uipc_usrreq.c revision 1.54 1 /* $NetBSD: uipc_usrreq.c,v 1.54 2002/09/04 01:32:45 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
42 * Copyright (c) 1982, 1986, 1989, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by the University of
56 * California, Berkeley and its contributors.
57 * 4. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.54 2002/09/04 01:32:45 matt Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/filedesc.h>
83 #include <sys/domain.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/unpcb.h>
88 #include <sys/un.h>
89 #include <sys/namei.h>
90 #include <sys/vnode.h>
91 #include <sys/file.h>
92 #include <sys/stat.h>
93 #include <sys/mbuf.h>
94
95 /*
96 * Unix communications domain.
97 *
98 * TODO:
99 * SEQPACKET, RDM
100 * rethink name space problems
101 * need a proper out-of-band
102 */
103 struct sockaddr_un sun_noname = { sizeof(sun_noname), AF_LOCAL };
104 ino_t unp_ino; /* prototype for fake inode numbers */
105
106 struct mbuf *unp_addsockcred __P((struct proc *, struct mbuf *));
107
108 int
109 unp_output(m, control, unp, p)
110 struct mbuf *m, *control;
111 struct unpcb *unp;
112 struct proc *p;
113 {
114 struct socket *so2;
115 struct sockaddr_un *sun;
116
117 so2 = unp->unp_conn->unp_socket;
118 if (unp->unp_addr)
119 sun = unp->unp_addr;
120 else
121 sun = &sun_noname;
122 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
123 control = unp_addsockcred(p, control);
124 if (sbappendaddr(&so2->so_rcv, (struct sockaddr *)sun, m,
125 control) == 0) {
126 m_freem(control);
127 m_freem(m);
128 return (EINVAL);
129 } else {
130 sorwakeup(so2);
131 return (0);
132 }
133 }
134
135 void
136 unp_setsockaddr(unp, nam)
137 struct unpcb *unp;
138 struct mbuf *nam;
139 {
140 struct sockaddr_un *sun;
141
142 if (unp->unp_addr)
143 sun = unp->unp_addr;
144 else
145 sun = &sun_noname;
146 nam->m_len = sun->sun_len;
147 if (nam->m_len > MLEN)
148 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
149 memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
150 }
151
152 void
153 unp_setpeeraddr(unp, nam)
154 struct unpcb *unp;
155 struct mbuf *nam;
156 {
157 struct sockaddr_un *sun;
158
159 if (unp->unp_conn && unp->unp_conn->unp_addr)
160 sun = unp->unp_conn->unp_addr;
161 else
162 sun = &sun_noname;
163 nam->m_len = sun->sun_len;
164 if (nam->m_len > MLEN)
165 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
166 memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
167 }
168
169 /*ARGSUSED*/
170 int
171 uipc_usrreq(so, req, m, nam, control, p)
172 struct socket *so;
173 int req;
174 struct mbuf *m, *nam, *control;
175 struct proc *p;
176 {
177 struct unpcb *unp = sotounpcb(so);
178 struct socket *so2;
179 int error = 0;
180
181 if (req == PRU_CONTROL)
182 return (EOPNOTSUPP);
183
184 #ifdef DIAGNOSTIC
185 if (req != PRU_SEND && req != PRU_SENDOOB && control)
186 panic("uipc_usrreq: unexpected control mbuf");
187 #endif
188 if (unp == 0 && req != PRU_ATTACH) {
189 error = EINVAL;
190 goto release;
191 }
192
193 switch (req) {
194
195 case PRU_ATTACH:
196 if (unp != 0) {
197 error = EISCONN;
198 break;
199 }
200 error = unp_attach(so);
201 break;
202
203 case PRU_DETACH:
204 unp_detach(unp);
205 break;
206
207 case PRU_BIND:
208 error = unp_bind(unp, nam, p);
209 break;
210
211 case PRU_LISTEN:
212 if (unp->unp_vnode == 0)
213 error = EINVAL;
214 break;
215
216 case PRU_CONNECT:
217 error = unp_connect(so, nam, p);
218 break;
219
220 case PRU_CONNECT2:
221 error = unp_connect2(so, (struct socket *)nam);
222 break;
223
224 case PRU_DISCONNECT:
225 unp_disconnect(unp);
226 break;
227
228 case PRU_ACCEPT:
229 unp_setpeeraddr(unp, nam);
230 break;
231
232 case PRU_SHUTDOWN:
233 socantsendmore(so);
234 unp_shutdown(unp);
235 break;
236
237 case PRU_RCVD:
238 switch (so->so_type) {
239
240 case SOCK_DGRAM:
241 panic("uipc 1");
242 /*NOTREACHED*/
243
244 case SOCK_STREAM:
245 #define rcv (&so->so_rcv)
246 #define snd (&so2->so_snd)
247 if (unp->unp_conn == 0)
248 break;
249 so2 = unp->unp_conn->unp_socket;
250 /*
251 * Adjust backpressure on sender
252 * and wakeup any waiting to write.
253 */
254 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
255 unp->unp_mbcnt = rcv->sb_mbcnt;
256 snd->sb_hiwat += unp->unp_cc - rcv->sb_cc;
257 unp->unp_cc = rcv->sb_cc;
258 sowwakeup(so2);
259 #undef snd
260 #undef rcv
261 break;
262
263 default:
264 panic("uipc 2");
265 }
266 break;
267
268 case PRU_SEND:
269 /*
270 * Note: unp_internalize() rejects any control message
271 * other than SCM_RIGHTS, and only allows one. This
272 * has the side-effect of preventing a caller from
273 * forging SCM_CREDS.
274 */
275 if (control && (error = unp_internalize(control, p)))
276 break;
277 switch (so->so_type) {
278
279 case SOCK_DGRAM: {
280 if (nam) {
281 if ((so->so_state & SS_ISCONNECTED) != 0) {
282 error = EISCONN;
283 goto die;
284 }
285 error = unp_connect(so, nam, p);
286 if (error) {
287 die:
288 m_freem(control);
289 m_freem(m);
290 break;
291 }
292 } else {
293 if ((so->so_state & SS_ISCONNECTED) == 0) {
294 error = ENOTCONN;
295 goto die;
296 }
297 }
298 error = unp_output(m, control, unp, p);
299 if (nam)
300 unp_disconnect(unp);
301 break;
302 }
303
304 case SOCK_STREAM:
305 #define rcv (&so2->so_rcv)
306 #define snd (&so->so_snd)
307 if (unp->unp_conn == 0)
308 panic("uipc 3");
309 so2 = unp->unp_conn->unp_socket;
310 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
311 /*
312 * Credentials are passed only once on
313 * SOCK_STREAM.
314 */
315 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
316 control = unp_addsockcred(p, control);
317 }
318 /*
319 * Send to paired receive port, and then reduce
320 * send buffer hiwater marks to maintain backpressure.
321 * Wake up readers.
322 */
323 if (control) {
324 if (sbappendcontrol(rcv, m, control) == 0)
325 m_freem(control);
326 } else
327 sbappend(rcv, m);
328 snd->sb_mbmax -=
329 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
330 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
331 snd->sb_hiwat -= rcv->sb_cc - unp->unp_conn->unp_cc;
332 unp->unp_conn->unp_cc = rcv->sb_cc;
333 sorwakeup(so2);
334 #undef snd
335 #undef rcv
336 break;
337
338 default:
339 panic("uipc 4");
340 }
341 break;
342
343 case PRU_ABORT:
344 unp_drop(unp, ECONNABORTED);
345
346 #ifdef DIAGNOSTIC
347 if (so->so_pcb == 0)
348 panic("uipc 5: drop killed pcb");
349 #endif
350 unp_detach(unp);
351 break;
352
353 case PRU_SENSE:
354 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
355 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
356 so2 = unp->unp_conn->unp_socket;
357 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
358 }
359 ((struct stat *) m)->st_dev = NODEV;
360 if (unp->unp_ino == 0)
361 unp->unp_ino = unp_ino++;
362 ((struct stat *) m)->st_atimespec =
363 ((struct stat *) m)->st_mtimespec =
364 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
365 ((struct stat *) m)->st_ino = unp->unp_ino;
366 return (0);
367
368 case PRU_RCVOOB:
369 error = EOPNOTSUPP;
370 break;
371
372 case PRU_SENDOOB:
373 m_freem(control);
374 m_freem(m);
375 error = EOPNOTSUPP;
376 break;
377
378 case PRU_SOCKADDR:
379 unp_setsockaddr(unp, nam);
380 break;
381
382 case PRU_PEERADDR:
383 unp_setpeeraddr(unp, nam);
384 break;
385
386 default:
387 panic("piusrreq");
388 }
389
390 release:
391 return (error);
392 }
393
394 /*
395 * Unix domain socket option processing.
396 */
397 int
398 uipc_ctloutput(op, so, level, optname, mp)
399 int op;
400 struct socket *so;
401 int level, optname;
402 struct mbuf **mp;
403 {
404 struct unpcb *unp = sotounpcb(so);
405 struct mbuf *m = *mp;
406 int optval = 0, error = 0;
407
408 if (level != 0) {
409 error = EINVAL;
410 if (op == PRCO_SETOPT && m)
411 (void) m_free(m);
412 } else switch (op) {
413
414 case PRCO_SETOPT:
415 switch (optname) {
416 case LOCAL_CREDS:
417 if (m == NULL || m->m_len != sizeof(int))
418 error = EINVAL;
419 else {
420 optval = *mtod(m, int *);
421 switch (optname) {
422 #define OPTSET(bit) \
423 if (optval) \
424 unp->unp_flags |= (bit); \
425 else \
426 unp->unp_flags &= ~(bit);
427
428 case LOCAL_CREDS:
429 OPTSET(UNP_WANTCRED);
430 break;
431 }
432 }
433 break;
434 #undef OPTSET
435
436 default:
437 error = ENOPROTOOPT;
438 break;
439 }
440 if (m)
441 (void) m_free(m);
442 break;
443
444 case PRCO_GETOPT:
445 switch (optname) {
446 case LOCAL_CREDS:
447 *mp = m = m_get(M_WAIT, MT_SOOPTS);
448 m->m_len = sizeof(int);
449 switch (optname) {
450
451 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
452
453 case LOCAL_CREDS:
454 optval = OPTBIT(UNP_WANTCRED);
455 break;
456 }
457 *mtod(m, int *) = optval;
458 break;
459 #undef OPTBIT
460
461 default:
462 error = ENOPROTOOPT;
463 break;
464 }
465 break;
466 }
467 return (error);
468 }
469
470 /*
471 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
472 * for stream sockets, although the total for sender and receiver is
473 * actually only PIPSIZ.
474 * Datagram sockets really use the sendspace as the maximum datagram size,
475 * and don't really want to reserve the sendspace. Their recvspace should
476 * be large enough for at least one max-size datagram plus address.
477 */
478 #define PIPSIZ 4096
479 u_long unpst_sendspace = PIPSIZ;
480 u_long unpst_recvspace = PIPSIZ;
481 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
482 u_long unpdg_recvspace = 4*1024;
483
484 int unp_rights; /* file descriptors in flight */
485
486 int
487 unp_attach(so)
488 struct socket *so;
489 {
490 struct unpcb *unp;
491 struct timeval tv;
492 int error;
493
494 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
495 switch (so->so_type) {
496
497 case SOCK_STREAM:
498 error = soreserve(so, unpst_sendspace, unpst_recvspace);
499 break;
500
501 case SOCK_DGRAM:
502 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
503 break;
504
505 default:
506 panic("unp_attach");
507 }
508 if (error)
509 return (error);
510 }
511 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
512 if (unp == NULL)
513 return (ENOBUFS);
514 memset((caddr_t)unp, 0, sizeof(*unp));
515 unp->unp_socket = so;
516 so->so_pcb = unp;
517 microtime(&tv);
518 TIMEVAL_TO_TIMESPEC(&tv, &unp->unp_ctime);
519 return (0);
520 }
521
522 void
523 unp_detach(unp)
524 struct unpcb *unp;
525 {
526
527 if (unp->unp_vnode) {
528 unp->unp_vnode->v_socket = 0;
529 vrele(unp->unp_vnode);
530 unp->unp_vnode = 0;
531 }
532 if (unp->unp_conn)
533 unp_disconnect(unp);
534 while (unp->unp_refs)
535 unp_drop(unp->unp_refs, ECONNRESET);
536 soisdisconnected(unp->unp_socket);
537 unp->unp_socket->so_pcb = 0;
538 if (unp->unp_addr)
539 free(unp->unp_addr, M_SONAME);
540 if (unp_rights) {
541 /*
542 * Normally the receive buffer is flushed later,
543 * in sofree, but if our receive buffer holds references
544 * to descriptors that are now garbage, we will dispose
545 * of those descriptor references after the garbage collector
546 * gets them (resulting in a "panic: closef: count < 0").
547 */
548 sorflush(unp->unp_socket);
549 free(unp, M_PCB);
550 unp_gc();
551 } else
552 free(unp, M_PCB);
553 }
554
555 int
556 unp_bind(unp, nam, p)
557 struct unpcb *unp;
558 struct mbuf *nam;
559 struct proc *p;
560 {
561 struct sockaddr_un *sun;
562 struct vnode *vp;
563 struct vattr vattr;
564 size_t addrlen;
565 int error;
566 struct nameidata nd;
567
568 if (unp->unp_vnode != 0)
569 return (EINVAL);
570
571 /*
572 * Allocate the new sockaddr. We have to allocate one
573 * extra byte so that we can ensure that the pathname
574 * is nul-terminated.
575 */
576 addrlen = nam->m_len + 1;
577 sun = malloc(addrlen, M_SONAME, M_WAITOK);
578 m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
579 *(((char *)sun) + nam->m_len) = '\0';
580
581 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
582 sun->sun_path, p);
583
584 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
585 if ((error = namei(&nd)) != 0)
586 goto bad;
587 vp = nd.ni_vp;
588 if (vp != NULL) {
589 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
590 if (nd.ni_dvp == vp)
591 vrele(nd.ni_dvp);
592 else
593 vput(nd.ni_dvp);
594 vrele(vp);
595 error = EADDRINUSE;
596 goto bad;
597 }
598 VATTR_NULL(&vattr);
599 vattr.va_type = VSOCK;
600 vattr.va_mode = ACCESSPERMS;
601 VOP_LEASE(nd.ni_dvp, p, p->p_ucred, LEASE_WRITE);
602 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
603 if (error)
604 goto bad;
605 vp = nd.ni_vp;
606 vp->v_socket = unp->unp_socket;
607 unp->unp_vnode = vp;
608 unp->unp_addrlen = addrlen;
609 unp->unp_addr = sun;
610 VOP_UNLOCK(vp, 0);
611 return (0);
612
613 bad:
614 free(sun, M_SONAME);
615 return (error);
616 }
617
618 int
619 unp_connect(so, nam, p)
620 struct socket *so;
621 struct mbuf *nam;
622 struct proc *p;
623 {
624 struct sockaddr_un *sun;
625 struct vnode *vp;
626 struct socket *so2, *so3;
627 struct unpcb *unp2, *unp3;
628 size_t addrlen;
629 int error;
630 struct nameidata nd;
631
632 /*
633 * Allocate a temporary sockaddr. We have to allocate one extra
634 * byte so that we can ensure that the pathname is nul-terminated.
635 * When we establish the connection, we copy the other PCB's
636 * sockaddr to our own.
637 */
638 addrlen = nam->m_len + 1;
639 sun = malloc(addrlen, M_SONAME, M_WAITOK);
640 m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
641 *(((char *)sun) + nam->m_len) = '\0';
642
643 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, sun->sun_path, p);
644
645 if ((error = namei(&nd)) != 0)
646 goto bad2;
647 vp = nd.ni_vp;
648 if (vp->v_type != VSOCK) {
649 error = ENOTSOCK;
650 goto bad;
651 }
652 if ((error = VOP_ACCESS(vp, VWRITE, p->p_ucred, p)) != 0)
653 goto bad;
654 so2 = vp->v_socket;
655 if (so2 == 0) {
656 error = ECONNREFUSED;
657 goto bad;
658 }
659 if (so->so_type != so2->so_type) {
660 error = EPROTOTYPE;
661 goto bad;
662 }
663 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
664 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
665 (so3 = sonewconn(so2, 0)) == 0) {
666 error = ECONNREFUSED;
667 goto bad;
668 }
669 unp2 = sotounpcb(so2);
670 unp3 = sotounpcb(so3);
671 if (unp2->unp_addr) {
672 unp3->unp_addr = malloc(unp2->unp_addrlen,
673 M_SONAME, M_WAITOK);
674 memcpy(unp3->unp_addr, unp2->unp_addr,
675 unp2->unp_addrlen);
676 unp3->unp_addrlen = unp2->unp_addrlen;
677 }
678 unp3->unp_flags = unp2->unp_flags;
679 so2 = so3;
680 }
681 error = unp_connect2(so, so2);
682 bad:
683 vput(vp);
684 bad2:
685 free(sun, M_SONAME);
686 return (error);
687 }
688
689 int
690 unp_connect2(so, so2)
691 struct socket *so;
692 struct socket *so2;
693 {
694 struct unpcb *unp = sotounpcb(so);
695 struct unpcb *unp2;
696
697 if (so2->so_type != so->so_type)
698 return (EPROTOTYPE);
699 unp2 = sotounpcb(so2);
700 unp->unp_conn = unp2;
701 switch (so->so_type) {
702
703 case SOCK_DGRAM:
704 unp->unp_nextref = unp2->unp_refs;
705 unp2->unp_refs = unp;
706 soisconnected(so);
707 break;
708
709 case SOCK_STREAM:
710 unp2->unp_conn = unp;
711 soisconnected(so);
712 soisconnected(so2);
713 break;
714
715 default:
716 panic("unp_connect2");
717 }
718 return (0);
719 }
720
721 void
722 unp_disconnect(unp)
723 struct unpcb *unp;
724 {
725 struct unpcb *unp2 = unp->unp_conn;
726
727 if (unp2 == 0)
728 return;
729 unp->unp_conn = 0;
730 switch (unp->unp_socket->so_type) {
731
732 case SOCK_DGRAM:
733 if (unp2->unp_refs == unp)
734 unp2->unp_refs = unp->unp_nextref;
735 else {
736 unp2 = unp2->unp_refs;
737 for (;;) {
738 if (unp2 == 0)
739 panic("unp_disconnect");
740 if (unp2->unp_nextref == unp)
741 break;
742 unp2 = unp2->unp_nextref;
743 }
744 unp2->unp_nextref = unp->unp_nextref;
745 }
746 unp->unp_nextref = 0;
747 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
748 break;
749
750 case SOCK_STREAM:
751 soisdisconnected(unp->unp_socket);
752 unp2->unp_conn = 0;
753 soisdisconnected(unp2->unp_socket);
754 break;
755 }
756 }
757
758 #ifdef notdef
759 unp_abort(unp)
760 struct unpcb *unp;
761 {
762
763 unp_detach(unp);
764 }
765 #endif
766
767 void
768 unp_shutdown(unp)
769 struct unpcb *unp;
770 {
771 struct socket *so;
772
773 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
774 (so = unp->unp_conn->unp_socket))
775 socantrcvmore(so);
776 }
777
778 void
779 unp_drop(unp, errno)
780 struct unpcb *unp;
781 int errno;
782 {
783 struct socket *so = unp->unp_socket;
784
785 so->so_error = errno;
786 unp_disconnect(unp);
787 if (so->so_head) {
788 so->so_pcb = 0;
789 sofree(so);
790 if (unp->unp_addr)
791 free(unp->unp_addr, M_SONAME);
792 free(unp, M_PCB);
793 }
794 }
795
796 #ifdef notdef
797 unp_drain()
798 {
799
800 }
801 #endif
802
803 int
804 unp_externalize(rights)
805 struct mbuf *rights;
806 {
807 struct proc *p = curproc; /* XXX */
808 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
809 int i, *fdp;
810 struct file **rp;
811 struct file *fp;
812 int nfds, error = 0;
813
814 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
815 sizeof(struct file *);
816 rp = (struct file **)CMSG_DATA(cm);
817
818 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
819
820 /* Make sure the recipient should be able to see the descriptors.. */
821 if (p->p_cwdi->cwdi_rdir != NULL) {
822 rp = (struct file **)CMSG_DATA(cm);
823 for (i = 0; i < nfds; i++) {
824 fp = *rp++;
825 /*
826 * If we are in a chroot'ed directory, and
827 * someone wants to pass us a directory, make
828 * sure it's inside the subtree we're allowed
829 * to access.
830 */
831 if (fp->f_type == DTYPE_VNODE) {
832 struct vnode *vp = (struct vnode *)fp->f_data;
833 if ((vp->v_type == VDIR) &&
834 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, p)) {
835 error = EPERM;
836 break;
837 }
838 }
839 }
840 }
841
842 restart:
843 rp = (struct file **)CMSG_DATA(cm);
844 if (error != 0) {
845 for (i = 0; i < nfds; i++) {
846 fp = *rp;
847 /*
848 * zero the pointer before calling unp_discard,
849 * since it may end up in unp_gc()..
850 */
851 *rp++ = 0;
852 unp_discard(fp);
853 }
854 goto out;
855 }
856
857 /*
858 * First loop -- allocate file descriptor table slots for the
859 * new descriptors.
860 */
861 for (i = 0; i < nfds; i++) {
862 fp = *rp++;
863 if ((error = fdalloc(p, 0, &fdp[i])) != 0) {
864 /*
865 * Back out what we've done so far.
866 */
867 for (--i; i >= 0; i--)
868 fdremove(p->p_fd, fdp[i]);
869
870 if (error == ENOSPC) {
871 fdexpand(p);
872 error = 0;
873 } else {
874 /*
875 * This is the error that has historically
876 * been returned, and some callers may
877 * expect it.
878 */
879 error = EMSGSIZE;
880 }
881 goto restart;
882 }
883
884 /*
885 * Make the slot reference the descriptor so that
886 * fdalloc() works properly.. We finalize it all
887 * in the loop below.
888 */
889 p->p_fd->fd_ofiles[fdp[i]] = fp;
890 }
891
892 /*
893 * Now that adding them has succeeded, update all of the
894 * descriptor passing state.
895 */
896 rp = (struct file **)CMSG_DATA(cm);
897 for (i = 0; i < nfds; i++) {
898 fp = *rp++;
899 fp->f_msgcount--;
900 unp_rights--;
901 }
902
903 /*
904 * Copy temporary array to message and adjust length, in case of
905 * transition from large struct file pointers to ints.
906 */
907 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
908 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
909 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
910 out:
911 free(fdp, M_TEMP);
912 return (error);
913 }
914
915 int
916 unp_internalize(control, p)
917 struct mbuf *control;
918 struct proc *p;
919 {
920 struct filedesc *fdescp = p->p_fd;
921 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
922 struct file **rp;
923 struct file *fp;
924 int i, fd, *fdp;
925 int nfds;
926 u_int neededspace;
927
928 /* Sanity check the control message header */
929 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
930 cm->cmsg_len != control->m_len)
931 return (EINVAL);
932
933 /* Verify that the file descriptors are valid */
934 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
935 fdp = (int *)CMSG_DATA(cm);
936 for (i = 0; i < nfds; i++) {
937 fd = *fdp++;
938 if (fd_getfile(fdescp, fd) == NULL)
939 return (EBADF);
940 }
941
942 /* Make sure we have room for the struct file pointers */
943 morespace:
944 neededspace = CMSG_SPACE(nfds * sizeof(struct file *)) -
945 control->m_len;
946 if (neededspace > M_TRAILINGSPACE(control)) {
947
948 /* if we already have a cluster, the message is just too big */
949 if (control->m_flags & M_EXT)
950 return (E2BIG);
951
952 /* allocate a cluster and try again */
953 MCLGET(control, M_WAIT);
954 if ((control->m_flags & M_EXT) == 0)
955 return (ENOBUFS); /* allocation failed */
956
957 /* copy the data to the cluster */
958 memcpy(mtod(control, char *), cm, cm->cmsg_len);
959 cm = mtod(control, struct cmsghdr *);
960 goto morespace;
961 }
962
963 /* adjust message & mbuf to note amount of space actually used. */
964 cm->cmsg_len = CMSG_LEN(nfds * sizeof(struct file *));
965 control->m_len = CMSG_SPACE(nfds * sizeof(struct file *));
966
967 /*
968 * Transform the file descriptors into struct file pointers, in
969 * reverse order so that if pointers are bigger than ints, the
970 * int won't get until we're done.
971 */
972 fdp = ((int *)CMSG_DATA(cm)) + nfds - 1;
973 rp = ((struct file **)CMSG_DATA(cm)) + nfds - 1;
974 for (i = 0; i < nfds; i++) {
975 fp = fdescp->fd_ofiles[*fdp--];
976 FILE_USE(fp);
977 *rp-- = fp;
978 fp->f_count++;
979 fp->f_msgcount++;
980 FILE_UNUSE(fp, NULL);
981 unp_rights++;
982 }
983 return (0);
984 }
985
986 struct mbuf *
987 unp_addsockcred(p, control)
988 struct proc *p;
989 struct mbuf *control;
990 {
991 struct cmsghdr *cmp;
992 struct sockcred *sc;
993 struct mbuf *m, *n;
994 int len, space, i;
995
996 len = CMSG_LEN(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
997 space = CMSG_SPACE(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
998
999 m = m_get(M_WAIT, MT_CONTROL);
1000 if (space > MLEN) {
1001 if (space > MCLBYTES)
1002 MEXTMALLOC(m, space, M_WAITOK);
1003 else
1004 MCLGET(m, M_WAIT);
1005 if ((m->m_flags & M_EXT) == 0) {
1006 m_free(m);
1007 return (control);
1008 }
1009 }
1010
1011 m->m_len = space;
1012 m->m_next = NULL;
1013 cmp = mtod(m, struct cmsghdr *);
1014 sc = (struct sockcred *)CMSG_DATA(cmp);
1015 cmp->cmsg_len = len;
1016 cmp->cmsg_level = SOL_SOCKET;
1017 cmp->cmsg_type = SCM_CREDS;
1018 sc->sc_uid = p->p_cred->p_ruid;
1019 sc->sc_euid = p->p_ucred->cr_uid;
1020 sc->sc_gid = p->p_cred->p_rgid;
1021 sc->sc_egid = p->p_ucred->cr_gid;
1022 sc->sc_ngroups = p->p_ucred->cr_ngroups;
1023 for (i = 0; i < sc->sc_ngroups; i++)
1024 sc->sc_groups[i] = p->p_ucred->cr_groups[i];
1025
1026 /*
1027 * If a control message already exists, append us to the end.
1028 */
1029 if (control != NULL) {
1030 for (n = control; n->m_next != NULL; n = n->m_next)
1031 ;
1032 n->m_next = m;
1033 } else
1034 control = m;
1035
1036 return (control);
1037 }
1038
1039 int unp_defer, unp_gcing;
1040 extern struct domain unixdomain;
1041
1042 /*
1043 * Comment added long after the fact explaining what's going on here.
1044 * Do a mark-sweep GC of file descriptors on the system, to free up
1045 * any which are caught in flight to an about-to-be-closed socket.
1046 *
1047 * Traditional mark-sweep gc's start at the "root", and mark
1048 * everything reachable from the root (which, in our case would be the
1049 * process table). The mark bits are cleared during the sweep.
1050 *
1051 * XXX For some inexplicable reason (perhaps because the file
1052 * descriptor tables used to live in the u area which could be swapped
1053 * out and thus hard to reach), we do multiple scans over the set of
1054 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1055 * Whenever we find a descriptor which references other descriptors,
1056 * the ones it references are marked with both bits, and we iterate
1057 * over the whole file table until there are no more DEFER bits set.
1058 * We also make an extra pass *before* the GC to clear the mark bits,
1059 * which could have been cleared at almost no cost during the previous
1060 * sweep.
1061 *
1062 * XXX MP: this needs to run with locks such that no other thread of
1063 * control can create or destroy references to file descriptors. it
1064 * may be necessary to defer the GC until later (when the locking
1065 * situation is more hospitable); it may be necessary to push this
1066 * into a separate thread.
1067 */
1068 void
1069 unp_gc()
1070 {
1071 struct file *fp, *nextfp;
1072 struct socket *so, *so1;
1073 struct file **extra_ref, **fpp;
1074 int nunref, i;
1075
1076 if (unp_gcing)
1077 return;
1078 unp_gcing = 1;
1079 unp_defer = 0;
1080
1081 /* Clear mark bits */
1082 LIST_FOREACH(fp, &filehead, f_list)
1083 fp->f_flag &= ~(FMARK|FDEFER);
1084
1085 /*
1086 * Iterate over the set of descriptors, marking ones believed
1087 * (based on refcount) to be referenced from a process, and
1088 * marking for rescan descriptors which are queued on a socket.
1089 */
1090 do {
1091 LIST_FOREACH(fp, &filehead, f_list) {
1092 if (fp->f_flag & FDEFER) {
1093 fp->f_flag &= ~FDEFER;
1094 unp_defer--;
1095 #ifdef DIAGNOSTIC
1096 if (fp->f_count == 0)
1097 panic("unp_gc: deferred unreferenced socket");
1098 #endif
1099 } else {
1100 if (fp->f_count == 0)
1101 continue;
1102 if (fp->f_flag & FMARK)
1103 continue;
1104 if (fp->f_count == fp->f_msgcount)
1105 continue;
1106 }
1107 fp->f_flag |= FMARK;
1108
1109 if (fp->f_type != DTYPE_SOCKET ||
1110 (so = (struct socket *)fp->f_data) == 0)
1111 continue;
1112 if (so->so_proto->pr_domain != &unixdomain ||
1113 (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1114 continue;
1115 #ifdef notdef
1116 if (so->so_rcv.sb_flags & SB_LOCK) {
1117 /*
1118 * This is problematical; it's not clear
1119 * we need to wait for the sockbuf to be
1120 * unlocked (on a uniprocessor, at least),
1121 * and it's also not clear what to do
1122 * if sbwait returns an error due to receipt
1123 * of a signal. If sbwait does return
1124 * an error, we'll go into an infinite
1125 * loop. Delete all of this for now.
1126 */
1127 (void) sbwait(&so->so_rcv);
1128 goto restart;
1129 }
1130 #endif
1131 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1132 /*
1133 * mark descriptors referenced from sockets queued on the accept queue as well.
1134 */
1135 if (so->so_options & SO_ACCEPTCONN) {
1136 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1137 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1138 }
1139 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1140 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1141 }
1142 }
1143
1144 }
1145 } while (unp_defer);
1146 /*
1147 * Sweep pass. Find unmarked descriptors, and free them.
1148 *
1149 * We grab an extra reference to each of the file table entries
1150 * that are not otherwise accessible and then free the rights
1151 * that are stored in messages on them.
1152 *
1153 * The bug in the orginal code is a little tricky, so I'll describe
1154 * what's wrong with it here.
1155 *
1156 * It is incorrect to simply unp_discard each entry for f_msgcount
1157 * times -- consider the case of sockets A and B that contain
1158 * references to each other. On a last close of some other socket,
1159 * we trigger a gc since the number of outstanding rights (unp_rights)
1160 * is non-zero. If during the sweep phase the gc code un_discards,
1161 * we end up doing a (full) closef on the descriptor. A closef on A
1162 * results in the following chain. Closef calls soo_close, which
1163 * calls soclose. Soclose calls first (through the switch
1164 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1165 * returns because the previous instance had set unp_gcing, and
1166 * we return all the way back to soclose, which marks the socket
1167 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1168 * to free up the rights that are queued in messages on the socket A,
1169 * i.e., the reference on B. The sorflush calls via the dom_dispose
1170 * switch unp_dispose, which unp_scans with unp_discard. This second
1171 * instance of unp_discard just calls closef on B.
1172 *
1173 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1174 * which results in another closef on A. Unfortunately, A is already
1175 * being closed, and the descriptor has already been marked with
1176 * SS_NOFDREF, and soclose panics at this point.
1177 *
1178 * Here, we first take an extra reference to each inaccessible
1179 * descriptor. Then, if the inaccessible descriptor is a
1180 * socket, we call sorflush in case it is a Unix domain
1181 * socket. After we destroy all the rights carried in
1182 * messages, we do a last closef to get rid of our extra
1183 * reference. This is the last close, and the unp_detach etc
1184 * will shut down the socket.
1185 *
1186 * 91/09/19, bsy (at) cs.cmu.edu
1187 */
1188 extra_ref = malloc(nfiles * sizeof(struct file *), M_FILE, M_WAITOK);
1189 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1190 fp = nextfp) {
1191 nextfp = LIST_NEXT(fp, f_list);
1192 if (fp->f_count == 0)
1193 continue;
1194 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1195 *fpp++ = fp;
1196 nunref++;
1197 fp->f_count++;
1198 }
1199 }
1200 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1201 fp = *fpp;
1202 FILE_USE(fp);
1203 if (fp->f_type == DTYPE_SOCKET)
1204 sorflush((struct socket *)fp->f_data);
1205 FILE_UNUSE(fp, NULL);
1206 }
1207 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1208 fp = *fpp;
1209 FILE_USE(fp);
1210 (void) closef(fp, (struct proc *)0);
1211 }
1212 free((caddr_t)extra_ref, M_FILE);
1213 unp_gcing = 0;
1214 }
1215
1216 void
1217 unp_dispose(m)
1218 struct mbuf *m;
1219 {
1220
1221 if (m)
1222 unp_scan(m, unp_discard, 1);
1223 }
1224
1225 void
1226 unp_scan(m0, op, discard)
1227 struct mbuf *m0;
1228 void (*op) __P((struct file *));
1229 int discard;
1230 {
1231 struct mbuf *m;
1232 struct file **rp;
1233 struct cmsghdr *cm;
1234 int i;
1235 int qfds;
1236
1237 while (m0) {
1238 for (m = m0; m; m = m->m_next) {
1239 if (m->m_type == MT_CONTROL &&
1240 m->m_len >= sizeof(*cm)) {
1241 cm = mtod(m, struct cmsghdr *);
1242 if (cm->cmsg_level != SOL_SOCKET ||
1243 cm->cmsg_type != SCM_RIGHTS)
1244 continue;
1245 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1246 / sizeof(struct file *);
1247 rp = (struct file **)CMSG_DATA(cm);
1248 for (i = 0; i < qfds; i++) {
1249 struct file *fp = *rp;
1250 if (discard)
1251 *rp = 0;
1252 (*op)(fp);
1253 rp++;
1254 }
1255 break; /* XXX, but saves time */
1256 }
1257 }
1258 m0 = m0->m_nextpkt;
1259 }
1260 }
1261
1262 void
1263 unp_mark(fp)
1264 struct file *fp;
1265 {
1266 if (fp == NULL)
1267 return;
1268
1269 if (fp->f_flag & FMARK)
1270 return;
1271
1272 /* If we're already deferred, don't screw up the defer count */
1273 if (fp->f_flag & FDEFER)
1274 return;
1275
1276 /*
1277 * Minimize the number of deferrals... Sockets are the only
1278 * type of descriptor which can hold references to another
1279 * descriptor, so just mark other descriptors, and defer
1280 * unmarked sockets for the next pass.
1281 */
1282 if (fp->f_type == DTYPE_SOCKET) {
1283 unp_defer++;
1284 if (fp->f_count == 0)
1285 panic("unp_mark: queued unref");
1286 fp->f_flag |= FDEFER;
1287 } else {
1288 fp->f_flag |= FMARK;
1289 }
1290 return;
1291 }
1292
1293 void
1294 unp_discard(fp)
1295 struct file *fp;
1296 {
1297 if (fp == NULL)
1298 return;
1299 FILE_USE(fp);
1300 fp->f_msgcount--;
1301 unp_rights--;
1302 (void) closef(fp, (struct proc *)0);
1303 }
1304