vfs_bio.c revision 1.140 1 1.140 dbj /* $NetBSD: vfs_bio.c,v 1.140 2004/12/23 20:11:28 dbj Exp $ */
2 1.31 cgd
3 1.31 cgd /*-
4 1.31 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.31 cgd * The Regents of the University of California. All rights reserved.
6 1.31 cgd * (c) UNIX System Laboratories, Inc.
7 1.31 cgd * All or some portions of this file are derived from material licensed
8 1.31 cgd * to the University of California by American Telephone and Telegraph
9 1.31 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.31 cgd * the permission of UNIX System Laboratories, Inc.
11 1.31 cgd *
12 1.31 cgd * Redistribution and use in source and binary forms, with or without
13 1.31 cgd * modification, are permitted provided that the following conditions
14 1.31 cgd * are met:
15 1.31 cgd * 1. Redistributions of source code must retain the above copyright
16 1.31 cgd * notice, this list of conditions and the following disclaimer.
17 1.31 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.31 cgd * notice, this list of conditions and the following disclaimer in the
19 1.31 cgd * documentation and/or other materials provided with the distribution.
20 1.93 agc * 3. Neither the name of the University nor the names of its contributors
21 1.93 agc * may be used to endorse or promote products derived from this software
22 1.93 agc * without specific prior written permission.
23 1.93 agc *
24 1.93 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.93 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.93 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.93 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.93 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.93 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.93 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.93 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.93 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.93 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.93 agc * SUCH DAMAGE.
35 1.93 agc *
36 1.93 agc * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 1.93 agc */
38 1.93 agc
39 1.93 agc /*-
40 1.93 agc * Copyright (c) 1994 Christopher G. Demetriou
41 1.93 agc *
42 1.93 agc * Redistribution and use in source and binary forms, with or without
43 1.93 agc * modification, are permitted provided that the following conditions
44 1.93 agc * are met:
45 1.93 agc * 1. Redistributions of source code must retain the above copyright
46 1.93 agc * notice, this list of conditions and the following disclaimer.
47 1.93 agc * 2. Redistributions in binary form must reproduce the above copyright
48 1.93 agc * notice, this list of conditions and the following disclaimer in the
49 1.93 agc * documentation and/or other materials provided with the distribution.
50 1.31 cgd * 3. All advertising materials mentioning features or use of this software
51 1.31 cgd * must display the following acknowledgement:
52 1.31 cgd * This product includes software developed by the University of
53 1.31 cgd * California, Berkeley and its contributors.
54 1.31 cgd * 4. Neither the name of the University nor the names of its contributors
55 1.31 cgd * may be used to endorse or promote products derived from this software
56 1.31 cgd * without specific prior written permission.
57 1.31 cgd *
58 1.31 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.31 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.31 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.31 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.31 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.31 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.31 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.31 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.31 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.31 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.31 cgd * SUCH DAMAGE.
69 1.31 cgd *
70 1.31 cgd * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 1.31 cgd */
72 1.31 cgd
73 1.31 cgd /*
74 1.31 cgd * Some references:
75 1.31 cgd * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 1.31 cgd * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 1.31 cgd * UNIX Operating System (Addison Welley, 1989)
78 1.31 cgd */
79 1.77 lukem
80 1.100 pk #include "opt_bufcache.h"
81 1.81 matt #include "opt_softdep.h"
82 1.81 matt
83 1.77 lukem #include <sys/cdefs.h>
84 1.140 dbj __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.140 2004/12/23 20:11:28 dbj Exp $");
85 1.31 cgd
86 1.31 cgd #include <sys/param.h>
87 1.31 cgd #include <sys/systm.h>
88 1.100 pk #include <sys/kernel.h>
89 1.31 cgd #include <sys/proc.h>
90 1.31 cgd #include <sys/buf.h>
91 1.31 cgd #include <sys/vnode.h>
92 1.31 cgd #include <sys/mount.h>
93 1.31 cgd #include <sys/malloc.h>
94 1.31 cgd #include <sys/resourcevar.h>
95 1.100 pk #include <sys/sysctl.h>
96 1.35 mycroft #include <sys/conf.h>
97 1.40 christos
98 1.73 chs #include <uvm/uvm.h>
99 1.71 thorpej
100 1.59 fvdl #include <miscfs/specfs/specdev.h>
101 1.59 fvdl
102 1.100 pk #ifndef BUFPAGES
103 1.100 pk # define BUFPAGES 0
104 1.100 pk #endif
105 1.100 pk
106 1.100 pk #ifdef BUFCACHE
107 1.100 pk # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 1.100 pk # error BUFCACHE is not between 5 and 95
109 1.100 pk # endif
110 1.100 pk #else
111 1.114 tls # define BUFCACHE 15
112 1.100 pk #endif
113 1.100 pk
114 1.100 pk u_int nbuf; /* XXX - for softdep_lockedbufs */
115 1.100 pk u_int bufpages = BUFPAGES; /* optional hardwired count */
116 1.100 pk u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117 1.100 pk
118 1.130 yamt /* Function prototypes */
119 1.131 yamt struct bqueue;
120 1.130 yamt
121 1.135 enami static void buf_setwm(void);
122 1.130 yamt static int buf_trim(void);
123 1.130 yamt static void *bufpool_page_alloc(struct pool *, int);
124 1.130 yamt static void bufpool_page_free(struct pool *, void *);
125 1.130 yamt static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126 1.130 yamt struct ucred *, int);
127 1.130 yamt static int buf_lotsfree(void);
128 1.130 yamt static int buf_canrelease(void);
129 1.130 yamt static __inline u_long buf_mempoolidx(u_long);
130 1.130 yamt static __inline u_long buf_roundsize(u_long);
131 1.130 yamt static __inline caddr_t buf_malloc(size_t);
132 1.130 yamt static void buf_mrelease(caddr_t, size_t);
133 1.131 yamt static __inline void binsheadfree(struct buf *, struct bqueue *);
134 1.131 yamt static __inline void binstailfree(struct buf *, struct bqueue *);
135 1.130 yamt int count_lock_queue(void); /* XXX */
136 1.130 yamt #ifdef DEBUG
137 1.131 yamt static int checkfreelist(struct buf *, struct bqueue *);
138 1.130 yamt #endif
139 1.100 pk
140 1.31 cgd /* Macros to clear/set/test flags. */
141 1.31 cgd #define SET(t, f) (t) |= (f)
142 1.31 cgd #define CLR(t, f) (t) &= ~(f)
143 1.31 cgd #define ISSET(t, f) ((t) & (f))
144 1.31 cgd
145 1.31 cgd /*
146 1.31 cgd * Definitions for the buffer hash lists.
147 1.31 cgd */
148 1.31 cgd #define BUFHASH(dvp, lbn) \
149 1.73 chs (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150 1.31 cgd LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151 1.31 cgd u_long bufhash;
152 1.140 dbj #if !defined(SOFTDEP) || !defined(FFS)
153 1.59 fvdl struct bio_ops bioops; /* I/O operation notification */
154 1.81 matt #endif
155 1.31 cgd
156 1.31 cgd /*
157 1.31 cgd * Insq/Remq for the buffer hash lists.
158 1.31 cgd */
159 1.31 cgd #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
160 1.31 cgd #define bremhash(bp) LIST_REMOVE(bp, b_hash)
161 1.31 cgd
162 1.31 cgd /*
163 1.31 cgd * Definitions for the buffer free lists.
164 1.31 cgd */
165 1.100 pk #define BQUEUES 3 /* number of free buffer queues */
166 1.31 cgd
167 1.31 cgd #define BQ_LOCKED 0 /* super-blocks &c */
168 1.31 cgd #define BQ_LRU 1 /* lru, useful buffers */
169 1.31 cgd #define BQ_AGE 2 /* rubbish */
170 1.31 cgd
171 1.131 yamt struct bqueue {
172 1.131 yamt TAILQ_HEAD(, buf) bq_queue;
173 1.131 yamt uint64_t bq_bytes;
174 1.131 yamt } bufqueues[BQUEUES];
175 1.31 cgd int needbuffer;
176 1.31 cgd
177 1.31 cgd /*
178 1.87 pk * Buffer queue lock.
179 1.87 pk * Take this lock first if also taking some buffer's b_interlock.
180 1.87 pk */
181 1.87 pk struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182 1.87 pk
183 1.87 pk /*
184 1.65 thorpej * Buffer pool for I/O buffers.
185 1.65 thorpej */
186 1.65 thorpej struct pool bufpool;
187 1.65 thorpej
188 1.100 pk /* XXX - somewhat gross.. */
189 1.100 pk #if MAXBSIZE == 0x2000
190 1.100 pk #define NMEMPOOLS 4
191 1.100 pk #elif MAXBSIZE == 0x4000
192 1.100 pk #define NMEMPOOLS 5
193 1.100 pk #elif MAXBSIZE == 0x8000
194 1.100 pk #define NMEMPOOLS 6
195 1.100 pk #else
196 1.100 pk #define NMEMPOOLS 7
197 1.100 pk #endif
198 1.100 pk
199 1.100 pk #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
200 1.100 pk #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201 1.100 pk #error update vfs_bio buffer memory parameters
202 1.100 pk #endif
203 1.100 pk
204 1.100 pk /* Buffer memory pools */
205 1.101 thorpej static struct pool bmempools[NMEMPOOLS];
206 1.100 pk
207 1.104 atatat struct vm_map *buf_map;
208 1.100 pk
209 1.100 pk /*
210 1.100 pk * Buffer memory pool allocator.
211 1.100 pk */
212 1.101 thorpej static void *
213 1.101 thorpej bufpool_page_alloc(struct pool *pp, int flags)
214 1.100 pk {
215 1.111 yamt
216 1.100 pk return (void *)uvm_km_kmemalloc1(buf_map,
217 1.111 yamt uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
218 1.111 yamt (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
219 1.100 pk }
220 1.100 pk
221 1.101 thorpej static void
222 1.101 thorpej bufpool_page_free(struct pool *pp, void *v)
223 1.100 pk {
224 1.103 pk uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
225 1.100 pk }
226 1.100 pk
227 1.101 thorpej static struct pool_allocator bufmempool_allocator = {
228 1.100 pk bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
229 1.100 pk };
230 1.100 pk
231 1.100 pk /* Buffer memory management variables */
232 1.100 pk u_long bufmem_valimit;
233 1.100 pk u_long bufmem_hiwater;
234 1.100 pk u_long bufmem_lowater;
235 1.100 pk u_long bufmem;
236 1.100 pk
237 1.100 pk /*
238 1.100 pk * MD code can call this to set a hard limit on the amount
239 1.100 pk * of virtual memory used by the buffer cache.
240 1.100 pk */
241 1.101 thorpej int
242 1.101 thorpej buf_setvalimit(vsize_t sz)
243 1.100 pk {
244 1.100 pk
245 1.100 pk /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
246 1.100 pk if (sz < NMEMPOOLS * MAXBSIZE)
247 1.100 pk return EINVAL;
248 1.100 pk
249 1.100 pk bufmem_valimit = sz;
250 1.100 pk return 0;
251 1.100 pk }
252 1.100 pk
253 1.135 enami static void
254 1.135 enami buf_setwm(void)
255 1.135 enami {
256 1.135 enami
257 1.135 enami bufmem_hiwater = buf_memcalc();
258 1.135 enami /* lowater is approx. 2% of memory (with bufcache = 15) */
259 1.135 enami #define BUFMEM_WMSHIFT 3
260 1.135 enami #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
261 1.135 enami if (bufmem_hiwater < BUFMEM_HIWMMIN)
262 1.135 enami /* Ensure a reasonable minimum value */
263 1.135 enami bufmem_hiwater = BUFMEM_HIWMMIN;
264 1.135 enami bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
265 1.135 enami }
266 1.135 enami
267 1.99 dbj #ifdef DEBUG
268 1.99 dbj int debug_verify_freelist = 0;
269 1.131 yamt static int
270 1.131 yamt checkfreelist(struct buf *bp, struct bqueue *dp)
271 1.99 dbj {
272 1.100 pk struct buf *b;
273 1.131 yamt
274 1.131 yamt TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
275 1.100 pk if (b == bp)
276 1.100 pk return 1;
277 1.100 pk }
278 1.100 pk return 0;
279 1.99 dbj }
280 1.99 dbj #endif
281 1.99 dbj
282 1.131 yamt /*
283 1.131 yamt * Insq/Remq for the buffer hash lists.
284 1.131 yamt * Call with buffer queue locked.
285 1.131 yamt */
286 1.131 yamt static __inline void
287 1.131 yamt binsheadfree(struct buf *bp, struct bqueue *dp)
288 1.131 yamt {
289 1.131 yamt
290 1.131 yamt KASSERT(bp->b_freelistindex == -1);
291 1.131 yamt TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
292 1.131 yamt dp->bq_bytes += bp->b_bufsize;
293 1.131 yamt bp->b_freelistindex = dp - bufqueues;
294 1.131 yamt }
295 1.131 yamt
296 1.131 yamt static __inline void
297 1.131 yamt binstailfree(struct buf *bp, struct bqueue *dp)
298 1.131 yamt {
299 1.131 yamt
300 1.131 yamt KASSERT(bp->b_freelistindex == -1);
301 1.131 yamt TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
302 1.131 yamt dp->bq_bytes += bp->b_bufsize;
303 1.131 yamt bp->b_freelistindex = dp - bufqueues;
304 1.131 yamt }
305 1.131 yamt
306 1.31 cgd void
307 1.101 thorpej bremfree(struct buf *bp)
308 1.31 cgd {
309 1.131 yamt struct bqueue *dp;
310 1.131 yamt int bqidx = bp->b_freelistindex;
311 1.94 yamt
312 1.94 yamt LOCK_ASSERT(simple_lock_held(&bqueue_slock));
313 1.31 cgd
314 1.131 yamt KASSERT(bqidx != -1);
315 1.131 yamt dp = &bufqueues[bqidx];
316 1.131 yamt KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
317 1.131 yamt KASSERT(dp->bq_bytes >= bp->b_bufsize);
318 1.131 yamt TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
319 1.131 yamt dp->bq_bytes -= bp->b_bufsize;
320 1.131 yamt #if defined(DIAGNOSTIC)
321 1.131 yamt bp->b_freelistindex = -1;
322 1.131 yamt #endif /* defined(DIAGNOSTIC) */
323 1.31 cgd }
324 1.31 cgd
325 1.101 thorpej u_long
326 1.101 thorpej buf_memcalc(void)
327 1.100 pk {
328 1.100 pk u_long n;
329 1.100 pk
330 1.100 pk /*
331 1.100 pk * Determine the upper bound of memory to use for buffers.
332 1.100 pk *
333 1.100 pk * - If bufpages is specified, use that as the number
334 1.100 pk * pages.
335 1.100 pk *
336 1.100 pk * - Otherwise, use bufcache as the percentage of
337 1.100 pk * physical memory.
338 1.100 pk */
339 1.100 pk if (bufpages != 0) {
340 1.100 pk n = bufpages;
341 1.100 pk } else {
342 1.100 pk if (bufcache < 5) {
343 1.100 pk printf("forcing bufcache %d -> 5", bufcache);
344 1.100 pk bufcache = 5;
345 1.100 pk }
346 1.100 pk if (bufcache > 95) {
347 1.100 pk printf("forcing bufcache %d -> 95", bufcache);
348 1.100 pk bufcache = 95;
349 1.100 pk }
350 1.100 pk n = physmem / 100 * bufcache;
351 1.100 pk }
352 1.100 pk
353 1.100 pk n <<= PAGE_SHIFT;
354 1.100 pk if (bufmem_valimit != 0 && n > bufmem_valimit)
355 1.100 pk n = bufmem_valimit;
356 1.100 pk
357 1.100 pk return (n);
358 1.100 pk }
359 1.100 pk
360 1.31 cgd /*
361 1.31 cgd * Initialize buffers and hash links for buffers.
362 1.31 cgd */
363 1.31 cgd void
364 1.101 thorpej bufinit(void)
365 1.31 cgd {
366 1.131 yamt struct bqueue *dp;
367 1.127 thorpej int use_std;
368 1.100 pk u_int i;
369 1.100 pk
370 1.100 pk /*
371 1.100 pk * Initialize buffer cache memory parameters.
372 1.100 pk */
373 1.100 pk bufmem = 0;
374 1.135 enami buf_setwm();
375 1.100 pk
376 1.100 pk if (bufmem_valimit != 0) {
377 1.100 pk vaddr_t minaddr = 0, maxaddr;
378 1.100 pk buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
379 1.100 pk bufmem_valimit, VM_MAP_PAGEABLE,
380 1.100 pk FALSE, 0);
381 1.100 pk if (buf_map == NULL)
382 1.100 pk panic("bufinit: cannot allocate submap");
383 1.100 pk } else
384 1.100 pk buf_map = kernel_map;
385 1.65 thorpej
386 1.65 thorpej /*
387 1.100 pk * Initialize the buffer pools.
388 1.65 thorpej */
389 1.79 thorpej pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
390 1.31 cgd
391 1.100 pk /* On "small" machines use small pool page sizes where possible */
392 1.127 thorpej use_std = (physmem < atop(16*1024*1024));
393 1.127 thorpej
394 1.127 thorpej /*
395 1.127 thorpej * Also use them on systems that can map the pool pages using
396 1.127 thorpej * a direct-mapped segment.
397 1.127 thorpej */
398 1.127 thorpej #ifdef PMAP_MAP_POOLPAGE
399 1.127 thorpej use_std = 1;
400 1.127 thorpej #endif
401 1.100 pk
402 1.100 pk for (i = 0; i < NMEMPOOLS; i++) {
403 1.100 pk struct pool_allocator *pa;
404 1.100 pk struct pool *pp = &bmempools[i];
405 1.100 pk u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
406 1.100 pk char *name = malloc(8, M_TEMP, M_WAITOK);
407 1.100 pk snprintf(name, 8, "buf%dk", 1 << i);
408 1.127 thorpej pa = (size <= PAGE_SIZE && use_std)
409 1.100 pk ? &pool_allocator_nointr
410 1.100 pk : &bufmempool_allocator;
411 1.126 thorpej pool_init(pp, size, 0, 0, 0, name, pa);
412 1.100 pk pool_setlowat(pp, 1);
413 1.126 thorpej pool_sethiwat(pp, 1);
414 1.100 pk }
415 1.100 pk
416 1.100 pk /* Initialize the buffer queues */
417 1.131 yamt for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
418 1.131 yamt TAILQ_INIT(&dp->bq_queue);
419 1.131 yamt dp->bq_bytes = 0;
420 1.131 yamt }
421 1.100 pk
422 1.100 pk /*
423 1.100 pk * Estimate hash table size based on the amount of memory we
424 1.100 pk * intend to use for the buffer cache. The average buffer
425 1.100 pk * size is dependent on our clients (i.e. filesystems).
426 1.100 pk *
427 1.100 pk * For now, use an empirical 3K per buffer.
428 1.100 pk */
429 1.100 pk nbuf = (bufmem_hiwater / 1024) / 3;
430 1.70 ad bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
431 1.100 pk }
432 1.100 pk
433 1.100 pk static int
434 1.100 pk buf_lotsfree(void)
435 1.100 pk {
436 1.114 tls int try, thresh;
437 1.128 hannken struct lwp *l = curlwp;
438 1.128 hannken
439 1.128 hannken /* Always allocate if doing copy on write */
440 1.128 hannken if (l->l_flag & L_COWINPROGRESS)
441 1.128 hannken return 1;
442 1.114 tls
443 1.122 simonb /* Always allocate if less than the low water mark. */
444 1.122 simonb if (bufmem < bufmem_lowater)
445 1.114 tls return 1;
446 1.122 simonb
447 1.122 simonb /* Never allocate if greater than the high water mark. */
448 1.122 simonb if (bufmem > bufmem_hiwater)
449 1.122 simonb return 0;
450 1.114 tls
451 1.115 tls /* If there's anything on the AGE list, it should be eaten. */
452 1.131 yamt if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
453 1.115 tls return 0;
454 1.115 tls
455 1.122 simonb /*
456 1.122 simonb * The probabily of getting a new allocation is inversely
457 1.122 simonb * proportional to the current size of the cache, using
458 1.122 simonb * a granularity of 16 steps.
459 1.122 simonb */
460 1.114 tls try = random() & 0x0000000fL;
461 1.114 tls
462 1.122 simonb /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
463 1.136 enami thresh = (bufmem - bufmem_lowater) /
464 1.136 enami ((bufmem_hiwater - bufmem_lowater) / 16);
465 1.114 tls
466 1.136 enami if (try >= thresh)
467 1.114 tls return 1;
468 1.114 tls
469 1.122 simonb /* Otherwise don't allocate. */
470 1.114 tls return 0;
471 1.100 pk }
472 1.100 pk
473 1.100 pk /*
474 1.116 yamt * Return estimate of bytes we think need to be
475 1.100 pk * released to help resolve low memory conditions.
476 1.116 yamt *
477 1.116 yamt * => called at splbio.
478 1.116 yamt * => called with bqueue_slock held.
479 1.100 pk */
480 1.100 pk static int
481 1.100 pk buf_canrelease(void)
482 1.100 pk {
483 1.115 tls int pagedemand, ninvalid = 0;
484 1.115 tls
485 1.116 yamt LOCK_ASSERT(simple_lock_held(&bqueue_slock));
486 1.116 yamt
487 1.118 dan if (bufmem < bufmem_lowater)
488 1.118 dan return 0;
489 1.118 dan
490 1.131 yamt ninvalid += bufqueues[BQ_AGE].bq_bytes;
491 1.100 pk
492 1.115 tls pagedemand = uvmexp.freetarg - uvmexp.free;
493 1.115 tls if (pagedemand < 0)
494 1.115 tls return ninvalid;
495 1.115 tls return MAX(ninvalid, MIN(2 * MAXBSIZE,
496 1.115 tls MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
497 1.100 pk }
498 1.100 pk
499 1.100 pk /*
500 1.100 pk * Buffer memory allocation helper functions
501 1.100 pk */
502 1.101 thorpej static __inline u_long
503 1.101 thorpej buf_mempoolidx(u_long size)
504 1.100 pk {
505 1.100 pk u_int n = 0;
506 1.100 pk
507 1.100 pk size -= 1;
508 1.100 pk size >>= MEMPOOL_INDEX_OFFSET;
509 1.100 pk while (size) {
510 1.100 pk size >>= 1;
511 1.100 pk n += 1;
512 1.100 pk }
513 1.100 pk if (n >= NMEMPOOLS)
514 1.100 pk panic("buf mem pool index %d", n);
515 1.100 pk return n;
516 1.100 pk }
517 1.100 pk
518 1.101 thorpej static __inline u_long
519 1.101 thorpej buf_roundsize(u_long size)
520 1.100 pk {
521 1.100 pk /* Round up to nearest power of 2 */
522 1.100 pk return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
523 1.100 pk }
524 1.100 pk
525 1.101 thorpej static __inline caddr_t
526 1.101 thorpej buf_malloc(size_t size)
527 1.100 pk {
528 1.100 pk u_int n = buf_mempoolidx(size);
529 1.100 pk caddr_t addr;
530 1.100 pk int s;
531 1.100 pk
532 1.100 pk while (1) {
533 1.100 pk addr = pool_get(&bmempools[n], PR_NOWAIT);
534 1.100 pk if (addr != NULL)
535 1.100 pk break;
536 1.100 pk
537 1.100 pk /* No memory, see if we can free some. If so, try again */
538 1.100 pk if (buf_drain(1) > 0)
539 1.100 pk continue;
540 1.100 pk
541 1.100 pk /* Wait for buffers to arrive on the LRU queue */
542 1.100 pk s = splbio();
543 1.100 pk simple_lock(&bqueue_slock);
544 1.100 pk needbuffer = 1;
545 1.121 simonb ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
546 1.100 pk "buf_malloc", 0, &bqueue_slock);
547 1.100 pk splx(s);
548 1.31 cgd }
549 1.100 pk
550 1.100 pk return addr;
551 1.100 pk }
552 1.100 pk
553 1.101 thorpej static void
554 1.101 thorpej buf_mrelease(caddr_t addr, size_t size)
555 1.100 pk {
556 1.100 pk
557 1.100 pk pool_put(&bmempools[buf_mempoolidx(size)], addr);
558 1.31 cgd }
559 1.31 cgd
560 1.130 yamt /*
561 1.130 yamt * bread()/breadn() helper.
562 1.130 yamt */
563 1.40 christos static __inline struct buf *
564 1.101 thorpej bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
565 1.101 thorpej int async)
566 1.31 cgd {
567 1.66 augustss struct buf *bp;
568 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
569 1.86 thorpej struct proc *p = l->l_proc;
570 1.123 christos struct mount *mp;
571 1.31 cgd
572 1.34 mycroft bp = getblk(vp, blkno, size, 0, 0);
573 1.31 cgd
574 1.86 thorpej #ifdef DIAGNOSTIC
575 1.86 thorpej if (bp == NULL) {
576 1.86 thorpej panic("bio_doread: no such buf");
577 1.86 thorpej }
578 1.86 thorpej #endif
579 1.86 thorpej
580 1.31 cgd /*
581 1.34 mycroft * If buffer does not have data valid, start a read.
582 1.31 cgd * Note that if buffer is B_INVAL, getblk() won't return it.
583 1.87 pk * Therefore, it's valid if its I/O has completed or been delayed.
584 1.31 cgd */
585 1.34 mycroft if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
586 1.73 chs /* Start I/O for the buffer. */
587 1.34 mycroft SET(bp->b_flags, B_READ | async);
588 1.108 yamt if (async)
589 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
590 1.108 yamt else
591 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
592 1.112 hannken VOP_STRATEGY(vp, bp);
593 1.31 cgd
594 1.34 mycroft /* Pay for the read. */
595 1.49 cgd p->p_stats->p_ru.ru_inblock++;
596 1.34 mycroft } else if (async) {
597 1.34 mycroft brelse(bp);
598 1.31 cgd }
599 1.31 cgd
600 1.124 yamt if (vp->v_type == VBLK)
601 1.124 yamt mp = vp->v_specmountpoint;
602 1.124 yamt else
603 1.124 yamt mp = vp->v_mount;
604 1.123 christos
605 1.123 christos /*
606 1.123 christos * Collect statistics on synchronous and asynchronous reads.
607 1.123 christos * Reads from block devices are charged to their associated
608 1.123 christos * filesystem (if any).
609 1.123 christos */
610 1.123 christos if (mp != NULL) {
611 1.123 christos if (async == 0)
612 1.123 christos mp->mnt_stat.f_syncreads++;
613 1.123 christos else
614 1.123 christos mp->mnt_stat.f_asyncreads++;
615 1.123 christos }
616 1.123 christos
617 1.34 mycroft return (bp);
618 1.34 mycroft }
619 1.34 mycroft
620 1.34 mycroft /*
621 1.34 mycroft * Read a disk block.
622 1.34 mycroft * This algorithm described in Bach (p.54).
623 1.34 mycroft */
624 1.40 christos int
625 1.101 thorpej bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
626 1.101 thorpej struct buf **bpp)
627 1.34 mycroft {
628 1.66 augustss struct buf *bp;
629 1.34 mycroft
630 1.34 mycroft /* Get buffer for block. */
631 1.34 mycroft bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
632 1.31 cgd
633 1.80 chs /* Wait for the read to complete, and return result. */
634 1.31 cgd return (biowait(bp));
635 1.31 cgd }
636 1.31 cgd
637 1.31 cgd /*
638 1.31 cgd * Read-ahead multiple disk blocks. The first is sync, the rest async.
639 1.31 cgd * Trivial modification to the breada algorithm presented in Bach (p.55).
640 1.31 cgd */
641 1.40 christos int
642 1.101 thorpej breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
643 1.101 thorpej int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
644 1.31 cgd {
645 1.66 augustss struct buf *bp;
646 1.31 cgd int i;
647 1.31 cgd
648 1.34 mycroft bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
649 1.31 cgd
650 1.31 cgd /*
651 1.31 cgd * For each of the read-ahead blocks, start a read, if necessary.
652 1.31 cgd */
653 1.31 cgd for (i = 0; i < nrablks; i++) {
654 1.31 cgd /* If it's in the cache, just go on to next one. */
655 1.31 cgd if (incore(vp, rablks[i]))
656 1.31 cgd continue;
657 1.31 cgd
658 1.31 cgd /* Get a buffer for the read-ahead block */
659 1.34 mycroft (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
660 1.31 cgd }
661 1.31 cgd
662 1.80 chs /* Otherwise, we had to start a read for it; wait until it's valid. */
663 1.31 cgd return (biowait(bp));
664 1.31 cgd }
665 1.31 cgd
666 1.31 cgd /*
667 1.31 cgd * Read with single-block read-ahead. Defined in Bach (p.55), but
668 1.31 cgd * implemented as a call to breadn().
669 1.31 cgd * XXX for compatibility with old file systems.
670 1.31 cgd */
671 1.40 christos int
672 1.101 thorpej breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
673 1.101 thorpej int rabsize, struct ucred *cred, struct buf **bpp)
674 1.31 cgd {
675 1.34 mycroft
676 1.31 cgd return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
677 1.31 cgd }
678 1.31 cgd
679 1.31 cgd /*
680 1.31 cgd * Block write. Described in Bach (p.56)
681 1.31 cgd */
682 1.40 christos int
683 1.101 thorpej bwrite(struct buf *bp)
684 1.31 cgd {
685 1.44 pk int rv, sync, wasdelayed, s;
686 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
687 1.86 thorpej struct proc *p = l->l_proc;
688 1.59 fvdl struct vnode *vp;
689 1.59 fvdl struct mount *mp;
690 1.31 cgd
691 1.87 pk KASSERT(ISSET(bp->b_flags, B_BUSY));
692 1.87 pk
693 1.76 chs vp = bp->b_vp;
694 1.76 chs if (vp != NULL) {
695 1.76 chs if (vp->v_type == VBLK)
696 1.76 chs mp = vp->v_specmountpoint;
697 1.76 chs else
698 1.76 chs mp = vp->v_mount;
699 1.76 chs } else {
700 1.76 chs mp = NULL;
701 1.76 chs }
702 1.76 chs
703 1.38 cgd /*
704 1.38 cgd * Remember buffer type, to switch on it later. If the write was
705 1.38 cgd * synchronous, but the file system was mounted with MNT_ASYNC,
706 1.38 cgd * convert it to a delayed write.
707 1.38 cgd * XXX note that this relies on delayed tape writes being converted
708 1.38 cgd * to async, not sync writes (which is safe, but ugly).
709 1.38 cgd */
710 1.31 cgd sync = !ISSET(bp->b_flags, B_ASYNC);
711 1.76 chs if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
712 1.37 cgd bdwrite(bp);
713 1.37 cgd return (0);
714 1.37 cgd }
715 1.46 mycroft
716 1.59 fvdl /*
717 1.59 fvdl * Collect statistics on synchronous and asynchronous writes.
718 1.59 fvdl * Writes to block devices are charged to their associated
719 1.59 fvdl * filesystem (if any).
720 1.59 fvdl */
721 1.76 chs if (mp != NULL) {
722 1.76 chs if (sync)
723 1.76 chs mp->mnt_stat.f_syncwrites++;
724 1.59 fvdl else
725 1.76 chs mp->mnt_stat.f_asyncwrites++;
726 1.59 fvdl }
727 1.59 fvdl
728 1.44 pk s = splbio();
729 1.87 pk simple_lock(&bp->b_interlock);
730 1.46 mycroft
731 1.97 dbj wasdelayed = ISSET(bp->b_flags, B_DELWRI);
732 1.97 dbj
733 1.60 fvdl CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
734 1.60 fvdl
735 1.46 mycroft /*
736 1.46 mycroft * Pay for the I/O operation and make sure the buf is on the correct
737 1.46 mycroft * vnode queue.
738 1.46 mycroft */
739 1.46 mycroft if (wasdelayed)
740 1.46 mycroft reassignbuf(bp, bp->b_vp);
741 1.46 mycroft else
742 1.49 cgd p->p_stats->p_ru.ru_oublock++;
743 1.32 mycroft
744 1.31 cgd /* Initiate disk write. Make sure the appropriate party is charged. */
745 1.87 pk V_INCR_NUMOUTPUT(bp->b_vp);
746 1.87 pk simple_unlock(&bp->b_interlock);
747 1.44 pk splx(s);
748 1.46 mycroft
749 1.108 yamt if (sync)
750 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
751 1.108 yamt else
752 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
753 1.108 yamt
754 1.112 hannken VOP_STRATEGY(vp, bp);
755 1.31 cgd
756 1.34 mycroft if (sync) {
757 1.46 mycroft /* If I/O was synchronous, wait for it to complete. */
758 1.31 cgd rv = biowait(bp);
759 1.31 cgd
760 1.34 mycroft /* Release the buffer. */
761 1.31 cgd brelse(bp);
762 1.34 mycroft
763 1.34 mycroft return (rv);
764 1.34 mycroft } else {
765 1.34 mycroft return (0);
766 1.31 cgd }
767 1.31 cgd }
768 1.31 cgd
769 1.31 cgd int
770 1.101 thorpej vn_bwrite(void *v)
771 1.31 cgd {
772 1.40 christos struct vop_bwrite_args *ap = v;
773 1.34 mycroft
774 1.31 cgd return (bwrite(ap->a_bp));
775 1.31 cgd }
776 1.31 cgd
777 1.31 cgd /*
778 1.31 cgd * Delayed write.
779 1.31 cgd *
780 1.31 cgd * The buffer is marked dirty, but is not queued for I/O.
781 1.31 cgd * This routine should be used when the buffer is expected
782 1.31 cgd * to be modified again soon, typically a small write that
783 1.31 cgd * partially fills a buffer.
784 1.31 cgd *
785 1.31 cgd * NB: magnetic tapes cannot be delayed; they must be
786 1.31 cgd * written in the order that the writes are requested.
787 1.31 cgd *
788 1.31 cgd * Described in Leffler, et al. (pp. 208-213).
789 1.31 cgd */
790 1.31 cgd void
791 1.101 thorpej bdwrite(struct buf *bp)
792 1.31 cgd {
793 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
794 1.86 thorpej struct proc *p = l->l_proc;
795 1.85 gehenna const struct bdevsw *bdev;
796 1.45 pk int s;
797 1.31 cgd
798 1.46 mycroft /* If this is a tape block, write the block now. */
799 1.90 pk bdev = bdevsw_lookup(bp->b_dev);
800 1.90 pk if (bdev != NULL && bdev->d_type == D_TAPE) {
801 1.90 pk bawrite(bp);
802 1.90 pk return;
803 1.46 mycroft }
804 1.46 mycroft
805 1.31 cgd /*
806 1.31 cgd * If the block hasn't been seen before:
807 1.31 cgd * (1) Mark it as having been seen,
808 1.45 pk * (2) Charge for the write,
809 1.45 pk * (3) Make sure it's on its vnode's correct block list.
810 1.31 cgd */
811 1.60 fvdl s = splbio();
812 1.87 pk simple_lock(&bp->b_interlock);
813 1.60 fvdl
814 1.97 dbj KASSERT(ISSET(bp->b_flags, B_BUSY));
815 1.97 dbj
816 1.31 cgd if (!ISSET(bp->b_flags, B_DELWRI)) {
817 1.31 cgd SET(bp->b_flags, B_DELWRI);
818 1.49 cgd p->p_stats->p_ru.ru_oublock++;
819 1.31 cgd reassignbuf(bp, bp->b_vp);
820 1.31 cgd }
821 1.31 cgd
822 1.31 cgd /* Otherwise, the "write" is done, so mark and release the buffer. */
823 1.92 yamt CLR(bp->b_flags, B_DONE);
824 1.87 pk simple_unlock(&bp->b_interlock);
825 1.60 fvdl splx(s);
826 1.60 fvdl
827 1.31 cgd brelse(bp);
828 1.31 cgd }
829 1.31 cgd
830 1.31 cgd /*
831 1.31 cgd * Asynchronous block write; just an asynchronous bwrite().
832 1.31 cgd */
833 1.31 cgd void
834 1.101 thorpej bawrite(struct buf *bp)
835 1.31 cgd {
836 1.87 pk int s;
837 1.31 cgd
838 1.97 dbj s = splbio();
839 1.97 dbj simple_lock(&bp->b_interlock);
840 1.97 dbj
841 1.87 pk KASSERT(ISSET(bp->b_flags, B_BUSY));
842 1.87 pk
843 1.31 cgd SET(bp->b_flags, B_ASYNC);
844 1.87 pk simple_unlock(&bp->b_interlock);
845 1.87 pk splx(s);
846 1.31 cgd VOP_BWRITE(bp);
847 1.31 cgd }
848 1.31 cgd
849 1.31 cgd /*
850 1.59 fvdl * Same as first half of bdwrite, mark buffer dirty, but do not release it.
851 1.88 pk * Call at splbio() and with the buffer interlock locked.
852 1.88 pk * Note: called only from biodone() through ffs softdep's bioops.io_complete()
853 1.59 fvdl */
854 1.59 fvdl void
855 1.101 thorpej bdirty(struct buf *bp)
856 1.59 fvdl {
857 1.86 thorpej struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
858 1.86 thorpej struct proc *p = l->l_proc;
859 1.59 fvdl
860 1.97 dbj LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
861 1.87 pk KASSERT(ISSET(bp->b_flags, B_BUSY));
862 1.61 fvdl
863 1.61 fvdl CLR(bp->b_flags, B_AGE);
864 1.60 fvdl
865 1.59 fvdl if (!ISSET(bp->b_flags, B_DELWRI)) {
866 1.59 fvdl SET(bp->b_flags, B_DELWRI);
867 1.59 fvdl p->p_stats->p_ru.ru_oublock++;
868 1.59 fvdl reassignbuf(bp, bp->b_vp);
869 1.59 fvdl }
870 1.59 fvdl }
871 1.59 fvdl
872 1.59 fvdl /*
873 1.31 cgd * Release a buffer on to the free lists.
874 1.31 cgd * Described in Bach (p. 46).
875 1.31 cgd */
876 1.31 cgd void
877 1.101 thorpej brelse(struct buf *bp)
878 1.31 cgd {
879 1.131 yamt struct bqueue *bufq;
880 1.31 cgd int s;
881 1.31 cgd
882 1.87 pk /* Block disk interrupts. */
883 1.87 pk s = splbio();
884 1.87 pk simple_lock(&bqueue_slock);
885 1.87 pk simple_lock(&bp->b_interlock);
886 1.97 dbj
887 1.97 dbj KASSERT(ISSET(bp->b_flags, B_BUSY));
888 1.97 dbj KASSERT(!ISSET(bp->b_flags, B_CALL));
889 1.87 pk
890 1.31 cgd /* Wake up any processes waiting for any buffer to become free. */
891 1.31 cgd if (needbuffer) {
892 1.31 cgd needbuffer = 0;
893 1.31 cgd wakeup(&needbuffer);
894 1.31 cgd }
895 1.31 cgd
896 1.31 cgd /* Wake up any proceeses waiting for _this_ buffer to become free. */
897 1.31 cgd if (ISSET(bp->b_flags, B_WANTED)) {
898 1.57 mycroft CLR(bp->b_flags, B_WANTED|B_AGE);
899 1.31 cgd wakeup(bp);
900 1.31 cgd }
901 1.31 cgd
902 1.31 cgd /*
903 1.31 cgd * Determine which queue the buffer should be on, then put it there.
904 1.31 cgd */
905 1.31 cgd
906 1.31 cgd /* If it's locked, don't report an error; try again later. */
907 1.31 cgd if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
908 1.31 cgd CLR(bp->b_flags, B_ERROR);
909 1.31 cgd
910 1.31 cgd /* If it's not cacheable, or an error, mark it invalid. */
911 1.31 cgd if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
912 1.31 cgd SET(bp->b_flags, B_INVAL);
913 1.31 cgd
914 1.50 mycroft if (ISSET(bp->b_flags, B_VFLUSH)) {
915 1.50 mycroft /*
916 1.50 mycroft * This is a delayed write buffer that was just flushed to
917 1.50 mycroft * disk. It is still on the LRU queue. If it's become
918 1.50 mycroft * invalid, then we need to move it to a different queue;
919 1.50 mycroft * otherwise leave it in its current position.
920 1.50 mycroft */
921 1.50 mycroft CLR(bp->b_flags, B_VFLUSH);
922 1.99 dbj if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
923 1.99 dbj KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
924 1.50 mycroft goto already_queued;
925 1.99 dbj } else {
926 1.50 mycroft bremfree(bp);
927 1.99 dbj }
928 1.50 mycroft }
929 1.99 dbj
930 1.99 dbj KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
931 1.99 dbj KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
932 1.99 dbj KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
933 1.50 mycroft
934 1.31 cgd if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
935 1.31 cgd /*
936 1.31 cgd * If it's invalid or empty, dissociate it from its vnode
937 1.31 cgd * and put on the head of the appropriate queue.
938 1.31 cgd */
939 1.59 fvdl if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
940 1.59 fvdl (*bioops.io_deallocate)(bp);
941 1.59 fvdl CLR(bp->b_flags, B_DONE|B_DELWRI);
942 1.59 fvdl if (bp->b_vp) {
943 1.59 fvdl reassignbuf(bp, bp->b_vp);
944 1.31 cgd brelvp(bp);
945 1.59 fvdl }
946 1.31 cgd if (bp->b_bufsize <= 0)
947 1.31 cgd /* no data */
948 1.100 pk goto already_queued;
949 1.31 cgd else
950 1.31 cgd /* invalid data */
951 1.31 cgd bufq = &bufqueues[BQ_AGE];
952 1.31 cgd binsheadfree(bp, bufq);
953 1.31 cgd } else {
954 1.31 cgd /*
955 1.31 cgd * It has valid data. Put it on the end of the appropriate
956 1.31 cgd * queue, so that it'll stick around for as long as possible.
957 1.67 fvdl * If buf is AGE, but has dependencies, must put it on last
958 1.67 fvdl * bufqueue to be scanned, ie LRU. This protects against the
959 1.67 fvdl * livelock where BQ_AGE only has buffers with dependencies,
960 1.67 fvdl * and we thus never get to the dependent buffers in BQ_LRU.
961 1.31 cgd */
962 1.31 cgd if (ISSET(bp->b_flags, B_LOCKED))
963 1.31 cgd /* locked in core */
964 1.31 cgd bufq = &bufqueues[BQ_LOCKED];
965 1.67 fvdl else if (!ISSET(bp->b_flags, B_AGE))
966 1.31 cgd /* valid data */
967 1.31 cgd bufq = &bufqueues[BQ_LRU];
968 1.67 fvdl else {
969 1.67 fvdl /* stale but valid data */
970 1.67 fvdl int has_deps;
971 1.67 fvdl
972 1.67 fvdl if (LIST_FIRST(&bp->b_dep) != NULL &&
973 1.67 fvdl bioops.io_countdeps)
974 1.67 fvdl has_deps = (*bioops.io_countdeps)(bp, 0);
975 1.67 fvdl else
976 1.67 fvdl has_deps = 0;
977 1.67 fvdl bufq = has_deps ? &bufqueues[BQ_LRU] :
978 1.67 fvdl &bufqueues[BQ_AGE];
979 1.67 fvdl }
980 1.31 cgd binstailfree(bp, bufq);
981 1.31 cgd }
982 1.31 cgd
983 1.50 mycroft already_queued:
984 1.31 cgd /* Unlock the buffer. */
985 1.83 hannken CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
986 1.73 chs SET(bp->b_flags, B_CACHE);
987 1.31 cgd
988 1.31 cgd /* Allow disk interrupts. */
989 1.87 pk simple_unlock(&bp->b_interlock);
990 1.87 pk simple_unlock(&bqueue_slock);
991 1.100 pk if (bp->b_bufsize <= 0) {
992 1.100 pk #ifdef DEBUG
993 1.100 pk memset((char *)bp, 0, sizeof(*bp));
994 1.100 pk #endif
995 1.100 pk pool_put(&bufpool, bp);
996 1.100 pk }
997 1.31 cgd splx(s);
998 1.31 cgd }
999 1.31 cgd
1000 1.31 cgd /*
1001 1.31 cgd * Determine if a block is in the cache.
1002 1.31 cgd * Just look on what would be its hash chain. If it's there, return
1003 1.31 cgd * a pointer to it, unless it's marked invalid. If it's marked invalid,
1004 1.31 cgd * we normally don't return the buffer, unless the caller explicitly
1005 1.31 cgd * wants us to.
1006 1.31 cgd */
1007 1.31 cgd struct buf *
1008 1.101 thorpej incore(struct vnode *vp, daddr_t blkno)
1009 1.31 cgd {
1010 1.31 cgd struct buf *bp;
1011 1.31 cgd
1012 1.31 cgd /* Search hash chain */
1013 1.84 matt LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1014 1.31 cgd if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1015 1.31 cgd !ISSET(bp->b_flags, B_INVAL))
1016 1.31 cgd return (bp);
1017 1.31 cgd }
1018 1.31 cgd
1019 1.73 chs return (NULL);
1020 1.31 cgd }
1021 1.31 cgd
1022 1.31 cgd /*
1023 1.31 cgd * Get a block of requested size that is associated with
1024 1.31 cgd * a given vnode and block offset. If it is found in the
1025 1.31 cgd * block cache, mark it as having been found, make it busy
1026 1.31 cgd * and return it. Otherwise, return an empty block of the
1027 1.31 cgd * correct size. It is up to the caller to insure that the
1028 1.31 cgd * cached blocks be of the correct size.
1029 1.31 cgd */
1030 1.31 cgd struct buf *
1031 1.101 thorpej getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1032 1.31 cgd {
1033 1.31 cgd struct buf *bp;
1034 1.31 cgd int s, err;
1035 1.100 pk int preserve;
1036 1.31 cgd
1037 1.39 cgd start:
1038 1.87 pk s = splbio();
1039 1.87 pk simple_lock(&bqueue_slock);
1040 1.73 chs bp = incore(vp, blkno);
1041 1.73 chs if (bp != NULL) {
1042 1.87 pk simple_lock(&bp->b_interlock);
1043 1.31 cgd if (ISSET(bp->b_flags, B_BUSY)) {
1044 1.87 pk simple_unlock(&bqueue_slock);
1045 1.73 chs if (curproc == uvm.pagedaemon_proc) {
1046 1.87 pk simple_unlock(&bp->b_interlock);
1047 1.73 chs splx(s);
1048 1.73 chs return NULL;
1049 1.73 chs }
1050 1.31 cgd SET(bp->b_flags, B_WANTED);
1051 1.87 pk err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1052 1.87 pk "getblk", slptimeo, &bp->b_interlock);
1053 1.31 cgd splx(s);
1054 1.31 cgd if (err)
1055 1.31 cgd return (NULL);
1056 1.31 cgd goto start;
1057 1.31 cgd }
1058 1.57 mycroft #ifdef DIAGNOSTIC
1059 1.78 chs if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1060 1.78 chs bp->b_bcount < size && vp->v_type != VBLK)
1061 1.73 chs panic("getblk: block size invariant failed");
1062 1.57 mycroft #endif
1063 1.73 chs SET(bp->b_flags, B_BUSY);
1064 1.73 chs bremfree(bp);
1065 1.100 pk preserve = 1;
1066 1.73 chs } else {
1067 1.100 pk if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1068 1.87 pk simple_unlock(&bqueue_slock);
1069 1.87 pk splx(s);
1070 1.31 cgd goto start;
1071 1.87 pk }
1072 1.73 chs
1073 1.73 chs binshash(bp, BUFHASH(vp, blkno));
1074 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1075 1.31 cgd bgetvp(vp, bp);
1076 1.100 pk preserve = 0;
1077 1.31 cgd }
1078 1.87 pk simple_unlock(&bp->b_interlock);
1079 1.87 pk simple_unlock(&bqueue_slock);
1080 1.87 pk splx(s);
1081 1.96 yamt /*
1082 1.96 yamt * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1083 1.96 yamt * if we re-size buffers here.
1084 1.96 yamt */
1085 1.96 yamt if (ISSET(bp->b_flags, B_LOCKED)) {
1086 1.96 yamt KASSERT(bp->b_bufsize >= size);
1087 1.96 yamt } else {
1088 1.100 pk allocbuf(bp, size, preserve);
1089 1.96 yamt }
1090 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1091 1.31 cgd return (bp);
1092 1.31 cgd }
1093 1.31 cgd
1094 1.31 cgd /*
1095 1.31 cgd * Get an empty, disassociated buffer of given size.
1096 1.31 cgd */
1097 1.31 cgd struct buf *
1098 1.101 thorpej geteblk(int size)
1099 1.31 cgd {
1100 1.31 cgd struct buf *bp;
1101 1.87 pk int s;
1102 1.31 cgd
1103 1.87 pk s = splbio();
1104 1.87 pk simple_lock(&bqueue_slock);
1105 1.100 pk while ((bp = getnewbuf(0, 0, 0)) == 0)
1106 1.31 cgd ;
1107 1.87 pk
1108 1.31 cgd SET(bp->b_flags, B_INVAL);
1109 1.31 cgd binshash(bp, &invalhash);
1110 1.87 pk simple_unlock(&bqueue_slock);
1111 1.87 pk simple_unlock(&bp->b_interlock);
1112 1.87 pk splx(s);
1113 1.109 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1114 1.100 pk allocbuf(bp, size, 0);
1115 1.31 cgd return (bp);
1116 1.31 cgd }
1117 1.31 cgd
1118 1.31 cgd /*
1119 1.31 cgd * Expand or contract the actual memory allocated to a buffer.
1120 1.31 cgd *
1121 1.31 cgd * If the buffer shrinks, data is lost, so it's up to the
1122 1.31 cgd * caller to have written it out *first*; this routine will not
1123 1.31 cgd * start a write. If the buffer grows, it's the callers
1124 1.31 cgd * responsibility to fill out the buffer's additional contents.
1125 1.31 cgd */
1126 1.40 christos void
1127 1.101 thorpej allocbuf(struct buf *bp, int size, int preserve)
1128 1.31 cgd {
1129 1.100 pk vsize_t oldsize, desired_size;
1130 1.100 pk caddr_t addr;
1131 1.100 pk int s, delta;
1132 1.31 cgd
1133 1.100 pk desired_size = buf_roundsize(size);
1134 1.31 cgd if (desired_size > MAXBSIZE)
1135 1.100 pk printf("allocbuf: buffer larger than MAXBSIZE requested");
1136 1.31 cgd
1137 1.100 pk bp->b_bcount = size;
1138 1.100 pk
1139 1.100 pk oldsize = bp->b_bufsize;
1140 1.100 pk if (oldsize == desired_size)
1141 1.100 pk return;
1142 1.31 cgd
1143 1.31 cgd /*
1144 1.100 pk * If we want a buffer of a different size, re-allocate the
1145 1.100 pk * buffer's memory; copy old content only if needed.
1146 1.31 cgd */
1147 1.100 pk addr = buf_malloc(desired_size);
1148 1.100 pk if (preserve)
1149 1.100 pk memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1150 1.100 pk if (bp->b_data != NULL)
1151 1.100 pk buf_mrelease(bp->b_data, oldsize);
1152 1.100 pk bp->b_data = addr;
1153 1.100 pk bp->b_bufsize = desired_size;
1154 1.31 cgd
1155 1.31 cgd /*
1156 1.100 pk * Update overall buffer memory counter (protected by bqueue_slock)
1157 1.31 cgd */
1158 1.100 pk delta = (long)desired_size - (long)oldsize;
1159 1.100 pk
1160 1.100 pk s = splbio();
1161 1.100 pk simple_lock(&bqueue_slock);
1162 1.100 pk if ((bufmem += delta) > bufmem_hiwater) {
1163 1.100 pk /*
1164 1.100 pk * Need to trim overall memory usage.
1165 1.100 pk */
1166 1.100 pk while (buf_canrelease()) {
1167 1.100 pk if (buf_trim() == 0)
1168 1.100 pk break;
1169 1.31 cgd }
1170 1.31 cgd }
1171 1.31 cgd
1172 1.100 pk simple_unlock(&bqueue_slock);
1173 1.100 pk splx(s);
1174 1.31 cgd }
1175 1.31 cgd
1176 1.31 cgd /*
1177 1.31 cgd * Find a buffer which is available for use.
1178 1.31 cgd * Select something from a free list.
1179 1.31 cgd * Preference is to AGE list, then LRU list.
1180 1.87 pk *
1181 1.100 pk * Called at splbio and with buffer queues locked.
1182 1.87 pk * Return buffer locked.
1183 1.31 cgd */
1184 1.31 cgd struct buf *
1185 1.101 thorpej getnewbuf(int slpflag, int slptimeo, int from_bufq)
1186 1.31 cgd {
1187 1.66 augustss struct buf *bp;
1188 1.31 cgd
1189 1.31 cgd start:
1190 1.87 pk LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1191 1.87 pk
1192 1.100 pk /*
1193 1.100 pk * Get a new buffer from the pool; but use NOWAIT because
1194 1.100 pk * we have the buffer queues locked.
1195 1.100 pk */
1196 1.132 enami if (!from_bufq && buf_lotsfree() &&
1197 1.100 pk (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1198 1.100 pk memset((char *)bp, 0, sizeof(*bp));
1199 1.100 pk BUF_INIT(bp);
1200 1.100 pk bp->b_dev = NODEV;
1201 1.100 pk bp->b_vnbufs.le_next = NOLIST;
1202 1.100 pk bp->b_flags = B_BUSY;
1203 1.102 pk simple_lock(&bp->b_interlock);
1204 1.131 yamt #if defined(DIAGNOSTIC)
1205 1.131 yamt bp->b_freelistindex = -1;
1206 1.131 yamt #endif /* defined(DIAGNOSTIC) */
1207 1.100 pk return (bp);
1208 1.100 pk }
1209 1.100 pk
1210 1.131 yamt if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1211 1.131 yamt (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1212 1.87 pk simple_lock(&bp->b_interlock);
1213 1.31 cgd bremfree(bp);
1214 1.31 cgd } else {
1215 1.134 enami /*
1216 1.134 enami * XXX: !from_bufq should be removed.
1217 1.134 enami */
1218 1.134 enami if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1219 1.134 enami /* wait for a free buffer of any kind */
1220 1.134 enami needbuffer = 1;
1221 1.134 enami ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1222 1.134 enami "getnewbuf", slptimeo, &bqueue_slock);
1223 1.134 enami }
1224 1.73 chs return (NULL);
1225 1.31 cgd }
1226 1.31 cgd
1227 1.100 pk #ifdef DIAGNOSTIC
1228 1.100 pk if (bp->b_bufsize <= 0)
1229 1.100 pk panic("buffer %p: on queue but empty", bp);
1230 1.100 pk #endif
1231 1.100 pk
1232 1.50 mycroft if (ISSET(bp->b_flags, B_VFLUSH)) {
1233 1.50 mycroft /*
1234 1.50 mycroft * This is a delayed write buffer being flushed to disk. Make
1235 1.50 mycroft * sure it gets aged out of the queue when it's finished, and
1236 1.50 mycroft * leave it off the LRU queue.
1237 1.50 mycroft */
1238 1.50 mycroft CLR(bp->b_flags, B_VFLUSH);
1239 1.50 mycroft SET(bp->b_flags, B_AGE);
1240 1.87 pk simple_unlock(&bp->b_interlock);
1241 1.50 mycroft goto start;
1242 1.50 mycroft }
1243 1.50 mycroft
1244 1.31 cgd /* Buffer is no longer on free lists. */
1245 1.31 cgd SET(bp->b_flags, B_BUSY);
1246 1.31 cgd
1247 1.75 chs /*
1248 1.75 chs * If buffer was a delayed write, start it and return NULL
1249 1.75 chs * (since we might sleep while starting the write).
1250 1.75 chs */
1251 1.31 cgd if (ISSET(bp->b_flags, B_DELWRI)) {
1252 1.50 mycroft /*
1253 1.50 mycroft * This buffer has gone through the LRU, so make sure it gets
1254 1.50 mycroft * reused ASAP.
1255 1.50 mycroft */
1256 1.50 mycroft SET(bp->b_flags, B_AGE);
1257 1.87 pk simple_unlock(&bp->b_interlock);
1258 1.89 pk simple_unlock(&bqueue_slock);
1259 1.50 mycroft bawrite(bp);
1260 1.89 pk simple_lock(&bqueue_slock);
1261 1.75 chs return (NULL);
1262 1.31 cgd }
1263 1.31 cgd
1264 1.31 cgd /* disassociate us from our vnode, if we had one... */
1265 1.31 cgd if (bp->b_vp)
1266 1.31 cgd brelvp(bp);
1267 1.31 cgd
1268 1.59 fvdl if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1269 1.59 fvdl (*bioops.io_deallocate)(bp);
1270 1.59 fvdl
1271 1.31 cgd /* clear out various other fields */
1272 1.31 cgd bp->b_flags = B_BUSY;
1273 1.31 cgd bp->b_dev = NODEV;
1274 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1275 1.31 cgd bp->b_iodone = 0;
1276 1.31 cgd bp->b_error = 0;
1277 1.31 cgd bp->b_resid = 0;
1278 1.31 cgd bp->b_bcount = 0;
1279 1.31 cgd
1280 1.34 mycroft bremhash(bp);
1281 1.31 cgd return (bp);
1282 1.31 cgd }
1283 1.31 cgd
1284 1.31 cgd /*
1285 1.100 pk * Attempt to free an aged buffer off the queues.
1286 1.100 pk * Called at splbio and with queue lock held.
1287 1.100 pk * Returns the amount of buffer memory freed.
1288 1.100 pk */
1289 1.130 yamt static int
1290 1.101 thorpej buf_trim(void)
1291 1.100 pk {
1292 1.100 pk struct buf *bp;
1293 1.100 pk long size = 0;
1294 1.100 pk
1295 1.100 pk /* Instruct getnewbuf() to get buffers off the queues */
1296 1.101 thorpej if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1297 1.100 pk return 0;
1298 1.100 pk
1299 1.129 yamt KASSERT(!ISSET(bp->b_flags, B_WANTED));
1300 1.100 pk simple_unlock(&bp->b_interlock);
1301 1.100 pk size = bp->b_bufsize;
1302 1.100 pk bufmem -= size;
1303 1.100 pk simple_unlock(&bqueue_slock);
1304 1.100 pk if (size > 0) {
1305 1.100 pk buf_mrelease(bp->b_data, size);
1306 1.100 pk bp->b_bcount = bp->b_bufsize = 0;
1307 1.100 pk }
1308 1.100 pk /* brelse() will return the buffer to the global buffer pool */
1309 1.100 pk brelse(bp);
1310 1.100 pk simple_lock(&bqueue_slock);
1311 1.100 pk return size;
1312 1.100 pk }
1313 1.100 pk
1314 1.101 thorpej int
1315 1.101 thorpej buf_drain(int n)
1316 1.100 pk {
1317 1.134 enami int s, size = 0, sz;
1318 1.100 pk
1319 1.116 yamt s = splbio();
1320 1.116 yamt simple_lock(&bqueue_slock);
1321 1.116 yamt
1322 1.134 enami while (size < n && bufmem > bufmem_lowater) {
1323 1.134 enami sz = buf_trim();
1324 1.134 enami if (sz <= 0)
1325 1.134 enami break;
1326 1.134 enami size += sz;
1327 1.134 enami }
1328 1.114 tls
1329 1.100 pk simple_unlock(&bqueue_slock);
1330 1.100 pk splx(s);
1331 1.100 pk return size;
1332 1.100 pk }
1333 1.100 pk
1334 1.100 pk /*
1335 1.31 cgd * Wait for operations on the buffer to complete.
1336 1.31 cgd * When they do, extract and return the I/O's error value.
1337 1.31 cgd */
1338 1.31 cgd int
1339 1.101 thorpej biowait(struct buf *bp)
1340 1.31 cgd {
1341 1.87 pk int s, error;
1342 1.59 fvdl
1343 1.31 cgd s = splbio();
1344 1.87 pk simple_lock(&bp->b_interlock);
1345 1.80 chs while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1346 1.87 pk ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1347 1.31 cgd
1348 1.31 cgd /* check for interruption of I/O (e.g. via NFS), then errors. */
1349 1.31 cgd if (ISSET(bp->b_flags, B_EINTR)) {
1350 1.31 cgd CLR(bp->b_flags, B_EINTR);
1351 1.87 pk error = EINTR;
1352 1.31 cgd } else if (ISSET(bp->b_flags, B_ERROR))
1353 1.87 pk error = bp->b_error ? bp->b_error : EIO;
1354 1.31 cgd else
1355 1.87 pk error = 0;
1356 1.87 pk
1357 1.87 pk simple_unlock(&bp->b_interlock);
1358 1.87 pk splx(s);
1359 1.87 pk return (error);
1360 1.31 cgd }
1361 1.31 cgd
1362 1.31 cgd /*
1363 1.31 cgd * Mark I/O complete on a buffer.
1364 1.31 cgd *
1365 1.31 cgd * If a callback has been requested, e.g. the pageout
1366 1.31 cgd * daemon, do so. Otherwise, awaken waiting processes.
1367 1.31 cgd *
1368 1.31 cgd * [ Leffler, et al., says on p.247:
1369 1.31 cgd * "This routine wakes up the blocked process, frees the buffer
1370 1.31 cgd * for an asynchronous write, or, for a request by the pagedaemon
1371 1.31 cgd * process, invokes a procedure specified in the buffer structure" ]
1372 1.31 cgd *
1373 1.31 cgd * In real life, the pagedaemon (or other system processes) wants
1374 1.31 cgd * to do async stuff to, and doesn't want the buffer brelse()'d.
1375 1.31 cgd * (for swap pager, that puts swap buffers on the free lists (!!!),
1376 1.31 cgd * for the vn device, that puts malloc'd buffers on the free lists!)
1377 1.31 cgd */
1378 1.31 cgd void
1379 1.101 thorpej biodone(struct buf *bp)
1380 1.31 cgd {
1381 1.60 fvdl int s = splbio();
1382 1.60 fvdl
1383 1.87 pk simple_lock(&bp->b_interlock);
1384 1.31 cgd if (ISSET(bp->b_flags, B_DONE))
1385 1.31 cgd panic("biodone already");
1386 1.31 cgd SET(bp->b_flags, B_DONE); /* note that it's done */
1387 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1388 1.31 cgd
1389 1.59 fvdl if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1390 1.59 fvdl (*bioops.io_complete)(bp);
1391 1.59 fvdl
1392 1.31 cgd if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1393 1.31 cgd vwakeup(bp);
1394 1.31 cgd
1395 1.87 pk /*
1396 1.87 pk * If necessary, call out. Unlock the buffer before calling
1397 1.87 pk * iodone() as the buffer isn't valid any more when it return.
1398 1.87 pk */
1399 1.87 pk if (ISSET(bp->b_flags, B_CALL)) {
1400 1.31 cgd CLR(bp->b_flags, B_CALL); /* but note callout done */
1401 1.87 pk simple_unlock(&bp->b_interlock);
1402 1.31 cgd (*bp->b_iodone)(bp);
1403 1.59 fvdl } else {
1404 1.87 pk if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1405 1.87 pk simple_unlock(&bp->b_interlock);
1406 1.59 fvdl brelse(bp);
1407 1.87 pk } else { /* or just wakeup the buffer */
1408 1.59 fvdl CLR(bp->b_flags, B_WANTED);
1409 1.59 fvdl wakeup(bp);
1410 1.87 pk simple_unlock(&bp->b_interlock);
1411 1.59 fvdl }
1412 1.31 cgd }
1413 1.60 fvdl
1414 1.60 fvdl splx(s);
1415 1.31 cgd }
1416 1.31 cgd
1417 1.31 cgd /*
1418 1.31 cgd * Return a count of buffers on the "locked" queue.
1419 1.31 cgd */
1420 1.31 cgd int
1421 1.101 thorpej count_lock_queue(void)
1422 1.31 cgd {
1423 1.66 augustss struct buf *bp;
1424 1.66 augustss int n = 0;
1425 1.31 cgd
1426 1.87 pk simple_lock(&bqueue_slock);
1427 1.131 yamt TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1428 1.31 cgd n++;
1429 1.87 pk simple_unlock(&bqueue_slock);
1430 1.31 cgd return (n);
1431 1.31 cgd }
1432 1.31 cgd
1433 1.100 pk /*
1434 1.100 pk * Wait for all buffers to complete I/O
1435 1.100 pk * Return the number of "stuck" buffers.
1436 1.100 pk */
1437 1.100 pk int
1438 1.100 pk buf_syncwait(void)
1439 1.100 pk {
1440 1.100 pk struct buf *bp;
1441 1.100 pk int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1442 1.100 pk
1443 1.100 pk dcount = 10000;
1444 1.100 pk for (iter = 0; iter < 20;) {
1445 1.100 pk s = splbio();
1446 1.100 pk simple_lock(&bqueue_slock);
1447 1.100 pk nbusy = 0;
1448 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1449 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1450 1.100 pk if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1451 1.100 pk nbusy++;
1452 1.100 pk /*
1453 1.100 pk * With soft updates, some buffers that are
1454 1.100 pk * written will be remarked as dirty until other
1455 1.100 pk * buffers are written.
1456 1.100 pk */
1457 1.100 pk if (bp->b_vp && bp->b_vp->v_mount
1458 1.100 pk && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1459 1.100 pk && (bp->b_flags & B_DELWRI)) {
1460 1.100 pk simple_lock(&bp->b_interlock);
1461 1.100 pk bremfree(bp);
1462 1.100 pk bp->b_flags |= B_BUSY;
1463 1.100 pk nbusy++;
1464 1.100 pk simple_unlock(&bp->b_interlock);
1465 1.100 pk simple_unlock(&bqueue_slock);
1466 1.100 pk bawrite(bp);
1467 1.100 pk if (dcount-- <= 0) {
1468 1.100 pk printf("softdep ");
1469 1.137 christos splx(s);
1470 1.100 pk goto fail;
1471 1.100 pk }
1472 1.100 pk simple_lock(&bqueue_slock);
1473 1.100 pk }
1474 1.100 pk }
1475 1.100 pk }
1476 1.100 pk
1477 1.100 pk simple_unlock(&bqueue_slock);
1478 1.100 pk splx(s);
1479 1.100 pk
1480 1.100 pk if (nbusy == 0)
1481 1.100 pk break;
1482 1.100 pk if (nbusy_prev == 0)
1483 1.100 pk nbusy_prev = nbusy;
1484 1.100 pk printf("%d ", nbusy);
1485 1.100 pk tsleep(&nbusy, PRIBIO, "bflush",
1486 1.100 pk (iter == 0) ? 1 : hz / 25 * iter);
1487 1.100 pk if (nbusy >= nbusy_prev) /* we didn't flush anything */
1488 1.100 pk iter++;
1489 1.100 pk else
1490 1.100 pk nbusy_prev = nbusy;
1491 1.100 pk }
1492 1.100 pk
1493 1.100 pk if (nbusy) {
1494 1.100 pk fail:;
1495 1.100 pk #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1496 1.100 pk printf("giving up\nPrinting vnodes for busy buffers\n");
1497 1.137 christos s = splbio();
1498 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1499 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1500 1.100 pk if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1501 1.100 pk vprint(NULL, bp->b_vp);
1502 1.100 pk }
1503 1.100 pk }
1504 1.137 christos splx(s);
1505 1.100 pk #endif
1506 1.100 pk }
1507 1.100 pk
1508 1.100 pk return nbusy;
1509 1.100 pk }
1510 1.100 pk
1511 1.117 atatat static void
1512 1.117 atatat sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1513 1.117 atatat {
1514 1.117 atatat
1515 1.117 atatat o->b_flags = i->b_flags;
1516 1.117 atatat o->b_error = i->b_error;
1517 1.117 atatat o->b_prio = i->b_prio;
1518 1.117 atatat o->b_dev = i->b_dev;
1519 1.117 atatat o->b_bufsize = i->b_bufsize;
1520 1.117 atatat o->b_bcount = i->b_bcount;
1521 1.117 atatat o->b_resid = i->b_resid;
1522 1.117 atatat o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1523 1.117 atatat o->b_blkno = i->b_blkno;
1524 1.117 atatat o->b_rawblkno = i->b_rawblkno;
1525 1.117 atatat o->b_iodone = PTRTOUINT64(i->b_iodone);
1526 1.117 atatat o->b_proc = PTRTOUINT64(i->b_proc);
1527 1.117 atatat o->b_vp = PTRTOUINT64(i->b_vp);
1528 1.117 atatat o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1529 1.117 atatat o->b_lblkno = i->b_lblkno;
1530 1.117 atatat }
1531 1.117 atatat
1532 1.100 pk #define KERN_BUFSLOP 20
1533 1.100 pk static int
1534 1.100 pk sysctl_dobuf(SYSCTLFN_ARGS)
1535 1.100 pk {
1536 1.100 pk struct buf *bp;
1537 1.117 atatat struct buf_sysctl bs;
1538 1.100 pk char *dp;
1539 1.117 atatat u_int i, op, arg;
1540 1.117 atatat size_t len, needed, elem_size, out_size;
1541 1.117 atatat int error, s, elem_count;
1542 1.117 atatat
1543 1.117 atatat if (namelen == 1 && name[0] == CTL_QUERY)
1544 1.117 atatat return (sysctl_query(SYSCTLFN_CALL(rnode)));
1545 1.117 atatat
1546 1.117 atatat if (namelen != 4)
1547 1.117 atatat return (EINVAL);
1548 1.100 pk
1549 1.100 pk dp = oldp;
1550 1.117 atatat len = (oldp != NULL) ? *oldlenp : 0;
1551 1.117 atatat op = name[0];
1552 1.117 atatat arg = name[1];
1553 1.117 atatat elem_size = name[2];
1554 1.117 atatat elem_count = name[3];
1555 1.117 atatat out_size = MIN(sizeof(bs), elem_size);
1556 1.117 atatat
1557 1.117 atatat /*
1558 1.117 atatat * at the moment, these are just "placeholders" to make the
1559 1.117 atatat * API for retrieving kern.buf data more extensible in the
1560 1.117 atatat * future.
1561 1.117 atatat *
1562 1.117 atatat * XXX kern.buf currently has "netbsd32" issues. hopefully
1563 1.117 atatat * these will be resolved at a later point.
1564 1.117 atatat */
1565 1.117 atatat if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1566 1.117 atatat elem_size < 1 || elem_count < 0)
1567 1.117 atatat return (EINVAL);
1568 1.117 atatat
1569 1.100 pk error = 0;
1570 1.100 pk needed = 0;
1571 1.100 pk s = splbio();
1572 1.100 pk simple_lock(&bqueue_slock);
1573 1.100 pk for (i = 0; i < BQUEUES; i++) {
1574 1.131 yamt TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1575 1.117 atatat if (len >= elem_size && elem_count > 0) {
1576 1.117 atatat sysctl_fillbuf(bp, &bs);
1577 1.117 atatat error = copyout(&bs, dp, out_size);
1578 1.100 pk if (error)
1579 1.100 pk goto cleanup;
1580 1.100 pk dp += elem_size;
1581 1.100 pk len -= elem_size;
1582 1.100 pk }
1583 1.117 atatat if (elem_count > 0) {
1584 1.117 atatat needed += elem_size;
1585 1.117 atatat if (elem_count != INT_MAX)
1586 1.117 atatat elem_count--;
1587 1.117 atatat }
1588 1.100 pk }
1589 1.100 pk }
1590 1.100 pk cleanup:
1591 1.100 pk simple_unlock(&bqueue_slock);
1592 1.100 pk splx(s);
1593 1.100 pk
1594 1.117 atatat *oldlenp = needed;
1595 1.117 atatat if (oldp == NULL)
1596 1.117 atatat *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1597 1.100 pk
1598 1.100 pk return (error);
1599 1.100 pk }
1600 1.100 pk
1601 1.100 pk static int
1602 1.100 pk sysctl_bufvm_update(SYSCTLFN_ARGS)
1603 1.100 pk {
1604 1.100 pk int t, error;
1605 1.100 pk struct sysctlnode node;
1606 1.100 pk
1607 1.100 pk node = *rnode;
1608 1.100 pk node.sysctl_data = &t;
1609 1.100 pk t = *(int*)rnode->sysctl_data;
1610 1.100 pk error = sysctl_lookup(SYSCTLFN_CALL(&node));
1611 1.100 pk if (error || newp == NULL)
1612 1.100 pk return (error);
1613 1.100 pk
1614 1.117 atatat if (rnode->sysctl_data == &bufcache) {
1615 1.100 pk if (t < 0 || t > 100)
1616 1.100 pk return (EINVAL);
1617 1.100 pk bufcache = t;
1618 1.135 enami buf_setwm();
1619 1.117 atatat } else if (rnode->sysctl_data == &bufmem_lowater) {
1620 1.136 enami if (bufmem_hiwater - bufmem_lowater < 16)
1621 1.136 enami return (EINVAL);
1622 1.100 pk bufmem_lowater = t;
1623 1.117 atatat } else if (rnode->sysctl_data == &bufmem_hiwater) {
1624 1.136 enami if (bufmem_hiwater - bufmem_lowater < 16)
1625 1.136 enami return (EINVAL);
1626 1.100 pk bufmem_hiwater = t;
1627 1.100 pk } else
1628 1.100 pk return (EINVAL);
1629 1.100 pk
1630 1.100 pk /* Drain until below new high water mark */
1631 1.100 pk while ((t = bufmem - bufmem_hiwater) >= 0) {
1632 1.100 pk if (buf_drain(t / (2*1024)) <= 0)
1633 1.100 pk break;
1634 1.100 pk }
1635 1.100 pk
1636 1.100 pk return 0;
1637 1.100 pk }
1638 1.100 pk
1639 1.100 pk SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1640 1.100 pk {
1641 1.100 pk
1642 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1643 1.119 atatat CTLFLAG_PERMANENT,
1644 1.104 atatat CTLTYPE_NODE, "kern", NULL,
1645 1.104 atatat NULL, 0, NULL, 0,
1646 1.104 atatat CTL_KERN, CTL_EOL);
1647 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1648 1.119 atatat CTLFLAG_PERMANENT,
1649 1.125 atatat CTLTYPE_NODE, "buf",
1650 1.125 atatat SYSCTL_DESCR("Kernel buffer cache information"),
1651 1.100 pk sysctl_dobuf, 0, NULL, 0,
1652 1.100 pk CTL_KERN, KERN_BUF, CTL_EOL);
1653 1.104 atatat }
1654 1.104 atatat
1655 1.104 atatat SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1656 1.104 atatat {
1657 1.104 atatat
1658 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1659 1.119 atatat CTLFLAG_PERMANENT,
1660 1.104 atatat CTLTYPE_NODE, "vm", NULL,
1661 1.104 atatat NULL, 0, NULL, 0,
1662 1.104 atatat CTL_VM, CTL_EOL);
1663 1.100 pk
1664 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1665 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1666 1.125 atatat CTLTYPE_INT, "bufcache",
1667 1.139 jrf SYSCTL_DESCR("Percentage of physical memory to use for "
1668 1.125 atatat "buffer cache"),
1669 1.117 atatat sysctl_bufvm_update, 0, &bufcache, 0,
1670 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1671 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1672 1.122 simonb CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1673 1.125 atatat CTLTYPE_INT, "bufmem",
1674 1.139 jrf SYSCTL_DESCR("Amount of kernel memory used by buffer "
1675 1.125 atatat "cache"),
1676 1.122 simonb NULL, 0, &bufmem, 0,
1677 1.122 simonb CTL_VM, CTL_CREATE, CTL_EOL);
1678 1.122 simonb sysctl_createv(clog, 0, NULL, NULL,
1679 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1680 1.125 atatat CTLTYPE_INT, "bufmem_lowater",
1681 1.125 atatat SYSCTL_DESCR("Minimum amount of kernel memory to "
1682 1.125 atatat "reserve for buffer cache"),
1683 1.117 atatat sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1684 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1685 1.119 atatat sysctl_createv(clog, 0, NULL, NULL,
1686 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1687 1.125 atatat CTLTYPE_INT, "bufmem_hiwater",
1688 1.125 atatat SYSCTL_DESCR("Maximum amount of kernel memory to use "
1689 1.125 atatat "for buffer cache"),
1690 1.117 atatat sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1691 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1692 1.100 pk }
1693 1.100 pk
1694 1.36 cgd #ifdef DEBUG
1695 1.31 cgd /*
1696 1.31 cgd * Print out statistics on the current allocation of the buffer pool.
1697 1.31 cgd * Can be enabled to print out on every ``sync'' by setting "syncprt"
1698 1.31 cgd * in vfs_syscalls.c using sysctl.
1699 1.31 cgd */
1700 1.31 cgd void
1701 1.101 thorpej vfs_bufstats(void)
1702 1.31 cgd {
1703 1.31 cgd int s, i, j, count;
1704 1.66 augustss struct buf *bp;
1705 1.131 yamt struct bqueue *dp;
1706 1.72 simonb int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1707 1.100 pk static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1708 1.71 thorpej
1709 1.31 cgd for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1710 1.31 cgd count = 0;
1711 1.71 thorpej for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1712 1.31 cgd counts[j] = 0;
1713 1.31 cgd s = splbio();
1714 1.131 yamt TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1715 1.71 thorpej counts[bp->b_bufsize/PAGE_SIZE]++;
1716 1.31 cgd count++;
1717 1.31 cgd }
1718 1.31 cgd splx(s);
1719 1.48 christos printf("%s: total-%d", bname[i], count);
1720 1.71 thorpej for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1721 1.31 cgd if (counts[j] != 0)
1722 1.71 thorpej printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1723 1.48 christos printf("\n");
1724 1.31 cgd }
1725 1.31 cgd }
1726 1.36 cgd #endif /* DEBUG */
1727