vfs_bio.c revision 1.119 1 1.119 atatat /* $NetBSD: vfs_bio.c,v 1.119 2004/03/24 15:34:53 atatat Exp $ */
2 1.31 cgd
3 1.31 cgd /*-
4 1.31 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.31 cgd * The Regents of the University of California. All rights reserved.
6 1.31 cgd * (c) UNIX System Laboratories, Inc.
7 1.31 cgd * All or some portions of this file are derived from material licensed
8 1.31 cgd * to the University of California by American Telephone and Telegraph
9 1.31 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.31 cgd * the permission of UNIX System Laboratories, Inc.
11 1.31 cgd *
12 1.31 cgd * Redistribution and use in source and binary forms, with or without
13 1.31 cgd * modification, are permitted provided that the following conditions
14 1.31 cgd * are met:
15 1.31 cgd * 1. Redistributions of source code must retain the above copyright
16 1.31 cgd * notice, this list of conditions and the following disclaimer.
17 1.31 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.31 cgd * notice, this list of conditions and the following disclaimer in the
19 1.31 cgd * documentation and/or other materials provided with the distribution.
20 1.93 agc * 3. Neither the name of the University nor the names of its contributors
21 1.93 agc * may be used to endorse or promote products derived from this software
22 1.93 agc * without specific prior written permission.
23 1.93 agc *
24 1.93 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.93 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.93 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.93 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.93 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.93 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.93 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.93 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.93 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.93 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.93 agc * SUCH DAMAGE.
35 1.93 agc *
36 1.93 agc * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 1.93 agc */
38 1.93 agc
39 1.93 agc /*-
40 1.93 agc * Copyright (c) 1994 Christopher G. Demetriou
41 1.93 agc *
42 1.93 agc * Redistribution and use in source and binary forms, with or without
43 1.93 agc * modification, are permitted provided that the following conditions
44 1.93 agc * are met:
45 1.93 agc * 1. Redistributions of source code must retain the above copyright
46 1.93 agc * notice, this list of conditions and the following disclaimer.
47 1.93 agc * 2. Redistributions in binary form must reproduce the above copyright
48 1.93 agc * notice, this list of conditions and the following disclaimer in the
49 1.93 agc * documentation and/or other materials provided with the distribution.
50 1.31 cgd * 3. All advertising materials mentioning features or use of this software
51 1.31 cgd * must display the following acknowledgement:
52 1.31 cgd * This product includes software developed by the University of
53 1.31 cgd * California, Berkeley and its contributors.
54 1.31 cgd * 4. Neither the name of the University nor the names of its contributors
55 1.31 cgd * may be used to endorse or promote products derived from this software
56 1.31 cgd * without specific prior written permission.
57 1.31 cgd *
58 1.31 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.31 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.31 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.31 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.31 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.31 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.31 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.31 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.31 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.31 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.31 cgd * SUCH DAMAGE.
69 1.31 cgd *
70 1.31 cgd * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 1.31 cgd */
72 1.31 cgd
73 1.31 cgd /*
74 1.31 cgd * Some references:
75 1.31 cgd * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 1.31 cgd * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 1.31 cgd * UNIX Operating System (Addison Welley, 1989)
78 1.31 cgd */
79 1.77 lukem
80 1.100 pk #include "opt_bufcache.h"
81 1.81 matt #include "opt_softdep.h"
82 1.81 matt
83 1.77 lukem #include <sys/cdefs.h>
84 1.119 atatat __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.119 2004/03/24 15:34:53 atatat Exp $");
85 1.31 cgd
86 1.31 cgd #include <sys/param.h>
87 1.31 cgd #include <sys/systm.h>
88 1.100 pk #include <sys/kernel.h>
89 1.31 cgd #include <sys/proc.h>
90 1.31 cgd #include <sys/buf.h>
91 1.31 cgd #include <sys/vnode.h>
92 1.31 cgd #include <sys/mount.h>
93 1.31 cgd #include <sys/malloc.h>
94 1.31 cgd #include <sys/resourcevar.h>
95 1.100 pk #include <sys/sysctl.h>
96 1.35 mycroft #include <sys/conf.h>
97 1.40 christos
98 1.73 chs #include <uvm/uvm.h>
99 1.71 thorpej
100 1.59 fvdl #include <miscfs/specfs/specdev.h>
101 1.59 fvdl
102 1.100 pk #ifndef BUFPAGES
103 1.100 pk # define BUFPAGES 0
104 1.100 pk #endif
105 1.100 pk
106 1.100 pk #ifdef BUFCACHE
107 1.100 pk # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 1.100 pk # error BUFCACHE is not between 5 and 95
109 1.100 pk # endif
110 1.100 pk #else
111 1.114 tls # define BUFCACHE 15
112 1.100 pk #endif
113 1.100 pk
114 1.100 pk u_int nbuf; /* XXX - for softdep_lockedbufs */
115 1.100 pk u_int bufpages = BUFPAGES; /* optional hardwired count */
116 1.100 pk u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117 1.100 pk
118 1.100 pk
119 1.31 cgd /* Macros to clear/set/test flags. */
120 1.31 cgd #define SET(t, f) (t) |= (f)
121 1.31 cgd #define CLR(t, f) (t) &= ~(f)
122 1.31 cgd #define ISSET(t, f) ((t) & (f))
123 1.31 cgd
124 1.31 cgd /*
125 1.31 cgd * Definitions for the buffer hash lists.
126 1.31 cgd */
127 1.31 cgd #define BUFHASH(dvp, lbn) \
128 1.73 chs (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 1.31 cgd LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 1.31 cgd u_long bufhash;
131 1.81 matt #ifndef SOFTDEP
132 1.59 fvdl struct bio_ops bioops; /* I/O operation notification */
133 1.81 matt #endif
134 1.31 cgd
135 1.31 cgd /*
136 1.31 cgd * Insq/Remq for the buffer hash lists.
137 1.31 cgd */
138 1.31 cgd #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
139 1.31 cgd #define bremhash(bp) LIST_REMOVE(bp, b_hash)
140 1.31 cgd
141 1.31 cgd /*
142 1.31 cgd * Definitions for the buffer free lists.
143 1.31 cgd */
144 1.100 pk #define BQUEUES 3 /* number of free buffer queues */
145 1.31 cgd
146 1.31 cgd #define BQ_LOCKED 0 /* super-blocks &c */
147 1.31 cgd #define BQ_LRU 1 /* lru, useful buffers */
148 1.31 cgd #define BQ_AGE 2 /* rubbish */
149 1.31 cgd
150 1.31 cgd TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 1.31 cgd int needbuffer;
152 1.31 cgd
153 1.31 cgd /*
154 1.87 pk * Buffer queue lock.
155 1.87 pk * Take this lock first if also taking some buffer's b_interlock.
156 1.87 pk */
157 1.87 pk struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158 1.87 pk
159 1.87 pk /*
160 1.65 thorpej * Buffer pool for I/O buffers.
161 1.65 thorpej */
162 1.65 thorpej struct pool bufpool;
163 1.65 thorpej
164 1.100 pk /* XXX - somewhat gross.. */
165 1.100 pk #if MAXBSIZE == 0x2000
166 1.100 pk #define NMEMPOOLS 4
167 1.100 pk #elif MAXBSIZE == 0x4000
168 1.100 pk #define NMEMPOOLS 5
169 1.100 pk #elif MAXBSIZE == 0x8000
170 1.100 pk #define NMEMPOOLS 6
171 1.100 pk #else
172 1.100 pk #define NMEMPOOLS 7
173 1.100 pk #endif
174 1.100 pk
175 1.100 pk #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
176 1.100 pk #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 1.100 pk #error update vfs_bio buffer memory parameters
178 1.100 pk #endif
179 1.100 pk
180 1.100 pk /* Buffer memory pools */
181 1.101 thorpej static struct pool bmempools[NMEMPOOLS];
182 1.100 pk
183 1.104 atatat struct vm_map *buf_map;
184 1.100 pk
185 1.100 pk /*
186 1.100 pk * Buffer memory pool allocator.
187 1.100 pk */
188 1.101 thorpej static void *
189 1.101 thorpej bufpool_page_alloc(struct pool *pp, int flags)
190 1.100 pk {
191 1.111 yamt
192 1.100 pk return (void *)uvm_km_kmemalloc1(buf_map,
193 1.111 yamt uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194 1.111 yamt (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195 1.100 pk }
196 1.100 pk
197 1.101 thorpej static void
198 1.101 thorpej bufpool_page_free(struct pool *pp, void *v)
199 1.100 pk {
200 1.103 pk uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201 1.100 pk }
202 1.100 pk
203 1.101 thorpej static struct pool_allocator bufmempool_allocator = {
204 1.100 pk bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205 1.100 pk };
206 1.100 pk
207 1.100 pk /* Buffer memory management variables */
208 1.100 pk u_long bufmem_valimit;
209 1.100 pk u_long bufmem_hiwater;
210 1.100 pk u_long bufmem_lowater;
211 1.100 pk u_long bufmem;
212 1.100 pk
213 1.100 pk /*
214 1.100 pk * MD code can call this to set a hard limit on the amount
215 1.100 pk * of virtual memory used by the buffer cache.
216 1.100 pk */
217 1.101 thorpej int
218 1.101 thorpej buf_setvalimit(vsize_t sz)
219 1.100 pk {
220 1.100 pk
221 1.100 pk /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222 1.100 pk if (sz < NMEMPOOLS * MAXBSIZE)
223 1.100 pk return EINVAL;
224 1.100 pk
225 1.100 pk bufmem_valimit = sz;
226 1.100 pk return 0;
227 1.100 pk }
228 1.100 pk
229 1.100 pk static int buf_trim(void);
230 1.100 pk
231 1.65 thorpej /*
232 1.87 pk * bread()/breadn() helper.
233 1.87 pk */
234 1.87 pk static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235 1.87 pk struct ucred *, int);
236 1.87 pk int count_lock_queue(void);
237 1.87 pk
238 1.87 pk /*
239 1.31 cgd * Insq/Remq for the buffer free lists.
240 1.87 pk * Call with buffer queue locked.
241 1.31 cgd */
242 1.31 cgd #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243 1.31 cgd #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244 1.31 cgd
245 1.99 dbj #ifdef DEBUG
246 1.99 dbj int debug_verify_freelist = 0;
247 1.100 pk static int checkfreelist(struct buf *bp, struct bqueues *dp)
248 1.99 dbj {
249 1.100 pk struct buf *b;
250 1.100 pk TAILQ_FOREACH(b, dp, b_freelist) {
251 1.100 pk if (b == bp)
252 1.100 pk return 1;
253 1.100 pk }
254 1.100 pk return 0;
255 1.99 dbj }
256 1.99 dbj #endif
257 1.99 dbj
258 1.31 cgd void
259 1.101 thorpej bremfree(struct buf *bp)
260 1.31 cgd {
261 1.31 cgd struct bqueues *dp = NULL;
262 1.94 yamt
263 1.94 yamt LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264 1.31 cgd
265 1.100 pk KDASSERT(!debug_verify_freelist ||
266 1.100 pk checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267 1.100 pk checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268 1.100 pk checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269 1.99 dbj
270 1.31 cgd /*
271 1.31 cgd * We only calculate the head of the freelist when removing
272 1.31 cgd * the last element of the list as that is the only time that
273 1.31 cgd * it is needed (e.g. to reset the tail pointer).
274 1.31 cgd *
275 1.31 cgd * NB: This makes an assumption about how tailq's are implemented.
276 1.98 dbj *
277 1.98 dbj * We break the TAILQ abstraction in order to efficiently remove a
278 1.98 dbj * buffer from its freelist without having to know exactly which
279 1.98 dbj * freelist it is on.
280 1.31 cgd */
281 1.84 matt if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282 1.31 cgd for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283 1.31 cgd if (dp->tqh_last == &bp->b_freelist.tqe_next)
284 1.31 cgd break;
285 1.31 cgd if (dp == &bufqueues[BQUEUES])
286 1.31 cgd panic("bremfree: lost tail");
287 1.31 cgd }
288 1.31 cgd TAILQ_REMOVE(dp, bp, b_freelist);
289 1.31 cgd }
290 1.31 cgd
291 1.101 thorpej u_long
292 1.101 thorpej buf_memcalc(void)
293 1.100 pk {
294 1.100 pk u_long n;
295 1.100 pk
296 1.100 pk /*
297 1.100 pk * Determine the upper bound of memory to use for buffers.
298 1.100 pk *
299 1.100 pk * - If bufpages is specified, use that as the number
300 1.100 pk * pages.
301 1.100 pk *
302 1.100 pk * - Otherwise, use bufcache as the percentage of
303 1.100 pk * physical memory.
304 1.100 pk */
305 1.100 pk if (bufpages != 0) {
306 1.100 pk n = bufpages;
307 1.100 pk } else {
308 1.100 pk if (bufcache < 5) {
309 1.100 pk printf("forcing bufcache %d -> 5", bufcache);
310 1.100 pk bufcache = 5;
311 1.100 pk }
312 1.100 pk if (bufcache > 95) {
313 1.100 pk printf("forcing bufcache %d -> 95", bufcache);
314 1.100 pk bufcache = 95;
315 1.100 pk }
316 1.100 pk n = physmem / 100 * bufcache;
317 1.100 pk }
318 1.100 pk
319 1.100 pk n <<= PAGE_SHIFT;
320 1.100 pk if (bufmem_valimit != 0 && n > bufmem_valimit)
321 1.100 pk n = bufmem_valimit;
322 1.100 pk
323 1.100 pk return (n);
324 1.100 pk }
325 1.100 pk
326 1.31 cgd /*
327 1.31 cgd * Initialize buffers and hash links for buffers.
328 1.31 cgd */
329 1.31 cgd void
330 1.101 thorpej bufinit(void)
331 1.31 cgd {
332 1.31 cgd struct bqueues *dp;
333 1.100 pk int smallmem;
334 1.100 pk u_int i;
335 1.100 pk
336 1.100 pk /*
337 1.100 pk * Initialize buffer cache memory parameters.
338 1.100 pk */
339 1.100 pk bufmem = 0;
340 1.100 pk bufmem_hiwater = buf_memcalc();
341 1.114 tls /* lowater is approx. 2% of memory (with bufcache=15) */
342 1.114 tls bufmem_lowater = (bufmem_hiwater >> 3);
343 1.100 pk if (bufmem_lowater < 64 * 1024)
344 1.100 pk /* Ensure a reasonable minimum value */
345 1.100 pk bufmem_lowater = 64 * 1024;
346 1.100 pk
347 1.100 pk if (bufmem_valimit != 0) {
348 1.100 pk vaddr_t minaddr = 0, maxaddr;
349 1.100 pk buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350 1.100 pk bufmem_valimit, VM_MAP_PAGEABLE,
351 1.100 pk FALSE, 0);
352 1.100 pk if (buf_map == NULL)
353 1.100 pk panic("bufinit: cannot allocate submap");
354 1.100 pk } else
355 1.100 pk buf_map = kernel_map;
356 1.65 thorpej
357 1.65 thorpej /*
358 1.100 pk * Initialize the buffer pools.
359 1.65 thorpej */
360 1.79 thorpej pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361 1.31 cgd
362 1.100 pk /* On "small" machines use small pool page sizes where possible */
363 1.100 pk smallmem = (physmem < atop(16*1024*1024));
364 1.100 pk
365 1.100 pk for (i = 0; i < NMEMPOOLS; i++) {
366 1.100 pk struct pool_allocator *pa;
367 1.100 pk struct pool *pp = &bmempools[i];
368 1.100 pk u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369 1.100 pk char *name = malloc(8, M_TEMP, M_WAITOK);
370 1.100 pk snprintf(name, 8, "buf%dk", 1 << i);
371 1.100 pk pa = (size <= PAGE_SIZE && smallmem)
372 1.100 pk ? &pool_allocator_nointr
373 1.100 pk : &bufmempool_allocator;
374 1.107 thorpej pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa);
375 1.100 pk pool_setlowat(pp, 1);
376 1.100 pk }
377 1.100 pk
378 1.100 pk /* Initialize the buffer queues */
379 1.31 cgd for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
380 1.31 cgd TAILQ_INIT(dp);
381 1.100 pk
382 1.100 pk /*
383 1.100 pk * Estimate hash table size based on the amount of memory we
384 1.100 pk * intend to use for the buffer cache. The average buffer
385 1.100 pk * size is dependent on our clients (i.e. filesystems).
386 1.100 pk *
387 1.100 pk * For now, use an empirical 3K per buffer.
388 1.100 pk */
389 1.100 pk nbuf = (bufmem_hiwater / 1024) / 3;
390 1.70 ad bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
391 1.100 pk }
392 1.100 pk
393 1.100 pk static int
394 1.100 pk buf_lotsfree(void)
395 1.100 pk {
396 1.114 tls int try, thresh;
397 1.114 tls
398 1.114 tls if (bufmem < bufmem_lowater) {
399 1.114 tls return 1;
400 1.114 tls }
401 1.114 tls
402 1.115 tls /* If there's anything on the AGE list, it should be eaten. */
403 1.115 tls
404 1.115 tls if(TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
405 1.115 tls return 0;
406 1.115 tls
407 1.114 tls try = random() & 0x0000000fL;
408 1.114 tls
409 1.114 tls thresh = (16 * bufmem) / bufmem_hiwater;
410 1.114 tls
411 1.114 tls if ((try > thresh) && (uvmexp.free > ( 2 * uvmexp.freetarg))) {
412 1.114 tls return 1;
413 1.114 tls }
414 1.114 tls
415 1.114 tls return 0;
416 1.100 pk }
417 1.100 pk
418 1.100 pk /*
419 1.116 yamt * Return estimate of bytes we think need to be
420 1.100 pk * released to help resolve low memory conditions.
421 1.116 yamt *
422 1.116 yamt * => called at splbio.
423 1.116 yamt * => called with bqueue_slock held.
424 1.100 pk */
425 1.100 pk static int
426 1.100 pk buf_canrelease(void)
427 1.100 pk {
428 1.115 tls int pagedemand, ninvalid = 0;
429 1.115 tls struct buf *bp;
430 1.115 tls
431 1.116 yamt LOCK_ASSERT(simple_lock_held(&bqueue_slock));
432 1.116 yamt
433 1.118 dan if (bufmem < bufmem_lowater)
434 1.118 dan return 0;
435 1.118 dan
436 1.115 tls TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
437 1.115 tls ninvalid += bp->b_bufsize;
438 1.100 pk
439 1.115 tls pagedemand = uvmexp.freetarg - uvmexp.free;
440 1.115 tls if (pagedemand < 0)
441 1.115 tls return ninvalid;
442 1.115 tls return MAX(ninvalid, MIN(2 * MAXBSIZE,
443 1.115 tls MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
444 1.100 pk }
445 1.100 pk
446 1.100 pk /*
447 1.100 pk * Buffer memory allocation helper functions
448 1.100 pk */
449 1.101 thorpej static __inline u_long
450 1.101 thorpej buf_mempoolidx(u_long size)
451 1.100 pk {
452 1.100 pk u_int n = 0;
453 1.100 pk
454 1.100 pk size -= 1;
455 1.100 pk size >>= MEMPOOL_INDEX_OFFSET;
456 1.100 pk while (size) {
457 1.100 pk size >>= 1;
458 1.100 pk n += 1;
459 1.100 pk }
460 1.100 pk if (n >= NMEMPOOLS)
461 1.100 pk panic("buf mem pool index %d", n);
462 1.100 pk return n;
463 1.100 pk }
464 1.100 pk
465 1.101 thorpej static __inline u_long
466 1.101 thorpej buf_roundsize(u_long size)
467 1.100 pk {
468 1.100 pk /* Round up to nearest power of 2 */
469 1.100 pk return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
470 1.100 pk }
471 1.100 pk
472 1.101 thorpej static __inline caddr_t
473 1.101 thorpej buf_malloc(size_t size)
474 1.100 pk {
475 1.100 pk u_int n = buf_mempoolidx(size);
476 1.100 pk caddr_t addr;
477 1.100 pk int s;
478 1.100 pk
479 1.100 pk while (1) {
480 1.100 pk addr = pool_get(&bmempools[n], PR_NOWAIT);
481 1.100 pk if (addr != NULL)
482 1.100 pk break;
483 1.100 pk
484 1.100 pk /* No memory, see if we can free some. If so, try again */
485 1.100 pk if (buf_drain(1) > 0)
486 1.100 pk continue;
487 1.100 pk
488 1.100 pk /* Wait for buffers to arrive on the LRU queue */
489 1.100 pk s = splbio();
490 1.100 pk simple_lock(&bqueue_slock);
491 1.100 pk needbuffer = 1;
492 1.100 pk ltsleep(&needbuffer, PNORELOCK | (PRIBIO+1),
493 1.100 pk "buf_malloc", 0, &bqueue_slock);
494 1.100 pk splx(s);
495 1.31 cgd }
496 1.100 pk
497 1.100 pk return addr;
498 1.100 pk }
499 1.100 pk
500 1.101 thorpej static void
501 1.101 thorpej buf_mrelease(caddr_t addr, size_t size)
502 1.100 pk {
503 1.100 pk
504 1.100 pk pool_put(&bmempools[buf_mempoolidx(size)], addr);
505 1.31 cgd }
506 1.31 cgd
507 1.100 pk
508 1.40 christos static __inline struct buf *
509 1.101 thorpej bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
510 1.101 thorpej int async)
511 1.31 cgd {
512 1.66 augustss struct buf *bp;
513 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
514 1.86 thorpej struct proc *p = l->l_proc;
515 1.31 cgd
516 1.34 mycroft bp = getblk(vp, blkno, size, 0, 0);
517 1.31 cgd
518 1.86 thorpej #ifdef DIAGNOSTIC
519 1.86 thorpej if (bp == NULL) {
520 1.86 thorpej panic("bio_doread: no such buf");
521 1.86 thorpej }
522 1.86 thorpej #endif
523 1.86 thorpej
524 1.31 cgd /*
525 1.34 mycroft * If buffer does not have data valid, start a read.
526 1.31 cgd * Note that if buffer is B_INVAL, getblk() won't return it.
527 1.87 pk * Therefore, it's valid if its I/O has completed or been delayed.
528 1.31 cgd */
529 1.34 mycroft if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
530 1.73 chs /* Start I/O for the buffer. */
531 1.34 mycroft SET(bp->b_flags, B_READ | async);
532 1.108 yamt if (async)
533 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
534 1.108 yamt else
535 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
536 1.112 hannken VOP_STRATEGY(vp, bp);
537 1.31 cgd
538 1.34 mycroft /* Pay for the read. */
539 1.49 cgd p->p_stats->p_ru.ru_inblock++;
540 1.34 mycroft } else if (async) {
541 1.34 mycroft brelse(bp);
542 1.31 cgd }
543 1.31 cgd
544 1.34 mycroft return (bp);
545 1.34 mycroft }
546 1.34 mycroft
547 1.34 mycroft /*
548 1.34 mycroft * Read a disk block.
549 1.34 mycroft * This algorithm described in Bach (p.54).
550 1.34 mycroft */
551 1.40 christos int
552 1.101 thorpej bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
553 1.101 thorpej struct buf **bpp)
554 1.34 mycroft {
555 1.66 augustss struct buf *bp;
556 1.34 mycroft
557 1.34 mycroft /* Get buffer for block. */
558 1.34 mycroft bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
559 1.31 cgd
560 1.80 chs /* Wait for the read to complete, and return result. */
561 1.31 cgd return (biowait(bp));
562 1.31 cgd }
563 1.31 cgd
564 1.31 cgd /*
565 1.31 cgd * Read-ahead multiple disk blocks. The first is sync, the rest async.
566 1.31 cgd * Trivial modification to the breada algorithm presented in Bach (p.55).
567 1.31 cgd */
568 1.40 christos int
569 1.101 thorpej breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
570 1.101 thorpej int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
571 1.31 cgd {
572 1.66 augustss struct buf *bp;
573 1.31 cgd int i;
574 1.31 cgd
575 1.34 mycroft bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
576 1.31 cgd
577 1.31 cgd /*
578 1.31 cgd * For each of the read-ahead blocks, start a read, if necessary.
579 1.31 cgd */
580 1.31 cgd for (i = 0; i < nrablks; i++) {
581 1.31 cgd /* If it's in the cache, just go on to next one. */
582 1.31 cgd if (incore(vp, rablks[i]))
583 1.31 cgd continue;
584 1.31 cgd
585 1.31 cgd /* Get a buffer for the read-ahead block */
586 1.34 mycroft (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
587 1.31 cgd }
588 1.31 cgd
589 1.80 chs /* Otherwise, we had to start a read for it; wait until it's valid. */
590 1.31 cgd return (biowait(bp));
591 1.31 cgd }
592 1.31 cgd
593 1.31 cgd /*
594 1.31 cgd * Read with single-block read-ahead. Defined in Bach (p.55), but
595 1.31 cgd * implemented as a call to breadn().
596 1.31 cgd * XXX for compatibility with old file systems.
597 1.31 cgd */
598 1.40 christos int
599 1.101 thorpej breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
600 1.101 thorpej int rabsize, struct ucred *cred, struct buf **bpp)
601 1.31 cgd {
602 1.34 mycroft
603 1.31 cgd return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
604 1.31 cgd }
605 1.31 cgd
606 1.31 cgd /*
607 1.31 cgd * Block write. Described in Bach (p.56)
608 1.31 cgd */
609 1.40 christos int
610 1.101 thorpej bwrite(struct buf *bp)
611 1.31 cgd {
612 1.44 pk int rv, sync, wasdelayed, s;
613 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
614 1.86 thorpej struct proc *p = l->l_proc;
615 1.59 fvdl struct vnode *vp;
616 1.59 fvdl struct mount *mp;
617 1.31 cgd
618 1.87 pk KASSERT(ISSET(bp->b_flags, B_BUSY));
619 1.87 pk
620 1.76 chs vp = bp->b_vp;
621 1.76 chs if (vp != NULL) {
622 1.76 chs if (vp->v_type == VBLK)
623 1.76 chs mp = vp->v_specmountpoint;
624 1.76 chs else
625 1.76 chs mp = vp->v_mount;
626 1.76 chs } else {
627 1.76 chs mp = NULL;
628 1.76 chs }
629 1.76 chs
630 1.38 cgd /*
631 1.38 cgd * Remember buffer type, to switch on it later. If the write was
632 1.38 cgd * synchronous, but the file system was mounted with MNT_ASYNC,
633 1.38 cgd * convert it to a delayed write.
634 1.38 cgd * XXX note that this relies on delayed tape writes being converted
635 1.38 cgd * to async, not sync writes (which is safe, but ugly).
636 1.38 cgd */
637 1.31 cgd sync = !ISSET(bp->b_flags, B_ASYNC);
638 1.76 chs if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
639 1.37 cgd bdwrite(bp);
640 1.37 cgd return (0);
641 1.37 cgd }
642 1.46 mycroft
643 1.59 fvdl /*
644 1.59 fvdl * Collect statistics on synchronous and asynchronous writes.
645 1.59 fvdl * Writes to block devices are charged to their associated
646 1.59 fvdl * filesystem (if any).
647 1.59 fvdl */
648 1.76 chs if (mp != NULL) {
649 1.76 chs if (sync)
650 1.76 chs mp->mnt_stat.f_syncwrites++;
651 1.59 fvdl else
652 1.76 chs mp->mnt_stat.f_asyncwrites++;
653 1.59 fvdl }
654 1.59 fvdl
655 1.44 pk s = splbio();
656 1.87 pk simple_lock(&bp->b_interlock);
657 1.46 mycroft
658 1.97 dbj wasdelayed = ISSET(bp->b_flags, B_DELWRI);
659 1.97 dbj
660 1.60 fvdl CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
661 1.60 fvdl
662 1.46 mycroft /*
663 1.46 mycroft * Pay for the I/O operation and make sure the buf is on the correct
664 1.46 mycroft * vnode queue.
665 1.46 mycroft */
666 1.46 mycroft if (wasdelayed)
667 1.46 mycroft reassignbuf(bp, bp->b_vp);
668 1.46 mycroft else
669 1.49 cgd p->p_stats->p_ru.ru_oublock++;
670 1.32 mycroft
671 1.31 cgd /* Initiate disk write. Make sure the appropriate party is charged. */
672 1.87 pk V_INCR_NUMOUTPUT(bp->b_vp);
673 1.87 pk simple_unlock(&bp->b_interlock);
674 1.44 pk splx(s);
675 1.46 mycroft
676 1.108 yamt if (sync)
677 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
678 1.108 yamt else
679 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
680 1.108 yamt
681 1.112 hannken VOP_STRATEGY(vp, bp);
682 1.31 cgd
683 1.34 mycroft if (sync) {
684 1.46 mycroft /* If I/O was synchronous, wait for it to complete. */
685 1.31 cgd rv = biowait(bp);
686 1.31 cgd
687 1.34 mycroft /* Release the buffer. */
688 1.31 cgd brelse(bp);
689 1.34 mycroft
690 1.34 mycroft return (rv);
691 1.34 mycroft } else {
692 1.34 mycroft return (0);
693 1.31 cgd }
694 1.31 cgd }
695 1.31 cgd
696 1.31 cgd int
697 1.101 thorpej vn_bwrite(void *v)
698 1.31 cgd {
699 1.40 christos struct vop_bwrite_args *ap = v;
700 1.34 mycroft
701 1.31 cgd return (bwrite(ap->a_bp));
702 1.31 cgd }
703 1.31 cgd
704 1.31 cgd /*
705 1.31 cgd * Delayed write.
706 1.31 cgd *
707 1.31 cgd * The buffer is marked dirty, but is not queued for I/O.
708 1.31 cgd * This routine should be used when the buffer is expected
709 1.31 cgd * to be modified again soon, typically a small write that
710 1.31 cgd * partially fills a buffer.
711 1.31 cgd *
712 1.31 cgd * NB: magnetic tapes cannot be delayed; they must be
713 1.31 cgd * written in the order that the writes are requested.
714 1.31 cgd *
715 1.31 cgd * Described in Leffler, et al. (pp. 208-213).
716 1.31 cgd */
717 1.31 cgd void
718 1.101 thorpej bdwrite(struct buf *bp)
719 1.31 cgd {
720 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
721 1.86 thorpej struct proc *p = l->l_proc;
722 1.85 gehenna const struct bdevsw *bdev;
723 1.45 pk int s;
724 1.31 cgd
725 1.46 mycroft /* If this is a tape block, write the block now. */
726 1.90 pk bdev = bdevsw_lookup(bp->b_dev);
727 1.90 pk if (bdev != NULL && bdev->d_type == D_TAPE) {
728 1.90 pk bawrite(bp);
729 1.90 pk return;
730 1.46 mycroft }
731 1.46 mycroft
732 1.31 cgd /*
733 1.31 cgd * If the block hasn't been seen before:
734 1.31 cgd * (1) Mark it as having been seen,
735 1.45 pk * (2) Charge for the write,
736 1.45 pk * (3) Make sure it's on its vnode's correct block list.
737 1.31 cgd */
738 1.60 fvdl s = splbio();
739 1.87 pk simple_lock(&bp->b_interlock);
740 1.60 fvdl
741 1.97 dbj KASSERT(ISSET(bp->b_flags, B_BUSY));
742 1.97 dbj
743 1.31 cgd if (!ISSET(bp->b_flags, B_DELWRI)) {
744 1.31 cgd SET(bp->b_flags, B_DELWRI);
745 1.49 cgd p->p_stats->p_ru.ru_oublock++;
746 1.31 cgd reassignbuf(bp, bp->b_vp);
747 1.31 cgd }
748 1.31 cgd
749 1.31 cgd /* Otherwise, the "write" is done, so mark and release the buffer. */
750 1.92 yamt CLR(bp->b_flags, B_DONE);
751 1.87 pk simple_unlock(&bp->b_interlock);
752 1.60 fvdl splx(s);
753 1.60 fvdl
754 1.31 cgd brelse(bp);
755 1.31 cgd }
756 1.31 cgd
757 1.31 cgd /*
758 1.31 cgd * Asynchronous block write; just an asynchronous bwrite().
759 1.31 cgd */
760 1.31 cgd void
761 1.101 thorpej bawrite(struct buf *bp)
762 1.31 cgd {
763 1.87 pk int s;
764 1.31 cgd
765 1.97 dbj s = splbio();
766 1.97 dbj simple_lock(&bp->b_interlock);
767 1.97 dbj
768 1.87 pk KASSERT(ISSET(bp->b_flags, B_BUSY));
769 1.87 pk
770 1.31 cgd SET(bp->b_flags, B_ASYNC);
771 1.87 pk simple_unlock(&bp->b_interlock);
772 1.87 pk splx(s);
773 1.31 cgd VOP_BWRITE(bp);
774 1.31 cgd }
775 1.31 cgd
776 1.31 cgd /*
777 1.59 fvdl * Same as first half of bdwrite, mark buffer dirty, but do not release it.
778 1.88 pk * Call at splbio() and with the buffer interlock locked.
779 1.88 pk * Note: called only from biodone() through ffs softdep's bioops.io_complete()
780 1.59 fvdl */
781 1.59 fvdl void
782 1.101 thorpej bdirty(struct buf *bp)
783 1.59 fvdl {
784 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
785 1.86 thorpej struct proc *p = l->l_proc;
786 1.59 fvdl
787 1.97 dbj LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
788 1.87 pk KASSERT(ISSET(bp->b_flags, B_BUSY));
789 1.61 fvdl
790 1.61 fvdl CLR(bp->b_flags, B_AGE);
791 1.60 fvdl
792 1.59 fvdl if (!ISSET(bp->b_flags, B_DELWRI)) {
793 1.59 fvdl SET(bp->b_flags, B_DELWRI);
794 1.59 fvdl p->p_stats->p_ru.ru_oublock++;
795 1.59 fvdl reassignbuf(bp, bp->b_vp);
796 1.59 fvdl }
797 1.59 fvdl }
798 1.59 fvdl
799 1.59 fvdl /*
800 1.31 cgd * Release a buffer on to the free lists.
801 1.31 cgd * Described in Bach (p. 46).
802 1.31 cgd */
803 1.31 cgd void
804 1.101 thorpej brelse(struct buf *bp)
805 1.31 cgd {
806 1.31 cgd struct bqueues *bufq;
807 1.31 cgd int s;
808 1.31 cgd
809 1.87 pk /* Block disk interrupts. */
810 1.87 pk s = splbio();
811 1.87 pk simple_lock(&bqueue_slock);
812 1.87 pk simple_lock(&bp->b_interlock);
813 1.97 dbj
814 1.97 dbj KASSERT(ISSET(bp->b_flags, B_BUSY));
815 1.97 dbj KASSERT(!ISSET(bp->b_flags, B_CALL));
816 1.87 pk
817 1.31 cgd /* Wake up any processes waiting for any buffer to become free. */
818 1.31 cgd if (needbuffer) {
819 1.31 cgd needbuffer = 0;
820 1.31 cgd wakeup(&needbuffer);
821 1.31 cgd }
822 1.31 cgd
823 1.31 cgd /* Wake up any proceeses waiting for _this_ buffer to become free. */
824 1.31 cgd if (ISSET(bp->b_flags, B_WANTED)) {
825 1.57 mycroft CLR(bp->b_flags, B_WANTED|B_AGE);
826 1.31 cgd wakeup(bp);
827 1.31 cgd }
828 1.31 cgd
829 1.31 cgd /*
830 1.31 cgd * Determine which queue the buffer should be on, then put it there.
831 1.31 cgd */
832 1.31 cgd
833 1.31 cgd /* If it's locked, don't report an error; try again later. */
834 1.31 cgd if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
835 1.31 cgd CLR(bp->b_flags, B_ERROR);
836 1.31 cgd
837 1.31 cgd /* If it's not cacheable, or an error, mark it invalid. */
838 1.31 cgd if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
839 1.31 cgd SET(bp->b_flags, B_INVAL);
840 1.31 cgd
841 1.50 mycroft if (ISSET(bp->b_flags, B_VFLUSH)) {
842 1.50 mycroft /*
843 1.50 mycroft * This is a delayed write buffer that was just flushed to
844 1.50 mycroft * disk. It is still on the LRU queue. If it's become
845 1.50 mycroft * invalid, then we need to move it to a different queue;
846 1.50 mycroft * otherwise leave it in its current position.
847 1.50 mycroft */
848 1.50 mycroft CLR(bp->b_flags, B_VFLUSH);
849 1.99 dbj if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
850 1.99 dbj KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
851 1.50 mycroft goto already_queued;
852 1.99 dbj } else {
853 1.50 mycroft bremfree(bp);
854 1.99 dbj }
855 1.50 mycroft }
856 1.99 dbj
857 1.99 dbj KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
858 1.99 dbj KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
859 1.99 dbj KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
860 1.50 mycroft
861 1.31 cgd if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
862 1.31 cgd /*
863 1.31 cgd * If it's invalid or empty, dissociate it from its vnode
864 1.31 cgd * and put on the head of the appropriate queue.
865 1.31 cgd */
866 1.59 fvdl if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
867 1.59 fvdl (*bioops.io_deallocate)(bp);
868 1.59 fvdl CLR(bp->b_flags, B_DONE|B_DELWRI);
869 1.59 fvdl if (bp->b_vp) {
870 1.59 fvdl reassignbuf(bp, bp->b_vp);
871 1.31 cgd brelvp(bp);
872 1.59 fvdl }
873 1.31 cgd if (bp->b_bufsize <= 0)
874 1.31 cgd /* no data */
875 1.100 pk goto already_queued;
876 1.31 cgd else
877 1.31 cgd /* invalid data */
878 1.31 cgd bufq = &bufqueues[BQ_AGE];
879 1.31 cgd binsheadfree(bp, bufq);
880 1.31 cgd } else {
881 1.31 cgd /*
882 1.31 cgd * It has valid data. Put it on the end of the appropriate
883 1.31 cgd * queue, so that it'll stick around for as long as possible.
884 1.67 fvdl * If buf is AGE, but has dependencies, must put it on last
885 1.67 fvdl * bufqueue to be scanned, ie LRU. This protects against the
886 1.67 fvdl * livelock where BQ_AGE only has buffers with dependencies,
887 1.67 fvdl * and we thus never get to the dependent buffers in BQ_LRU.
888 1.31 cgd */
889 1.31 cgd if (ISSET(bp->b_flags, B_LOCKED))
890 1.31 cgd /* locked in core */
891 1.31 cgd bufq = &bufqueues[BQ_LOCKED];
892 1.67 fvdl else if (!ISSET(bp->b_flags, B_AGE))
893 1.31 cgd /* valid data */
894 1.31 cgd bufq = &bufqueues[BQ_LRU];
895 1.67 fvdl else {
896 1.67 fvdl /* stale but valid data */
897 1.67 fvdl int has_deps;
898 1.67 fvdl
899 1.67 fvdl if (LIST_FIRST(&bp->b_dep) != NULL &&
900 1.67 fvdl bioops.io_countdeps)
901 1.67 fvdl has_deps = (*bioops.io_countdeps)(bp, 0);
902 1.67 fvdl else
903 1.67 fvdl has_deps = 0;
904 1.67 fvdl bufq = has_deps ? &bufqueues[BQ_LRU] :
905 1.67 fvdl &bufqueues[BQ_AGE];
906 1.67 fvdl }
907 1.31 cgd binstailfree(bp, bufq);
908 1.31 cgd }
909 1.31 cgd
910 1.50 mycroft already_queued:
911 1.31 cgd /* Unlock the buffer. */
912 1.83 hannken CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
913 1.73 chs SET(bp->b_flags, B_CACHE);
914 1.31 cgd
915 1.31 cgd /* Allow disk interrupts. */
916 1.87 pk simple_unlock(&bp->b_interlock);
917 1.87 pk simple_unlock(&bqueue_slock);
918 1.100 pk if (bp->b_bufsize <= 0) {
919 1.100 pk #ifdef DEBUG
920 1.100 pk memset((char *)bp, 0, sizeof(*bp));
921 1.100 pk #endif
922 1.100 pk pool_put(&bufpool, bp);
923 1.100 pk }
924 1.31 cgd splx(s);
925 1.31 cgd }
926 1.31 cgd
927 1.31 cgd /*
928 1.31 cgd * Determine if a block is in the cache.
929 1.31 cgd * Just look on what would be its hash chain. If it's there, return
930 1.31 cgd * a pointer to it, unless it's marked invalid. If it's marked invalid,
931 1.31 cgd * we normally don't return the buffer, unless the caller explicitly
932 1.31 cgd * wants us to.
933 1.31 cgd */
934 1.31 cgd struct buf *
935 1.101 thorpej incore(struct vnode *vp, daddr_t blkno)
936 1.31 cgd {
937 1.31 cgd struct buf *bp;
938 1.31 cgd
939 1.31 cgd /* Search hash chain */
940 1.84 matt LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
941 1.31 cgd if (bp->b_lblkno == blkno && bp->b_vp == vp &&
942 1.31 cgd !ISSET(bp->b_flags, B_INVAL))
943 1.31 cgd return (bp);
944 1.31 cgd }
945 1.31 cgd
946 1.73 chs return (NULL);
947 1.31 cgd }
948 1.31 cgd
949 1.31 cgd /*
950 1.31 cgd * Get a block of requested size that is associated with
951 1.31 cgd * a given vnode and block offset. If it is found in the
952 1.31 cgd * block cache, mark it as having been found, make it busy
953 1.31 cgd * and return it. Otherwise, return an empty block of the
954 1.31 cgd * correct size. It is up to the caller to insure that the
955 1.31 cgd * cached blocks be of the correct size.
956 1.31 cgd */
957 1.31 cgd struct buf *
958 1.101 thorpej getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
959 1.31 cgd {
960 1.31 cgd struct buf *bp;
961 1.31 cgd int s, err;
962 1.100 pk int preserve;
963 1.31 cgd
964 1.39 cgd start:
965 1.87 pk s = splbio();
966 1.87 pk simple_lock(&bqueue_slock);
967 1.73 chs bp = incore(vp, blkno);
968 1.73 chs if (bp != NULL) {
969 1.87 pk simple_lock(&bp->b_interlock);
970 1.31 cgd if (ISSET(bp->b_flags, B_BUSY)) {
971 1.87 pk simple_unlock(&bqueue_slock);
972 1.73 chs if (curproc == uvm.pagedaemon_proc) {
973 1.87 pk simple_unlock(&bp->b_interlock);
974 1.73 chs splx(s);
975 1.73 chs return NULL;
976 1.73 chs }
977 1.31 cgd SET(bp->b_flags, B_WANTED);
978 1.87 pk err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
979 1.87 pk "getblk", slptimeo, &bp->b_interlock);
980 1.31 cgd splx(s);
981 1.31 cgd if (err)
982 1.31 cgd return (NULL);
983 1.31 cgd goto start;
984 1.31 cgd }
985 1.57 mycroft #ifdef DIAGNOSTIC
986 1.78 chs if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
987 1.78 chs bp->b_bcount < size && vp->v_type != VBLK)
988 1.73 chs panic("getblk: block size invariant failed");
989 1.57 mycroft #endif
990 1.73 chs SET(bp->b_flags, B_BUSY);
991 1.73 chs bremfree(bp);
992 1.100 pk preserve = 1;
993 1.73 chs } else {
994 1.100 pk if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
995 1.87 pk simple_unlock(&bqueue_slock);
996 1.87 pk splx(s);
997 1.31 cgd goto start;
998 1.87 pk }
999 1.73 chs
1000 1.73 chs binshash(bp, BUFHASH(vp, blkno));
1001 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1002 1.31 cgd bgetvp(vp, bp);
1003 1.100 pk preserve = 0;
1004 1.31 cgd }
1005 1.87 pk simple_unlock(&bp->b_interlock);
1006 1.87 pk simple_unlock(&bqueue_slock);
1007 1.87 pk splx(s);
1008 1.96 yamt /*
1009 1.96 yamt * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1010 1.96 yamt * if we re-size buffers here.
1011 1.96 yamt */
1012 1.96 yamt if (ISSET(bp->b_flags, B_LOCKED)) {
1013 1.96 yamt KASSERT(bp->b_bufsize >= size);
1014 1.96 yamt } else {
1015 1.100 pk allocbuf(bp, size, preserve);
1016 1.96 yamt }
1017 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1018 1.31 cgd return (bp);
1019 1.31 cgd }
1020 1.31 cgd
1021 1.31 cgd /*
1022 1.31 cgd * Get an empty, disassociated buffer of given size.
1023 1.31 cgd */
1024 1.31 cgd struct buf *
1025 1.101 thorpej geteblk(int size)
1026 1.31 cgd {
1027 1.31 cgd struct buf *bp;
1028 1.87 pk int s;
1029 1.31 cgd
1030 1.87 pk s = splbio();
1031 1.87 pk simple_lock(&bqueue_slock);
1032 1.100 pk while ((bp = getnewbuf(0, 0, 0)) == 0)
1033 1.31 cgd ;
1034 1.87 pk
1035 1.31 cgd SET(bp->b_flags, B_INVAL);
1036 1.31 cgd binshash(bp, &invalhash);
1037 1.87 pk simple_unlock(&bqueue_slock);
1038 1.87 pk simple_unlock(&bp->b_interlock);
1039 1.87 pk splx(s);
1040 1.109 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1041 1.100 pk allocbuf(bp, size, 0);
1042 1.31 cgd return (bp);
1043 1.31 cgd }
1044 1.31 cgd
1045 1.31 cgd /*
1046 1.31 cgd * Expand or contract the actual memory allocated to a buffer.
1047 1.31 cgd *
1048 1.31 cgd * If the buffer shrinks, data is lost, so it's up to the
1049 1.31 cgd * caller to have written it out *first*; this routine will not
1050 1.31 cgd * start a write. If the buffer grows, it's the callers
1051 1.31 cgd * responsibility to fill out the buffer's additional contents.
1052 1.31 cgd */
1053 1.40 christos void
1054 1.101 thorpej allocbuf(struct buf *bp, int size, int preserve)
1055 1.31 cgd {
1056 1.100 pk vsize_t oldsize, desired_size;
1057 1.100 pk caddr_t addr;
1058 1.100 pk int s, delta;
1059 1.31 cgd
1060 1.100 pk desired_size = buf_roundsize(size);
1061 1.31 cgd if (desired_size > MAXBSIZE)
1062 1.100 pk printf("allocbuf: buffer larger than MAXBSIZE requested");
1063 1.31 cgd
1064 1.100 pk bp->b_bcount = size;
1065 1.100 pk
1066 1.100 pk oldsize = bp->b_bufsize;
1067 1.100 pk if (oldsize == desired_size)
1068 1.100 pk return;
1069 1.31 cgd
1070 1.31 cgd /*
1071 1.100 pk * If we want a buffer of a different size, re-allocate the
1072 1.100 pk * buffer's memory; copy old content only if needed.
1073 1.31 cgd */
1074 1.100 pk addr = buf_malloc(desired_size);
1075 1.100 pk if (preserve)
1076 1.100 pk memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1077 1.100 pk if (bp->b_data != NULL)
1078 1.100 pk buf_mrelease(bp->b_data, oldsize);
1079 1.100 pk bp->b_data = addr;
1080 1.100 pk bp->b_bufsize = desired_size;
1081 1.31 cgd
1082 1.31 cgd /*
1083 1.100 pk * Update overall buffer memory counter (protected by bqueue_slock)
1084 1.31 cgd */
1085 1.100 pk delta = (long)desired_size - (long)oldsize;
1086 1.100 pk
1087 1.100 pk s = splbio();
1088 1.100 pk simple_lock(&bqueue_slock);
1089 1.100 pk if ((bufmem += delta) > bufmem_hiwater) {
1090 1.100 pk /*
1091 1.100 pk * Need to trim overall memory usage.
1092 1.100 pk */
1093 1.100 pk while (buf_canrelease()) {
1094 1.100 pk if (buf_trim() == 0)
1095 1.100 pk break;
1096 1.31 cgd }
1097 1.31 cgd }
1098 1.31 cgd
1099 1.100 pk simple_unlock(&bqueue_slock);
1100 1.100 pk splx(s);
1101 1.31 cgd }
1102 1.31 cgd
1103 1.31 cgd /*
1104 1.31 cgd * Find a buffer which is available for use.
1105 1.31 cgd * Select something from a free list.
1106 1.31 cgd * Preference is to AGE list, then LRU list.
1107 1.87 pk *
1108 1.100 pk * Called at splbio and with buffer queues locked.
1109 1.87 pk * Return buffer locked.
1110 1.31 cgd */
1111 1.31 cgd struct buf *
1112 1.101 thorpej getnewbuf(int slpflag, int slptimeo, int from_bufq)
1113 1.31 cgd {
1114 1.66 augustss struct buf *bp;
1115 1.31 cgd
1116 1.31 cgd start:
1117 1.87 pk LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1118 1.87 pk
1119 1.100 pk /*
1120 1.100 pk * Get a new buffer from the pool; but use NOWAIT because
1121 1.100 pk * we have the buffer queues locked.
1122 1.100 pk */
1123 1.100 pk if (buf_lotsfree() && !from_bufq &&
1124 1.100 pk (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1125 1.100 pk memset((char *)bp, 0, sizeof(*bp));
1126 1.100 pk BUF_INIT(bp);
1127 1.100 pk bp->b_dev = NODEV;
1128 1.100 pk bp->b_vnbufs.le_next = NOLIST;
1129 1.100 pk bp->b_flags = B_BUSY;
1130 1.102 pk simple_lock(&bp->b_interlock);
1131 1.100 pk return (bp);
1132 1.100 pk }
1133 1.100 pk
1134 1.84 matt if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1135 1.84 matt (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1136 1.87 pk simple_lock(&bp->b_interlock);
1137 1.31 cgd bremfree(bp);
1138 1.31 cgd } else {
1139 1.31 cgd /* wait for a free buffer of any kind */
1140 1.31 cgd needbuffer = 1;
1141 1.87 pk ltsleep(&needbuffer, slpflag|(PRIBIO+1),
1142 1.87 pk "getnewbuf", slptimeo, &bqueue_slock);
1143 1.73 chs return (NULL);
1144 1.31 cgd }
1145 1.31 cgd
1146 1.100 pk #ifdef DIAGNOSTIC
1147 1.100 pk if (bp->b_bufsize <= 0)
1148 1.100 pk panic("buffer %p: on queue but empty", bp);
1149 1.100 pk #endif
1150 1.100 pk
1151 1.50 mycroft if (ISSET(bp->b_flags, B_VFLUSH)) {
1152 1.50 mycroft /*
1153 1.50 mycroft * This is a delayed write buffer being flushed to disk. Make
1154 1.50 mycroft * sure it gets aged out of the queue when it's finished, and
1155 1.50 mycroft * leave it off the LRU queue.
1156 1.50 mycroft */
1157 1.50 mycroft CLR(bp->b_flags, B_VFLUSH);
1158 1.50 mycroft SET(bp->b_flags, B_AGE);
1159 1.87 pk simple_unlock(&bp->b_interlock);
1160 1.50 mycroft goto start;
1161 1.50 mycroft }
1162 1.50 mycroft
1163 1.31 cgd /* Buffer is no longer on free lists. */
1164 1.31 cgd SET(bp->b_flags, B_BUSY);
1165 1.31 cgd
1166 1.75 chs /*
1167 1.75 chs * If buffer was a delayed write, start it and return NULL
1168 1.75 chs * (since we might sleep while starting the write).
1169 1.75 chs */
1170 1.31 cgd if (ISSET(bp->b_flags, B_DELWRI)) {
1171 1.50 mycroft /*
1172 1.50 mycroft * This buffer has gone through the LRU, so make sure it gets
1173 1.50 mycroft * reused ASAP.
1174 1.50 mycroft */
1175 1.50 mycroft SET(bp->b_flags, B_AGE);
1176 1.87 pk simple_unlock(&bp->b_interlock);
1177 1.89 pk simple_unlock(&bqueue_slock);
1178 1.50 mycroft bawrite(bp);
1179 1.89 pk simple_lock(&bqueue_slock);
1180 1.75 chs return (NULL);
1181 1.31 cgd }
1182 1.31 cgd
1183 1.31 cgd /* disassociate us from our vnode, if we had one... */
1184 1.31 cgd if (bp->b_vp)
1185 1.31 cgd brelvp(bp);
1186 1.31 cgd
1187 1.59 fvdl if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1188 1.59 fvdl (*bioops.io_deallocate)(bp);
1189 1.59 fvdl
1190 1.31 cgd /* clear out various other fields */
1191 1.31 cgd bp->b_flags = B_BUSY;
1192 1.31 cgd bp->b_dev = NODEV;
1193 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1194 1.31 cgd bp->b_iodone = 0;
1195 1.31 cgd bp->b_error = 0;
1196 1.31 cgd bp->b_resid = 0;
1197 1.31 cgd bp->b_bcount = 0;
1198 1.31 cgd
1199 1.34 mycroft bremhash(bp);
1200 1.31 cgd return (bp);
1201 1.31 cgd }
1202 1.31 cgd
1203 1.31 cgd /*
1204 1.100 pk * Attempt to free an aged buffer off the queues.
1205 1.100 pk * Called at splbio and with queue lock held.
1206 1.100 pk * Returns the amount of buffer memory freed.
1207 1.100 pk */
1208 1.101 thorpej int
1209 1.101 thorpej buf_trim(void)
1210 1.100 pk {
1211 1.100 pk struct buf *bp;
1212 1.100 pk long size = 0;
1213 1.100 pk int wanted;
1214 1.100 pk
1215 1.100 pk /* Instruct getnewbuf() to get buffers off the queues */
1216 1.101 thorpej if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1217 1.100 pk return 0;
1218 1.100 pk
1219 1.100 pk wanted = ISSET(bp->b_flags, B_WANTED);
1220 1.100 pk simple_unlock(&bp->b_interlock);
1221 1.100 pk if (wanted) {
1222 1.100 pk printf("buftrim: got WANTED buffer\n");
1223 1.100 pk SET(bp->b_flags, B_INVAL);
1224 1.100 pk binshash(bp, &invalhash);
1225 1.100 pk simple_unlock(&bqueue_slock);
1226 1.100 pk goto out;
1227 1.100 pk }
1228 1.100 pk size = bp->b_bufsize;
1229 1.100 pk bufmem -= size;
1230 1.100 pk simple_unlock(&bqueue_slock);
1231 1.100 pk if (size > 0) {
1232 1.100 pk buf_mrelease(bp->b_data, size);
1233 1.100 pk bp->b_bcount = bp->b_bufsize = 0;
1234 1.100 pk }
1235 1.100 pk
1236 1.100 pk out:
1237 1.100 pk /* brelse() will return the buffer to the global buffer pool */
1238 1.100 pk brelse(bp);
1239 1.100 pk simple_lock(&bqueue_slock);
1240 1.100 pk return size;
1241 1.100 pk }
1242 1.100 pk
1243 1.101 thorpej int
1244 1.101 thorpej buf_drain(int n)
1245 1.100 pk {
1246 1.100 pk int s, size = 0;
1247 1.100 pk
1248 1.116 yamt s = splbio();
1249 1.116 yamt simple_lock(&bqueue_slock);
1250 1.116 yamt
1251 1.100 pk /* If not asked for a specific amount, make our own estimate */
1252 1.100 pk if (n == 0)
1253 1.100 pk n = buf_canrelease();
1254 1.100 pk
1255 1.114 tls while (size < n && bufmem > bufmem_lowater)
1256 1.100 pk size += buf_trim();
1257 1.114 tls
1258 1.100 pk simple_unlock(&bqueue_slock);
1259 1.100 pk splx(s);
1260 1.100 pk return size;
1261 1.100 pk }
1262 1.100 pk
1263 1.100 pk /*
1264 1.31 cgd * Wait for operations on the buffer to complete.
1265 1.31 cgd * When they do, extract and return the I/O's error value.
1266 1.31 cgd */
1267 1.31 cgd int
1268 1.101 thorpej biowait(struct buf *bp)
1269 1.31 cgd {
1270 1.87 pk int s, error;
1271 1.59 fvdl
1272 1.31 cgd s = splbio();
1273 1.87 pk simple_lock(&bp->b_interlock);
1274 1.80 chs while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1275 1.87 pk ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1276 1.31 cgd
1277 1.31 cgd /* check for interruption of I/O (e.g. via NFS), then errors. */
1278 1.31 cgd if (ISSET(bp->b_flags, B_EINTR)) {
1279 1.31 cgd CLR(bp->b_flags, B_EINTR);
1280 1.87 pk error = EINTR;
1281 1.31 cgd } else if (ISSET(bp->b_flags, B_ERROR))
1282 1.87 pk error = bp->b_error ? bp->b_error : EIO;
1283 1.31 cgd else
1284 1.87 pk error = 0;
1285 1.87 pk
1286 1.87 pk simple_unlock(&bp->b_interlock);
1287 1.87 pk splx(s);
1288 1.87 pk return (error);
1289 1.31 cgd }
1290 1.31 cgd
1291 1.31 cgd /*
1292 1.31 cgd * Mark I/O complete on a buffer.
1293 1.31 cgd *
1294 1.31 cgd * If a callback has been requested, e.g. the pageout
1295 1.31 cgd * daemon, do so. Otherwise, awaken waiting processes.
1296 1.31 cgd *
1297 1.31 cgd * [ Leffler, et al., says on p.247:
1298 1.31 cgd * "This routine wakes up the blocked process, frees the buffer
1299 1.31 cgd * for an asynchronous write, or, for a request by the pagedaemon
1300 1.31 cgd * process, invokes a procedure specified in the buffer structure" ]
1301 1.31 cgd *
1302 1.31 cgd * In real life, the pagedaemon (or other system processes) wants
1303 1.31 cgd * to do async stuff to, and doesn't want the buffer brelse()'d.
1304 1.31 cgd * (for swap pager, that puts swap buffers on the free lists (!!!),
1305 1.31 cgd * for the vn device, that puts malloc'd buffers on the free lists!)
1306 1.31 cgd */
1307 1.31 cgd void
1308 1.101 thorpej biodone(struct buf *bp)
1309 1.31 cgd {
1310 1.60 fvdl int s = splbio();
1311 1.60 fvdl
1312 1.87 pk simple_lock(&bp->b_interlock);
1313 1.31 cgd if (ISSET(bp->b_flags, B_DONE))
1314 1.31 cgd panic("biodone already");
1315 1.31 cgd SET(bp->b_flags, B_DONE); /* note that it's done */
1316 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1317 1.31 cgd
1318 1.59 fvdl if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1319 1.59 fvdl (*bioops.io_complete)(bp);
1320 1.59 fvdl
1321 1.31 cgd if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1322 1.31 cgd vwakeup(bp);
1323 1.31 cgd
1324 1.87 pk /*
1325 1.87 pk * If necessary, call out. Unlock the buffer before calling
1326 1.87 pk * iodone() as the buffer isn't valid any more when it return.
1327 1.87 pk */
1328 1.87 pk if (ISSET(bp->b_flags, B_CALL)) {
1329 1.31 cgd CLR(bp->b_flags, B_CALL); /* but note callout done */
1330 1.87 pk simple_unlock(&bp->b_interlock);
1331 1.31 cgd (*bp->b_iodone)(bp);
1332 1.59 fvdl } else {
1333 1.87 pk if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1334 1.87 pk simple_unlock(&bp->b_interlock);
1335 1.59 fvdl brelse(bp);
1336 1.87 pk } else { /* or just wakeup the buffer */
1337 1.59 fvdl CLR(bp->b_flags, B_WANTED);
1338 1.59 fvdl wakeup(bp);
1339 1.87 pk simple_unlock(&bp->b_interlock);
1340 1.59 fvdl }
1341 1.31 cgd }
1342 1.60 fvdl
1343 1.60 fvdl splx(s);
1344 1.31 cgd }
1345 1.31 cgd
1346 1.31 cgd /*
1347 1.31 cgd * Return a count of buffers on the "locked" queue.
1348 1.31 cgd */
1349 1.31 cgd int
1350 1.101 thorpej count_lock_queue(void)
1351 1.31 cgd {
1352 1.66 augustss struct buf *bp;
1353 1.66 augustss int n = 0;
1354 1.31 cgd
1355 1.87 pk simple_lock(&bqueue_slock);
1356 1.84 matt TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1357 1.31 cgd n++;
1358 1.87 pk simple_unlock(&bqueue_slock);
1359 1.31 cgd return (n);
1360 1.31 cgd }
1361 1.31 cgd
1362 1.100 pk /*
1363 1.100 pk * Wait for all buffers to complete I/O
1364 1.100 pk * Return the number of "stuck" buffers.
1365 1.100 pk */
1366 1.100 pk int
1367 1.100 pk buf_syncwait(void)
1368 1.100 pk {
1369 1.100 pk struct buf *bp;
1370 1.100 pk int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1371 1.100 pk
1372 1.100 pk dcount = 10000;
1373 1.100 pk for (iter = 0; iter < 20;) {
1374 1.100 pk s = splbio();
1375 1.100 pk simple_lock(&bqueue_slock);
1376 1.100 pk nbusy = 0;
1377 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1378 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1379 1.100 pk if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1380 1.100 pk nbusy++;
1381 1.100 pk /*
1382 1.100 pk * With soft updates, some buffers that are
1383 1.100 pk * written will be remarked as dirty until other
1384 1.100 pk * buffers are written.
1385 1.100 pk */
1386 1.100 pk if (bp->b_vp && bp->b_vp->v_mount
1387 1.100 pk && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1388 1.100 pk && (bp->b_flags & B_DELWRI)) {
1389 1.100 pk simple_lock(&bp->b_interlock);
1390 1.100 pk bremfree(bp);
1391 1.100 pk bp->b_flags |= B_BUSY;
1392 1.100 pk nbusy++;
1393 1.100 pk simple_unlock(&bp->b_interlock);
1394 1.100 pk simple_unlock(&bqueue_slock);
1395 1.100 pk bawrite(bp);
1396 1.100 pk if (dcount-- <= 0) {
1397 1.100 pk printf("softdep ");
1398 1.100 pk goto fail;
1399 1.100 pk }
1400 1.100 pk simple_lock(&bqueue_slock);
1401 1.100 pk }
1402 1.100 pk }
1403 1.100 pk }
1404 1.100 pk
1405 1.100 pk simple_unlock(&bqueue_slock);
1406 1.100 pk splx(s);
1407 1.100 pk
1408 1.100 pk if (nbusy == 0)
1409 1.100 pk break;
1410 1.100 pk if (nbusy_prev == 0)
1411 1.100 pk nbusy_prev = nbusy;
1412 1.100 pk printf("%d ", nbusy);
1413 1.100 pk tsleep(&nbusy, PRIBIO, "bflush",
1414 1.100 pk (iter == 0) ? 1 : hz / 25 * iter);
1415 1.100 pk if (nbusy >= nbusy_prev) /* we didn't flush anything */
1416 1.100 pk iter++;
1417 1.100 pk else
1418 1.100 pk nbusy_prev = nbusy;
1419 1.100 pk }
1420 1.100 pk
1421 1.100 pk if (nbusy) {
1422 1.100 pk fail:;
1423 1.100 pk #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1424 1.100 pk printf("giving up\nPrinting vnodes for busy buffers\n");
1425 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1426 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1427 1.100 pk if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1428 1.100 pk vprint(NULL, bp->b_vp);
1429 1.100 pk }
1430 1.100 pk }
1431 1.100 pk #endif
1432 1.100 pk }
1433 1.100 pk
1434 1.100 pk return nbusy;
1435 1.100 pk }
1436 1.100 pk
1437 1.117 atatat static void
1438 1.117 atatat sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1439 1.117 atatat {
1440 1.117 atatat
1441 1.117 atatat o->b_flags = i->b_flags;
1442 1.117 atatat o->b_error = i->b_error;
1443 1.117 atatat o->b_prio = i->b_prio;
1444 1.117 atatat o->b_dev = i->b_dev;
1445 1.117 atatat o->b_bufsize = i->b_bufsize;
1446 1.117 atatat o->b_bcount = i->b_bcount;
1447 1.117 atatat o->b_resid = i->b_resid;
1448 1.117 atatat o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1449 1.117 atatat o->b_blkno = i->b_blkno;
1450 1.117 atatat o->b_rawblkno = i->b_rawblkno;
1451 1.117 atatat o->b_iodone = PTRTOUINT64(i->b_iodone);
1452 1.117 atatat o->b_proc = PTRTOUINT64(i->b_proc);
1453 1.117 atatat o->b_vp = PTRTOUINT64(i->b_vp);
1454 1.117 atatat o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1455 1.117 atatat o->b_lblkno = i->b_lblkno;
1456 1.117 atatat }
1457 1.117 atatat
1458 1.100 pk #define KERN_BUFSLOP 20
1459 1.100 pk static int
1460 1.100 pk sysctl_dobuf(SYSCTLFN_ARGS)
1461 1.100 pk {
1462 1.100 pk struct buf *bp;
1463 1.117 atatat struct buf_sysctl bs;
1464 1.100 pk char *dp;
1465 1.117 atatat u_int i, op, arg;
1466 1.117 atatat size_t len, needed, elem_size, out_size;
1467 1.117 atatat int error, s, elem_count;
1468 1.117 atatat
1469 1.117 atatat if (namelen == 1 && name[0] == CTL_QUERY)
1470 1.117 atatat return (sysctl_query(SYSCTLFN_CALL(rnode)));
1471 1.117 atatat
1472 1.117 atatat if (namelen != 4)
1473 1.117 atatat return (EINVAL);
1474 1.100 pk
1475 1.100 pk dp = oldp;
1476 1.117 atatat len = (oldp != NULL) ? *oldlenp : 0;
1477 1.117 atatat op = name[0];
1478 1.117 atatat arg = name[1];
1479 1.117 atatat elem_size = name[2];
1480 1.117 atatat elem_count = name[3];
1481 1.117 atatat out_size = MIN(sizeof(bs), elem_size);
1482 1.117 atatat
1483 1.117 atatat /*
1484 1.117 atatat * at the moment, these are just "placeholders" to make the
1485 1.117 atatat * API for retrieving kern.buf data more extensible in the
1486 1.117 atatat * future.
1487 1.117 atatat *
1488 1.117 atatat * XXX kern.buf currently has "netbsd32" issues. hopefully
1489 1.117 atatat * these will be resolved at a later point.
1490 1.117 atatat */
1491 1.117 atatat if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1492 1.117 atatat elem_size < 1 || elem_count < 0)
1493 1.117 atatat return (EINVAL);
1494 1.117 atatat
1495 1.100 pk error = 0;
1496 1.100 pk needed = 0;
1497 1.100 pk s = splbio();
1498 1.100 pk simple_lock(&bqueue_slock);
1499 1.100 pk for (i = 0; i < BQUEUES; i++) {
1500 1.100 pk TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1501 1.117 atatat if (len >= elem_size && elem_count > 0) {
1502 1.117 atatat sysctl_fillbuf(bp, &bs);
1503 1.117 atatat error = copyout(&bs, dp, out_size);
1504 1.100 pk if (error)
1505 1.100 pk goto cleanup;
1506 1.100 pk dp += elem_size;
1507 1.100 pk len -= elem_size;
1508 1.100 pk }
1509 1.117 atatat if (elem_count > 0) {
1510 1.117 atatat needed += elem_size;
1511 1.117 atatat if (elem_count != INT_MAX)
1512 1.117 atatat elem_count--;
1513 1.117 atatat }
1514 1.100 pk }
1515 1.100 pk }
1516 1.100 pk cleanup:
1517 1.100 pk simple_unlock(&bqueue_slock);
1518 1.100 pk splx(s);
1519 1.100 pk
1520 1.117 atatat *oldlenp = needed;
1521 1.117 atatat if (oldp == NULL)
1522 1.117 atatat *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1523 1.100 pk
1524 1.100 pk return (error);
1525 1.100 pk }
1526 1.100 pk
1527 1.100 pk static int
1528 1.100 pk sysctl_bufvm_update(SYSCTLFN_ARGS)
1529 1.100 pk {
1530 1.100 pk int t, error;
1531 1.100 pk struct sysctlnode node;
1532 1.100 pk
1533 1.100 pk node = *rnode;
1534 1.100 pk node.sysctl_data = &t;
1535 1.100 pk t = *(int*)rnode->sysctl_data;
1536 1.100 pk error = sysctl_lookup(SYSCTLFN_CALL(&node));
1537 1.100 pk if (error || newp == NULL)
1538 1.100 pk return (error);
1539 1.100 pk
1540 1.117 atatat if (rnode->sysctl_data == &bufcache) {
1541 1.100 pk if (t < 0 || t > 100)
1542 1.100 pk return (EINVAL);
1543 1.100 pk bufcache = t;
1544 1.100 pk bufmem_hiwater = buf_memcalc();
1545 1.114 tls bufmem_lowater = (bufmem_hiwater >> 3);
1546 1.114 tls if (bufmem_lowater < 64 * 1024)
1547 1.114 tls /* Ensure a reasonable minimum value */
1548 1.114 tls bufmem_lowater = 64 * 1024;
1549 1.114 tls
1550 1.117 atatat } else if (rnode->sysctl_data == &bufmem_lowater) {
1551 1.100 pk bufmem_lowater = t;
1552 1.117 atatat } else if (rnode->sysctl_data == &bufmem_hiwater) {
1553 1.100 pk bufmem_hiwater = t;
1554 1.100 pk } else
1555 1.100 pk return (EINVAL);
1556 1.100 pk
1557 1.100 pk /* Drain until below new high water mark */
1558 1.100 pk while ((t = bufmem - bufmem_hiwater) >= 0) {
1559 1.100 pk if (buf_drain(t / (2*1024)) <= 0)
1560 1.100 pk break;
1561 1.100 pk }
1562 1.100 pk
1563 1.100 pk return 0;
1564 1.100 pk }
1565 1.100 pk
1566 1.100 pk SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1567 1.100 pk {
1568 1.100 pk
1569 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1570 1.119 atatat CTLFLAG_PERMANENT,
1571 1.104 atatat CTLTYPE_NODE, "kern", NULL,
1572 1.104 atatat NULL, 0, NULL, 0,
1573 1.104 atatat CTL_KERN, CTL_EOL);
1574 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1575 1.119 atatat CTLFLAG_PERMANENT,
1576 1.100 pk CTLTYPE_NODE, "buf", NULL,
1577 1.100 pk sysctl_dobuf, 0, NULL, 0,
1578 1.100 pk CTL_KERN, KERN_BUF, CTL_EOL);
1579 1.104 atatat }
1580 1.104 atatat
1581 1.104 atatat SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1582 1.104 atatat {
1583 1.104 atatat
1584 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1585 1.119 atatat CTLFLAG_PERMANENT,
1586 1.104 atatat CTLTYPE_NODE, "vm", NULL,
1587 1.104 atatat NULL, 0, NULL, 0,
1588 1.104 atatat CTL_VM, CTL_EOL);
1589 1.100 pk
1590 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1591 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1592 1.117 atatat CTLTYPE_INT, "bufcache", NULL,
1593 1.117 atatat sysctl_bufvm_update, 0, &bufcache, 0,
1594 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1595 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1596 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1597 1.117 atatat CTLTYPE_INT, "bufmem_lowater", NULL,
1598 1.117 atatat sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1599 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1600 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1601 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1602 1.117 atatat CTLTYPE_INT, "bufmem_hiwater", NULL,
1603 1.117 atatat sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1604 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1605 1.100 pk }
1606 1.100 pk
1607 1.36 cgd #ifdef DEBUG
1608 1.31 cgd /*
1609 1.31 cgd * Print out statistics on the current allocation of the buffer pool.
1610 1.31 cgd * Can be enabled to print out on every ``sync'' by setting "syncprt"
1611 1.31 cgd * in vfs_syscalls.c using sysctl.
1612 1.31 cgd */
1613 1.31 cgd void
1614 1.101 thorpej vfs_bufstats(void)
1615 1.31 cgd {
1616 1.31 cgd int s, i, j, count;
1617 1.66 augustss struct buf *bp;
1618 1.66 augustss struct bqueues *dp;
1619 1.72 simonb int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1620 1.100 pk static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1621 1.71 thorpej
1622 1.31 cgd for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1623 1.31 cgd count = 0;
1624 1.71 thorpej for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1625 1.31 cgd counts[j] = 0;
1626 1.31 cgd s = splbio();
1627 1.84 matt TAILQ_FOREACH(bp, dp, b_freelist) {
1628 1.71 thorpej counts[bp->b_bufsize/PAGE_SIZE]++;
1629 1.31 cgd count++;
1630 1.31 cgd }
1631 1.31 cgd splx(s);
1632 1.48 christos printf("%s: total-%d", bname[i], count);
1633 1.71 thorpej for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1634 1.31 cgd if (counts[j] != 0)
1635 1.71 thorpej printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1636 1.48 christos printf("\n");
1637 1.31 cgd }
1638 1.31 cgd }
1639 1.36 cgd #endif /* DEBUG */
1640