_lock);
1983 atomic_dec_uint(&unp_rights);
1984 (void)closef(fp);
1985 }
1986
1987 static void
1988 unp_discard_later(file_t *fp)
1989 {
1990
1991 if (fp == NULL)
1992 return;
1993
1994 KASSERT(fp->f_count > 0);
1995 KASSERT(fp->f_msgcount > 0);
1996
1997 mutex_enter(&filelist_lock);
1998 if (fp->f_unpcount++ == 0) {
1999 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
2000 }
2001 mutex_exit(&filelist_lock);
2002 }
2003
2004 static void
2005 unp_sysctl_create(void)
2006 {
2007
2008 KASSERT(usrreq_sysctllog == NULL);
2009 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2010 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2011 CTLTYPE_LONG, "sendspace",
2012 SYSCTL_DESCR("Default stream send space"),
2013 NULL, 0, &unpst_sendspace, 0,
2014 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2015 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2016 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2017 CTLTYPE_LONG, "recvspace",
2018 SYSCTL_DESCR("Default stream recv space"),
2019 NULL, 0, &unpst_recvspace, 0,
2020 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2021 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2022 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2023 CTLTYPE_LONG, "sendspace",
2024 SYSCTL_DESCR("Default datagram send space"),
2025 NULL, 0, &unpdg_sendspace, 0,
2026 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2027 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2028 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2029 CTLTYPE_LONG, "recvspace",
2030 SYSCTL_DESCR("Default datagram recv space"),
2031 NULL, 0, &unpdg_recvspace, 0,
2032 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2033 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2034 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2035 CTLTYPE_INT, "inflight",
2036 SYSCTL_DESCR("File descriptors in flight"),
2037 NULL, 0, &unp_rights, 0,
2038 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2039 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2040 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2041 CTLTYPE_INT, "deferred",
2042 SYSCTL_DESCR("File descriptors deferred for close"),
2043 NULL, 0, &unp_defer, 0,
2044 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2045 }
2046
2047 const struct pr_usrreqs unp_usrreqs = {
2048 .pr_attach = unp_attach,
2049 .pr_detach = unp_detach,
2050 .pr_accept = unp_accept,
2051 .pr_bind = unp_bind,
2052 .pr_listen = unp_listen,
2053 .pr_connect = unp_connect,
2054 .pr_connect2 = unp_connect2,
2055 .pr_disconnect = unp_disconnect,
2056 .pr_shutdown = unp_shutdown,
2057 .pr_abort = unp_abort,
2058 .pr_ioctl = unp_ioctl,
2059 .pr_stat = unp_stat,
2060 .pr_peeraddr = unp_peeraddr,
2061 .pr_sockaddr = unp_sockaddr,
2062 .pr_rcvd = unp_rcvd,
2063 .pr_recvoob = unp_recvoob,
2064 .pr_send = unp_send,
2065 .pr_sendoob = unp_sendoob,
2066 };
2067