uipc_usrreq.c revision 1.75 1 /* $NetBSD: uipc_usrreq.c,v 1.75 2004/04/17 15:15:29 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
69 */
70
71 /*
72 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by the University of
85 * California, Berkeley and its contributors.
86 * 4. Neither the name of the University nor the names of its contributors
87 * may be used to endorse or promote products derived from this software
88 * without specific prior written permission.
89 *
90 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
91 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
94 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 * SUCH DAMAGE.
101 *
102 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
103 */
104
105 #include <sys/cdefs.h>
106 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.75 2004/04/17 15:15:29 christos Exp $");
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/proc.h>
111 #include <sys/filedesc.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/unpcb.h>
117 #include <sys/un.h>
118 #include <sys/namei.h>
119 #include <sys/vnode.h>
120 #include <sys/file.h>
121 #include <sys/stat.h>
122 #include <sys/mbuf.h>
123
124 /*
125 * Unix communications domain.
126 *
127 * TODO:
128 * SEQPACKET, RDM
129 * rethink name space problems
130 * need a proper out-of-band
131 */
132 struct sockaddr_un sun_noname = { sizeof(sun_noname), AF_LOCAL };
133 ino_t unp_ino; /* prototype for fake inode numbers */
134
135 struct mbuf *unp_addsockcred(struct proc *, struct mbuf *);
136
137 int
138 unp_output(m, control, unp, p)
139 struct mbuf *m, *control;
140 struct unpcb *unp;
141 struct proc *p;
142 {
143 struct socket *so2;
144 struct sockaddr_un *sun;
145
146 so2 = unp->unp_conn->unp_socket;
147 if (unp->unp_addr)
148 sun = unp->unp_addr;
149 else
150 sun = &sun_noname;
151 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
152 control = unp_addsockcred(p, control);
153 if (sbappendaddr(&so2->so_rcv, (struct sockaddr *)sun, m,
154 control) == 0) {
155 m_freem(control);
156 m_freem(m);
157 return (ENOBUFS);
158 } else {
159 sorwakeup(so2);
160 return (0);
161 }
162 }
163
164 void
165 unp_setsockaddr(unp, nam)
166 struct unpcb *unp;
167 struct mbuf *nam;
168 {
169 struct sockaddr_un *sun;
170
171 if (unp->unp_addr)
172 sun = unp->unp_addr;
173 else
174 sun = &sun_noname;
175 nam->m_len = sun->sun_len;
176 if (nam->m_len > MLEN)
177 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
178 memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
179 }
180
181 void
182 unp_setpeeraddr(unp, nam)
183 struct unpcb *unp;
184 struct mbuf *nam;
185 {
186 struct sockaddr_un *sun;
187
188 if (unp->unp_conn && unp->unp_conn->unp_addr)
189 sun = unp->unp_conn->unp_addr;
190 else
191 sun = &sun_noname;
192 nam->m_len = sun->sun_len;
193 if (nam->m_len > MLEN)
194 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
195 memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
196 }
197
198 /*ARGSUSED*/
199 int
200 uipc_usrreq(so, req, m, nam, control, p)
201 struct socket *so;
202 int req;
203 struct mbuf *m, *nam, *control;
204 struct proc *p;
205 {
206 struct unpcb *unp = sotounpcb(so);
207 struct socket *so2;
208 u_int newhiwat;
209 int error = 0;
210
211 if (req == PRU_CONTROL)
212 return (EOPNOTSUPP);
213
214 #ifdef DIAGNOSTIC
215 if (req != PRU_SEND && req != PRU_SENDOOB && control)
216 panic("uipc_usrreq: unexpected control mbuf");
217 #endif
218 if (unp == 0 && req != PRU_ATTACH) {
219 error = EINVAL;
220 goto release;
221 }
222
223 switch (req) {
224
225 case PRU_ATTACH:
226 if (unp != 0) {
227 error = EISCONN;
228 break;
229 }
230 error = unp_attach(so);
231 break;
232
233 case PRU_DETACH:
234 unp_detach(unp);
235 break;
236
237 case PRU_BIND:
238 error = unp_bind(unp, nam, p);
239 break;
240
241 case PRU_LISTEN:
242 if (unp->unp_vnode == 0)
243 error = EINVAL;
244 break;
245
246 case PRU_CONNECT:
247 error = unp_connect(so, nam, p);
248 break;
249
250 case PRU_CONNECT2:
251 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
252 break;
253
254 case PRU_DISCONNECT:
255 unp_disconnect(unp);
256 break;
257
258 case PRU_ACCEPT:
259 unp_setpeeraddr(unp, nam);
260 /*
261 * Mark the initiating STREAM socket as connected *ONLY*
262 * after it's been accepted. This prevents a client from
263 * overrunning a server and receiving ECONNREFUSED.
264 */
265 if (unp->unp_conn != NULL &&
266 (unp->unp_conn->unp_socket->so_state & SS_ISCONNECTING))
267 soisconnected(unp->unp_conn->unp_socket);
268 break;
269
270 case PRU_SHUTDOWN:
271 socantsendmore(so);
272 unp_shutdown(unp);
273 break;
274
275 case PRU_RCVD:
276 switch (so->so_type) {
277
278 case SOCK_DGRAM:
279 panic("uipc 1");
280 /*NOTREACHED*/
281
282 case SOCK_STREAM:
283 #define rcv (&so->so_rcv)
284 #define snd (&so2->so_snd)
285 if (unp->unp_conn == 0)
286 break;
287 so2 = unp->unp_conn->unp_socket;
288 /*
289 * Adjust backpressure on sender
290 * and wakeup any waiting to write.
291 */
292 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
293 unp->unp_mbcnt = rcv->sb_mbcnt;
294 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
295 (void)chgsbsize(so2->so_uid,
296 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
297 unp->unp_cc = rcv->sb_cc;
298 sowwakeup(so2);
299 #undef snd
300 #undef rcv
301 break;
302
303 default:
304 panic("uipc 2");
305 }
306 break;
307
308 case PRU_SEND:
309 /*
310 * Note: unp_internalize() rejects any control message
311 * other than SCM_RIGHTS, and only allows one. This
312 * has the side-effect of preventing a caller from
313 * forging SCM_CREDS.
314 */
315 if (control && (error = unp_internalize(control, p)))
316 break;
317 switch (so->so_type) {
318
319 case SOCK_DGRAM: {
320 if (nam) {
321 if ((so->so_state & SS_ISCONNECTED) != 0) {
322 error = EISCONN;
323 goto die;
324 }
325 error = unp_connect(so, nam, p);
326 if (error) {
327 die:
328 m_freem(control);
329 m_freem(m);
330 break;
331 }
332 } else {
333 if ((so->so_state & SS_ISCONNECTED) == 0) {
334 error = ENOTCONN;
335 goto die;
336 }
337 }
338 error = unp_output(m, control, unp, p);
339 if (nam)
340 unp_disconnect(unp);
341 break;
342 }
343
344 case SOCK_STREAM:
345 #define rcv (&so2->so_rcv)
346 #define snd (&so->so_snd)
347 if (unp->unp_conn == 0)
348 panic("uipc 3");
349 so2 = unp->unp_conn->unp_socket;
350 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
351 /*
352 * Credentials are passed only once on
353 * SOCK_STREAM.
354 */
355 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
356 control = unp_addsockcred(p, control);
357 }
358 /*
359 * Send to paired receive port, and then reduce
360 * send buffer hiwater marks to maintain backpressure.
361 * Wake up readers.
362 */
363 if (control) {
364 if (sbappendcontrol(rcv, m, control) == 0)
365 m_freem(control);
366 } else
367 sbappend(rcv, m);
368 snd->sb_mbmax -=
369 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
370 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
371 newhiwat = snd->sb_hiwat -
372 (rcv->sb_cc - unp->unp_conn->unp_cc);
373 (void)chgsbsize(so->so_uid,
374 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
375 unp->unp_conn->unp_cc = rcv->sb_cc;
376 sorwakeup(so2);
377 #undef snd
378 #undef rcv
379 break;
380
381 default:
382 panic("uipc 4");
383 }
384 break;
385
386 case PRU_ABORT:
387 unp_drop(unp, ECONNABORTED);
388
389 #ifdef DIAGNOSTIC
390 if (so->so_pcb == 0)
391 panic("uipc 5: drop killed pcb");
392 #endif
393 unp_detach(unp);
394 break;
395
396 case PRU_SENSE:
397 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
398 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
399 so2 = unp->unp_conn->unp_socket;
400 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
401 }
402 ((struct stat *) m)->st_dev = NODEV;
403 if (unp->unp_ino == 0)
404 unp->unp_ino = unp_ino++;
405 ((struct stat *) m)->st_atimespec =
406 ((struct stat *) m)->st_mtimespec =
407 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
408 ((struct stat *) m)->st_ino = unp->unp_ino;
409 return (0);
410
411 case PRU_RCVOOB:
412 error = EOPNOTSUPP;
413 break;
414
415 case PRU_SENDOOB:
416 m_freem(control);
417 m_freem(m);
418 error = EOPNOTSUPP;
419 break;
420
421 case PRU_SOCKADDR:
422 unp_setsockaddr(unp, nam);
423 break;
424
425 case PRU_PEERADDR:
426 unp_setpeeraddr(unp, nam);
427 break;
428
429 default:
430 panic("piusrreq");
431 }
432
433 release:
434 return (error);
435 }
436
437 /*
438 * Unix domain socket option processing.
439 */
440 int
441 uipc_ctloutput(op, so, level, optname, mp)
442 int op;
443 struct socket *so;
444 int level, optname;
445 struct mbuf **mp;
446 {
447 struct unpcb *unp = sotounpcb(so);
448 struct mbuf *m = *mp;
449 int optval = 0, error = 0;
450
451 if (level != 0) {
452 error = EINVAL;
453 if (op == PRCO_SETOPT && m)
454 (void) m_free(m);
455 } else switch (op) {
456
457 case PRCO_SETOPT:
458 switch (optname) {
459 case LOCAL_CREDS:
460 case LOCAL_CONNWAIT:
461 if (m == NULL || m->m_len != sizeof(int))
462 error = EINVAL;
463 else {
464 optval = *mtod(m, int *);
465 switch (optname) {
466 #define OPTSET(bit) \
467 if (optval) \
468 unp->unp_flags |= (bit); \
469 else \
470 unp->unp_flags &= ~(bit);
471
472 case LOCAL_CREDS:
473 OPTSET(UNP_WANTCRED);
474 break;
475 case LOCAL_CONNWAIT:
476 OPTSET(UNP_CONNWAIT);
477 break;
478 }
479 }
480 break;
481 #undef OPTSET
482
483 default:
484 error = ENOPROTOOPT;
485 break;
486 }
487 if (m)
488 (void) m_free(m);
489 break;
490
491 case PRCO_GETOPT:
492 switch (optname) {
493 case LOCAL_CREDS:
494 *mp = m = m_get(M_WAIT, MT_SOOPTS);
495 m->m_len = sizeof(int);
496 switch (optname) {
497
498 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
499
500 case LOCAL_CREDS:
501 optval = OPTBIT(UNP_WANTCRED);
502 break;
503 }
504 *mtod(m, int *) = optval;
505 break;
506 #undef OPTBIT
507
508 default:
509 error = ENOPROTOOPT;
510 break;
511 }
512 break;
513 }
514 return (error);
515 }
516
517 /*
518 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
519 * for stream sockets, although the total for sender and receiver is
520 * actually only PIPSIZ.
521 * Datagram sockets really use the sendspace as the maximum datagram size,
522 * and don't really want to reserve the sendspace. Their recvspace should
523 * be large enough for at least one max-size datagram plus address.
524 */
525 #define PIPSIZ 4096
526 u_long unpst_sendspace = PIPSIZ;
527 u_long unpst_recvspace = PIPSIZ;
528 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
529 u_long unpdg_recvspace = 4*1024;
530
531 int unp_rights; /* file descriptors in flight */
532
533 int
534 unp_attach(so)
535 struct socket *so;
536 {
537 struct unpcb *unp;
538 struct timeval tv;
539 int error;
540
541 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
542 switch (so->so_type) {
543
544 case SOCK_STREAM:
545 error = soreserve(so, unpst_sendspace, unpst_recvspace);
546 break;
547
548 case SOCK_DGRAM:
549 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
550 break;
551
552 default:
553 panic("unp_attach");
554 }
555 if (error)
556 return (error);
557 }
558 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
559 if (unp == NULL)
560 return (ENOBUFS);
561 memset((caddr_t)unp, 0, sizeof(*unp));
562 unp->unp_socket = so;
563 so->so_pcb = unp;
564 microtime(&tv);
565 TIMEVAL_TO_TIMESPEC(&tv, &unp->unp_ctime);
566 return (0);
567 }
568
569 void
570 unp_detach(unp)
571 struct unpcb *unp;
572 {
573
574 if (unp->unp_vnode) {
575 unp->unp_vnode->v_socket = 0;
576 vrele(unp->unp_vnode);
577 unp->unp_vnode = 0;
578 }
579 if (unp->unp_conn)
580 unp_disconnect(unp);
581 while (unp->unp_refs)
582 unp_drop(unp->unp_refs, ECONNRESET);
583 soisdisconnected(unp->unp_socket);
584 unp->unp_socket->so_pcb = 0;
585 if (unp->unp_addr)
586 free(unp->unp_addr, M_SONAME);
587 if (unp_rights) {
588 /*
589 * Normally the receive buffer is flushed later,
590 * in sofree, but if our receive buffer holds references
591 * to descriptors that are now garbage, we will dispose
592 * of those descriptor references after the garbage collector
593 * gets them (resulting in a "panic: closef: count < 0").
594 */
595 sorflush(unp->unp_socket);
596 free(unp, M_PCB);
597 unp_gc();
598 } else
599 free(unp, M_PCB);
600 }
601
602 int
603 unp_bind(unp, nam, p)
604 struct unpcb *unp;
605 struct mbuf *nam;
606 struct proc *p;
607 {
608 struct sockaddr_un *sun;
609 struct vnode *vp;
610 struct mount *mp;
611 struct vattr vattr;
612 size_t addrlen;
613 int error;
614 struct nameidata nd;
615
616 if (unp->unp_vnode != 0)
617 return (EINVAL);
618
619 /*
620 * Allocate the new sockaddr. We have to allocate one
621 * extra byte so that we can ensure that the pathname
622 * is nul-terminated.
623 */
624 addrlen = nam->m_len + 1;
625 sun = malloc(addrlen, M_SONAME, M_WAITOK);
626 m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
627 *(((char *)sun) + nam->m_len) = '\0';
628
629 restart:
630 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
631 sun->sun_path, p);
632
633 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
634 if ((error = namei(&nd)) != 0)
635 goto bad;
636 vp = nd.ni_vp;
637 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
638 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
639 if (nd.ni_dvp == vp)
640 vrele(nd.ni_dvp);
641 else
642 vput(nd.ni_dvp);
643 vrele(vp);
644 if (vp != NULL) {
645 error = EADDRINUSE;
646 goto bad;
647 }
648 error = vn_start_write(NULL, &mp,
649 V_WAIT | V_SLEEPONLY | V_PCATCH);
650 if (error)
651 goto bad;
652 goto restart;
653 }
654 VATTR_NULL(&vattr);
655 vattr.va_type = VSOCK;
656 vattr.va_mode = ACCESSPERMS;
657 VOP_LEASE(nd.ni_dvp, p, p->p_ucred, LEASE_WRITE);
658 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
659 vn_finished_write(mp, 0);
660 if (error)
661 goto bad;
662 vp = nd.ni_vp;
663 vp->v_socket = unp->unp_socket;
664 unp->unp_vnode = vp;
665 unp->unp_addrlen = addrlen;
666 unp->unp_addr = sun;
667 VOP_UNLOCK(vp, 0);
668 return (0);
669
670 bad:
671 free(sun, M_SONAME);
672 return (error);
673 }
674
675 int
676 unp_connect(so, nam, p)
677 struct socket *so;
678 struct mbuf *nam;
679 struct proc *p;
680 {
681 struct sockaddr_un *sun;
682 struct vnode *vp;
683 struct socket *so2, *so3;
684 struct unpcb *unp2, *unp3;
685 size_t addrlen;
686 int error;
687 struct nameidata nd;
688
689 /*
690 * Allocate a temporary sockaddr. We have to allocate one extra
691 * byte so that we can ensure that the pathname is nul-terminated.
692 * When we establish the connection, we copy the other PCB's
693 * sockaddr to our own.
694 */
695 addrlen = nam->m_len + 1;
696 sun = malloc(addrlen, M_SONAME, M_WAITOK);
697 m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
698 *(((char *)sun) + nam->m_len) = '\0';
699
700 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, sun->sun_path, p);
701
702 if ((error = namei(&nd)) != 0)
703 goto bad2;
704 vp = nd.ni_vp;
705 if (vp->v_type != VSOCK) {
706 error = ENOTSOCK;
707 goto bad;
708 }
709 if ((error = VOP_ACCESS(vp, VWRITE, p->p_ucred, p)) != 0)
710 goto bad;
711 so2 = vp->v_socket;
712 if (so2 == 0) {
713 error = ECONNREFUSED;
714 goto bad;
715 }
716 if (so->so_type != so2->so_type) {
717 error = EPROTOTYPE;
718 goto bad;
719 }
720 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
721 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
722 (so3 = sonewconn(so2, 0)) == 0) {
723 error = ECONNREFUSED;
724 goto bad;
725 }
726 unp2 = sotounpcb(so2);
727 unp3 = sotounpcb(so3);
728 if (unp2->unp_addr) {
729 unp3->unp_addr = malloc(unp2->unp_addrlen,
730 M_SONAME, M_WAITOK);
731 memcpy(unp3->unp_addr, unp2->unp_addr,
732 unp2->unp_addrlen);
733 unp3->unp_addrlen = unp2->unp_addrlen;
734 }
735 unp3->unp_flags = unp2->unp_flags;
736 so2 = so3;
737 }
738 error = unp_connect2(so, so2, PRU_CONNECT);
739 bad:
740 vput(vp);
741 bad2:
742 free(sun, M_SONAME);
743 return (error);
744 }
745
746 int
747 unp_connect2(so, so2, req)
748 struct socket *so;
749 struct socket *so2;
750 int req;
751 {
752 struct unpcb *unp = sotounpcb(so);
753 struct unpcb *unp2;
754
755 if (so2->so_type != so->so_type)
756 return (EPROTOTYPE);
757 unp2 = sotounpcb(so2);
758 unp->unp_conn = unp2;
759 switch (so->so_type) {
760
761 case SOCK_DGRAM:
762 unp->unp_nextref = unp2->unp_refs;
763 unp2->unp_refs = unp;
764 soisconnected(so);
765 break;
766
767 case SOCK_STREAM:
768 unp2->unp_conn = unp;
769 if (req == PRU_CONNECT &&
770 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
771 soisconnecting(so);
772 else
773 soisconnected(so);
774 soisconnected(so2);
775 break;
776
777 default:
778 panic("unp_connect2");
779 }
780 return (0);
781 }
782
783 void
784 unp_disconnect(unp)
785 struct unpcb *unp;
786 {
787 struct unpcb *unp2 = unp->unp_conn;
788
789 if (unp2 == 0)
790 return;
791 unp->unp_conn = 0;
792 switch (unp->unp_socket->so_type) {
793
794 case SOCK_DGRAM:
795 if (unp2->unp_refs == unp)
796 unp2->unp_refs = unp->unp_nextref;
797 else {
798 unp2 = unp2->unp_refs;
799 for (;;) {
800 if (unp2 == 0)
801 panic("unp_disconnect");
802 if (unp2->unp_nextref == unp)
803 break;
804 unp2 = unp2->unp_nextref;
805 }
806 unp2->unp_nextref = unp->unp_nextref;
807 }
808 unp->unp_nextref = 0;
809 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
810 break;
811
812 case SOCK_STREAM:
813 soisdisconnected(unp->unp_socket);
814 unp2->unp_conn = 0;
815 soisdisconnected(unp2->unp_socket);
816 break;
817 }
818 }
819
820 #ifdef notdef
821 unp_abort(unp)
822 struct unpcb *unp;
823 {
824
825 unp_detach(unp);
826 }
827 #endif
828
829 void
830 unp_shutdown(unp)
831 struct unpcb *unp;
832 {
833 struct socket *so;
834
835 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
836 (so = unp->unp_conn->unp_socket))
837 socantrcvmore(so);
838 }
839
840 void
841 unp_drop(unp, errno)
842 struct unpcb *unp;
843 int errno;
844 {
845 struct socket *so = unp->unp_socket;
846
847 so->so_error = errno;
848 unp_disconnect(unp);
849 if (so->so_head) {
850 so->so_pcb = 0;
851 sofree(so);
852 if (unp->unp_addr)
853 free(unp->unp_addr, M_SONAME);
854 free(unp, M_PCB);
855 }
856 }
857
858 #ifdef notdef
859 unp_drain()
860 {
861
862 }
863 #endif
864
865 int
866 unp_externalize(rights)
867 struct mbuf *rights;
868 {
869 struct proc *p = curproc; /* XXX */
870 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
871 int i, *fdp;
872 struct file **rp;
873 struct file *fp;
874 int nfds, error = 0;
875
876 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
877 sizeof(struct file *);
878 rp = (struct file **)CMSG_DATA(cm);
879
880 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
881
882 /* Make sure the recipient should be able to see the descriptors.. */
883 if (p->p_cwdi->cwdi_rdir != NULL) {
884 rp = (struct file **)CMSG_DATA(cm);
885 for (i = 0; i < nfds; i++) {
886 fp = *rp++;
887 /*
888 * If we are in a chroot'ed directory, and
889 * someone wants to pass us a directory, make
890 * sure it's inside the subtree we're allowed
891 * to access.
892 */
893 if (fp->f_type == DTYPE_VNODE) {
894 struct vnode *vp = (struct vnode *)fp->f_data;
895 if ((vp->v_type == VDIR) &&
896 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, p)) {
897 error = EPERM;
898 break;
899 }
900 }
901 }
902 }
903
904 restart:
905 rp = (struct file **)CMSG_DATA(cm);
906 if (error != 0) {
907 for (i = 0; i < nfds; i++) {
908 fp = *rp;
909 /*
910 * zero the pointer before calling unp_discard,
911 * since it may end up in unp_gc()..
912 */
913 *rp++ = 0;
914 unp_discard(fp);
915 }
916 goto out;
917 }
918
919 /*
920 * First loop -- allocate file descriptor table slots for the
921 * new descriptors.
922 */
923 for (i = 0; i < nfds; i++) {
924 fp = *rp++;
925 if ((error = fdalloc(p, 0, &fdp[i])) != 0) {
926 /*
927 * Back out what we've done so far.
928 */
929 for (--i; i >= 0; i--)
930 fdremove(p->p_fd, fdp[i]);
931
932 if (error == ENOSPC) {
933 fdexpand(p);
934 error = 0;
935 } else {
936 /*
937 * This is the error that has historically
938 * been returned, and some callers may
939 * expect it.
940 */
941 error = EMSGSIZE;
942 }
943 goto restart;
944 }
945
946 /*
947 * Make the slot reference the descriptor so that
948 * fdalloc() works properly.. We finalize it all
949 * in the loop below.
950 */
951 p->p_fd->fd_ofiles[fdp[i]] = fp;
952 }
953
954 /*
955 * Now that adding them has succeeded, update all of the
956 * descriptor passing state.
957 */
958 rp = (struct file **)CMSG_DATA(cm);
959 for (i = 0; i < nfds; i++) {
960 fp = *rp++;
961 fp->f_msgcount--;
962 unp_rights--;
963 }
964
965 /*
966 * Copy temporary array to message and adjust length, in case of
967 * transition from large struct file pointers to ints.
968 */
969 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
970 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
971 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
972 out:
973 free(fdp, M_TEMP);
974 return (error);
975 }
976
977 int
978 unp_internalize(control, p)
979 struct mbuf *control;
980 struct proc *p;
981 {
982 struct filedesc *fdescp = p->p_fd;
983 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
984 struct file **rp, **files;
985 struct file *fp;
986 int i, fd, *fdp;
987 int nfds;
988 u_int neededspace;
989
990 /* Sanity check the control message header */
991 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
992 cm->cmsg_len != control->m_len)
993 return (EINVAL);
994
995 /* Verify that the file descriptors are valid */
996 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
997 fdp = (int *)CMSG_DATA(cm);
998 for (i = 0; i < nfds; i++) {
999 fd = *fdp++;
1000 if ((fp = fd_getfile(fdescp, fd)) == NULL)
1001 return (EBADF);
1002 simple_unlock(&fp->f_slock);
1003 }
1004
1005 /* Make sure we have room for the struct file pointers */
1006 neededspace = CMSG_SPACE(nfds * sizeof(struct file *)) -
1007 control->m_len;
1008 if (neededspace > M_TRAILINGSPACE(control)) {
1009
1010 /* allocate new space and copy header into it */
1011 newcm = malloc(
1012 CMSG_SPACE(nfds * sizeof(struct file *)),
1013 M_MBUF, M_WAITOK);
1014 if (newcm == NULL)
1015 return (E2BIG);
1016 memcpy(newcm, cm, sizeof(struct cmsghdr));
1017 files = (struct file **)CMSG_DATA(newcm);
1018 } else {
1019 /* we can convert in-place */
1020 newcm = NULL;
1021 files = (struct file **)CMSG_DATA(cm);
1022 }
1023
1024 /*
1025 * Transform the file descriptors into struct file pointers, in
1026 * reverse order so that if pointers are bigger than ints, the
1027 * int won't get until we're done.
1028 */
1029 fdp = (int *)CMSG_DATA(cm) + nfds - 1;
1030 rp = files + nfds - 1;
1031 for (i = 0; i < nfds; i++) {
1032 fp = fdescp->fd_ofiles[*fdp--];
1033 simple_lock(&fp->f_slock);
1034 #ifdef DIAGNOSTIC
1035 if (fp->f_iflags & FIF_WANTCLOSE)
1036 panic("unp_internalize: file already closed");
1037 #endif
1038 *rp-- = fp;
1039 fp->f_count++;
1040 fp->f_msgcount++;
1041 simple_unlock(&fp->f_slock);
1042 unp_rights++;
1043 }
1044
1045 if (newcm) {
1046 if (control->m_flags & M_EXT)
1047 MEXTREMOVE(control);
1048 MEXTADD(control, newcm,
1049 CMSG_SPACE(nfds * sizeof(struct file *)),
1050 M_MBUF, NULL, NULL);
1051 cm = newcm;
1052 }
1053
1054 /* adjust message & mbuf to note amount of space actually used. */
1055 cm->cmsg_len = CMSG_LEN(nfds * sizeof(struct file *));
1056 control->m_len = CMSG_SPACE(nfds * sizeof(struct file *));
1057
1058 return (0);
1059 }
1060
1061 struct mbuf *
1062 unp_addsockcred(p, control)
1063 struct proc *p;
1064 struct mbuf *control;
1065 {
1066 struct cmsghdr *cmp;
1067 struct sockcred *sc;
1068 struct mbuf *m, *n;
1069 int len, space, i;
1070
1071 len = CMSG_LEN(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
1072 space = CMSG_SPACE(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
1073
1074 m = m_get(M_WAIT, MT_CONTROL);
1075 if (space > MLEN) {
1076 if (space > MCLBYTES)
1077 MEXTMALLOC(m, space, M_WAITOK);
1078 else
1079 m_clget(m, M_WAIT);
1080 if ((m->m_flags & M_EXT) == 0) {
1081 m_free(m);
1082 return (control);
1083 }
1084 }
1085
1086 m->m_len = space;
1087 m->m_next = NULL;
1088 cmp = mtod(m, struct cmsghdr *);
1089 sc = (struct sockcred *)CMSG_DATA(cmp);
1090 cmp->cmsg_len = len;
1091 cmp->cmsg_level = SOL_SOCKET;
1092 cmp->cmsg_type = SCM_CREDS;
1093 sc->sc_uid = p->p_cred->p_ruid;
1094 sc->sc_euid = p->p_ucred->cr_uid;
1095 sc->sc_gid = p->p_cred->p_rgid;
1096 sc->sc_egid = p->p_ucred->cr_gid;
1097 sc->sc_ngroups = p->p_ucred->cr_ngroups;
1098 for (i = 0; i < sc->sc_ngroups; i++)
1099 sc->sc_groups[i] = p->p_ucred->cr_groups[i];
1100
1101 /*
1102 * If a control message already exists, append us to the end.
1103 */
1104 if (control != NULL) {
1105 for (n = control; n->m_next != NULL; n = n->m_next)
1106 ;
1107 n->m_next = m;
1108 } else
1109 control = m;
1110
1111 return (control);
1112 }
1113
1114 int unp_defer, unp_gcing;
1115 extern struct domain unixdomain;
1116
1117 /*
1118 * Comment added long after the fact explaining what's going on here.
1119 * Do a mark-sweep GC of file descriptors on the system, to free up
1120 * any which are caught in flight to an about-to-be-closed socket.
1121 *
1122 * Traditional mark-sweep gc's start at the "root", and mark
1123 * everything reachable from the root (which, in our case would be the
1124 * process table). The mark bits are cleared during the sweep.
1125 *
1126 * XXX For some inexplicable reason (perhaps because the file
1127 * descriptor tables used to live in the u area which could be swapped
1128 * out and thus hard to reach), we do multiple scans over the set of
1129 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1130 * Whenever we find a descriptor which references other descriptors,
1131 * the ones it references are marked with both bits, and we iterate
1132 * over the whole file table until there are no more DEFER bits set.
1133 * We also make an extra pass *before* the GC to clear the mark bits,
1134 * which could have been cleared at almost no cost during the previous
1135 * sweep.
1136 *
1137 * XXX MP: this needs to run with locks such that no other thread of
1138 * control can create or destroy references to file descriptors. it
1139 * may be necessary to defer the GC until later (when the locking
1140 * situation is more hospitable); it may be necessary to push this
1141 * into a separate thread.
1142 */
1143 void
1144 unp_gc()
1145 {
1146 struct file *fp, *nextfp;
1147 struct socket *so, *so1;
1148 struct file **extra_ref, **fpp;
1149 int nunref, i;
1150
1151 if (unp_gcing)
1152 return;
1153 unp_gcing = 1;
1154 unp_defer = 0;
1155
1156 /* Clear mark bits */
1157 LIST_FOREACH(fp, &filehead, f_list)
1158 fp->f_flag &= ~(FMARK|FDEFER);
1159
1160 /*
1161 * Iterate over the set of descriptors, marking ones believed
1162 * (based on refcount) to be referenced from a process, and
1163 * marking for rescan descriptors which are queued on a socket.
1164 */
1165 do {
1166 LIST_FOREACH(fp, &filehead, f_list) {
1167 if (fp->f_flag & FDEFER) {
1168 fp->f_flag &= ~FDEFER;
1169 unp_defer--;
1170 #ifdef DIAGNOSTIC
1171 if (fp->f_count == 0)
1172 panic("unp_gc: deferred unreferenced socket");
1173 #endif
1174 } else {
1175 if (fp->f_count == 0)
1176 continue;
1177 if (fp->f_flag & FMARK)
1178 continue;
1179 if (fp->f_count == fp->f_msgcount)
1180 continue;
1181 }
1182 fp->f_flag |= FMARK;
1183
1184 if (fp->f_type != DTYPE_SOCKET ||
1185 (so = (struct socket *)fp->f_data) == 0)
1186 continue;
1187 if (so->so_proto->pr_domain != &unixdomain ||
1188 (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1189 continue;
1190 #ifdef notdef
1191 if (so->so_rcv.sb_flags & SB_LOCK) {
1192 /*
1193 * This is problematical; it's not clear
1194 * we need to wait for the sockbuf to be
1195 * unlocked (on a uniprocessor, at least),
1196 * and it's also not clear what to do
1197 * if sbwait returns an error due to receipt
1198 * of a signal. If sbwait does return
1199 * an error, we'll go into an infinite
1200 * loop. Delete all of this for now.
1201 */
1202 (void) sbwait(&so->so_rcv);
1203 goto restart;
1204 }
1205 #endif
1206 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1207 /*
1208 * mark descriptors referenced from sockets queued on the accept queue as well.
1209 */
1210 if (so->so_options & SO_ACCEPTCONN) {
1211 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1212 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1213 }
1214 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1215 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1216 }
1217 }
1218
1219 }
1220 } while (unp_defer);
1221 /*
1222 * Sweep pass. Find unmarked descriptors, and free them.
1223 *
1224 * We grab an extra reference to each of the file table entries
1225 * that are not otherwise accessible and then free the rights
1226 * that are stored in messages on them.
1227 *
1228 * The bug in the original code is a little tricky, so I'll describe
1229 * what's wrong with it here.
1230 *
1231 * It is incorrect to simply unp_discard each entry for f_msgcount
1232 * times -- consider the case of sockets A and B that contain
1233 * references to each other. On a last close of some other socket,
1234 * we trigger a gc since the number of outstanding rights (unp_rights)
1235 * is non-zero. If during the sweep phase the gc code un_discards,
1236 * we end up doing a (full) closef on the descriptor. A closef on A
1237 * results in the following chain. Closef calls soo_close, which
1238 * calls soclose. Soclose calls first (through the switch
1239 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1240 * returns because the previous instance had set unp_gcing, and
1241 * we return all the way back to soclose, which marks the socket
1242 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1243 * to free up the rights that are queued in messages on the socket A,
1244 * i.e., the reference on B. The sorflush calls via the dom_dispose
1245 * switch unp_dispose, which unp_scans with unp_discard. This second
1246 * instance of unp_discard just calls closef on B.
1247 *
1248 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1249 * which results in another closef on A. Unfortunately, A is already
1250 * being closed, and the descriptor has already been marked with
1251 * SS_NOFDREF, and soclose panics at this point.
1252 *
1253 * Here, we first take an extra reference to each inaccessible
1254 * descriptor. Then, if the inaccessible descriptor is a
1255 * socket, we call sorflush in case it is a Unix domain
1256 * socket. After we destroy all the rights carried in
1257 * messages, we do a last closef to get rid of our extra
1258 * reference. This is the last close, and the unp_detach etc
1259 * will shut down the socket.
1260 *
1261 * 91/09/19, bsy (at) cs.cmu.edu
1262 */
1263 extra_ref = malloc(nfiles * sizeof(struct file *), M_FILE, M_WAITOK);
1264 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1265 fp = nextfp) {
1266 nextfp = LIST_NEXT(fp, f_list);
1267 simple_lock(&fp->f_slock);
1268 if (fp->f_count != 0 &&
1269 fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1270 *fpp++ = fp;
1271 nunref++;
1272 fp->f_count++;
1273 }
1274 simple_unlock(&fp->f_slock);
1275 }
1276 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1277 fp = *fpp;
1278 simple_lock(&fp->f_slock);
1279 FILE_USE(fp);
1280 if (fp->f_type == DTYPE_SOCKET)
1281 sorflush((struct socket *)fp->f_data);
1282 FILE_UNUSE(fp, NULL);
1283 }
1284 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1285 fp = *fpp;
1286 simple_lock(&fp->f_slock);
1287 FILE_USE(fp);
1288 (void) closef(fp, (struct proc *)0);
1289 }
1290 free((caddr_t)extra_ref, M_FILE);
1291 unp_gcing = 0;
1292 }
1293
1294 void
1295 unp_dispose(m)
1296 struct mbuf *m;
1297 {
1298
1299 if (m)
1300 unp_scan(m, unp_discard, 1);
1301 }
1302
1303 void
1304 unp_scan(m0, op, discard)
1305 struct mbuf *m0;
1306 void (*op)(struct file *);
1307 int discard;
1308 {
1309 struct mbuf *m;
1310 struct file **rp;
1311 struct cmsghdr *cm;
1312 int i;
1313 int qfds;
1314
1315 while (m0) {
1316 for (m = m0; m; m = m->m_next) {
1317 if (m->m_type == MT_CONTROL &&
1318 m->m_len >= sizeof(*cm)) {
1319 cm = mtod(m, struct cmsghdr *);
1320 if (cm->cmsg_level != SOL_SOCKET ||
1321 cm->cmsg_type != SCM_RIGHTS)
1322 continue;
1323 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1324 / sizeof(struct file *);
1325 rp = (struct file **)CMSG_DATA(cm);
1326 for (i = 0; i < qfds; i++) {
1327 struct file *fp = *rp;
1328 if (discard)
1329 *rp = 0;
1330 (*op)(fp);
1331 rp++;
1332 }
1333 break; /* XXX, but saves time */
1334 }
1335 }
1336 m0 = m0->m_nextpkt;
1337 }
1338 }
1339
1340 void
1341 unp_mark(fp)
1342 struct file *fp;
1343 {
1344 if (fp == NULL)
1345 return;
1346
1347 if (fp->f_flag & FMARK)
1348 return;
1349
1350 /* If we're already deferred, don't screw up the defer count */
1351 if (fp->f_flag & FDEFER)
1352 return;
1353
1354 /*
1355 * Minimize the number of deferrals... Sockets are the only
1356 * type of descriptor which can hold references to another
1357 * descriptor, so just mark other descriptors, and defer
1358 * unmarked sockets for the next pass.
1359 */
1360 if (fp->f_type == DTYPE_SOCKET) {
1361 unp_defer++;
1362 if (fp->f_count == 0)
1363 panic("unp_mark: queued unref");
1364 fp->f_flag |= FDEFER;
1365 } else {
1366 fp->f_flag |= FMARK;
1367 }
1368 return;
1369 }
1370
1371 void
1372 unp_discard(fp)
1373 struct file *fp;
1374 {
1375 if (fp == NULL)
1376 return;
1377 simple_lock(&fp->f_slock);
1378 fp->f_usecount++; /* i.e. FILE_USE(fp) sans locking */
1379 fp->f_msgcount--;
1380 simple_unlock(&fp->f_slock);
1381 unp_rights--;
1382 (void) closef(fp, (struct proc *)0);
1383 }
1384