Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.221
      1  1.221     rmind /*	$NetBSD: vfs_bio.c,v 1.221 2009/11/11 09:15:42 rmind Exp $	*/
      2  1.183        ad 
      3  1.183        ad /*-
      4  1.217        ad  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  1.183        ad  * All rights reserved.
      6  1.183        ad  *
      7  1.183        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.217        ad  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  1.183        ad  *
     10  1.183        ad  * Redistribution and use in source and binary forms, with or without
     11  1.183        ad  * modification, are permitted provided that the following conditions
     12  1.183        ad  * are met:
     13  1.183        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.183        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.183        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.183        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.183        ad  *    documentation and/or other materials provided with the distribution.
     18  1.183        ad  *
     19  1.183        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.183        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.183        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.183        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.183        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.183        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.183        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.183        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.183        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.183        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.183        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.183        ad  */
     31   1.31       cgd 
     32   1.31       cgd /*-
     33   1.31       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34   1.31       cgd  *	The Regents of the University of California.  All rights reserved.
     35   1.31       cgd  * (c) UNIX System Laboratories, Inc.
     36   1.31       cgd  * All or some portions of this file are derived from material licensed
     37   1.31       cgd  * to the University of California by American Telephone and Telegraph
     38   1.31       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39   1.31       cgd  * the permission of UNIX System Laboratories, Inc.
     40   1.31       cgd  *
     41   1.31       cgd  * Redistribution and use in source and binary forms, with or without
     42   1.31       cgd  * modification, are permitted provided that the following conditions
     43   1.31       cgd  * are met:
     44   1.31       cgd  * 1. Redistributions of source code must retain the above copyright
     45   1.31       cgd  *    notice, this list of conditions and the following disclaimer.
     46   1.31       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     47   1.31       cgd  *    notice, this list of conditions and the following disclaimer in the
     48   1.31       cgd  *    documentation and/or other materials provided with the distribution.
     49   1.93       agc  * 3. Neither the name of the University nor the names of its contributors
     50   1.93       agc  *    may be used to endorse or promote products derived from this software
     51   1.93       agc  *    without specific prior written permission.
     52   1.93       agc  *
     53   1.93       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54   1.93       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55   1.93       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56   1.93       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57   1.93       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58   1.93       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59   1.93       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.93       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.93       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.93       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.93       agc  * SUCH DAMAGE.
     64   1.93       agc  *
     65   1.93       agc  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66   1.93       agc  */
     67   1.93       agc 
     68   1.93       agc /*-
     69   1.93       agc  * Copyright (c) 1994 Christopher G. Demetriou
     70   1.93       agc  *
     71   1.93       agc  * Redistribution and use in source and binary forms, with or without
     72   1.93       agc  * modification, are permitted provided that the following conditions
     73   1.93       agc  * are met:
     74   1.93       agc  * 1. Redistributions of source code must retain the above copyright
     75   1.93       agc  *    notice, this list of conditions and the following disclaimer.
     76   1.93       agc  * 2. Redistributions in binary form must reproduce the above copyright
     77   1.93       agc  *    notice, this list of conditions and the following disclaimer in the
     78   1.93       agc  *    documentation and/or other materials provided with the distribution.
     79   1.31       cgd  * 3. All advertising materials mentioning features or use of this software
     80   1.31       cgd  *    must display the following acknowledgement:
     81   1.31       cgd  *	This product includes software developed by the University of
     82   1.31       cgd  *	California, Berkeley and its contributors.
     83   1.31       cgd  * 4. Neither the name of the University nor the names of its contributors
     84   1.31       cgd  *    may be used to endorse or promote products derived from this software
     85   1.31       cgd  *    without specific prior written permission.
     86   1.31       cgd  *
     87   1.31       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88   1.31       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89   1.31       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90   1.31       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91   1.31       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92   1.31       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93   1.31       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94   1.31       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95   1.31       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96   1.31       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97   1.31       cgd  * SUCH DAMAGE.
     98   1.31       cgd  *
     99   1.31       cgd  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100   1.31       cgd  */
    101   1.31       cgd 
    102   1.31       cgd /*
    103  1.221     rmind  * The buffer cache subsystem.
    104  1.221     rmind  *
    105   1.31       cgd  * Some references:
    106   1.31       cgd  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107   1.31       cgd  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108   1.31       cgd  *		UNIX Operating System (Addison Welley, 1989)
    109  1.221     rmind  *
    110  1.221     rmind  * Locking
    111  1.221     rmind  *
    112  1.221     rmind  * There are three locks:
    113  1.221     rmind  * - bufcache_lock: protects global buffer cache state.
    114  1.221     rmind  * - BC_BUSY: a long term per-buffer lock.
    115  1.221     rmind  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  1.221     rmind  *
    117  1.221     rmind  * For buffers associated with vnodes (a most common case) b_objlock points
    118  1.221     rmind  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  1.221     rmind  *
    120  1.221     rmind  * Lock order:
    121  1.221     rmind  *	bufcache_lock ->
    122  1.221     rmind  *		buf_t::b_objlock
    123   1.31       cgd  */
    124   1.77     lukem 
    125  1.178       dsl #include <sys/cdefs.h>
    126  1.221     rmind __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.221 2009/11/11 09:15:42 rmind Exp $");
    127  1.178       dsl 
    128  1.159       uwe #include "fs_ffs.h"
    129  1.100        pk #include "opt_bufcache.h"
    130   1.81      matt 
    131   1.31       cgd #include <sys/param.h>
    132   1.31       cgd #include <sys/systm.h>
    133  1.100        pk #include <sys/kernel.h>
    134   1.31       cgd #include <sys/proc.h>
    135   1.31       cgd #include <sys/buf.h>
    136   1.31       cgd #include <sys/vnode.h>
    137   1.31       cgd #include <sys/mount.h>
    138   1.31       cgd #include <sys/resourcevar.h>
    139  1.100        pk #include <sys/sysctl.h>
    140   1.35   mycroft #include <sys/conf.h>
    141  1.160      elad #include <sys/kauth.h>
    142  1.198   hannken #include <sys/fstrans.h>
    143  1.183        ad #include <sys/intr.h>
    144  1.183        ad #include <sys/cpu.h>
    145  1.208    simonb #include <sys/wapbl.h>
    146   1.40  christos 
    147   1.73       chs #include <uvm/uvm.h>
    148   1.71   thorpej 
    149   1.59      fvdl #include <miscfs/specfs/specdev.h>
    150   1.59      fvdl 
    151  1.100        pk #ifndef	BUFPAGES
    152  1.100        pk # define BUFPAGES 0
    153  1.100        pk #endif
    154  1.100        pk 
    155  1.100        pk #ifdef BUFCACHE
    156  1.100        pk # if (BUFCACHE < 5) || (BUFCACHE > 95)
    157  1.100        pk #  error BUFCACHE is not between 5 and 95
    158  1.100        pk # endif
    159  1.100        pk #else
    160  1.114       tls # define BUFCACHE 15
    161  1.100        pk #endif
    162  1.100        pk 
    163  1.217        ad u_int	nbuf;			/* desired number of buffer headers */
    164  1.100        pk u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    165  1.100        pk u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    166  1.100        pk 
    167  1.130      yamt /* Function prototypes */
    168  1.131      yamt struct bqueue;
    169  1.130      yamt 
    170  1.135     enami static void buf_setwm(void);
    171  1.130      yamt static int buf_trim(void);
    172  1.130      yamt static void *bufpool_page_alloc(struct pool *, int);
    173  1.130      yamt static void bufpool_page_free(struct pool *, void *);
    174  1.183        ad static buf_t *bio_doread(struct vnode *, daddr_t, int,
    175  1.160      elad     kauth_cred_t, int);
    176  1.183        ad static buf_t *getnewbuf(int, int, int);
    177  1.130      yamt static int buf_lotsfree(void);
    178  1.130      yamt static int buf_canrelease(void);
    179  1.183        ad static u_long buf_mempoolidx(u_long);
    180  1.183        ad static u_long buf_roundsize(u_long);
    181  1.183        ad static void *buf_malloc(size_t);
    182  1.170  christos static void buf_mrelease(void *, size_t);
    183  1.183        ad static void binsheadfree(buf_t *, struct bqueue *);
    184  1.183        ad static void binstailfree(buf_t *, struct bqueue *);
    185  1.130      yamt int count_lock_queue(void); /* XXX */
    186  1.130      yamt #ifdef DEBUG
    187  1.206    bouyer static int checkfreelist(buf_t *, struct bqueue *, int);
    188  1.130      yamt #endif
    189  1.183        ad static void biointr(void *);
    190  1.183        ad static void biodone2(buf_t *);
    191  1.183        ad static void bref(buf_t *);
    192  1.183        ad static void brele(buf_t *);
    193  1.215     pooka static void sysctl_kern_buf_setup(void);
    194  1.215     pooka static void sysctl_vm_buf_setup(void);
    195  1.100        pk 
    196   1.31       cgd /*
    197   1.31       cgd  * Definitions for the buffer hash lists.
    198   1.31       cgd  */
    199   1.31       cgd #define	BUFHASH(dvp, lbn)	\
    200   1.73       chs 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    201   1.31       cgd LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    202   1.31       cgd u_long	bufhash;
    203  1.189      matt struct bqueue bufqueues[BQUEUES];
    204  1.183        ad 
    205  1.183        ad static kcondvar_t needbuffer_cv;
    206   1.31       cgd 
    207   1.31       cgd /*
    208   1.87        pk  * Buffer queue lock.
    209   1.87        pk  */
    210  1.183        ad kmutex_t bufcache_lock;
    211  1.183        ad kmutex_t buffer_lock;
    212   1.87        pk 
    213  1.183        ad /* Software ISR for completed transfers. */
    214  1.183        ad static void *biodone_sih;
    215  1.153      yamt 
    216  1.183        ad /* Buffer pool for I/O buffers. */
    217  1.183        ad static pool_cache_t buf_cache;
    218  1.183        ad static pool_cache_t bufio_cache;
    219   1.65   thorpej 
    220  1.100        pk /* XXX - somewhat gross.. */
    221  1.100        pk #if MAXBSIZE == 0x2000
    222  1.158       tls #define NMEMPOOLS 5
    223  1.100        pk #elif MAXBSIZE == 0x4000
    224  1.158       tls #define NMEMPOOLS 6
    225  1.100        pk #elif MAXBSIZE == 0x8000
    226  1.158       tls #define NMEMPOOLS 7
    227  1.100        pk #else
    228  1.158       tls #define NMEMPOOLS 8
    229  1.100        pk #endif
    230  1.100        pk 
    231  1.158       tls #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    232  1.100        pk #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    233  1.100        pk #error update vfs_bio buffer memory parameters
    234  1.100        pk #endif
    235  1.100        pk 
    236  1.100        pk /* Buffer memory pools */
    237  1.101   thorpej static struct pool bmempools[NMEMPOOLS];
    238  1.100        pk 
    239  1.191      yamt static struct vm_map *buf_map;
    240  1.100        pk 
    241  1.100        pk /*
    242  1.100        pk  * Buffer memory pool allocator.
    243  1.100        pk  */
    244  1.101   thorpej static void *
    245  1.166      yamt bufpool_page_alloc(struct pool *pp, int flags)
    246  1.100        pk {
    247  1.111      yamt 
    248  1.144      yamt 	return (void *)uvm_km_alloc(buf_map,
    249  1.144      yamt 	    MAXBSIZE, MAXBSIZE,
    250  1.144      yamt 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    251  1.144      yamt 	    | UVM_KMF_WIRED);
    252  1.100        pk }
    253  1.100        pk 
    254  1.101   thorpej static void
    255  1.166      yamt bufpool_page_free(struct pool *pp, void *v)
    256  1.100        pk {
    257  1.144      yamt 
    258  1.144      yamt 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    259  1.100        pk }
    260  1.100        pk 
    261  1.101   thorpej static struct pool_allocator bufmempool_allocator = {
    262  1.162  christos 	.pa_alloc = bufpool_page_alloc,
    263  1.162  christos 	.pa_free = bufpool_page_free,
    264  1.162  christos 	.pa_pagesz = MAXBSIZE,
    265  1.100        pk };
    266  1.100        pk 
    267  1.100        pk /* Buffer memory management variables */
    268  1.183        ad u_long bufmem_valimit;
    269  1.183        ad u_long bufmem_hiwater;
    270  1.183        ad u_long bufmem_lowater;
    271  1.183        ad u_long bufmem;
    272  1.100        pk 
    273  1.100        pk /*
    274  1.100        pk  * MD code can call this to set a hard limit on the amount
    275  1.100        pk  * of virtual memory used by the buffer cache.
    276  1.100        pk  */
    277  1.101   thorpej int
    278  1.101   thorpej buf_setvalimit(vsize_t sz)
    279  1.100        pk {
    280  1.100        pk 
    281  1.100        pk 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    282  1.100        pk 	if (sz < NMEMPOOLS * MAXBSIZE)
    283  1.100        pk 		return EINVAL;
    284  1.100        pk 
    285  1.100        pk 	bufmem_valimit = sz;
    286  1.100        pk 	return 0;
    287  1.100        pk }
    288  1.100        pk 
    289  1.135     enami static void
    290  1.135     enami buf_setwm(void)
    291  1.135     enami {
    292  1.135     enami 
    293  1.135     enami 	bufmem_hiwater = buf_memcalc();
    294  1.135     enami 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    295  1.135     enami #define	BUFMEM_WMSHIFT	3
    296  1.135     enami #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    297  1.135     enami 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    298  1.135     enami 		/* Ensure a reasonable minimum value */
    299  1.135     enami 		bufmem_hiwater = BUFMEM_HIWMMIN;
    300  1.135     enami 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    301  1.135     enami }
    302  1.135     enami 
    303   1.99       dbj #ifdef DEBUG
    304   1.99       dbj int debug_verify_freelist = 0;
    305  1.131      yamt static int
    306  1.206    bouyer checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    307   1.99       dbj {
    308  1.183        ad 	buf_t *b;
    309  1.183        ad 
    310  1.183        ad 	if (!debug_verify_freelist)
    311  1.183        ad 		return 1;
    312  1.131      yamt 
    313  1.131      yamt 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    314  1.100        pk 		if (b == bp)
    315  1.206    bouyer 			return ison ? 1 : 0;
    316  1.100        pk 	}
    317  1.183        ad 
    318  1.206    bouyer 	return ison ? 0 : 1;
    319   1.99       dbj }
    320   1.99       dbj #endif
    321   1.99       dbj 
    322  1.131      yamt /*
    323  1.131      yamt  * Insq/Remq for the buffer hash lists.
    324  1.131      yamt  * Call with buffer queue locked.
    325  1.131      yamt  */
    326  1.183        ad static void
    327  1.183        ad binsheadfree(buf_t *bp, struct bqueue *dp)
    328  1.131      yamt {
    329  1.131      yamt 
    330  1.206    bouyer 	KASSERT(mutex_owned(&bufcache_lock));
    331  1.131      yamt 	KASSERT(bp->b_freelistindex == -1);
    332  1.131      yamt 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    333  1.131      yamt 	dp->bq_bytes += bp->b_bufsize;
    334  1.131      yamt 	bp->b_freelistindex = dp - bufqueues;
    335  1.131      yamt }
    336  1.131      yamt 
    337  1.183        ad static void
    338  1.183        ad binstailfree(buf_t *bp, struct bqueue *dp)
    339  1.131      yamt {
    340  1.131      yamt 
    341  1.206    bouyer 	KASSERT(mutex_owned(&bufcache_lock));
    342  1.131      yamt 	KASSERT(bp->b_freelistindex == -1);
    343  1.131      yamt 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    344  1.131      yamt 	dp->bq_bytes += bp->b_bufsize;
    345  1.131      yamt 	bp->b_freelistindex = dp - bufqueues;
    346  1.131      yamt }
    347  1.131      yamt 
    348   1.31       cgd void
    349  1.183        ad bremfree(buf_t *bp)
    350   1.31       cgd {
    351  1.131      yamt 	struct bqueue *dp;
    352  1.131      yamt 	int bqidx = bp->b_freelistindex;
    353   1.94      yamt 
    354  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
    355   1.31       cgd 
    356  1.131      yamt 	KASSERT(bqidx != -1);
    357  1.131      yamt 	dp = &bufqueues[bqidx];
    358  1.206    bouyer 	KDASSERT(checkfreelist(bp, dp, 1));
    359  1.131      yamt 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    360  1.131      yamt 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    361  1.131      yamt 	dp->bq_bytes -= bp->b_bufsize;
    362  1.183        ad 
    363  1.183        ad 	/* For the sysctl helper. */
    364  1.183        ad 	if (bp == dp->bq_marker)
    365  1.183        ad 		dp->bq_marker = NULL;
    366  1.183        ad 
    367  1.131      yamt #if defined(DIAGNOSTIC)
    368  1.131      yamt 	bp->b_freelistindex = -1;
    369  1.131      yamt #endif /* defined(DIAGNOSTIC) */
    370   1.31       cgd }
    371   1.31       cgd 
    372  1.183        ad /*
    373  1.183        ad  * Add a reference to an buffer structure that came from buf_cache.
    374  1.183        ad  */
    375  1.183        ad static inline void
    376  1.183        ad bref(buf_t *bp)
    377  1.183        ad {
    378  1.183        ad 
    379  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
    380  1.183        ad 	KASSERT(bp->b_refcnt > 0);
    381  1.183        ad 
    382  1.183        ad 	bp->b_refcnt++;
    383  1.183        ad }
    384  1.183        ad 
    385  1.183        ad /*
    386  1.183        ad  * Free an unused buffer structure that came from buf_cache.
    387  1.183        ad  */
    388  1.183        ad static inline void
    389  1.183        ad brele(buf_t *bp)
    390  1.183        ad {
    391  1.183        ad 
    392  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
    393  1.183        ad 	KASSERT(bp->b_refcnt > 0);
    394  1.183        ad 
    395  1.183        ad 	if (bp->b_refcnt-- == 1) {
    396  1.183        ad 		buf_destroy(bp);
    397  1.183        ad #ifdef DEBUG
    398  1.183        ad 		memset((char *)bp, 0, sizeof(*bp));
    399  1.183        ad #endif
    400  1.183        ad 		pool_cache_put(buf_cache, bp);
    401  1.183        ad 	}
    402  1.183        ad }
    403  1.183        ad 
    404  1.193      yamt /*
    405  1.193      yamt  * note that for some ports this is used by pmap bootstrap code to
    406  1.193      yamt  * determine kva size.
    407  1.193      yamt  */
    408  1.101   thorpej u_long
    409  1.101   thorpej buf_memcalc(void)
    410  1.100        pk {
    411  1.100        pk 	u_long n;
    412  1.100        pk 
    413  1.100        pk 	/*
    414  1.100        pk 	 * Determine the upper bound of memory to use for buffers.
    415  1.100        pk 	 *
    416  1.100        pk 	 *	- If bufpages is specified, use that as the number
    417  1.100        pk 	 *	  pages.
    418  1.100        pk 	 *
    419  1.100        pk 	 *	- Otherwise, use bufcache as the percentage of
    420  1.100        pk 	 *	  physical memory.
    421  1.100        pk 	 */
    422  1.100        pk 	if (bufpages != 0) {
    423  1.100        pk 		n = bufpages;
    424  1.100        pk 	} else {
    425  1.100        pk 		if (bufcache < 5) {
    426  1.100        pk 			printf("forcing bufcache %d -> 5", bufcache);
    427  1.100        pk 			bufcache = 5;
    428  1.100        pk 		}
    429  1.100        pk 		if (bufcache > 95) {
    430  1.100        pk 			printf("forcing bufcache %d -> 95", bufcache);
    431  1.100        pk 			bufcache = 95;
    432  1.100        pk 		}
    433  1.193      yamt 		n = calc_cache_size(buf_map, bufcache,
    434  1.193      yamt 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    435  1.193      yamt 		    / PAGE_SIZE;
    436  1.100        pk 	}
    437  1.100        pk 
    438  1.100        pk 	n <<= PAGE_SHIFT;
    439  1.100        pk 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    440  1.100        pk 		n = bufmem_valimit;
    441  1.100        pk 
    442  1.100        pk 	return (n);
    443  1.100        pk }
    444  1.100        pk 
    445   1.31       cgd /*
    446   1.31       cgd  * Initialize buffers and hash links for buffers.
    447   1.31       cgd  */
    448   1.31       cgd void
    449  1.101   thorpej bufinit(void)
    450   1.31       cgd {
    451  1.131      yamt 	struct bqueue *dp;
    452  1.127   thorpej 	int use_std;
    453  1.100        pk 	u_int i;
    454  1.100        pk 
    455  1.183        ad 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    456  1.183        ad 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    457  1.183        ad 	cv_init(&needbuffer_cv, "needbuf");
    458  1.183        ad 
    459  1.100        pk 	if (bufmem_valimit != 0) {
    460  1.100        pk 		vaddr_t minaddr = 0, maxaddr;
    461  1.100        pk 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    462  1.169   thorpej 					  bufmem_valimit, 0, false, 0);
    463  1.100        pk 		if (buf_map == NULL)
    464  1.100        pk 			panic("bufinit: cannot allocate submap");
    465  1.100        pk 	} else
    466  1.100        pk 		buf_map = kernel_map;
    467   1.65   thorpej 
    468  1.192      yamt 	/*
    469  1.192      yamt 	 * Initialize buffer cache memory parameters.
    470  1.192      yamt 	 */
    471  1.192      yamt 	bufmem = 0;
    472  1.192      yamt 	buf_setwm();
    473  1.192      yamt 
    474  1.100        pk 	/* On "small" machines use small pool page sizes where possible */
    475  1.127   thorpej 	use_std = (physmem < atop(16*1024*1024));
    476  1.127   thorpej 
    477  1.127   thorpej 	/*
    478  1.127   thorpej 	 * Also use them on systems that can map the pool pages using
    479  1.127   thorpej 	 * a direct-mapped segment.
    480  1.127   thorpej 	 */
    481  1.127   thorpej #ifdef PMAP_MAP_POOLPAGE
    482  1.127   thorpej 	use_std = 1;
    483  1.127   thorpej #endif
    484  1.100        pk 
    485  1.183        ad 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    486  1.183        ad 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    487  1.183        ad 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    488  1.183        ad 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    489  1.176     pooka 
    490  1.161      yamt 	bufmempool_allocator.pa_backingmap = buf_map;
    491  1.100        pk 	for (i = 0; i < NMEMPOOLS; i++) {
    492  1.100        pk 		struct pool_allocator *pa;
    493  1.100        pk 		struct pool *pp = &bmempools[i];
    494  1.100        pk 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    495  1.197        ad 		char *name = kmem_alloc(8, KM_SLEEP);
    496  1.165  christos 		if (__predict_true(size >= 1024))
    497  1.165  christos 			(void)snprintf(name, 8, "buf%dk", size / 1024);
    498  1.165  christos 		else
    499  1.165  christos 			(void)snprintf(name, 8, "buf%db", size);
    500  1.127   thorpej 		pa = (size <= PAGE_SIZE && use_std)
    501  1.100        pk 			? &pool_allocator_nointr
    502  1.100        pk 			: &bufmempool_allocator;
    503  1.171        ad 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    504  1.100        pk 		pool_setlowat(pp, 1);
    505  1.126   thorpej 		pool_sethiwat(pp, 1);
    506  1.100        pk 	}
    507  1.100        pk 
    508  1.100        pk 	/* Initialize the buffer queues */
    509  1.131      yamt 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    510  1.131      yamt 		TAILQ_INIT(&dp->bq_queue);
    511  1.131      yamt 		dp->bq_bytes = 0;
    512  1.131      yamt 	}
    513  1.100        pk 
    514  1.100        pk 	/*
    515  1.100        pk 	 * Estimate hash table size based on the amount of memory we
    516  1.100        pk 	 * intend to use for the buffer cache. The average buffer
    517  1.100        pk 	 * size is dependent on our clients (i.e. filesystems).
    518  1.100        pk 	 *
    519  1.100        pk 	 * For now, use an empirical 3K per buffer.
    520  1.100        pk 	 */
    521  1.100        pk 	nbuf = (bufmem_hiwater / 1024) / 3;
    522  1.197        ad 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    523  1.215     pooka 
    524  1.215     pooka 	sysctl_kern_buf_setup();
    525  1.215     pooka 	sysctl_vm_buf_setup();
    526  1.100        pk }
    527  1.100        pk 
    528  1.183        ad void
    529  1.183        ad bufinit2(void)
    530  1.183        ad {
    531  1.183        ad 
    532  1.183        ad 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    533  1.183        ad 	    NULL);
    534  1.183        ad 	if (biodone_sih == NULL)
    535  1.183        ad 		panic("bufinit2: can't establish soft interrupt");
    536  1.183        ad }
    537  1.183        ad 
    538  1.100        pk static int
    539  1.100        pk buf_lotsfree(void)
    540  1.100        pk {
    541  1.114       tls 	int try, thresh;
    542  1.128   hannken 
    543  1.122    simonb 	/* Always allocate if less than the low water mark. */
    544  1.122    simonb 	if (bufmem < bufmem_lowater)
    545  1.114       tls 		return 1;
    546  1.142     perry 
    547  1.122    simonb 	/* Never allocate if greater than the high water mark. */
    548  1.122    simonb 	if (bufmem > bufmem_hiwater)
    549  1.122    simonb 		return 0;
    550  1.114       tls 
    551  1.115       tls 	/* If there's anything on the AGE list, it should be eaten. */
    552  1.131      yamt 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    553  1.115       tls 		return 0;
    554  1.115       tls 
    555  1.122    simonb 	/*
    556  1.122    simonb 	 * The probabily of getting a new allocation is inversely
    557  1.122    simonb 	 * proportional to the current size of the cache, using
    558  1.122    simonb 	 * a granularity of 16 steps.
    559  1.122    simonb 	 */
    560  1.114       tls 	try = random() & 0x0000000fL;
    561  1.114       tls 
    562  1.122    simonb 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    563  1.136     enami 	thresh = (bufmem - bufmem_lowater) /
    564  1.136     enami 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    565  1.114       tls 
    566  1.136     enami 	if (try >= thresh)
    567  1.114       tls 		return 1;
    568  1.114       tls 
    569  1.122    simonb 	/* Otherwise don't allocate. */
    570  1.114       tls 	return 0;
    571  1.100        pk }
    572  1.100        pk 
    573  1.100        pk /*
    574  1.116      yamt  * Return estimate of bytes we think need to be
    575  1.100        pk  * released to help resolve low memory conditions.
    576  1.116      yamt  *
    577  1.183        ad  * => called with bufcache_lock held.
    578  1.100        pk  */
    579  1.100        pk static int
    580  1.100        pk buf_canrelease(void)
    581  1.100        pk {
    582  1.115       tls 	int pagedemand, ninvalid = 0;
    583  1.115       tls 
    584  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
    585  1.116      yamt 
    586  1.118       dan 	if (bufmem < bufmem_lowater)
    587  1.118       dan 		return 0;
    588  1.118       dan 
    589  1.141       tls 	if (bufmem > bufmem_hiwater)
    590  1.141       tls 		return bufmem - bufmem_hiwater;
    591  1.141       tls 
    592  1.131      yamt 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    593  1.100        pk 
    594  1.115       tls 	pagedemand = uvmexp.freetarg - uvmexp.free;
    595  1.115       tls 	if (pagedemand < 0)
    596  1.115       tls 		return ninvalid;
    597  1.115       tls 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    598  1.115       tls 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    599  1.100        pk }
    600  1.100        pk 
    601  1.100        pk /*
    602  1.100        pk  * Buffer memory allocation helper functions
    603  1.100        pk  */
    604  1.183        ad static u_long
    605  1.101   thorpej buf_mempoolidx(u_long size)
    606  1.100        pk {
    607  1.100        pk 	u_int n = 0;
    608  1.100        pk 
    609  1.100        pk 	size -= 1;
    610  1.100        pk 	size >>= MEMPOOL_INDEX_OFFSET;
    611  1.100        pk 	while (size) {
    612  1.100        pk 		size >>= 1;
    613  1.100        pk 		n += 1;
    614  1.100        pk 	}
    615  1.100        pk 	if (n >= NMEMPOOLS)
    616  1.100        pk 		panic("buf mem pool index %d", n);
    617  1.100        pk 	return n;
    618  1.100        pk }
    619  1.100        pk 
    620  1.183        ad static u_long
    621  1.101   thorpej buf_roundsize(u_long size)
    622  1.100        pk {
    623  1.100        pk 	/* Round up to nearest power of 2 */
    624  1.100        pk 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    625  1.100        pk }
    626  1.100        pk 
    627  1.183        ad static void *
    628  1.101   thorpej buf_malloc(size_t size)
    629  1.100        pk {
    630  1.100        pk 	u_int n = buf_mempoolidx(size);
    631  1.170  christos 	void *addr;
    632  1.100        pk 
    633  1.100        pk 	while (1) {
    634  1.100        pk 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    635  1.100        pk 		if (addr != NULL)
    636  1.100        pk 			break;
    637  1.100        pk 
    638  1.100        pk 		/* No memory, see if we can free some. If so, try again */
    639  1.183        ad 		mutex_enter(&bufcache_lock);
    640  1.183        ad 		if (buf_drain(1) > 0) {
    641  1.183        ad 			mutex_exit(&bufcache_lock);
    642  1.100        pk 			continue;
    643  1.183        ad 		}
    644  1.183        ad 
    645  1.183        ad 		if (curlwp == uvm.pagedaemon_lwp) {
    646  1.183        ad 			mutex_exit(&bufcache_lock);
    647  1.183        ad 			return NULL;
    648  1.183        ad 		}
    649  1.100        pk 
    650  1.100        pk 		/* Wait for buffers to arrive on the LRU queue */
    651  1.183        ad 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    652  1.183        ad 		mutex_exit(&bufcache_lock);
    653   1.31       cgd 	}
    654  1.100        pk 
    655  1.100        pk 	return addr;
    656  1.100        pk }
    657  1.100        pk 
    658  1.101   thorpej static void
    659  1.170  christos buf_mrelease(void *addr, size_t size)
    660  1.100        pk {
    661  1.100        pk 
    662  1.100        pk 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    663   1.31       cgd }
    664   1.31       cgd 
    665  1.130      yamt /*
    666  1.130      yamt  * bread()/breadn() helper.
    667  1.130      yamt  */
    668  1.183        ad static buf_t *
    669  1.166      yamt bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    670  1.166      yamt     int async)
    671   1.31       cgd {
    672  1.183        ad 	buf_t *bp;
    673  1.123  christos 	struct mount *mp;
    674   1.31       cgd 
    675   1.34   mycroft 	bp = getblk(vp, blkno, size, 0, 0);
    676   1.31       cgd 
    677   1.86   thorpej #ifdef DIAGNOSTIC
    678   1.86   thorpej 	if (bp == NULL) {
    679   1.86   thorpej 		panic("bio_doread: no such buf");
    680   1.86   thorpej 	}
    681   1.86   thorpej #endif
    682   1.86   thorpej 
    683   1.31       cgd 	/*
    684   1.34   mycroft 	 * If buffer does not have data valid, start a read.
    685  1.183        ad 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    686   1.87        pk 	 * Therefore, it's valid if its I/O has completed or been delayed.
    687   1.31       cgd 	 */
    688  1.183        ad 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    689   1.73       chs 		/* Start I/O for the buffer. */
    690   1.34   mycroft 		SET(bp->b_flags, B_READ | async);
    691  1.108      yamt 		if (async)
    692  1.108      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    693  1.108      yamt 		else
    694  1.108      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    695  1.112   hannken 		VOP_STRATEGY(vp, bp);
    696   1.31       cgd 
    697   1.34   mycroft 		/* Pay for the read. */
    698  1.194        ad 		curlwp->l_ru.ru_inblock++;
    699  1.183        ad 	} else if (async)
    700  1.179        ad 		brelse(bp, 0);
    701   1.31       cgd 
    702  1.124      yamt 	if (vp->v_type == VBLK)
    703  1.124      yamt 		mp = vp->v_specmountpoint;
    704  1.124      yamt 	else
    705  1.124      yamt 		mp = vp->v_mount;
    706  1.123  christos 
    707  1.123  christos 	/*
    708  1.123  christos 	 * Collect statistics on synchronous and asynchronous reads.
    709  1.123  christos 	 * Reads from block devices are charged to their associated
    710  1.123  christos 	 * filesystem (if any).
    711  1.123  christos 	 */
    712  1.123  christos 	if (mp != NULL) {
    713  1.123  christos 		if (async == 0)
    714  1.123  christos 			mp->mnt_stat.f_syncreads++;
    715  1.123  christos 		else
    716  1.123  christos 			mp->mnt_stat.f_asyncreads++;
    717  1.123  christos 	}
    718  1.123  christos 
    719   1.34   mycroft 	return (bp);
    720   1.34   mycroft }
    721   1.34   mycroft 
    722   1.34   mycroft /*
    723   1.34   mycroft  * Read a disk block.
    724   1.34   mycroft  * This algorithm described in Bach (p.54).
    725   1.34   mycroft  */
    726   1.40  christos int
    727  1.160      elad bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    728  1.198   hannken     int flags, buf_t **bpp)
    729   1.34   mycroft {
    730  1.183        ad 	buf_t *bp;
    731  1.198   hannken 	int error;
    732   1.34   mycroft 
    733   1.34   mycroft 	/* Get buffer for block. */
    734   1.34   mycroft 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    735   1.31       cgd 
    736   1.80       chs 	/* Wait for the read to complete, and return result. */
    737  1.198   hannken 	error = biowait(bp);
    738  1.219     pooka 	if (error == 0 && (flags & B_MODIFY) != 0)
    739  1.198   hannken 		error = fscow_run(bp, true);
    740  1.208    simonb 
    741  1.198   hannken 	return error;
    742   1.31       cgd }
    743   1.31       cgd 
    744   1.31       cgd /*
    745   1.31       cgd  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    746   1.31       cgd  * Trivial modification to the breada algorithm presented in Bach (p.55).
    747   1.31       cgd  */
    748   1.40  christos int
    749  1.101   thorpej breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    750  1.198   hannken     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
    751   1.31       cgd {
    752  1.183        ad 	buf_t *bp;
    753  1.198   hannken 	int error, i;
    754   1.31       cgd 
    755   1.34   mycroft 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    756   1.31       cgd 
    757   1.31       cgd 	/*
    758   1.31       cgd 	 * For each of the read-ahead blocks, start a read, if necessary.
    759   1.31       cgd 	 */
    760  1.183        ad 	mutex_enter(&bufcache_lock);
    761   1.31       cgd 	for (i = 0; i < nrablks; i++) {
    762   1.31       cgd 		/* If it's in the cache, just go on to next one. */
    763   1.31       cgd 		if (incore(vp, rablks[i]))
    764   1.31       cgd 			continue;
    765   1.31       cgd 
    766   1.31       cgd 		/* Get a buffer for the read-ahead block */
    767  1.183        ad 		mutex_exit(&bufcache_lock);
    768   1.34   mycroft 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    769  1.183        ad 		mutex_enter(&bufcache_lock);
    770   1.31       cgd 	}
    771  1.183        ad 	mutex_exit(&bufcache_lock);
    772   1.31       cgd 
    773   1.80       chs 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    774  1.198   hannken 	error = biowait(bp);
    775  1.198   hannken 	if (error == 0 && (flags & B_MODIFY) != 0)
    776  1.198   hannken 		error = fscow_run(bp, true);
    777  1.198   hannken 	return error;
    778   1.31       cgd }
    779   1.31       cgd 
    780   1.31       cgd /*
    781   1.31       cgd  * Block write.  Described in Bach (p.56)
    782   1.31       cgd  */
    783   1.40  christos int
    784  1.183        ad bwrite(buf_t *bp)
    785   1.31       cgd {
    786  1.183        ad 	int rv, sync, wasdelayed;
    787   1.59      fvdl 	struct vnode *vp;
    788   1.59      fvdl 	struct mount *mp;
    789   1.31       cgd 
    790  1.183        ad 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    791  1.203        ad 	KASSERT(!cv_has_waiters(&bp->b_done));
    792   1.87        pk 
    793   1.76       chs 	vp = bp->b_vp;
    794   1.76       chs 	if (vp != NULL) {
    795  1.183        ad 		KASSERT(bp->b_objlock == &vp->v_interlock);
    796   1.76       chs 		if (vp->v_type == VBLK)
    797   1.76       chs 			mp = vp->v_specmountpoint;
    798   1.76       chs 		else
    799   1.76       chs 			mp = vp->v_mount;
    800   1.76       chs 	} else {
    801   1.76       chs 		mp = NULL;
    802   1.76       chs 	}
    803   1.76       chs 
    804  1.208    simonb 	if (mp && mp->mnt_wapbl) {
    805  1.208    simonb 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    806  1.208    simonb 			bdwrite(bp);
    807  1.208    simonb 			return 0;
    808  1.208    simonb 		}
    809  1.208    simonb 	}
    810  1.208    simonb 
    811   1.38       cgd 	/*
    812   1.38       cgd 	 * Remember buffer type, to switch on it later.  If the write was
    813   1.38       cgd 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    814  1.142     perry 	 * convert it to a delayed write.
    815   1.38       cgd 	 * XXX note that this relies on delayed tape writes being converted
    816   1.38       cgd 	 * to async, not sync writes (which is safe, but ugly).
    817   1.38       cgd 	 */
    818   1.31       cgd 	sync = !ISSET(bp->b_flags, B_ASYNC);
    819   1.76       chs 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    820   1.37       cgd 		bdwrite(bp);
    821   1.37       cgd 		return (0);
    822   1.37       cgd 	}
    823   1.46   mycroft 
    824   1.59      fvdl 	/*
    825   1.59      fvdl 	 * Collect statistics on synchronous and asynchronous writes.
    826   1.59      fvdl 	 * Writes to block devices are charged to their associated
    827   1.59      fvdl 	 * filesystem (if any).
    828   1.59      fvdl 	 */
    829   1.76       chs 	if (mp != NULL) {
    830   1.76       chs 		if (sync)
    831   1.76       chs 			mp->mnt_stat.f_syncwrites++;
    832   1.59      fvdl 		else
    833   1.76       chs 			mp->mnt_stat.f_asyncwrites++;
    834   1.59      fvdl 	}
    835   1.59      fvdl 
    836   1.46   mycroft 	/*
    837   1.46   mycroft 	 * Pay for the I/O operation and make sure the buf is on the correct
    838   1.46   mycroft 	 * vnode queue.
    839   1.46   mycroft 	 */
    840  1.184        ad 	bp->b_error = 0;
    841  1.184        ad 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    842  1.183        ad 	CLR(bp->b_flags, B_READ);
    843  1.184        ad 	if (wasdelayed) {
    844  1.184        ad 		mutex_enter(&bufcache_lock);
    845  1.184        ad 		mutex_enter(bp->b_objlock);
    846  1.184        ad 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    847   1.46   mycroft 		reassignbuf(bp, bp->b_vp);
    848  1.184        ad 		mutex_exit(&bufcache_lock);
    849  1.184        ad 	} else {
    850  1.194        ad 		curlwp->l_ru.ru_oublock++;
    851  1.184        ad 		mutex_enter(bp->b_objlock);
    852  1.184        ad 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    853  1.184        ad 	}
    854  1.183        ad 	if (vp != NULL)
    855  1.183        ad 		vp->v_numoutput++;
    856  1.183        ad 	mutex_exit(bp->b_objlock);
    857   1.32   mycroft 
    858  1.183        ad 	/* Initiate disk write. */
    859  1.108      yamt 	if (sync)
    860  1.108      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    861  1.108      yamt 	else
    862  1.108      yamt 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    863  1.108      yamt 
    864  1.112   hannken 	VOP_STRATEGY(vp, bp);
    865   1.31       cgd 
    866   1.34   mycroft 	if (sync) {
    867   1.46   mycroft 		/* If I/O was synchronous, wait for it to complete. */
    868   1.31       cgd 		rv = biowait(bp);
    869   1.31       cgd 
    870   1.34   mycroft 		/* Release the buffer. */
    871  1.179        ad 		brelse(bp, 0);
    872   1.34   mycroft 
    873   1.34   mycroft 		return (rv);
    874   1.34   mycroft 	} else {
    875   1.34   mycroft 		return (0);
    876   1.31       cgd 	}
    877   1.31       cgd }
    878   1.31       cgd 
    879   1.31       cgd int
    880  1.101   thorpej vn_bwrite(void *v)
    881   1.31       cgd {
    882   1.40  christos 	struct vop_bwrite_args *ap = v;
    883   1.34   mycroft 
    884   1.31       cgd 	return (bwrite(ap->a_bp));
    885   1.31       cgd }
    886   1.31       cgd 
    887   1.31       cgd /*
    888   1.31       cgd  * Delayed write.
    889   1.31       cgd  *
    890   1.31       cgd  * The buffer is marked dirty, but is not queued for I/O.
    891   1.31       cgd  * This routine should be used when the buffer is expected
    892   1.31       cgd  * to be modified again soon, typically a small write that
    893   1.31       cgd  * partially fills a buffer.
    894   1.31       cgd  *
    895   1.31       cgd  * NB: magnetic tapes cannot be delayed; they must be
    896   1.31       cgd  * written in the order that the writes are requested.
    897   1.31       cgd  *
    898   1.31       cgd  * Described in Leffler, et al. (pp. 208-213).
    899   1.31       cgd  */
    900   1.31       cgd void
    901  1.183        ad bdwrite(buf_t *bp)
    902   1.31       cgd {
    903  1.183        ad 
    904  1.198   hannken 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    905  1.207   hannken 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    906  1.183        ad 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    907  1.203        ad 	KASSERT(!cv_has_waiters(&bp->b_done));
    908   1.31       cgd 
    909   1.46   mycroft 	/* If this is a tape block, write the block now. */
    910  1.173        ad 	if (bdev_type(bp->b_dev) == D_TAPE) {
    911   1.90        pk 		bawrite(bp);
    912   1.90        pk 		return;
    913   1.46   mycroft 	}
    914   1.46   mycroft 
    915  1.208    simonb 	if (wapbl_vphaswapbl(bp->b_vp)) {
    916  1.208    simonb 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    917  1.208    simonb 
    918  1.208    simonb 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    919  1.208    simonb 			WAPBL_ADD_BUF(mp, bp);
    920  1.208    simonb 		}
    921  1.208    simonb 	}
    922  1.208    simonb 
    923   1.31       cgd 	/*
    924   1.31       cgd 	 * If the block hasn't been seen before:
    925   1.31       cgd 	 *	(1) Mark it as having been seen,
    926   1.45        pk 	 *	(2) Charge for the write,
    927   1.45        pk 	 *	(3) Make sure it's on its vnode's correct block list.
    928   1.31       cgd 	 */
    929  1.183        ad 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
    930   1.97       dbj 
    931  1.183        ad 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    932  1.184        ad 		mutex_enter(&bufcache_lock);
    933  1.184        ad 		mutex_enter(bp->b_objlock);
    934  1.183        ad 		SET(bp->b_oflags, BO_DELWRI);
    935  1.194        ad 		curlwp->l_ru.ru_oublock++;
    936   1.31       cgd 		reassignbuf(bp, bp->b_vp);
    937  1.184        ad 		mutex_exit(&bufcache_lock);
    938  1.184        ad 	} else {
    939  1.184        ad 		mutex_enter(bp->b_objlock);
    940   1.31       cgd 	}
    941   1.31       cgd 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    942  1.183        ad 	CLR(bp->b_oflags, BO_DONE);
    943  1.183        ad 	mutex_exit(bp->b_objlock);
    944   1.60      fvdl 
    945  1.179        ad 	brelse(bp, 0);
    946   1.31       cgd }
    947   1.31       cgd 
    948   1.31       cgd /*
    949   1.31       cgd  * Asynchronous block write; just an asynchronous bwrite().
    950   1.31       cgd  */
    951   1.31       cgd void
    952  1.183        ad bawrite(buf_t *bp)
    953   1.31       cgd {
    954   1.31       cgd 
    955  1.183        ad 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    956   1.87        pk 
    957   1.31       cgd 	SET(bp->b_flags, B_ASYNC);
    958   1.31       cgd 	VOP_BWRITE(bp);
    959   1.31       cgd }
    960   1.31       cgd 
    961   1.31       cgd /*
    962   1.31       cgd  * Release a buffer on to the free lists.
    963   1.31       cgd  * Described in Bach (p. 46).
    964   1.31       cgd  */
    965   1.31       cgd void
    966  1.183        ad brelsel(buf_t *bp, int set)
    967   1.31       cgd {
    968  1.131      yamt 	struct bqueue *bufq;
    969  1.183        ad 	struct vnode *vp;
    970   1.31       cgd 
    971  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
    972  1.202        ad 	KASSERT(!cv_has_waiters(&bp->b_done));
    973  1.202        ad 	KASSERT(bp->b_refcnt > 0);
    974  1.202        ad 
    975  1.183        ad 	SET(bp->b_cflags, set);
    976  1.179        ad 
    977  1.183        ad 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    978  1.183        ad 	KASSERT(bp->b_iodone == NULL);
    979   1.87        pk 
    980   1.31       cgd 	/* Wake up any processes waiting for any buffer to become free. */
    981  1.183        ad 	cv_signal(&needbuffer_cv);
    982   1.31       cgd 
    983  1.183        ad 	/* Wake up any proceeses waiting for _this_ buffer to become */
    984  1.199        ad 	if (ISSET(bp->b_cflags, BC_WANTED))
    985  1.183        ad 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    986   1.31       cgd 
    987   1.31       cgd 	/*
    988   1.31       cgd 	 * Determine which queue the buffer should be on, then put it there.
    989   1.31       cgd 	 */
    990   1.31       cgd 
    991   1.31       cgd 	/* If it's locked, don't report an error; try again later. */
    992  1.187        ad 	if (ISSET(bp->b_flags, B_LOCKED))
    993  1.174        ad 		bp->b_error = 0;
    994   1.31       cgd 
    995   1.31       cgd 	/* If it's not cacheable, or an error, mark it invalid. */
    996  1.183        ad 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
    997  1.183        ad 		SET(bp->b_cflags, BC_INVAL);
    998   1.31       cgd 
    999  1.183        ad 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1000   1.50   mycroft 		/*
   1001   1.50   mycroft 		 * This is a delayed write buffer that was just flushed to
   1002   1.50   mycroft 		 * disk.  It is still on the LRU queue.  If it's become
   1003   1.50   mycroft 		 * invalid, then we need to move it to a different queue;
   1004   1.50   mycroft 		 * otherwise leave it in its current position.
   1005   1.50   mycroft 		 */
   1006  1.183        ad 		CLR(bp->b_cflags, BC_VFLUSH);
   1007  1.187        ad 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1008  1.187        ad 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1009  1.206    bouyer 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1010   1.50   mycroft 			goto already_queued;
   1011   1.99       dbj 		} else {
   1012   1.50   mycroft 			bremfree(bp);
   1013   1.99       dbj 		}
   1014   1.50   mycroft 	}
   1015   1.99       dbj 
   1016  1.206    bouyer 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1017  1.206    bouyer 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1018  1.206    bouyer 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1019   1.50   mycroft 
   1020  1.183        ad 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1021   1.31       cgd 		/*
   1022   1.31       cgd 		 * If it's invalid or empty, dissociate it from its vnode
   1023   1.31       cgd 		 * and put on the head of the appropriate queue.
   1024   1.31       cgd 		 */
   1025  1.208    simonb 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1026  1.208    simonb 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1027  1.208    simonb 				struct mount *mp = wapbl_vptomp(vp);
   1028  1.208    simonb 
   1029  1.208    simonb 				KASSERT(bp->b_iodone
   1030  1.208    simonb 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1031  1.208    simonb 				WAPBL_REMOVE_BUF(mp, bp);
   1032  1.208    simonb 			}
   1033  1.208    simonb 		}
   1034  1.208    simonb 
   1035  1.183        ad 		mutex_enter(bp->b_objlock);
   1036  1.183        ad 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1037  1.183        ad 		if ((vp = bp->b_vp) != NULL) {
   1038  1.183        ad 			KASSERT(bp->b_objlock == &vp->v_interlock);
   1039   1.59      fvdl 			reassignbuf(bp, bp->b_vp);
   1040   1.31       cgd 			brelvp(bp);
   1041  1.183        ad 			mutex_exit(&vp->v_interlock);
   1042  1.183        ad 		} else {
   1043  1.183        ad 			KASSERT(bp->b_objlock == &buffer_lock);
   1044  1.183        ad 			mutex_exit(bp->b_objlock);
   1045   1.59      fvdl 		}
   1046  1.183        ad 
   1047   1.31       cgd 		if (bp->b_bufsize <= 0)
   1048   1.31       cgd 			/* no data */
   1049  1.100        pk 			goto already_queued;
   1050   1.31       cgd 		else
   1051   1.31       cgd 			/* invalid data */
   1052   1.31       cgd 			bufq = &bufqueues[BQ_AGE];
   1053   1.31       cgd 		binsheadfree(bp, bufq);
   1054  1.183        ad 	} else  {
   1055   1.31       cgd 		/*
   1056   1.31       cgd 		 * It has valid data.  Put it on the end of the appropriate
   1057   1.31       cgd 		 * queue, so that it'll stick around for as long as possible.
   1058   1.67      fvdl 		 * If buf is AGE, but has dependencies, must put it on last
   1059   1.67      fvdl 		 * bufqueue to be scanned, ie LRU. This protects against the
   1060   1.67      fvdl 		 * livelock where BQ_AGE only has buffers with dependencies,
   1061   1.67      fvdl 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1062   1.31       cgd 		 */
   1063  1.187        ad 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1064   1.31       cgd 			/* locked in core */
   1065   1.31       cgd 			bufq = &bufqueues[BQ_LOCKED];
   1066  1.183        ad 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1067   1.31       cgd 			/* valid data */
   1068   1.31       cgd 			bufq = &bufqueues[BQ_LRU];
   1069  1.183        ad 		} else {
   1070   1.67      fvdl 			/* stale but valid data */
   1071  1.216        ad 			bufq = &bufqueues[BQ_AGE];
   1072   1.67      fvdl 		}
   1073   1.31       cgd 		binstailfree(bp, bufq);
   1074   1.31       cgd 	}
   1075   1.50   mycroft already_queued:
   1076   1.31       cgd 	/* Unlock the buffer. */
   1077  1.183        ad 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1078  1.183        ad 	CLR(bp->b_flags, B_ASYNC);
   1079  1.199        ad 	cv_broadcast(&bp->b_busy);
   1080   1.31       cgd 
   1081  1.183        ad 	if (bp->b_bufsize <= 0)
   1082  1.183        ad 		brele(bp);
   1083  1.183        ad }
   1084  1.183        ad 
   1085  1.183        ad void
   1086  1.183        ad brelse(buf_t *bp, int set)
   1087  1.183        ad {
   1088  1.183        ad 
   1089  1.183        ad 	mutex_enter(&bufcache_lock);
   1090  1.183        ad 	brelsel(bp, set);
   1091  1.183        ad 	mutex_exit(&bufcache_lock);
   1092   1.31       cgd }
   1093   1.31       cgd 
   1094   1.31       cgd /*
   1095   1.31       cgd  * Determine if a block is in the cache.
   1096   1.31       cgd  * Just look on what would be its hash chain.  If it's there, return
   1097   1.31       cgd  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1098   1.31       cgd  * we normally don't return the buffer, unless the caller explicitly
   1099   1.31       cgd  * wants us to.
   1100   1.31       cgd  */
   1101  1.183        ad buf_t *
   1102  1.101   thorpej incore(struct vnode *vp, daddr_t blkno)
   1103   1.31       cgd {
   1104  1.183        ad 	buf_t *bp;
   1105  1.183        ad 
   1106  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
   1107   1.31       cgd 
   1108   1.31       cgd 	/* Search hash chain */
   1109   1.84      matt 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1110   1.31       cgd 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1111  1.183        ad 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1112  1.183        ad 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
   1113  1.183        ad 		    	return (bp);
   1114  1.183        ad 		}
   1115   1.31       cgd 	}
   1116   1.31       cgd 
   1117   1.73       chs 	return (NULL);
   1118   1.31       cgd }
   1119   1.31       cgd 
   1120   1.31       cgd /*
   1121   1.31       cgd  * Get a block of requested size that is associated with
   1122   1.31       cgd  * a given vnode and block offset. If it is found in the
   1123   1.31       cgd  * block cache, mark it as having been found, make it busy
   1124   1.31       cgd  * and return it. Otherwise, return an empty block of the
   1125   1.31       cgd  * correct size. It is up to the caller to insure that the
   1126   1.31       cgd  * cached blocks be of the correct size.
   1127   1.31       cgd  */
   1128  1.183        ad buf_t *
   1129  1.101   thorpej getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1130   1.31       cgd {
   1131  1.183        ad 	int err, preserve;
   1132  1.183        ad 	buf_t *bp;
   1133  1.183        ad 
   1134  1.183        ad 	mutex_enter(&bufcache_lock);
   1135  1.183        ad  loop:
   1136   1.73       chs 	bp = incore(vp, blkno);
   1137   1.73       chs 	if (bp != NULL) {
   1138  1.188        ad 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1139  1.183        ad 		if (err != 0) {
   1140  1.183        ad 			if (err == EPASSTHROUGH)
   1141  1.183        ad 				goto loop;
   1142  1.183        ad 			mutex_exit(&bufcache_lock);
   1143  1.183        ad 			return (NULL);
   1144   1.31       cgd 		}
   1145  1.203        ad 		KASSERT(!cv_has_waiters(&bp->b_done));
   1146   1.57   mycroft #ifdef DIAGNOSTIC
   1147  1.183        ad 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1148   1.78       chs 		    bp->b_bcount < size && vp->v_type != VBLK)
   1149   1.73       chs 			panic("getblk: block size invariant failed");
   1150   1.57   mycroft #endif
   1151   1.73       chs 		bremfree(bp);
   1152  1.100        pk 		preserve = 1;
   1153   1.73       chs 	} else {
   1154  1.183        ad 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1155  1.183        ad 			goto loop;
   1156  1.183        ad 
   1157  1.183        ad 		if (incore(vp, blkno) != NULL) {
   1158  1.183        ad 			/* The block has come into memory in the meantime. */
   1159  1.183        ad 			brelsel(bp, 0);
   1160  1.183        ad 			goto loop;
   1161   1.87        pk 		}
   1162   1.73       chs 
   1163  1.183        ad 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1164   1.64   thorpej 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1165  1.183        ad 		mutex_enter(&vp->v_interlock);
   1166   1.31       cgd 		bgetvp(vp, bp);
   1167  1.183        ad 		mutex_exit(&vp->v_interlock);
   1168  1.100        pk 		preserve = 0;
   1169   1.31       cgd 	}
   1170  1.183        ad 	mutex_exit(&bufcache_lock);
   1171  1.183        ad 
   1172   1.96      yamt 	/*
   1173  1.187        ad 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1174   1.96      yamt 	 * if we re-size buffers here.
   1175   1.96      yamt 	 */
   1176  1.187        ad 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1177   1.96      yamt 		KASSERT(bp->b_bufsize >= size);
   1178   1.96      yamt 	} else {
   1179  1.183        ad 		if (allocbuf(bp, size, preserve)) {
   1180  1.183        ad 			mutex_enter(&bufcache_lock);
   1181  1.183        ad 			LIST_REMOVE(bp, b_hash);
   1182  1.183        ad 			mutex_exit(&bufcache_lock);
   1183  1.183        ad 			brelse(bp, BC_INVAL);
   1184  1.183        ad 			return NULL;
   1185  1.183        ad 		}
   1186   1.96      yamt 	}
   1187  1.108      yamt 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1188   1.31       cgd 	return (bp);
   1189   1.31       cgd }
   1190   1.31       cgd 
   1191   1.31       cgd /*
   1192   1.31       cgd  * Get an empty, disassociated buffer of given size.
   1193   1.31       cgd  */
   1194  1.183        ad buf_t *
   1195  1.101   thorpej geteblk(int size)
   1196   1.31       cgd {
   1197  1.183        ad 	buf_t *bp;
   1198  1.183        ad 	int error;
   1199   1.31       cgd 
   1200  1.183        ad 	mutex_enter(&bufcache_lock);
   1201  1.183        ad 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1202   1.31       cgd 		;
   1203   1.87        pk 
   1204  1.183        ad 	SET(bp->b_cflags, BC_INVAL);
   1205  1.183        ad 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1206  1.183        ad 	mutex_exit(&bufcache_lock);
   1207  1.109      yamt 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1208  1.183        ad 	error = allocbuf(bp, size, 0);
   1209  1.183        ad 	KASSERT(error == 0);
   1210   1.31       cgd 	return (bp);
   1211   1.31       cgd }
   1212   1.31       cgd 
   1213   1.31       cgd /*
   1214   1.31       cgd  * Expand or contract the actual memory allocated to a buffer.
   1215   1.31       cgd  *
   1216   1.31       cgd  * If the buffer shrinks, data is lost, so it's up to the
   1217   1.31       cgd  * caller to have written it out *first*; this routine will not
   1218   1.31       cgd  * start a write.  If the buffer grows, it's the callers
   1219   1.31       cgd  * responsibility to fill out the buffer's additional contents.
   1220   1.31       cgd  */
   1221  1.183        ad int
   1222  1.183        ad allocbuf(buf_t *bp, int size, int preserve)
   1223   1.31       cgd {
   1224  1.208    simonb 	void *addr;
   1225  1.100        pk 	vsize_t oldsize, desired_size;
   1226  1.208    simonb 	int oldcount;
   1227  1.183        ad 	int delta;
   1228   1.31       cgd 
   1229  1.100        pk 	desired_size = buf_roundsize(size);
   1230   1.31       cgd 	if (desired_size > MAXBSIZE)
   1231  1.100        pk 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1232   1.31       cgd 
   1233  1.208    simonb 	oldcount = bp->b_bcount;
   1234  1.208    simonb 
   1235  1.100        pk 	bp->b_bcount = size;
   1236  1.100        pk 
   1237  1.100        pk 	oldsize = bp->b_bufsize;
   1238  1.214     joerg 	if (oldsize == desired_size) {
   1239  1.214     joerg 		/*
   1240  1.214     joerg 		 * Do not short cut the WAPBL resize, as the buffer length
   1241  1.214     joerg 		 * could still have changed and this would corrupt the
   1242  1.214     joerg 		 * tracking of the transaction length.
   1243  1.214     joerg 		 */
   1244  1.214     joerg 		goto out;
   1245  1.214     joerg 	}
   1246   1.31       cgd 
   1247   1.31       cgd 	/*
   1248  1.100        pk 	 * If we want a buffer of a different size, re-allocate the
   1249  1.100        pk 	 * buffer's memory; copy old content only if needed.
   1250   1.31       cgd 	 */
   1251  1.100        pk 	addr = buf_malloc(desired_size);
   1252  1.183        ad 	if (addr == NULL)
   1253  1.183        ad 		return ENOMEM;
   1254  1.100        pk 	if (preserve)
   1255  1.100        pk 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1256  1.100        pk 	if (bp->b_data != NULL)
   1257  1.100        pk 		buf_mrelease(bp->b_data, oldsize);
   1258  1.100        pk 	bp->b_data = addr;
   1259  1.100        pk 	bp->b_bufsize = desired_size;
   1260   1.31       cgd 
   1261   1.31       cgd 	/*
   1262  1.183        ad 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1263   1.31       cgd 	 */
   1264  1.100        pk 	delta = (long)desired_size - (long)oldsize;
   1265  1.100        pk 
   1266  1.183        ad 	mutex_enter(&bufcache_lock);
   1267  1.100        pk 	if ((bufmem += delta) > bufmem_hiwater) {
   1268  1.100        pk 		/*
   1269  1.100        pk 		 * Need to trim overall memory usage.
   1270  1.100        pk 		 */
   1271  1.100        pk 		while (buf_canrelease()) {
   1272  1.154      yamt 			if (curcpu()->ci_schedstate.spc_flags &
   1273  1.154      yamt 			    SPCF_SHOULDYIELD) {
   1274  1.183        ad 				mutex_exit(&bufcache_lock);
   1275  1.168        ad 				preempt();
   1276  1.183        ad 				mutex_enter(&bufcache_lock);
   1277  1.154      yamt 			}
   1278  1.100        pk 			if (buf_trim() == 0)
   1279  1.100        pk 				break;
   1280   1.31       cgd 		}
   1281   1.31       cgd 	}
   1282  1.183        ad 	mutex_exit(&bufcache_lock);
   1283  1.208    simonb 
   1284  1.214     joerg  out:
   1285  1.208    simonb 	if (wapbl_vphaswapbl(bp->b_vp))
   1286  1.208    simonb 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1287  1.208    simonb 
   1288  1.183        ad 	return 0;
   1289   1.31       cgd }
   1290   1.31       cgd 
   1291   1.31       cgd /*
   1292   1.31       cgd  * Find a buffer which is available for use.
   1293   1.31       cgd  * Select something from a free list.
   1294  1.142     perry  * Preference is to AGE list, then LRU list.
   1295   1.87        pk  *
   1296  1.183        ad  * Called with the buffer queues locked.
   1297   1.87        pk  * Return buffer locked.
   1298   1.31       cgd  */
   1299  1.183        ad buf_t *
   1300  1.101   thorpej getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1301   1.31       cgd {
   1302  1.183        ad 	buf_t *bp;
   1303  1.183        ad 	struct vnode *vp;
   1304   1.31       cgd 
   1305  1.183        ad  start:
   1306  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
   1307   1.87        pk 
   1308  1.100        pk 	/*
   1309  1.183        ad 	 * Get a new buffer from the pool.
   1310  1.100        pk 	 */
   1311  1.183        ad 	if (!from_bufq && buf_lotsfree()) {
   1312  1.183        ad 		mutex_exit(&bufcache_lock);
   1313  1.183        ad 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1314  1.183        ad 		if (bp != NULL) {
   1315  1.183        ad 			memset((char *)bp, 0, sizeof(*bp));
   1316  1.183        ad 			buf_init(bp);
   1317  1.204   reinoud 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1318  1.183        ad 			mutex_enter(&bufcache_lock);
   1319  1.131      yamt #if defined(DIAGNOSTIC)
   1320  1.183        ad 			bp->b_freelistindex = -1;
   1321  1.131      yamt #endif /* defined(DIAGNOSTIC) */
   1322  1.183        ad 			return (bp);
   1323  1.183        ad 		}
   1324  1.183        ad 		mutex_enter(&bufcache_lock);
   1325  1.100        pk 	}
   1326  1.100        pk 
   1327  1.209   reinoud 	KASSERT(mutex_owned(&bufcache_lock));
   1328  1.131      yamt 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1329  1.131      yamt 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1330  1.206    bouyer 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1331   1.31       cgd 		bremfree(bp);
   1332  1.202        ad 
   1333  1.202        ad 		/* Buffer is no longer on free lists. */
   1334  1.202        ad 		SET(bp->b_cflags, BC_BUSY);
   1335   1.31       cgd 	} else {
   1336  1.134     enami 		/*
   1337  1.134     enami 		 * XXX: !from_bufq should be removed.
   1338  1.134     enami 		 */
   1339  1.173        ad 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1340  1.134     enami 			/* wait for a free buffer of any kind */
   1341  1.183        ad 			if ((slpflag & PCATCH) != 0)
   1342  1.183        ad 				(void)cv_timedwait_sig(&needbuffer_cv,
   1343  1.183        ad 				    &bufcache_lock, slptimeo);
   1344  1.183        ad 			else
   1345  1.183        ad 				(void)cv_timedwait(&needbuffer_cv,
   1346  1.183        ad 				    &bufcache_lock, slptimeo);
   1347  1.134     enami 		}
   1348   1.73       chs 		return (NULL);
   1349   1.31       cgd 	}
   1350   1.31       cgd 
   1351  1.100        pk #ifdef DIAGNOSTIC
   1352  1.100        pk 	if (bp->b_bufsize <= 0)
   1353  1.100        pk 		panic("buffer %p: on queue but empty", bp);
   1354  1.100        pk #endif
   1355  1.100        pk 
   1356  1.183        ad 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1357   1.50   mycroft 		/*
   1358   1.50   mycroft 		 * This is a delayed write buffer being flushed to disk.  Make
   1359   1.50   mycroft 		 * sure it gets aged out of the queue when it's finished, and
   1360   1.50   mycroft 		 * leave it off the LRU queue.
   1361   1.50   mycroft 		 */
   1362  1.183        ad 		CLR(bp->b_cflags, BC_VFLUSH);
   1363  1.183        ad 		SET(bp->b_cflags, BC_AGE);
   1364   1.50   mycroft 		goto start;
   1365   1.50   mycroft 	}
   1366   1.50   mycroft 
   1367  1.202        ad 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1368  1.202        ad 	KASSERT(bp->b_refcnt > 0);
   1369  1.203        ad     	KASSERT(!cv_has_waiters(&bp->b_done));
   1370   1.31       cgd 
   1371   1.75       chs 	/*
   1372   1.75       chs 	 * If buffer was a delayed write, start it and return NULL
   1373   1.75       chs 	 * (since we might sleep while starting the write).
   1374   1.75       chs 	 */
   1375  1.183        ad 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1376   1.50   mycroft 		/*
   1377   1.50   mycroft 		 * This buffer has gone through the LRU, so make sure it gets
   1378   1.50   mycroft 		 * reused ASAP.
   1379   1.50   mycroft 		 */
   1380  1.183        ad 		SET(bp->b_cflags, BC_AGE);
   1381  1.183        ad 		mutex_exit(&bufcache_lock);
   1382   1.50   mycroft 		bawrite(bp);
   1383  1.183        ad 		mutex_enter(&bufcache_lock);
   1384   1.75       chs 		return (NULL);
   1385   1.31       cgd 	}
   1386   1.31       cgd 
   1387  1.183        ad 	vp = bp->b_vp;
   1388   1.59      fvdl 
   1389   1.31       cgd 	/* clear out various other fields */
   1390  1.183        ad 	bp->b_cflags = BC_BUSY;
   1391  1.183        ad 	bp->b_oflags = 0;
   1392  1.183        ad 	bp->b_flags = 0;
   1393   1.31       cgd 	bp->b_dev = NODEV;
   1394  1.183        ad 	bp->b_blkno = 0;
   1395  1.183        ad 	bp->b_lblkno = 0;
   1396  1.183        ad 	bp->b_rawblkno = 0;
   1397   1.31       cgd 	bp->b_iodone = 0;
   1398   1.31       cgd 	bp->b_error = 0;
   1399   1.31       cgd 	bp->b_resid = 0;
   1400   1.31       cgd 	bp->b_bcount = 0;
   1401  1.142     perry 
   1402  1.183        ad 	LIST_REMOVE(bp, b_hash);
   1403  1.183        ad 
   1404  1.183        ad 	/* Disassociate us from our vnode, if we had one... */
   1405  1.183        ad 	if (vp != NULL) {
   1406  1.183        ad 		mutex_enter(&vp->v_interlock);
   1407  1.183        ad 		brelvp(bp);
   1408  1.183        ad 		mutex_exit(&vp->v_interlock);
   1409  1.183        ad 	}
   1410  1.183        ad 
   1411  1.142     perry 	return (bp);
   1412   1.31       cgd }
   1413   1.31       cgd 
   1414   1.31       cgd /*
   1415  1.100        pk  * Attempt to free an aged buffer off the queues.
   1416  1.183        ad  * Called with queue lock held.
   1417  1.100        pk  * Returns the amount of buffer memory freed.
   1418  1.100        pk  */
   1419  1.130      yamt static int
   1420  1.101   thorpej buf_trim(void)
   1421  1.100        pk {
   1422  1.183        ad 	buf_t *bp;
   1423  1.100        pk 	long size = 0;
   1424  1.100        pk 
   1425  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
   1426  1.183        ad 
   1427  1.100        pk 	/* Instruct getnewbuf() to get buffers off the queues */
   1428  1.101   thorpej 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1429  1.100        pk 		return 0;
   1430  1.100        pk 
   1431  1.183        ad 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1432  1.100        pk 	size = bp->b_bufsize;
   1433  1.100        pk 	bufmem -= size;
   1434  1.100        pk 	if (size > 0) {
   1435  1.100        pk 		buf_mrelease(bp->b_data, size);
   1436  1.100        pk 		bp->b_bcount = bp->b_bufsize = 0;
   1437  1.100        pk 	}
   1438  1.100        pk 	/* brelse() will return the buffer to the global buffer pool */
   1439  1.183        ad 	brelsel(bp, 0);
   1440  1.100        pk 	return size;
   1441  1.100        pk }
   1442  1.100        pk 
   1443  1.101   thorpej int
   1444  1.101   thorpej buf_drain(int n)
   1445  1.100        pk {
   1446  1.183        ad 	int size = 0, sz;
   1447  1.100        pk 
   1448  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
   1449  1.116      yamt 
   1450  1.134     enami 	while (size < n && bufmem > bufmem_lowater) {
   1451  1.134     enami 		sz = buf_trim();
   1452  1.134     enami 		if (sz <= 0)
   1453  1.134     enami 			break;
   1454  1.134     enami 		size += sz;
   1455  1.134     enami 	}
   1456  1.114       tls 
   1457  1.100        pk 	return size;
   1458  1.100        pk }
   1459  1.100        pk 
   1460  1.100        pk /*
   1461   1.31       cgd  * Wait for operations on the buffer to complete.
   1462   1.31       cgd  * When they do, extract and return the I/O's error value.
   1463   1.31       cgd  */
   1464   1.31       cgd int
   1465  1.183        ad biowait(buf_t *bp)
   1466   1.31       cgd {
   1467  1.142     perry 
   1468  1.202        ad 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1469  1.202        ad 	KASSERT(bp->b_refcnt > 0);
   1470  1.202        ad 
   1471  1.183        ad 	mutex_enter(bp->b_objlock);
   1472  1.183        ad 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1473  1.183        ad 		cv_wait(&bp->b_done, bp->b_objlock);
   1474  1.183        ad 	mutex_exit(bp->b_objlock);
   1475  1.183        ad 
   1476  1.183        ad 	return bp->b_error;
   1477   1.31       cgd }
   1478   1.31       cgd 
   1479   1.31       cgd /*
   1480   1.31       cgd  * Mark I/O complete on a buffer.
   1481   1.31       cgd  *
   1482   1.31       cgd  * If a callback has been requested, e.g. the pageout
   1483   1.31       cgd  * daemon, do so. Otherwise, awaken waiting processes.
   1484   1.31       cgd  *
   1485   1.31       cgd  * [ Leffler, et al., says on p.247:
   1486   1.31       cgd  *	"This routine wakes up the blocked process, frees the buffer
   1487   1.31       cgd  *	for an asynchronous write, or, for a request by the pagedaemon
   1488   1.31       cgd  *	process, invokes a procedure specified in the buffer structure" ]
   1489   1.31       cgd  *
   1490   1.31       cgd  * In real life, the pagedaemon (or other system processes) wants
   1491   1.31       cgd  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1492   1.31       cgd  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1493   1.31       cgd  * for the vn device, that puts malloc'd buffers on the free lists!)
   1494   1.31       cgd  */
   1495   1.31       cgd void
   1496  1.183        ad biodone(buf_t *bp)
   1497  1.183        ad {
   1498  1.183        ad 	int s;
   1499  1.183        ad 
   1500  1.183        ad 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1501  1.183        ad 
   1502  1.183        ad 	if (cpu_intr_p()) {
   1503  1.183        ad 		/* From interrupt mode: defer to a soft interrupt. */
   1504  1.183        ad 		s = splvm();
   1505  1.183        ad 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1506  1.183        ad 		softint_schedule(biodone_sih);
   1507  1.183        ad 		splx(s);
   1508  1.183        ad 	} else {
   1509  1.183        ad 		/* Process now - the buffer may be freed soon. */
   1510  1.183        ad 		biodone2(bp);
   1511  1.183        ad 	}
   1512  1.183        ad }
   1513  1.183        ad 
   1514  1.183        ad static void
   1515  1.183        ad biodone2(buf_t *bp)
   1516   1.31       cgd {
   1517  1.183        ad 	void (*callout)(buf_t *);
   1518  1.183        ad 
   1519  1.183        ad 	mutex_enter(bp->b_objlock);
   1520  1.183        ad 	/* Note that the transfer is done. */
   1521  1.183        ad 	if (ISSET(bp->b_oflags, BO_DONE))
   1522  1.183        ad 		panic("biodone2 already");
   1523  1.186   hannken 	CLR(bp->b_flags, B_COWDONE);
   1524  1.183        ad 	SET(bp->b_oflags, BO_DONE);
   1525  1.108      yamt 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1526   1.31       cgd 
   1527  1.183        ad 	/* Wake up waiting writers. */
   1528  1.183        ad 	if (!ISSET(bp->b_flags, B_READ))
   1529   1.31       cgd 		vwakeup(bp);
   1530   1.31       cgd 
   1531  1.183        ad 	if ((callout = bp->b_iodone) != NULL) {
   1532  1.183        ad 		/* Note callout done, then call out. */
   1533  1.201        ad 		KASSERT(!cv_has_waiters(&bp->b_done));
   1534  1.183        ad 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1535  1.183        ad 		bp->b_iodone = NULL;
   1536  1.183        ad 		mutex_exit(bp->b_objlock);
   1537  1.183        ad 		(*callout)(bp);
   1538  1.183        ad 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1539  1.183        ad 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1540  1.183        ad 		/* If async, release. */
   1541  1.201        ad 		KASSERT(!cv_has_waiters(&bp->b_done));
   1542  1.183        ad 		mutex_exit(bp->b_objlock);
   1543  1.183        ad 		brelse(bp, 0);
   1544   1.59      fvdl 	} else {
   1545  1.183        ad 		/* Otherwise just wake up waiters in biowait(). */
   1546  1.183        ad 		cv_broadcast(&bp->b_done);
   1547  1.183        ad 		mutex_exit(bp->b_objlock);
   1548   1.31       cgd 	}
   1549  1.183        ad }
   1550  1.183        ad 
   1551  1.183        ad static void
   1552  1.183        ad biointr(void *cookie)
   1553  1.183        ad {
   1554  1.183        ad 	struct cpu_info *ci;
   1555  1.183        ad 	buf_t *bp;
   1556  1.183        ad 	int s;
   1557  1.183        ad 
   1558  1.183        ad 	ci = curcpu();
   1559   1.60      fvdl 
   1560  1.183        ad 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1561  1.183        ad 		KASSERT(curcpu() == ci);
   1562  1.183        ad 
   1563  1.183        ad 		s = splvm();
   1564  1.183        ad 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1565  1.183        ad 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1566  1.183        ad 		splx(s);
   1567  1.183        ad 
   1568  1.183        ad 		biodone2(bp);
   1569  1.183        ad 	}
   1570   1.31       cgd }
   1571   1.31       cgd 
   1572   1.31       cgd /*
   1573   1.31       cgd  * Return a count of buffers on the "locked" queue.
   1574   1.31       cgd  */
   1575   1.31       cgd int
   1576  1.101   thorpej count_lock_queue(void)
   1577   1.31       cgd {
   1578  1.183        ad 	buf_t *bp;
   1579   1.66  augustss 	int n = 0;
   1580   1.31       cgd 
   1581  1.183        ad 	mutex_enter(&bufcache_lock);
   1582  1.131      yamt 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1583   1.31       cgd 		n++;
   1584  1.183        ad 	mutex_exit(&bufcache_lock);
   1585   1.31       cgd 	return (n);
   1586   1.31       cgd }
   1587   1.31       cgd 
   1588  1.100        pk /*
   1589  1.100        pk  * Wait for all buffers to complete I/O
   1590  1.100        pk  * Return the number of "stuck" buffers.
   1591  1.100        pk  */
   1592  1.100        pk int
   1593  1.100        pk buf_syncwait(void)
   1594  1.100        pk {
   1595  1.183        ad 	buf_t *bp;
   1596  1.183        ad 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
   1597  1.100        pk 
   1598  1.100        pk 	dcount = 10000;
   1599  1.100        pk 	for (iter = 0; iter < 20;) {
   1600  1.183        ad 		mutex_enter(&bufcache_lock);
   1601  1.100        pk 		nbusy = 0;
   1602  1.100        pk 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1603  1.100        pk 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1604  1.183        ad 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1605  1.183        ad 				nbusy += ((bp->b_flags & B_READ) == 0);
   1606  1.100        pk 		    }
   1607  1.100        pk 		}
   1608  1.183        ad 		mutex_exit(&bufcache_lock);
   1609  1.100        pk 
   1610  1.100        pk 		if (nbusy == 0)
   1611  1.100        pk 			break;
   1612  1.100        pk 		if (nbusy_prev == 0)
   1613  1.100        pk 			nbusy_prev = nbusy;
   1614  1.100        pk 		printf("%d ", nbusy);
   1615  1.200        ad 		kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
   1616  1.100        pk 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1617  1.100        pk 			iter++;
   1618  1.100        pk 		else
   1619  1.100        pk 			nbusy_prev = nbusy;
   1620  1.100        pk 	}
   1621  1.100        pk 
   1622  1.100        pk 	if (nbusy) {
   1623  1.100        pk #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1624  1.100        pk 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1625  1.100        pk 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1626  1.100        pk 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1627  1.183        ad 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1628  1.183        ad 			    (bp->b_flags & B_READ) == 0)
   1629  1.100        pk 				vprint(NULL, bp->b_vp);
   1630  1.100        pk 		    }
   1631  1.100        pk 		}
   1632  1.100        pk #endif
   1633  1.100        pk 	}
   1634  1.100        pk 
   1635  1.100        pk 	return nbusy;
   1636  1.100        pk }
   1637  1.100        pk 
   1638  1.117    atatat static void
   1639  1.183        ad sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1640  1.117    atatat {
   1641  1.117    atatat 
   1642  1.183        ad 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1643  1.117    atatat 	o->b_error = i->b_error;
   1644  1.117    atatat 	o->b_prio = i->b_prio;
   1645  1.117    atatat 	o->b_dev = i->b_dev;
   1646  1.117    atatat 	o->b_bufsize = i->b_bufsize;
   1647  1.117    atatat 	o->b_bcount = i->b_bcount;
   1648  1.117    atatat 	o->b_resid = i->b_resid;
   1649  1.182        ad 	o->b_addr = PTRTOUINT64(i->b_data);
   1650  1.117    atatat 	o->b_blkno = i->b_blkno;
   1651  1.117    atatat 	o->b_rawblkno = i->b_rawblkno;
   1652  1.117    atatat 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1653  1.117    atatat 	o->b_proc = PTRTOUINT64(i->b_proc);
   1654  1.117    atatat 	o->b_vp = PTRTOUINT64(i->b_vp);
   1655  1.117    atatat 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1656  1.117    atatat 	o->b_lblkno = i->b_lblkno;
   1657  1.117    atatat }
   1658  1.117    atatat 
   1659  1.100        pk #define KERN_BUFSLOP 20
   1660  1.100        pk static int
   1661  1.100        pk sysctl_dobuf(SYSCTLFN_ARGS)
   1662  1.100        pk {
   1663  1.183        ad 	buf_t *bp;
   1664  1.117    atatat 	struct buf_sysctl bs;
   1665  1.183        ad 	struct bqueue *bq;
   1666  1.100        pk 	char *dp;
   1667  1.117    atatat 	u_int i, op, arg;
   1668  1.117    atatat 	size_t len, needed, elem_size, out_size;
   1669  1.183        ad 	int error, elem_count, retries;
   1670  1.117    atatat 
   1671  1.117    atatat 	if (namelen == 1 && name[0] == CTL_QUERY)
   1672  1.146    atatat 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1673  1.117    atatat 
   1674  1.117    atatat 	if (namelen != 4)
   1675  1.117    atatat 		return (EINVAL);
   1676  1.100        pk 
   1677  1.183        ad 	retries = 100;
   1678  1.183        ad  retry:
   1679  1.100        pk 	dp = oldp;
   1680  1.117    atatat 	len = (oldp != NULL) ? *oldlenp : 0;
   1681  1.117    atatat 	op = name[0];
   1682  1.117    atatat 	arg = name[1];
   1683  1.117    atatat 	elem_size = name[2];
   1684  1.117    atatat 	elem_count = name[3];
   1685  1.117    atatat 	out_size = MIN(sizeof(bs), elem_size);
   1686  1.117    atatat 
   1687  1.117    atatat 	/*
   1688  1.117    atatat 	 * at the moment, these are just "placeholders" to make the
   1689  1.117    atatat 	 * API for retrieving kern.buf data more extensible in the
   1690  1.117    atatat 	 * future.
   1691  1.117    atatat 	 *
   1692  1.117    atatat 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1693  1.117    atatat 	 * these will be resolved at a later point.
   1694  1.117    atatat 	 */
   1695  1.117    atatat 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1696  1.117    atatat 	    elem_size < 1 || elem_count < 0)
   1697  1.117    atatat 		return (EINVAL);
   1698  1.117    atatat 
   1699  1.100        pk 	error = 0;
   1700  1.100        pk 	needed = 0;
   1701  1.185        ad 	sysctl_unlock();
   1702  1.183        ad 	mutex_enter(&bufcache_lock);
   1703  1.100        pk 	for (i = 0; i < BQUEUES; i++) {
   1704  1.183        ad 		bq = &bufqueues[i];
   1705  1.183        ad 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1706  1.183        ad 			bq->bq_marker = bp;
   1707  1.117    atatat 			if (len >= elem_size && elem_count > 0) {
   1708  1.117    atatat 				sysctl_fillbuf(bp, &bs);
   1709  1.183        ad 				mutex_exit(&bufcache_lock);
   1710  1.117    atatat 				error = copyout(&bs, dp, out_size);
   1711  1.183        ad 				mutex_enter(&bufcache_lock);
   1712  1.100        pk 				if (error)
   1713  1.183        ad 					break;
   1714  1.183        ad 				if (bq->bq_marker != bp) {
   1715  1.183        ad 					/*
   1716  1.183        ad 					 * This sysctl node is only for
   1717  1.183        ad 					 * statistics.  Retry; if the
   1718  1.183        ad 					 * queue keeps changing, then
   1719  1.183        ad 					 * bail out.
   1720  1.183        ad 					 */
   1721  1.183        ad 					if (retries-- == 0) {
   1722  1.183        ad 						error = EAGAIN;
   1723  1.183        ad 						break;
   1724  1.183        ad 					}
   1725  1.183        ad 					mutex_exit(&bufcache_lock);
   1726  1.183        ad 					goto retry;
   1727  1.183        ad 				}
   1728  1.100        pk 				dp += elem_size;
   1729  1.100        pk 				len -= elem_size;
   1730  1.100        pk 			}
   1731  1.218       mrg 			needed += elem_size;
   1732  1.218       mrg 			if (elem_count > 0 && elem_count != INT_MAX)
   1733  1.218       mrg 				elem_count--;
   1734  1.100        pk 		}
   1735  1.183        ad 		if (error != 0)
   1736  1.183        ad 			break;
   1737  1.100        pk 	}
   1738  1.183        ad 	mutex_exit(&bufcache_lock);
   1739  1.185        ad 	sysctl_relock();
   1740  1.100        pk 
   1741  1.117    atatat 	*oldlenp = needed;
   1742  1.117    atatat 	if (oldp == NULL)
   1743  1.183        ad 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1744  1.100        pk 
   1745  1.100        pk 	return (error);
   1746  1.100        pk }
   1747  1.100        pk 
   1748  1.100        pk static int
   1749  1.183        ad sysctl_bufvm_update(SYSCTLFN_ARGS)
   1750  1.100        pk {
   1751  1.183        ad 	int t, error, rv;
   1752  1.100        pk 	struct sysctlnode node;
   1753  1.100        pk 
   1754  1.100        pk 	node = *rnode;
   1755  1.100        pk 	node.sysctl_data = &t;
   1756  1.143       chs 	t = *(int *)rnode->sysctl_data;
   1757  1.100        pk 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1758  1.100        pk 	if (error || newp == NULL)
   1759  1.100        pk 		return (error);
   1760  1.100        pk 
   1761  1.143       chs 	if (t < 0)
   1762  1.143       chs 		return EINVAL;
   1763  1.183        ad 	if (rnode->sysctl_data == &bufcache) {
   1764  1.183        ad 		if (t > 100)
   1765  1.183        ad 			return (EINVAL);
   1766  1.183        ad 		bufcache = t;
   1767  1.183        ad 		buf_setwm();
   1768  1.183        ad 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1769  1.143       chs 		if (bufmem_hiwater - t < 16)
   1770  1.136     enami 			return (EINVAL);
   1771  1.100        pk 		bufmem_lowater = t;
   1772  1.117    atatat 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1773  1.143       chs 		if (t - bufmem_lowater < 16)
   1774  1.136     enami 			return (EINVAL);
   1775  1.100        pk 		bufmem_hiwater = t;
   1776  1.100        pk 	} else
   1777  1.100        pk 		return (EINVAL);
   1778  1.100        pk 
   1779  1.183        ad 	/* Drain until below new high water mark */
   1780  1.185        ad 	sysctl_unlock();
   1781  1.183        ad 	mutex_enter(&bufcache_lock);
   1782  1.183        ad 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1783  1.183        ad 		rv = buf_drain(t / (2 * 1024));
   1784  1.183        ad 		if (rv <= 0)
   1785  1.183        ad 			break;
   1786  1.183        ad 	}
   1787  1.183        ad 	mutex_exit(&bufcache_lock);
   1788  1.185        ad 	sysctl_relock();
   1789  1.100        pk 
   1790  1.100        pk 	return 0;
   1791  1.100        pk }
   1792  1.100        pk 
   1793  1.215     pooka static struct sysctllog *vfsbio_sysctllog;
   1794  1.215     pooka 
   1795  1.215     pooka static void
   1796  1.215     pooka sysctl_kern_buf_setup(void)
   1797  1.100        pk {
   1798  1.100        pk 
   1799  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1800  1.119    atatat 		       CTLFLAG_PERMANENT,
   1801  1.104    atatat 		       CTLTYPE_NODE, "kern", NULL,
   1802  1.104    atatat 		       NULL, 0, NULL, 0,
   1803  1.104    atatat 		       CTL_KERN, CTL_EOL);
   1804  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1805  1.119    atatat 		       CTLFLAG_PERMANENT,
   1806  1.125    atatat 		       CTLTYPE_NODE, "buf",
   1807  1.125    atatat 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1808  1.100        pk 		       sysctl_dobuf, 0, NULL, 0,
   1809  1.100        pk 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1810  1.104    atatat }
   1811  1.104    atatat 
   1812  1.215     pooka static void
   1813  1.215     pooka sysctl_vm_buf_setup(void)
   1814  1.104    atatat {
   1815  1.104    atatat 
   1816  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1817  1.119    atatat 		       CTLFLAG_PERMANENT,
   1818  1.104    atatat 		       CTLTYPE_NODE, "vm", NULL,
   1819  1.104    atatat 		       NULL, 0, NULL, 0,
   1820  1.104    atatat 		       CTL_VM, CTL_EOL);
   1821  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1822  1.119    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1823  1.125    atatat 		       CTLTYPE_INT, "bufcache",
   1824  1.139       jrf 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1825  1.125    atatat 				    "buffer cache"),
   1826  1.183        ad 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1827  1.117    atatat 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1828  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1829  1.122    simonb 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1830  1.183        ad 		       CTLTYPE_INT, "bufmem",
   1831  1.139       jrf 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1832  1.125    atatat 				    "cache"),
   1833  1.122    simonb 		       NULL, 0, &bufmem, 0,
   1834  1.122    simonb 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1835  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1836  1.119    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1837  1.183        ad 		       CTLTYPE_INT, "bufmem_lowater",
   1838  1.125    atatat 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1839  1.125    atatat 				    "reserve for buffer cache"),
   1840  1.117    atatat 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1841  1.117    atatat 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1842  1.215     pooka 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1843  1.119    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1844  1.183        ad 		       CTLTYPE_INT, "bufmem_hiwater",
   1845  1.125    atatat 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1846  1.125    atatat 				    "for buffer cache"),
   1847  1.117    atatat 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1848  1.117    atatat 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1849  1.100        pk }
   1850  1.100        pk 
   1851   1.36       cgd #ifdef DEBUG
   1852   1.31       cgd /*
   1853   1.31       cgd  * Print out statistics on the current allocation of the buffer pool.
   1854   1.31       cgd  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1855   1.31       cgd  * in vfs_syscalls.c using sysctl.
   1856   1.31       cgd  */
   1857   1.31       cgd void
   1858  1.101   thorpej vfs_bufstats(void)
   1859   1.31       cgd {
   1860  1.183        ad 	int i, j, count;
   1861  1.183        ad 	buf_t *bp;
   1862  1.131      yamt 	struct bqueue *dp;
   1863   1.72    simonb 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1864  1.145  christos 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1865   1.71   thorpej 
   1866   1.31       cgd 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1867   1.31       cgd 		count = 0;
   1868   1.71   thorpej 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1869   1.31       cgd 			counts[j] = 0;
   1870  1.131      yamt 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1871   1.71   thorpej 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1872   1.31       cgd 			count++;
   1873   1.31       cgd 		}
   1874   1.48  christos 		printf("%s: total-%d", bname[i], count);
   1875   1.71   thorpej 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1876   1.31       cgd 			if (counts[j] != 0)
   1877   1.71   thorpej 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1878   1.48  christos 		printf("\n");
   1879   1.31       cgd 	}
   1880   1.31       cgd }
   1881   1.36       cgd #endif /* DEBUG */
   1882  1.149      yamt 
   1883  1.150      yamt /* ------------------------------ */
   1884  1.150      yamt 
   1885  1.183        ad buf_t *
   1886  1.183        ad getiobuf(struct vnode *vp, bool waitok)
   1887  1.149      yamt {
   1888  1.183        ad 	buf_t *bp;
   1889  1.149      yamt 
   1890  1.183        ad 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1891  1.183        ad 	if (bp == NULL)
   1892  1.183        ad 		return bp;
   1893  1.149      yamt 
   1894  1.183        ad 	buf_init(bp);
   1895  1.149      yamt 
   1896  1.183        ad 	if ((bp->b_vp = vp) == NULL)
   1897  1.183        ad 		bp->b_objlock = &buffer_lock;
   1898  1.183        ad 	else
   1899  1.183        ad 		bp->b_objlock = &vp->v_interlock;
   1900  1.183        ad 
   1901  1.183        ad 	return bp;
   1902  1.149      yamt }
   1903  1.149      yamt 
   1904  1.149      yamt void
   1905  1.183        ad putiobuf(buf_t *bp)
   1906  1.149      yamt {
   1907  1.149      yamt 
   1908  1.183        ad 	buf_destroy(bp);
   1909  1.183        ad 	pool_cache_put(bufio_cache, bp);
   1910  1.149      yamt }
   1911  1.152      yamt 
   1912  1.152      yamt /*
   1913  1.152      yamt  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1914  1.152      yamt  */
   1915  1.152      yamt 
   1916  1.167   reinoud void
   1917  1.183        ad nestiobuf_iodone(buf_t *bp)
   1918  1.152      yamt {
   1919  1.183        ad 	buf_t *mbp = bp->b_private;
   1920  1.152      yamt 	int error;
   1921  1.155   reinoud 	int donebytes;
   1922  1.152      yamt 
   1923  1.155   reinoud 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1924  1.152      yamt 	KASSERT(mbp != bp);
   1925  1.155   reinoud 
   1926  1.195   reinoud 	error = bp->b_error;
   1927  1.183        ad 	if (bp->b_error == 0 &&
   1928  1.183        ad 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1929  1.155   reinoud 		/*
   1930  1.155   reinoud 		 * Not all got transfered, raise an error. We have no way to
   1931  1.155   reinoud 		 * propagate these conditions to mbp.
   1932  1.155   reinoud 		 */
   1933  1.155   reinoud 		error = EIO;
   1934  1.152      yamt 	}
   1935  1.155   reinoud 
   1936  1.156      yamt 	donebytes = bp->b_bufsize;
   1937  1.155   reinoud 
   1938  1.152      yamt 	putiobuf(bp);
   1939  1.152      yamt 	nestiobuf_done(mbp, donebytes, error);
   1940  1.152      yamt }
   1941  1.152      yamt 
   1942  1.152      yamt /*
   1943  1.152      yamt  * nestiobuf_setup: setup a "nested" buffer.
   1944  1.152      yamt  *
   1945  1.152      yamt  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1946  1.190      yamt  * => 'bp' should be a buffer allocated by getiobuf.
   1947  1.152      yamt  * => 'offset' is a byte offset in the master buffer.
   1948  1.152      yamt  * => 'size' is a size in bytes of this nested buffer.
   1949  1.152      yamt  */
   1950  1.152      yamt 
   1951  1.152      yamt void
   1952  1.183        ad nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1953  1.152      yamt {
   1954  1.152      yamt 	const int b_read = mbp->b_flags & B_READ;
   1955  1.152      yamt 	struct vnode *vp = mbp->b_vp;
   1956  1.152      yamt 
   1957  1.152      yamt 	KASSERT(mbp->b_bcount >= offset + size);
   1958  1.152      yamt 	bp->b_vp = vp;
   1959  1.210   hannken 	bp->b_dev = mbp->b_dev;
   1960  1.183        ad 	bp->b_objlock = mbp->b_objlock;
   1961  1.183        ad 	bp->b_cflags = BC_BUSY;
   1962  1.183        ad 	bp->b_flags = B_ASYNC | b_read;
   1963  1.152      yamt 	bp->b_iodone = nestiobuf_iodone;
   1964  1.170  christos 	bp->b_data = (char *)mbp->b_data + offset;
   1965  1.152      yamt 	bp->b_resid = bp->b_bcount = size;
   1966  1.152      yamt 	bp->b_bufsize = bp->b_bcount;
   1967  1.152      yamt 	bp->b_private = mbp;
   1968  1.152      yamt 	BIO_COPYPRIO(bp, mbp);
   1969  1.152      yamt 	if (!b_read && vp != NULL) {
   1970  1.183        ad 		mutex_enter(&vp->v_interlock);
   1971  1.183        ad 		vp->v_numoutput++;
   1972  1.183        ad 		mutex_exit(&vp->v_interlock);
   1973  1.152      yamt 	}
   1974  1.152      yamt }
   1975  1.152      yamt 
   1976  1.152      yamt /*
   1977  1.152      yamt  * nestiobuf_done: propagate completion to the master buffer.
   1978  1.152      yamt  *
   1979  1.152      yamt  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1980  1.152      yamt  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1981  1.152      yamt  */
   1982  1.152      yamt 
   1983  1.152      yamt void
   1984  1.183        ad nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1985  1.152      yamt {
   1986  1.152      yamt 
   1987  1.152      yamt 	if (donebytes == 0) {
   1988  1.152      yamt 		return;
   1989  1.152      yamt 	}
   1990  1.183        ad 	mutex_enter(mbp->b_objlock);
   1991  1.152      yamt 	KASSERT(mbp->b_resid >= donebytes);
   1992  1.152      yamt 	mbp->b_resid -= donebytes;
   1993  1.195   reinoud 	if (error)
   1994  1.195   reinoud 		mbp->b_error = error;
   1995  1.152      yamt 	if (mbp->b_resid == 0) {
   1996  1.183        ad 		mutex_exit(mbp->b_objlock);
   1997  1.183        ad 		biodone(mbp);
   1998  1.183        ad 	} else
   1999  1.183        ad 		mutex_exit(mbp->b_objlock);
   2000  1.183        ad }
   2001  1.183        ad 
   2002  1.183        ad void
   2003  1.183        ad buf_init(buf_t *bp)
   2004  1.183        ad {
   2005  1.183        ad 
   2006  1.183        ad 	cv_init(&bp->b_busy, "biolock");
   2007  1.183        ad 	cv_init(&bp->b_done, "biowait");
   2008  1.183        ad 	bp->b_dev = NODEV;
   2009  1.183        ad 	bp->b_error = 0;
   2010  1.183        ad 	bp->b_flags = 0;
   2011  1.204   reinoud 	bp->b_cflags = 0;
   2012  1.183        ad 	bp->b_oflags = 0;
   2013  1.183        ad 	bp->b_objlock = &buffer_lock;
   2014  1.183        ad 	bp->b_iodone = NULL;
   2015  1.202        ad 	bp->b_refcnt = 1;
   2016  1.202        ad 	bp->b_dev = NODEV;
   2017  1.202        ad 	bp->b_vnbufs.le_next = NOLIST;
   2018  1.183        ad 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2019  1.183        ad }
   2020  1.183        ad 
   2021  1.183        ad void
   2022  1.183        ad buf_destroy(buf_t *bp)
   2023  1.183        ad {
   2024  1.183        ad 
   2025  1.183        ad 	cv_destroy(&bp->b_done);
   2026  1.183        ad 	cv_destroy(&bp->b_busy);
   2027  1.183        ad }
   2028  1.183        ad 
   2029  1.183        ad int
   2030  1.188        ad bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2031  1.183        ad {
   2032  1.183        ad 	int error;
   2033  1.183        ad 
   2034  1.183        ad 	KASSERT(mutex_owned(&bufcache_lock));
   2035  1.183        ad 
   2036  1.183        ad 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2037  1.183        ad 		if (curlwp == uvm.pagedaemon_lwp)
   2038  1.183        ad 			return EDEADLK;
   2039  1.183        ad 		bp->b_cflags |= BC_WANTED;
   2040  1.183        ad 		bref(bp);
   2041  1.188        ad 		if (interlock != NULL)
   2042  1.188        ad 			mutex_exit(interlock);
   2043  1.183        ad 		if (intr) {
   2044  1.183        ad 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2045  1.183        ad 			    timo);
   2046  1.183        ad 		} else {
   2047  1.183        ad 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2048  1.183        ad 			    timo);
   2049  1.152      yamt 		}
   2050  1.183        ad 		brele(bp);
   2051  1.188        ad 		if (interlock != NULL)
   2052  1.188        ad 			mutex_enter(interlock);
   2053  1.183        ad 		if (error != 0)
   2054  1.183        ad 			return error;
   2055  1.183        ad 		return EPASSTHROUGH;
   2056  1.152      yamt 	}
   2057  1.183        ad 	bp->b_cflags |= BC_BUSY;
   2058  1.183        ad 
   2059  1.183        ad 	return 0;
   2060  1.152      yamt }
   2061