uipc_usrreq.c revision 1.52 1 /* $NetBSD: uipc_usrreq.c,v 1.52 2001/10/18 20:17:24 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
42 * Copyright (c) 1982, 1986, 1989, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by the University of
56 * California, Berkeley and its contributors.
57 * 4. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/filedesc.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/unpcb.h>
85 #include <sys/un.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/mbuf.h>
91
92 /*
93 * Unix communications domain.
94 *
95 * TODO:
96 * SEQPACKET, RDM
97 * rethink name space problems
98 * need a proper out-of-band
99 */
100 struct sockaddr_un sun_noname = { sizeof(sun_noname), AF_LOCAL };
101 ino_t unp_ino; /* prototype for fake inode numbers */
102
103 struct mbuf *unp_addsockcred __P((struct proc *, struct mbuf *));
104
105 int
106 unp_output(m, control, unp, p)
107 struct mbuf *m, *control;
108 struct unpcb *unp;
109 struct proc *p;
110 {
111 struct socket *so2;
112 struct sockaddr_un *sun;
113
114 so2 = unp->unp_conn->unp_socket;
115 if (unp->unp_addr)
116 sun = unp->unp_addr;
117 else
118 sun = &sun_noname;
119 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
120 control = unp_addsockcred(p, control);
121 if (sbappendaddr(&so2->so_rcv, (struct sockaddr *)sun, m,
122 control) == 0) {
123 m_freem(control);
124 m_freem(m);
125 return (EINVAL);
126 } else {
127 sorwakeup(so2);
128 return (0);
129 }
130 }
131
132 void
133 unp_setsockaddr(unp, nam)
134 struct unpcb *unp;
135 struct mbuf *nam;
136 {
137 struct sockaddr_un *sun;
138
139 if (unp->unp_addr)
140 sun = unp->unp_addr;
141 else
142 sun = &sun_noname;
143 nam->m_len = sun->sun_len;
144 if (nam->m_len > MLEN)
145 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
146 memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
147 }
148
149 void
150 unp_setpeeraddr(unp, nam)
151 struct unpcb *unp;
152 struct mbuf *nam;
153 {
154 struct sockaddr_un *sun;
155
156 if (unp->unp_conn && unp->unp_conn->unp_addr)
157 sun = unp->unp_conn->unp_addr;
158 else
159 sun = &sun_noname;
160 nam->m_len = sun->sun_len;
161 if (nam->m_len > MLEN)
162 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
163 memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
164 }
165
166 /*ARGSUSED*/
167 int
168 uipc_usrreq(so, req, m, nam, control, p)
169 struct socket *so;
170 int req;
171 struct mbuf *m, *nam, *control;
172 struct proc *p;
173 {
174 struct unpcb *unp = sotounpcb(so);
175 struct socket *so2;
176 int error = 0;
177
178 if (req == PRU_CONTROL)
179 return (EOPNOTSUPP);
180
181 #ifdef DIAGNOSTIC
182 if (req != PRU_SEND && req != PRU_SENDOOB && control)
183 panic("uipc_usrreq: unexpected control mbuf");
184 #endif
185 if (unp == 0 && req != PRU_ATTACH) {
186 error = EINVAL;
187 goto release;
188 }
189
190 switch (req) {
191
192 case PRU_ATTACH:
193 if (unp != 0) {
194 error = EISCONN;
195 break;
196 }
197 error = unp_attach(so);
198 break;
199
200 case PRU_DETACH:
201 unp_detach(unp);
202 break;
203
204 case PRU_BIND:
205 error = unp_bind(unp, nam, p);
206 break;
207
208 case PRU_LISTEN:
209 if (unp->unp_vnode == 0)
210 error = EINVAL;
211 break;
212
213 case PRU_CONNECT:
214 error = unp_connect(so, nam, p);
215 break;
216
217 case PRU_CONNECT2:
218 error = unp_connect2(so, (struct socket *)nam);
219 break;
220
221 case PRU_DISCONNECT:
222 unp_disconnect(unp);
223 break;
224
225 case PRU_ACCEPT:
226 unp_setpeeraddr(unp, nam);
227 break;
228
229 case PRU_SHUTDOWN:
230 socantsendmore(so);
231 unp_shutdown(unp);
232 break;
233
234 case PRU_RCVD:
235 switch (so->so_type) {
236
237 case SOCK_DGRAM:
238 panic("uipc 1");
239 /*NOTREACHED*/
240
241 case SOCK_STREAM:
242 #define rcv (&so->so_rcv)
243 #define snd (&so2->so_snd)
244 if (unp->unp_conn == 0)
245 break;
246 so2 = unp->unp_conn->unp_socket;
247 /*
248 * Adjust backpressure on sender
249 * and wakeup any waiting to write.
250 */
251 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
252 unp->unp_mbcnt = rcv->sb_mbcnt;
253 snd->sb_hiwat += unp->unp_cc - rcv->sb_cc;
254 unp->unp_cc = rcv->sb_cc;
255 sowwakeup(so2);
256 #undef snd
257 #undef rcv
258 break;
259
260 default:
261 panic("uipc 2");
262 }
263 break;
264
265 case PRU_SEND:
266 /*
267 * Note: unp_internalize() rejects any control message
268 * other than SCM_RIGHTS, and only allows one. This
269 * has the side-effect of preventing a caller from
270 * forging SCM_CREDS.
271 */
272 if (control && (error = unp_internalize(control, p)))
273 break;
274 switch (so->so_type) {
275
276 case SOCK_DGRAM: {
277 if (nam) {
278 if ((so->so_state & SS_ISCONNECTED) != 0) {
279 error = EISCONN;
280 goto die;
281 }
282 error = unp_connect(so, nam, p);
283 if (error) {
284 die:
285 m_freem(control);
286 m_freem(m);
287 break;
288 }
289 } else {
290 if ((so->so_state & SS_ISCONNECTED) == 0) {
291 error = ENOTCONN;
292 goto die;
293 }
294 }
295 error = unp_output(m, control, unp, p);
296 if (nam)
297 unp_disconnect(unp);
298 break;
299 }
300
301 case SOCK_STREAM:
302 #define rcv (&so2->so_rcv)
303 #define snd (&so->so_snd)
304 if (unp->unp_conn == 0)
305 panic("uipc 3");
306 so2 = unp->unp_conn->unp_socket;
307 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
308 /*
309 * Credentials are passed only once on
310 * SOCK_STREAM.
311 */
312 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
313 control = unp_addsockcred(p, control);
314 }
315 /*
316 * Send to paired receive port, and then reduce
317 * send buffer hiwater marks to maintain backpressure.
318 * Wake up readers.
319 */
320 if (control) {
321 if (sbappendcontrol(rcv, m, control) == 0)
322 m_freem(control);
323 } else
324 sbappend(rcv, m);
325 snd->sb_mbmax -=
326 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
327 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
328 snd->sb_hiwat -= rcv->sb_cc - unp->unp_conn->unp_cc;
329 unp->unp_conn->unp_cc = rcv->sb_cc;
330 sorwakeup(so2);
331 #undef snd
332 #undef rcv
333 break;
334
335 default:
336 panic("uipc 4");
337 }
338 break;
339
340 case PRU_ABORT:
341 unp_drop(unp, ECONNABORTED);
342
343 #ifdef DIAGNOSTIC
344 if (so->so_pcb == 0)
345 panic("uipc 5: drop killed pcb");
346 #endif
347 unp_detach(unp);
348 break;
349
350 case PRU_SENSE:
351 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
352 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
353 so2 = unp->unp_conn->unp_socket;
354 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
355 }
356 ((struct stat *) m)->st_dev = NODEV;
357 if (unp->unp_ino == 0)
358 unp->unp_ino = unp_ino++;
359 ((struct stat *) m)->st_atimespec =
360 ((struct stat *) m)->st_mtimespec =
361 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
362 ((struct stat *) m)->st_ino = unp->unp_ino;
363 return (0);
364
365 case PRU_RCVOOB:
366 error = EOPNOTSUPP;
367 break;
368
369 case PRU_SENDOOB:
370 m_freem(control);
371 m_freem(m);
372 error = EOPNOTSUPP;
373 break;
374
375 case PRU_SOCKADDR:
376 unp_setsockaddr(unp, nam);
377 break;
378
379 case PRU_PEERADDR:
380 unp_setpeeraddr(unp, nam);
381 break;
382
383 default:
384 panic("piusrreq");
385 }
386
387 release:
388 return (error);
389 }
390
391 /*
392 * Unix domain socket option processing.
393 */
394 int
395 uipc_ctloutput(op, so, level, optname, mp)
396 int op;
397 struct socket *so;
398 int level, optname;
399 struct mbuf **mp;
400 {
401 struct unpcb *unp = sotounpcb(so);
402 struct mbuf *m = *mp;
403 int optval = 0, error = 0;
404
405 if (level != 0) {
406 error = EINVAL;
407 if (op == PRCO_SETOPT && m)
408 (void) m_free(m);
409 } else switch (op) {
410
411 case PRCO_SETOPT:
412 switch (optname) {
413 case LOCAL_CREDS:
414 if (m == NULL || m->m_len != sizeof(int))
415 error = EINVAL;
416 else {
417 optval = *mtod(m, int *);
418 switch (optname) {
419 #define OPTSET(bit) \
420 if (optval) \
421 unp->unp_flags |= (bit); \
422 else \
423 unp->unp_flags &= ~(bit);
424
425 case LOCAL_CREDS:
426 OPTSET(UNP_WANTCRED);
427 break;
428 }
429 }
430 break;
431 #undef OPTSET
432
433 default:
434 error = ENOPROTOOPT;
435 break;
436 }
437 if (m)
438 (void) m_free(m);
439 break;
440
441 case PRCO_GETOPT:
442 switch (optname) {
443 case LOCAL_CREDS:
444 *mp = m = m_get(M_WAIT, MT_SOOPTS);
445 m->m_len = sizeof(int);
446 switch (optname) {
447
448 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
449
450 case LOCAL_CREDS:
451 optval = OPTBIT(UNP_WANTCRED);
452 break;
453 }
454 *mtod(m, int *) = optval;
455 break;
456 #undef OPTBIT
457
458 default:
459 error = ENOPROTOOPT;
460 break;
461 }
462 break;
463 }
464 return (error);
465 }
466
467 /*
468 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
469 * for stream sockets, although the total for sender and receiver is
470 * actually only PIPSIZ.
471 * Datagram sockets really use the sendspace as the maximum datagram size,
472 * and don't really want to reserve the sendspace. Their recvspace should
473 * be large enough for at least one max-size datagram plus address.
474 */
475 #define PIPSIZ 4096
476 u_long unpst_sendspace = PIPSIZ;
477 u_long unpst_recvspace = PIPSIZ;
478 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
479 u_long unpdg_recvspace = 4*1024;
480
481 int unp_rights; /* file descriptors in flight */
482
483 int
484 unp_attach(so)
485 struct socket *so;
486 {
487 struct unpcb *unp;
488 struct timeval tv;
489 int error;
490
491 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
492 switch (so->so_type) {
493
494 case SOCK_STREAM:
495 error = soreserve(so, unpst_sendspace, unpst_recvspace);
496 break;
497
498 case SOCK_DGRAM:
499 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
500 break;
501
502 default:
503 panic("unp_attach");
504 }
505 if (error)
506 return (error);
507 }
508 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
509 if (unp == NULL)
510 return (ENOBUFS);
511 memset((caddr_t)unp, 0, sizeof(*unp));
512 unp->unp_socket = so;
513 so->so_pcb = unp;
514 microtime(&tv);
515 TIMEVAL_TO_TIMESPEC(&tv, &unp->unp_ctime);
516 return (0);
517 }
518
519 void
520 unp_detach(unp)
521 struct unpcb *unp;
522 {
523
524 if (unp->unp_vnode) {
525 unp->unp_vnode->v_socket = 0;
526 vrele(unp->unp_vnode);
527 unp->unp_vnode = 0;
528 }
529 if (unp->unp_conn)
530 unp_disconnect(unp);
531 while (unp->unp_refs)
532 unp_drop(unp->unp_refs, ECONNRESET);
533 soisdisconnected(unp->unp_socket);
534 unp->unp_socket->so_pcb = 0;
535 if (unp->unp_addr)
536 free(unp->unp_addr, M_SONAME);
537 if (unp_rights) {
538 /*
539 * Normally the receive buffer is flushed later,
540 * in sofree, but if our receive buffer holds references
541 * to descriptors that are now garbage, we will dispose
542 * of those descriptor references after the garbage collector
543 * gets them (resulting in a "panic: closef: count < 0").
544 */
545 sorflush(unp->unp_socket);
546 free(unp, M_PCB);
547 unp_gc();
548 } else
549 free(unp, M_PCB);
550 }
551
552 int
553 unp_bind(unp, nam, p)
554 struct unpcb *unp;
555 struct mbuf *nam;
556 struct proc *p;
557 {
558 struct sockaddr_un *sun;
559 struct vnode *vp;
560 struct vattr vattr;
561 size_t addrlen;
562 int error;
563 struct nameidata nd;
564
565 if (unp->unp_vnode != 0)
566 return (EINVAL);
567
568 /*
569 * Allocate the new sockaddr. We have to allocate one
570 * extra byte so that we can ensure that the pathname
571 * is nul-terminated.
572 */
573 addrlen = nam->m_len + 1;
574 sun = malloc(addrlen, M_SONAME, M_WAITOK);
575 m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
576 *(((char *)sun) + nam->m_len) = '\0';
577
578 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
579 sun->sun_path, p);
580
581 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
582 if ((error = namei(&nd)) != 0)
583 goto bad;
584 vp = nd.ni_vp;
585 if (vp != NULL) {
586 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
587 if (nd.ni_dvp == vp)
588 vrele(nd.ni_dvp);
589 else
590 vput(nd.ni_dvp);
591 vrele(vp);
592 error = EADDRINUSE;
593 goto bad;
594 }
595 VATTR_NULL(&vattr);
596 vattr.va_type = VSOCK;
597 vattr.va_mode = ACCESSPERMS;
598 VOP_LEASE(nd.ni_dvp, p, p->p_ucred, LEASE_WRITE);
599 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
600 if (error)
601 goto bad;
602 vp = nd.ni_vp;
603 vp->v_socket = unp->unp_socket;
604 unp->unp_vnode = vp;
605 unp->unp_addrlen = addrlen;
606 unp->unp_addr = sun;
607 VOP_UNLOCK(vp, 0);
608 return (0);
609
610 bad:
611 free(sun, M_SONAME);
612 return (error);
613 }
614
615 int
616 unp_connect(so, nam, p)
617 struct socket *so;
618 struct mbuf *nam;
619 struct proc *p;
620 {
621 struct sockaddr_un *sun;
622 struct vnode *vp;
623 struct socket *so2, *so3;
624 struct unpcb *unp2, *unp3;
625 size_t addrlen;
626 int error;
627 struct nameidata nd;
628
629 /*
630 * Allocate a temporary sockaddr. We have to allocate one extra
631 * byte so that we can ensure that the pathname is nul-terminated.
632 * When we establish the connection, we copy the other PCB's
633 * sockaddr to our own.
634 */
635 addrlen = nam->m_len + 1;
636 sun = malloc(addrlen, M_SONAME, M_WAITOK);
637 m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
638 *(((char *)sun) + nam->m_len) = '\0';
639
640 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, sun->sun_path, p);
641
642 if ((error = namei(&nd)) != 0)
643 goto bad2;
644 vp = nd.ni_vp;
645 if (vp->v_type != VSOCK) {
646 error = ENOTSOCK;
647 goto bad;
648 }
649 if ((error = VOP_ACCESS(vp, VWRITE, p->p_ucred, p)) != 0)
650 goto bad;
651 so2 = vp->v_socket;
652 if (so2 == 0) {
653 error = ECONNREFUSED;
654 goto bad;
655 }
656 if (so->so_type != so2->so_type) {
657 error = EPROTOTYPE;
658 goto bad;
659 }
660 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
661 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
662 (so3 = sonewconn(so2, 0)) == 0) {
663 error = ECONNREFUSED;
664 goto bad;
665 }
666 unp2 = sotounpcb(so2);
667 unp3 = sotounpcb(so3);
668 if (unp2->unp_addr) {
669 unp3->unp_addr = malloc(unp2->unp_addrlen,
670 M_SONAME, M_WAITOK);
671 memcpy(unp3->unp_addr, unp2->unp_addr,
672 unp2->unp_addrlen);
673 unp3->unp_addrlen = unp2->unp_addrlen;
674 }
675 unp3->unp_flags = unp2->unp_flags;
676 so2 = so3;
677 }
678 error = unp_connect2(so, so2);
679 bad:
680 vput(vp);
681 bad2:
682 free(sun, M_SONAME);
683 return (error);
684 }
685
686 int
687 unp_connect2(so, so2)
688 struct socket *so;
689 struct socket *so2;
690 {
691 struct unpcb *unp = sotounpcb(so);
692 struct unpcb *unp2;
693
694 if (so2->so_type != so->so_type)
695 return (EPROTOTYPE);
696 unp2 = sotounpcb(so2);
697 unp->unp_conn = unp2;
698 switch (so->so_type) {
699
700 case SOCK_DGRAM:
701 unp->unp_nextref = unp2->unp_refs;
702 unp2->unp_refs = unp;
703 soisconnected(so);
704 break;
705
706 case SOCK_STREAM:
707 unp2->unp_conn = unp;
708 soisconnected(so);
709 soisconnected(so2);
710 break;
711
712 default:
713 panic("unp_connect2");
714 }
715 return (0);
716 }
717
718 void
719 unp_disconnect(unp)
720 struct unpcb *unp;
721 {
722 struct unpcb *unp2 = unp->unp_conn;
723
724 if (unp2 == 0)
725 return;
726 unp->unp_conn = 0;
727 switch (unp->unp_socket->so_type) {
728
729 case SOCK_DGRAM:
730 if (unp2->unp_refs == unp)
731 unp2->unp_refs = unp->unp_nextref;
732 else {
733 unp2 = unp2->unp_refs;
734 for (;;) {
735 if (unp2 == 0)
736 panic("unp_disconnect");
737 if (unp2->unp_nextref == unp)
738 break;
739 unp2 = unp2->unp_nextref;
740 }
741 unp2->unp_nextref = unp->unp_nextref;
742 }
743 unp->unp_nextref = 0;
744 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
745 break;
746
747 case SOCK_STREAM:
748 soisdisconnected(unp->unp_socket);
749 unp2->unp_conn = 0;
750 soisdisconnected(unp2->unp_socket);
751 break;
752 }
753 }
754
755 #ifdef notdef
756 unp_abort(unp)
757 struct unpcb *unp;
758 {
759
760 unp_detach(unp);
761 }
762 #endif
763
764 void
765 unp_shutdown(unp)
766 struct unpcb *unp;
767 {
768 struct socket *so;
769
770 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
771 (so = unp->unp_conn->unp_socket))
772 socantrcvmore(so);
773 }
774
775 void
776 unp_drop(unp, errno)
777 struct unpcb *unp;
778 int errno;
779 {
780 struct socket *so = unp->unp_socket;
781
782 so->so_error = errno;
783 unp_disconnect(unp);
784 if (so->so_head) {
785 so->so_pcb = 0;
786 sofree(so);
787 if (unp->unp_addr)
788 free(unp->unp_addr, M_SONAME);
789 free(unp, M_PCB);
790 }
791 }
792
793 #ifdef notdef
794 unp_drain()
795 {
796
797 }
798 #endif
799
800 int
801 unp_externalize(rights)
802 struct mbuf *rights;
803 {
804 struct proc *p = curproc; /* XXX */
805 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
806 int i, *fdp;
807 struct file **rp;
808 struct file *fp;
809 int nfds, error = 0;
810
811 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
812 sizeof(struct file *);
813 rp = (struct file **)CMSG_DATA(cm);
814
815 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
816
817 /* Make sure the recipient should be able to see the descriptors.. */
818 if (p->p_cwdi->cwdi_rdir != NULL) {
819 rp = (struct file **)CMSG_DATA(cm);
820 for (i = 0; i < nfds; i++) {
821 fp = *rp++;
822 /*
823 * If we are in a chroot'ed directory, and
824 * someone wants to pass us a directory, make
825 * sure it's inside the subtree we're allowed
826 * to access.
827 */
828 if (fp->f_type == DTYPE_VNODE) {
829 struct vnode *vp = (struct vnode *)fp->f_data;
830 if ((vp->v_type == VDIR) &&
831 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, p)) {
832 error = EPERM;
833 break;
834 }
835 }
836 }
837 }
838
839 restart:
840 rp = (struct file **)CMSG_DATA(cm);
841 if (error != 0) {
842 for (i = 0; i < nfds; i++) {
843 fp = *rp;
844 /*
845 * zero the pointer before calling unp_discard,
846 * since it may end up in unp_gc()..
847 */
848 *rp++ = 0;
849 unp_discard(fp);
850 }
851 goto out;
852 }
853
854 /*
855 * First loop -- allocate file descriptor table slots for the
856 * new descriptors.
857 */
858 for (i = 0; i < nfds; i++) {
859 fp = *rp++;
860 if ((error = fdalloc(p, 0, &fdp[i])) != 0) {
861 /*
862 * Back out what we've done so far.
863 */
864 for (--i; i >= 0; i--)
865 fdremove(p->p_fd, fdp[i]);
866
867 if (error == ENOSPC) {
868 fdexpand(p);
869 error = 0;
870 } else {
871 /*
872 * This is the error that has historically
873 * been returned, and some callers may
874 * expect it.
875 */
876 error = EMSGSIZE;
877 }
878 goto restart;
879 }
880
881 /*
882 * Make the slot reference the descriptor so that
883 * fdalloc() works properly.. We finalize it all
884 * in the loop below.
885 */
886 p->p_fd->fd_ofiles[fdp[i]] = fp;
887 }
888
889 /*
890 * Now that adding them has succeeded, update all of the
891 * descriptor passing state.
892 */
893 rp = (struct file **)CMSG_DATA(cm);
894 for (i = 0; i < nfds; i++) {
895 fp = *rp++;
896 fp->f_msgcount--;
897 unp_rights--;
898 }
899
900 /*
901 * Copy temporary array to message and adjust length, in case of
902 * transition from large struct file pointers to ints.
903 */
904 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
905 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
906 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
907 out:
908 free(fdp, M_TEMP);
909 return (error);
910 }
911
912 int
913 unp_internalize(control, p)
914 struct mbuf *control;
915 struct proc *p;
916 {
917 struct filedesc *fdescp = p->p_fd;
918 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
919 struct file **rp;
920 struct file *fp;
921 int i, fd, *fdp;
922 int nfds;
923 u_int neededspace;
924
925 /* Sanity check the control message header */
926 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
927 cm->cmsg_len != control->m_len)
928 return (EINVAL);
929
930 /* Verify that the file descriptors are valid */
931 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
932 fdp = (int *)CMSG_DATA(cm);
933 for (i = 0; i < nfds; i++) {
934 fd = *fdp++;
935 if (fd_getfile(fdescp, fd) == NULL)
936 return (EBADF);
937 }
938
939 /* Make sure we have room for the struct file pointers */
940 morespace:
941 neededspace = CMSG_SPACE(nfds * sizeof(struct file *)) -
942 control->m_len;
943 if (neededspace > M_TRAILINGSPACE(control)) {
944
945 /* if we already have a cluster, the message is just too big */
946 if (control->m_flags & M_EXT)
947 return (E2BIG);
948
949 /* allocate a cluster and try again */
950 MCLGET(control, M_WAIT);
951 if ((control->m_flags & M_EXT) == 0)
952 return (ENOBUFS); /* allocation failed */
953
954 /* copy the data to the cluster */
955 memcpy(mtod(control, char *), cm, cm->cmsg_len);
956 cm = mtod(control, struct cmsghdr *);
957 goto morespace;
958 }
959
960 /* adjust message & mbuf to note amount of space actually used. */
961 cm->cmsg_len = CMSG_LEN(nfds * sizeof(struct file *));
962 control->m_len = CMSG_SPACE(nfds * sizeof(struct file *));
963
964 /*
965 * Transform the file descriptors into struct file pointers, in
966 * reverse order so that if pointers are bigger than ints, the
967 * int won't get until we're done.
968 */
969 fdp = ((int *)CMSG_DATA(cm)) + nfds - 1;
970 rp = ((struct file **)CMSG_DATA(cm)) + nfds - 1;
971 for (i = 0; i < nfds; i++) {
972 fp = fdescp->fd_ofiles[*fdp--];
973 FILE_USE(fp);
974 *rp-- = fp;
975 fp->f_count++;
976 fp->f_msgcount++;
977 FILE_UNUSE(fp, NULL);
978 unp_rights++;
979 }
980 return (0);
981 }
982
983 struct mbuf *
984 unp_addsockcred(p, control)
985 struct proc *p;
986 struct mbuf *control;
987 {
988 struct cmsghdr *cmp;
989 struct sockcred *sc;
990 struct mbuf *m, *n;
991 int len, space, i;
992
993 len = CMSG_LEN(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
994 space = CMSG_SPACE(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
995
996 m = m_get(M_WAIT, MT_CONTROL);
997 if (space > MLEN) {
998 if (space > MCLBYTES)
999 MEXTMALLOC(m, space, M_WAITOK);
1000 else
1001 MCLGET(m, M_WAIT);
1002 if ((m->m_flags & M_EXT) == 0) {
1003 m_free(m);
1004 return (control);
1005 }
1006 }
1007
1008 m->m_len = space;
1009 m->m_next = NULL;
1010 cmp = mtod(m, struct cmsghdr *);
1011 sc = (struct sockcred *)CMSG_DATA(cmp);
1012 cmp->cmsg_len = len;
1013 cmp->cmsg_level = SOL_SOCKET;
1014 cmp->cmsg_type = SCM_CREDS;
1015 sc->sc_uid = p->p_cred->p_ruid;
1016 sc->sc_euid = p->p_ucred->cr_uid;
1017 sc->sc_gid = p->p_cred->p_rgid;
1018 sc->sc_egid = p->p_ucred->cr_gid;
1019 sc->sc_ngroups = p->p_ucred->cr_ngroups;
1020 for (i = 0; i < sc->sc_ngroups; i++)
1021 sc->sc_groups[i] = p->p_ucred->cr_groups[i];
1022
1023 /*
1024 * If a control message already exists, append us to the end.
1025 */
1026 if (control != NULL) {
1027 for (n = control; n->m_next != NULL; n = n->m_next)
1028 ;
1029 n->m_next = m;
1030 } else
1031 control = m;
1032
1033 return (control);
1034 }
1035
1036 int unp_defer, unp_gcing;
1037 extern struct domain unixdomain;
1038
1039 /*
1040 * Comment added long after the fact explaining what's going on here.
1041 * Do a mark-sweep GC of file descriptors on the system, to free up
1042 * any which are caught in flight to an about-to-be-closed socket.
1043 *
1044 * Traditional mark-sweep gc's start at the "root", and mark
1045 * everything reachable from the root (which, in our case would be the
1046 * process table). The mark bits are cleared during the sweep.
1047 *
1048 * XXX For some inexplicable reason (perhaps because the file
1049 * descriptor tables used to live in the u area which could be swapped
1050 * out and thus hard to reach), we do multiple scans over the set of
1051 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1052 * Whenever we find a descriptor which references other descriptors,
1053 * the ones it references are marked with both bits, and we iterate
1054 * over the whole file table until there are no more DEFER bits set.
1055 * We also make an extra pass *before* the GC to clear the mark bits,
1056 * which could have been cleared at almost no cost during the previous
1057 * sweep.
1058 *
1059 * XXX MP: this needs to run with locks such that no other thread of
1060 * control can create or destroy references to file descriptors. it
1061 * may be necessary to defer the GC until later (when the locking
1062 * situation is more hospitable); it may be necessary to push this
1063 * into a separate thread.
1064 */
1065 void
1066 unp_gc()
1067 {
1068 struct file *fp, *nextfp;
1069 struct socket *so, *so1;
1070 struct file **extra_ref, **fpp;
1071 int nunref, i;
1072
1073 if (unp_gcing)
1074 return;
1075 unp_gcing = 1;
1076 unp_defer = 0;
1077
1078 /* Clear mark bits */
1079 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next)
1080 fp->f_flag &= ~(FMARK|FDEFER);
1081
1082 /*
1083 * Iterate over the set of descriptors, marking ones believed
1084 * (based on refcount) to be referenced from a process, and
1085 * marking for rescan descriptors which are queued on a socket.
1086 */
1087 do {
1088 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1089 if (fp->f_flag & FDEFER) {
1090 fp->f_flag &= ~FDEFER;
1091 unp_defer--;
1092 #ifdef DIAGNOSTIC
1093 if (fp->f_count == 0)
1094 panic("unp_gc: deferred unreferenced socket");
1095 #endif
1096 } else {
1097 if (fp->f_count == 0)
1098 continue;
1099 if (fp->f_flag & FMARK)
1100 continue;
1101 if (fp->f_count == fp->f_msgcount)
1102 continue;
1103 }
1104 fp->f_flag |= FMARK;
1105
1106 if (fp->f_type != DTYPE_SOCKET ||
1107 (so = (struct socket *)fp->f_data) == 0)
1108 continue;
1109 if (so->so_proto->pr_domain != &unixdomain ||
1110 (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1111 continue;
1112 #ifdef notdef
1113 if (so->so_rcv.sb_flags & SB_LOCK) {
1114 /*
1115 * This is problematical; it's not clear
1116 * we need to wait for the sockbuf to be
1117 * unlocked (on a uniprocessor, at least),
1118 * and it's also not clear what to do
1119 * if sbwait returns an error due to receipt
1120 * of a signal. If sbwait does return
1121 * an error, we'll go into an infinite
1122 * loop. Delete all of this for now.
1123 */
1124 (void) sbwait(&so->so_rcv);
1125 goto restart;
1126 }
1127 #endif
1128 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1129 /*
1130 * mark descriptors referenced from sockets queued on the accept queue as well.
1131 */
1132 if (so->so_options & SO_ACCEPTCONN) {
1133 for (so1 = so->so_q0.tqh_first;
1134 so1 != 0;
1135 so1 = so1->so_qe.tqe_next) {
1136 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1137 }
1138 for (so1 = so->so_q.tqh_first;
1139 so1 != 0;
1140 so1 = so1->so_qe.tqe_next) {
1141 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1142 }
1143 }
1144
1145 }
1146 } while (unp_defer);
1147 /*
1148 * Sweep pass. Find unmarked descriptors, and free them.
1149 *
1150 * We grab an extra reference to each of the file table entries
1151 * that are not otherwise accessible and then free the rights
1152 * that are stored in messages on them.
1153 *
1154 * The bug in the orginal code is a little tricky, so I'll describe
1155 * what's wrong with it here.
1156 *
1157 * It is incorrect to simply unp_discard each entry for f_msgcount
1158 * times -- consider the case of sockets A and B that contain
1159 * references to each other. On a last close of some other socket,
1160 * we trigger a gc since the number of outstanding rights (unp_rights)
1161 * is non-zero. If during the sweep phase the gc code un_discards,
1162 * we end up doing a (full) closef on the descriptor. A closef on A
1163 * results in the following chain. Closef calls soo_close, which
1164 * calls soclose. Soclose calls first (through the switch
1165 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1166 * returns because the previous instance had set unp_gcing, and
1167 * we return all the way back to soclose, which marks the socket
1168 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1169 * to free up the rights that are queued in messages on the socket A,
1170 * i.e., the reference on B. The sorflush calls via the dom_dispose
1171 * switch unp_dispose, which unp_scans with unp_discard. This second
1172 * instance of unp_discard just calls closef on B.
1173 *
1174 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1175 * which results in another closef on A. Unfortunately, A is already
1176 * being closed, and the descriptor has already been marked with
1177 * SS_NOFDREF, and soclose panics at this point.
1178 *
1179 * Here, we first take an extra reference to each inaccessible
1180 * descriptor. Then, if the inaccessible descriptor is a
1181 * socket, we call sorflush in case it is a Unix domain
1182 * socket. After we destroy all the rights carried in
1183 * messages, we do a last closef to get rid of our extra
1184 * reference. This is the last close, and the unp_detach etc
1185 * will shut down the socket.
1186 *
1187 * 91/09/19, bsy (at) cs.cmu.edu
1188 */
1189 extra_ref = malloc(nfiles * sizeof(struct file *), M_FILE, M_WAITOK);
1190 for (nunref = 0, fp = filehead.lh_first, fpp = extra_ref; fp != 0;
1191 fp = nextfp) {
1192 nextfp = fp->f_list.le_next;
1193 if (fp->f_count == 0)
1194 continue;
1195 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1196 *fpp++ = fp;
1197 nunref++;
1198 fp->f_count++;
1199 }
1200 }
1201 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1202 fp = *fpp;
1203 FILE_USE(fp);
1204 if (fp->f_type == DTYPE_SOCKET)
1205 sorflush((struct socket *)fp->f_data);
1206 FILE_UNUSE(fp, NULL);
1207 }
1208 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1209 fp = *fpp;
1210 FILE_USE(fp);
1211 (void) closef(fp, (struct proc *)0);
1212 }
1213 free((caddr_t)extra_ref, M_FILE);
1214 unp_gcing = 0;
1215 }
1216
1217 void
1218 unp_dispose(m)
1219 struct mbuf *m;
1220 {
1221
1222 if (m)
1223 unp_scan(m, unp_discard, 1);
1224 }
1225
1226 void
1227 unp_scan(m0, op, discard)
1228 struct mbuf *m0;
1229 void (*op) __P((struct file *));
1230 int discard;
1231 {
1232 struct mbuf *m;
1233 struct file **rp;
1234 struct cmsghdr *cm;
1235 int i;
1236 int qfds;
1237
1238 while (m0) {
1239 for (m = m0; m; m = m->m_next) {
1240 if (m->m_type == MT_CONTROL &&
1241 m->m_len >= sizeof(*cm)) {
1242 cm = mtod(m, struct cmsghdr *);
1243 if (cm->cmsg_level != SOL_SOCKET ||
1244 cm->cmsg_type != SCM_RIGHTS)
1245 continue;
1246 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1247 / sizeof(struct file *);
1248 rp = (struct file **)CMSG_DATA(cm);
1249 for (i = 0; i < qfds; i++) {
1250 struct file *fp = *rp;
1251 if (discard)
1252 *rp = 0;
1253 (*op)(fp);
1254 rp++;
1255 }
1256 break; /* XXX, but saves time */
1257 }
1258 }
1259 m0 = m0->m_nextpkt;
1260 }
1261 }
1262
1263 void
1264 unp_mark(fp)
1265 struct file *fp;
1266 {
1267 if (fp == NULL)
1268 return;
1269
1270 if (fp->f_flag & FMARK)
1271 return;
1272
1273 /* If we're already deferred, don't screw up the defer count */
1274 if (fp->f_flag & FDEFER)
1275 return;
1276
1277 /*
1278 * Minimize the number of deferrals... Sockets are the only
1279 * type of descriptor which can hold references to another
1280 * descriptor, so just mark other descriptors, and defer
1281 * unmarked sockets for the next pass.
1282 */
1283 if (fp->f_type == DTYPE_SOCKET) {
1284 unp_defer++;
1285 if (fp->f_count == 0)
1286 panic("unp_mark: queued unref");
1287 fp->f_flag |= FDEFER;
1288 } else {
1289 fp->f_flag |= FMARK;
1290 }
1291 return;
1292 }
1293
1294 void
1295 unp_discard(fp)
1296 struct file *fp;
1297 {
1298 if (fp == NULL)
1299 return;
1300 FILE_USE(fp);
1301 fp->f_msgcount--;
1302 unp_rights--;
1303 (void) closef(fp, (struct proc *)0);
1304 }
1305