vfs_bio.c revision 1.221 1 1.221 rmind /* $NetBSD: vfs_bio.c,v 1.221 2009/11/11 09:15:42 rmind Exp $ */
2 1.183 ad
3 1.183 ad /*-
4 1.217 ad * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.183 ad * All rights reserved.
6 1.183 ad *
7 1.183 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.217 ad * by Andrew Doran, and by Wasabi Systems, Inc.
9 1.183 ad *
10 1.183 ad * Redistribution and use in source and binary forms, with or without
11 1.183 ad * modification, are permitted provided that the following conditions
12 1.183 ad * are met:
13 1.183 ad * 1. Redistributions of source code must retain the above copyright
14 1.183 ad * notice, this list of conditions and the following disclaimer.
15 1.183 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.183 ad * notice, this list of conditions and the following disclaimer in the
17 1.183 ad * documentation and/or other materials provided with the distribution.
18 1.183 ad *
19 1.183 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.183 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.183 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.183 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.183 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.183 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.183 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.183 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.183 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.183 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.183 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.183 ad */
31 1.31 cgd
32 1.31 cgd /*-
33 1.31 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.31 cgd * The Regents of the University of California. All rights reserved.
35 1.31 cgd * (c) UNIX System Laboratories, Inc.
36 1.31 cgd * All or some portions of this file are derived from material licensed
37 1.31 cgd * to the University of California by American Telephone and Telegraph
38 1.31 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.31 cgd * the permission of UNIX System Laboratories, Inc.
40 1.31 cgd *
41 1.31 cgd * Redistribution and use in source and binary forms, with or without
42 1.31 cgd * modification, are permitted provided that the following conditions
43 1.31 cgd * are met:
44 1.31 cgd * 1. Redistributions of source code must retain the above copyright
45 1.31 cgd * notice, this list of conditions and the following disclaimer.
46 1.31 cgd * 2. Redistributions in binary form must reproduce the above copyright
47 1.31 cgd * notice, this list of conditions and the following disclaimer in the
48 1.31 cgd * documentation and/or other materials provided with the distribution.
49 1.93 agc * 3. Neither the name of the University nor the names of its contributors
50 1.93 agc * may be used to endorse or promote products derived from this software
51 1.93 agc * without specific prior written permission.
52 1.93 agc *
53 1.93 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.93 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.93 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.93 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.93 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.93 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.93 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.93 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.93 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.93 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.93 agc * SUCH DAMAGE.
64 1.93 agc *
65 1.93 agc * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 1.93 agc */
67 1.93 agc
68 1.93 agc /*-
69 1.93 agc * Copyright (c) 1994 Christopher G. Demetriou
70 1.93 agc *
71 1.93 agc * Redistribution and use in source and binary forms, with or without
72 1.93 agc * modification, are permitted provided that the following conditions
73 1.93 agc * are met:
74 1.93 agc * 1. Redistributions of source code must retain the above copyright
75 1.93 agc * notice, this list of conditions and the following disclaimer.
76 1.93 agc * 2. Redistributions in binary form must reproduce the above copyright
77 1.93 agc * notice, this list of conditions and the following disclaimer in the
78 1.93 agc * documentation and/or other materials provided with the distribution.
79 1.31 cgd * 3. All advertising materials mentioning features or use of this software
80 1.31 cgd * must display the following acknowledgement:
81 1.31 cgd * This product includes software developed by the University of
82 1.31 cgd * California, Berkeley and its contributors.
83 1.31 cgd * 4. Neither the name of the University nor the names of its contributors
84 1.31 cgd * may be used to endorse or promote products derived from this software
85 1.31 cgd * without specific prior written permission.
86 1.31 cgd *
87 1.31 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 1.31 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 1.31 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 1.31 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 1.31 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 1.31 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 1.31 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 1.31 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 1.31 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 1.31 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 1.31 cgd * SUCH DAMAGE.
98 1.31 cgd *
99 1.31 cgd * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 1.31 cgd */
101 1.31 cgd
102 1.31 cgd /*
103 1.221 rmind * The buffer cache subsystem.
104 1.221 rmind *
105 1.31 cgd * Some references:
106 1.31 cgd * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 1.31 cgd * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 1.31 cgd * UNIX Operating System (Addison Welley, 1989)
109 1.221 rmind *
110 1.221 rmind * Locking
111 1.221 rmind *
112 1.221 rmind * There are three locks:
113 1.221 rmind * - bufcache_lock: protects global buffer cache state.
114 1.221 rmind * - BC_BUSY: a long term per-buffer lock.
115 1.221 rmind * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 1.221 rmind *
117 1.221 rmind * For buffers associated with vnodes (a most common case) b_objlock points
118 1.221 rmind * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 1.221 rmind *
120 1.221 rmind * Lock order:
121 1.221 rmind * bufcache_lock ->
122 1.221 rmind * buf_t::b_objlock
123 1.31 cgd */
124 1.77 lukem
125 1.178 dsl #include <sys/cdefs.h>
126 1.221 rmind __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.221 2009/11/11 09:15:42 rmind Exp $");
127 1.178 dsl
128 1.159 uwe #include "fs_ffs.h"
129 1.100 pk #include "opt_bufcache.h"
130 1.81 matt
131 1.31 cgd #include <sys/param.h>
132 1.31 cgd #include <sys/systm.h>
133 1.100 pk #include <sys/kernel.h>
134 1.31 cgd #include <sys/proc.h>
135 1.31 cgd #include <sys/buf.h>
136 1.31 cgd #include <sys/vnode.h>
137 1.31 cgd #include <sys/mount.h>
138 1.31 cgd #include <sys/resourcevar.h>
139 1.100 pk #include <sys/sysctl.h>
140 1.35 mycroft #include <sys/conf.h>
141 1.160 elad #include <sys/kauth.h>
142 1.198 hannken #include <sys/fstrans.h>
143 1.183 ad #include <sys/intr.h>
144 1.183 ad #include <sys/cpu.h>
145 1.208 simonb #include <sys/wapbl.h>
146 1.40 christos
147 1.73 chs #include <uvm/uvm.h>
148 1.71 thorpej
149 1.59 fvdl #include <miscfs/specfs/specdev.h>
150 1.59 fvdl
151 1.100 pk #ifndef BUFPAGES
152 1.100 pk # define BUFPAGES 0
153 1.100 pk #endif
154 1.100 pk
155 1.100 pk #ifdef BUFCACHE
156 1.100 pk # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 1.100 pk # error BUFCACHE is not between 5 and 95
158 1.100 pk # endif
159 1.100 pk #else
160 1.114 tls # define BUFCACHE 15
161 1.100 pk #endif
162 1.100 pk
163 1.217 ad u_int nbuf; /* desired number of buffer headers */
164 1.100 pk u_int bufpages = BUFPAGES; /* optional hardwired count */
165 1.100 pk u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
166 1.100 pk
167 1.130 yamt /* Function prototypes */
168 1.131 yamt struct bqueue;
169 1.130 yamt
170 1.135 enami static void buf_setwm(void);
171 1.130 yamt static int buf_trim(void);
172 1.130 yamt static void *bufpool_page_alloc(struct pool *, int);
173 1.130 yamt static void bufpool_page_free(struct pool *, void *);
174 1.183 ad static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 1.160 elad kauth_cred_t, int);
176 1.183 ad static buf_t *getnewbuf(int, int, int);
177 1.130 yamt static int buf_lotsfree(void);
178 1.130 yamt static int buf_canrelease(void);
179 1.183 ad static u_long buf_mempoolidx(u_long);
180 1.183 ad static u_long buf_roundsize(u_long);
181 1.183 ad static void *buf_malloc(size_t);
182 1.170 christos static void buf_mrelease(void *, size_t);
183 1.183 ad static void binsheadfree(buf_t *, struct bqueue *);
184 1.183 ad static void binstailfree(buf_t *, struct bqueue *);
185 1.130 yamt int count_lock_queue(void); /* XXX */
186 1.130 yamt #ifdef DEBUG
187 1.206 bouyer static int checkfreelist(buf_t *, struct bqueue *, int);
188 1.130 yamt #endif
189 1.183 ad static void biointr(void *);
190 1.183 ad static void biodone2(buf_t *);
191 1.183 ad static void bref(buf_t *);
192 1.183 ad static void brele(buf_t *);
193 1.215 pooka static void sysctl_kern_buf_setup(void);
194 1.215 pooka static void sysctl_vm_buf_setup(void);
195 1.100 pk
196 1.31 cgd /*
197 1.31 cgd * Definitions for the buffer hash lists.
198 1.31 cgd */
199 1.31 cgd #define BUFHASH(dvp, lbn) \
200 1.73 chs (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
201 1.31 cgd LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
202 1.31 cgd u_long bufhash;
203 1.189 matt struct bqueue bufqueues[BQUEUES];
204 1.183 ad
205 1.183 ad static kcondvar_t needbuffer_cv;
206 1.31 cgd
207 1.31 cgd /*
208 1.87 pk * Buffer queue lock.
209 1.87 pk */
210 1.183 ad kmutex_t bufcache_lock;
211 1.183 ad kmutex_t buffer_lock;
212 1.87 pk
213 1.183 ad /* Software ISR for completed transfers. */
214 1.183 ad static void *biodone_sih;
215 1.153 yamt
216 1.183 ad /* Buffer pool for I/O buffers. */
217 1.183 ad static pool_cache_t buf_cache;
218 1.183 ad static pool_cache_t bufio_cache;
219 1.65 thorpej
220 1.100 pk /* XXX - somewhat gross.. */
221 1.100 pk #if MAXBSIZE == 0x2000
222 1.158 tls #define NMEMPOOLS 5
223 1.100 pk #elif MAXBSIZE == 0x4000
224 1.158 tls #define NMEMPOOLS 6
225 1.100 pk #elif MAXBSIZE == 0x8000
226 1.158 tls #define NMEMPOOLS 7
227 1.100 pk #else
228 1.158 tls #define NMEMPOOLS 8
229 1.100 pk #endif
230 1.100 pk
231 1.158 tls #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
232 1.100 pk #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
233 1.100 pk #error update vfs_bio buffer memory parameters
234 1.100 pk #endif
235 1.100 pk
236 1.100 pk /* Buffer memory pools */
237 1.101 thorpej static struct pool bmempools[NMEMPOOLS];
238 1.100 pk
239 1.191 yamt static struct vm_map *buf_map;
240 1.100 pk
241 1.100 pk /*
242 1.100 pk * Buffer memory pool allocator.
243 1.100 pk */
244 1.101 thorpej static void *
245 1.166 yamt bufpool_page_alloc(struct pool *pp, int flags)
246 1.100 pk {
247 1.111 yamt
248 1.144 yamt return (void *)uvm_km_alloc(buf_map,
249 1.144 yamt MAXBSIZE, MAXBSIZE,
250 1.144 yamt ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
251 1.144 yamt | UVM_KMF_WIRED);
252 1.100 pk }
253 1.100 pk
254 1.101 thorpej static void
255 1.166 yamt bufpool_page_free(struct pool *pp, void *v)
256 1.100 pk {
257 1.144 yamt
258 1.144 yamt uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
259 1.100 pk }
260 1.100 pk
261 1.101 thorpej static struct pool_allocator bufmempool_allocator = {
262 1.162 christos .pa_alloc = bufpool_page_alloc,
263 1.162 christos .pa_free = bufpool_page_free,
264 1.162 christos .pa_pagesz = MAXBSIZE,
265 1.100 pk };
266 1.100 pk
267 1.100 pk /* Buffer memory management variables */
268 1.183 ad u_long bufmem_valimit;
269 1.183 ad u_long bufmem_hiwater;
270 1.183 ad u_long bufmem_lowater;
271 1.183 ad u_long bufmem;
272 1.100 pk
273 1.100 pk /*
274 1.100 pk * MD code can call this to set a hard limit on the amount
275 1.100 pk * of virtual memory used by the buffer cache.
276 1.100 pk */
277 1.101 thorpej int
278 1.101 thorpej buf_setvalimit(vsize_t sz)
279 1.100 pk {
280 1.100 pk
281 1.100 pk /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
282 1.100 pk if (sz < NMEMPOOLS * MAXBSIZE)
283 1.100 pk return EINVAL;
284 1.100 pk
285 1.100 pk bufmem_valimit = sz;
286 1.100 pk return 0;
287 1.100 pk }
288 1.100 pk
289 1.135 enami static void
290 1.135 enami buf_setwm(void)
291 1.135 enami {
292 1.135 enami
293 1.135 enami bufmem_hiwater = buf_memcalc();
294 1.135 enami /* lowater is approx. 2% of memory (with bufcache = 15) */
295 1.135 enami #define BUFMEM_WMSHIFT 3
296 1.135 enami #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
297 1.135 enami if (bufmem_hiwater < BUFMEM_HIWMMIN)
298 1.135 enami /* Ensure a reasonable minimum value */
299 1.135 enami bufmem_hiwater = BUFMEM_HIWMMIN;
300 1.135 enami bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
301 1.135 enami }
302 1.135 enami
303 1.99 dbj #ifdef DEBUG
304 1.99 dbj int debug_verify_freelist = 0;
305 1.131 yamt static int
306 1.206 bouyer checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
307 1.99 dbj {
308 1.183 ad buf_t *b;
309 1.183 ad
310 1.183 ad if (!debug_verify_freelist)
311 1.183 ad return 1;
312 1.131 yamt
313 1.131 yamt TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
314 1.100 pk if (b == bp)
315 1.206 bouyer return ison ? 1 : 0;
316 1.100 pk }
317 1.183 ad
318 1.206 bouyer return ison ? 0 : 1;
319 1.99 dbj }
320 1.99 dbj #endif
321 1.99 dbj
322 1.131 yamt /*
323 1.131 yamt * Insq/Remq for the buffer hash lists.
324 1.131 yamt * Call with buffer queue locked.
325 1.131 yamt */
326 1.183 ad static void
327 1.183 ad binsheadfree(buf_t *bp, struct bqueue *dp)
328 1.131 yamt {
329 1.131 yamt
330 1.206 bouyer KASSERT(mutex_owned(&bufcache_lock));
331 1.131 yamt KASSERT(bp->b_freelistindex == -1);
332 1.131 yamt TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
333 1.131 yamt dp->bq_bytes += bp->b_bufsize;
334 1.131 yamt bp->b_freelistindex = dp - bufqueues;
335 1.131 yamt }
336 1.131 yamt
337 1.183 ad static void
338 1.183 ad binstailfree(buf_t *bp, struct bqueue *dp)
339 1.131 yamt {
340 1.131 yamt
341 1.206 bouyer KASSERT(mutex_owned(&bufcache_lock));
342 1.131 yamt KASSERT(bp->b_freelistindex == -1);
343 1.131 yamt TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
344 1.131 yamt dp->bq_bytes += bp->b_bufsize;
345 1.131 yamt bp->b_freelistindex = dp - bufqueues;
346 1.131 yamt }
347 1.131 yamt
348 1.31 cgd void
349 1.183 ad bremfree(buf_t *bp)
350 1.31 cgd {
351 1.131 yamt struct bqueue *dp;
352 1.131 yamt int bqidx = bp->b_freelistindex;
353 1.94 yamt
354 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
355 1.31 cgd
356 1.131 yamt KASSERT(bqidx != -1);
357 1.131 yamt dp = &bufqueues[bqidx];
358 1.206 bouyer KDASSERT(checkfreelist(bp, dp, 1));
359 1.131 yamt KASSERT(dp->bq_bytes >= bp->b_bufsize);
360 1.131 yamt TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
361 1.131 yamt dp->bq_bytes -= bp->b_bufsize;
362 1.183 ad
363 1.183 ad /* For the sysctl helper. */
364 1.183 ad if (bp == dp->bq_marker)
365 1.183 ad dp->bq_marker = NULL;
366 1.183 ad
367 1.131 yamt #if defined(DIAGNOSTIC)
368 1.131 yamt bp->b_freelistindex = -1;
369 1.131 yamt #endif /* defined(DIAGNOSTIC) */
370 1.31 cgd }
371 1.31 cgd
372 1.183 ad /*
373 1.183 ad * Add a reference to an buffer structure that came from buf_cache.
374 1.183 ad */
375 1.183 ad static inline void
376 1.183 ad bref(buf_t *bp)
377 1.183 ad {
378 1.183 ad
379 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
380 1.183 ad KASSERT(bp->b_refcnt > 0);
381 1.183 ad
382 1.183 ad bp->b_refcnt++;
383 1.183 ad }
384 1.183 ad
385 1.183 ad /*
386 1.183 ad * Free an unused buffer structure that came from buf_cache.
387 1.183 ad */
388 1.183 ad static inline void
389 1.183 ad brele(buf_t *bp)
390 1.183 ad {
391 1.183 ad
392 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
393 1.183 ad KASSERT(bp->b_refcnt > 0);
394 1.183 ad
395 1.183 ad if (bp->b_refcnt-- == 1) {
396 1.183 ad buf_destroy(bp);
397 1.183 ad #ifdef DEBUG
398 1.183 ad memset((char *)bp, 0, sizeof(*bp));
399 1.183 ad #endif
400 1.183 ad pool_cache_put(buf_cache, bp);
401 1.183 ad }
402 1.183 ad }
403 1.183 ad
404 1.193 yamt /*
405 1.193 yamt * note that for some ports this is used by pmap bootstrap code to
406 1.193 yamt * determine kva size.
407 1.193 yamt */
408 1.101 thorpej u_long
409 1.101 thorpej buf_memcalc(void)
410 1.100 pk {
411 1.100 pk u_long n;
412 1.100 pk
413 1.100 pk /*
414 1.100 pk * Determine the upper bound of memory to use for buffers.
415 1.100 pk *
416 1.100 pk * - If bufpages is specified, use that as the number
417 1.100 pk * pages.
418 1.100 pk *
419 1.100 pk * - Otherwise, use bufcache as the percentage of
420 1.100 pk * physical memory.
421 1.100 pk */
422 1.100 pk if (bufpages != 0) {
423 1.100 pk n = bufpages;
424 1.100 pk } else {
425 1.100 pk if (bufcache < 5) {
426 1.100 pk printf("forcing bufcache %d -> 5", bufcache);
427 1.100 pk bufcache = 5;
428 1.100 pk }
429 1.100 pk if (bufcache > 95) {
430 1.100 pk printf("forcing bufcache %d -> 95", bufcache);
431 1.100 pk bufcache = 95;
432 1.100 pk }
433 1.193 yamt n = calc_cache_size(buf_map, bufcache,
434 1.193 yamt (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
435 1.193 yamt / PAGE_SIZE;
436 1.100 pk }
437 1.100 pk
438 1.100 pk n <<= PAGE_SHIFT;
439 1.100 pk if (bufmem_valimit != 0 && n > bufmem_valimit)
440 1.100 pk n = bufmem_valimit;
441 1.100 pk
442 1.100 pk return (n);
443 1.100 pk }
444 1.100 pk
445 1.31 cgd /*
446 1.31 cgd * Initialize buffers and hash links for buffers.
447 1.31 cgd */
448 1.31 cgd void
449 1.101 thorpej bufinit(void)
450 1.31 cgd {
451 1.131 yamt struct bqueue *dp;
452 1.127 thorpej int use_std;
453 1.100 pk u_int i;
454 1.100 pk
455 1.183 ad mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
456 1.183 ad mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
457 1.183 ad cv_init(&needbuffer_cv, "needbuf");
458 1.183 ad
459 1.100 pk if (bufmem_valimit != 0) {
460 1.100 pk vaddr_t minaddr = 0, maxaddr;
461 1.100 pk buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
462 1.169 thorpej bufmem_valimit, 0, false, 0);
463 1.100 pk if (buf_map == NULL)
464 1.100 pk panic("bufinit: cannot allocate submap");
465 1.100 pk } else
466 1.100 pk buf_map = kernel_map;
467 1.65 thorpej
468 1.192 yamt /*
469 1.192 yamt * Initialize buffer cache memory parameters.
470 1.192 yamt */
471 1.192 yamt bufmem = 0;
472 1.192 yamt buf_setwm();
473 1.192 yamt
474 1.100 pk /* On "small" machines use small pool page sizes where possible */
475 1.127 thorpej use_std = (physmem < atop(16*1024*1024));
476 1.127 thorpej
477 1.127 thorpej /*
478 1.127 thorpej * Also use them on systems that can map the pool pages using
479 1.127 thorpej * a direct-mapped segment.
480 1.127 thorpej */
481 1.127 thorpej #ifdef PMAP_MAP_POOLPAGE
482 1.127 thorpej use_std = 1;
483 1.127 thorpej #endif
484 1.100 pk
485 1.183 ad buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
486 1.183 ad "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
487 1.183 ad bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
488 1.183 ad "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
489 1.176 pooka
490 1.161 yamt bufmempool_allocator.pa_backingmap = buf_map;
491 1.100 pk for (i = 0; i < NMEMPOOLS; i++) {
492 1.100 pk struct pool_allocator *pa;
493 1.100 pk struct pool *pp = &bmempools[i];
494 1.100 pk u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
495 1.197 ad char *name = kmem_alloc(8, KM_SLEEP);
496 1.165 christos if (__predict_true(size >= 1024))
497 1.165 christos (void)snprintf(name, 8, "buf%dk", size / 1024);
498 1.165 christos else
499 1.165 christos (void)snprintf(name, 8, "buf%db", size);
500 1.127 thorpej pa = (size <= PAGE_SIZE && use_std)
501 1.100 pk ? &pool_allocator_nointr
502 1.100 pk : &bufmempool_allocator;
503 1.171 ad pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
504 1.100 pk pool_setlowat(pp, 1);
505 1.126 thorpej pool_sethiwat(pp, 1);
506 1.100 pk }
507 1.100 pk
508 1.100 pk /* Initialize the buffer queues */
509 1.131 yamt for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
510 1.131 yamt TAILQ_INIT(&dp->bq_queue);
511 1.131 yamt dp->bq_bytes = 0;
512 1.131 yamt }
513 1.100 pk
514 1.100 pk /*
515 1.100 pk * Estimate hash table size based on the amount of memory we
516 1.100 pk * intend to use for the buffer cache. The average buffer
517 1.100 pk * size is dependent on our clients (i.e. filesystems).
518 1.100 pk *
519 1.100 pk * For now, use an empirical 3K per buffer.
520 1.100 pk */
521 1.100 pk nbuf = (bufmem_hiwater / 1024) / 3;
522 1.197 ad bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
523 1.215 pooka
524 1.215 pooka sysctl_kern_buf_setup();
525 1.215 pooka sysctl_vm_buf_setup();
526 1.100 pk }
527 1.100 pk
528 1.183 ad void
529 1.183 ad bufinit2(void)
530 1.183 ad {
531 1.183 ad
532 1.183 ad biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
533 1.183 ad NULL);
534 1.183 ad if (biodone_sih == NULL)
535 1.183 ad panic("bufinit2: can't establish soft interrupt");
536 1.183 ad }
537 1.183 ad
538 1.100 pk static int
539 1.100 pk buf_lotsfree(void)
540 1.100 pk {
541 1.114 tls int try, thresh;
542 1.128 hannken
543 1.122 simonb /* Always allocate if less than the low water mark. */
544 1.122 simonb if (bufmem < bufmem_lowater)
545 1.114 tls return 1;
546 1.142 perry
547 1.122 simonb /* Never allocate if greater than the high water mark. */
548 1.122 simonb if (bufmem > bufmem_hiwater)
549 1.122 simonb return 0;
550 1.114 tls
551 1.115 tls /* If there's anything on the AGE list, it should be eaten. */
552 1.131 yamt if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
553 1.115 tls return 0;
554 1.115 tls
555 1.122 simonb /*
556 1.122 simonb * The probabily of getting a new allocation is inversely
557 1.122 simonb * proportional to the current size of the cache, using
558 1.122 simonb * a granularity of 16 steps.
559 1.122 simonb */
560 1.114 tls try = random() & 0x0000000fL;
561 1.114 tls
562 1.122 simonb /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
563 1.136 enami thresh = (bufmem - bufmem_lowater) /
564 1.136 enami ((bufmem_hiwater - bufmem_lowater) / 16);
565 1.114 tls
566 1.136 enami if (try >= thresh)
567 1.114 tls return 1;
568 1.114 tls
569 1.122 simonb /* Otherwise don't allocate. */
570 1.114 tls return 0;
571 1.100 pk }
572 1.100 pk
573 1.100 pk /*
574 1.116 yamt * Return estimate of bytes we think need to be
575 1.100 pk * released to help resolve low memory conditions.
576 1.116 yamt *
577 1.183 ad * => called with bufcache_lock held.
578 1.100 pk */
579 1.100 pk static int
580 1.100 pk buf_canrelease(void)
581 1.100 pk {
582 1.115 tls int pagedemand, ninvalid = 0;
583 1.115 tls
584 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
585 1.116 yamt
586 1.118 dan if (bufmem < bufmem_lowater)
587 1.118 dan return 0;
588 1.118 dan
589 1.141 tls if (bufmem > bufmem_hiwater)
590 1.141 tls return bufmem - bufmem_hiwater;
591 1.141 tls
592 1.131 yamt ninvalid += bufqueues[BQ_AGE].bq_bytes;
593 1.100 pk
594 1.115 tls pagedemand = uvmexp.freetarg - uvmexp.free;
595 1.115 tls if (pagedemand < 0)
596 1.115 tls return ninvalid;
597 1.115 tls return MAX(ninvalid, MIN(2 * MAXBSIZE,
598 1.115 tls MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
599 1.100 pk }
600 1.100 pk
601 1.100 pk /*
602 1.100 pk * Buffer memory allocation helper functions
603 1.100 pk */
604 1.183 ad static u_long
605 1.101 thorpej buf_mempoolidx(u_long size)
606 1.100 pk {
607 1.100 pk u_int n = 0;
608 1.100 pk
609 1.100 pk size -= 1;
610 1.100 pk size >>= MEMPOOL_INDEX_OFFSET;
611 1.100 pk while (size) {
612 1.100 pk size >>= 1;
613 1.100 pk n += 1;
614 1.100 pk }
615 1.100 pk if (n >= NMEMPOOLS)
616 1.100 pk panic("buf mem pool index %d", n);
617 1.100 pk return n;
618 1.100 pk }
619 1.100 pk
620 1.183 ad static u_long
621 1.101 thorpej buf_roundsize(u_long size)
622 1.100 pk {
623 1.100 pk /* Round up to nearest power of 2 */
624 1.100 pk return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
625 1.100 pk }
626 1.100 pk
627 1.183 ad static void *
628 1.101 thorpej buf_malloc(size_t size)
629 1.100 pk {
630 1.100 pk u_int n = buf_mempoolidx(size);
631 1.170 christos void *addr;
632 1.100 pk
633 1.100 pk while (1) {
634 1.100 pk addr = pool_get(&bmempools[n], PR_NOWAIT);
635 1.100 pk if (addr != NULL)
636 1.100 pk break;
637 1.100 pk
638 1.100 pk /* No memory, see if we can free some. If so, try again */
639 1.183 ad mutex_enter(&bufcache_lock);
640 1.183 ad if (buf_drain(1) > 0) {
641 1.183 ad mutex_exit(&bufcache_lock);
642 1.100 pk continue;
643 1.183 ad }
644 1.183 ad
645 1.183 ad if (curlwp == uvm.pagedaemon_lwp) {
646 1.183 ad mutex_exit(&bufcache_lock);
647 1.183 ad return NULL;
648 1.183 ad }
649 1.100 pk
650 1.100 pk /* Wait for buffers to arrive on the LRU queue */
651 1.183 ad cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
652 1.183 ad mutex_exit(&bufcache_lock);
653 1.31 cgd }
654 1.100 pk
655 1.100 pk return addr;
656 1.100 pk }
657 1.100 pk
658 1.101 thorpej static void
659 1.170 christos buf_mrelease(void *addr, size_t size)
660 1.100 pk {
661 1.100 pk
662 1.100 pk pool_put(&bmempools[buf_mempoolidx(size)], addr);
663 1.31 cgd }
664 1.31 cgd
665 1.130 yamt /*
666 1.130 yamt * bread()/breadn() helper.
667 1.130 yamt */
668 1.183 ad static buf_t *
669 1.166 yamt bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
670 1.166 yamt int async)
671 1.31 cgd {
672 1.183 ad buf_t *bp;
673 1.123 christos struct mount *mp;
674 1.31 cgd
675 1.34 mycroft bp = getblk(vp, blkno, size, 0, 0);
676 1.31 cgd
677 1.86 thorpej #ifdef DIAGNOSTIC
678 1.86 thorpej if (bp == NULL) {
679 1.86 thorpej panic("bio_doread: no such buf");
680 1.86 thorpej }
681 1.86 thorpej #endif
682 1.86 thorpej
683 1.31 cgd /*
684 1.34 mycroft * If buffer does not have data valid, start a read.
685 1.183 ad * Note that if buffer is BC_INVAL, getblk() won't return it.
686 1.87 pk * Therefore, it's valid if its I/O has completed or been delayed.
687 1.31 cgd */
688 1.183 ad if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
689 1.73 chs /* Start I/O for the buffer. */
690 1.34 mycroft SET(bp->b_flags, B_READ | async);
691 1.108 yamt if (async)
692 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
693 1.108 yamt else
694 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
695 1.112 hannken VOP_STRATEGY(vp, bp);
696 1.31 cgd
697 1.34 mycroft /* Pay for the read. */
698 1.194 ad curlwp->l_ru.ru_inblock++;
699 1.183 ad } else if (async)
700 1.179 ad brelse(bp, 0);
701 1.31 cgd
702 1.124 yamt if (vp->v_type == VBLK)
703 1.124 yamt mp = vp->v_specmountpoint;
704 1.124 yamt else
705 1.124 yamt mp = vp->v_mount;
706 1.123 christos
707 1.123 christos /*
708 1.123 christos * Collect statistics on synchronous and asynchronous reads.
709 1.123 christos * Reads from block devices are charged to their associated
710 1.123 christos * filesystem (if any).
711 1.123 christos */
712 1.123 christos if (mp != NULL) {
713 1.123 christos if (async == 0)
714 1.123 christos mp->mnt_stat.f_syncreads++;
715 1.123 christos else
716 1.123 christos mp->mnt_stat.f_asyncreads++;
717 1.123 christos }
718 1.123 christos
719 1.34 mycroft return (bp);
720 1.34 mycroft }
721 1.34 mycroft
722 1.34 mycroft /*
723 1.34 mycroft * Read a disk block.
724 1.34 mycroft * This algorithm described in Bach (p.54).
725 1.34 mycroft */
726 1.40 christos int
727 1.160 elad bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
728 1.198 hannken int flags, buf_t **bpp)
729 1.34 mycroft {
730 1.183 ad buf_t *bp;
731 1.198 hannken int error;
732 1.34 mycroft
733 1.34 mycroft /* Get buffer for block. */
734 1.34 mycroft bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
735 1.31 cgd
736 1.80 chs /* Wait for the read to complete, and return result. */
737 1.198 hannken error = biowait(bp);
738 1.219 pooka if (error == 0 && (flags & B_MODIFY) != 0)
739 1.198 hannken error = fscow_run(bp, true);
740 1.208 simonb
741 1.198 hannken return error;
742 1.31 cgd }
743 1.31 cgd
744 1.31 cgd /*
745 1.31 cgd * Read-ahead multiple disk blocks. The first is sync, the rest async.
746 1.31 cgd * Trivial modification to the breada algorithm presented in Bach (p.55).
747 1.31 cgd */
748 1.40 christos int
749 1.101 thorpej breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
750 1.198 hannken int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
751 1.31 cgd {
752 1.183 ad buf_t *bp;
753 1.198 hannken int error, i;
754 1.31 cgd
755 1.34 mycroft bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
756 1.31 cgd
757 1.31 cgd /*
758 1.31 cgd * For each of the read-ahead blocks, start a read, if necessary.
759 1.31 cgd */
760 1.183 ad mutex_enter(&bufcache_lock);
761 1.31 cgd for (i = 0; i < nrablks; i++) {
762 1.31 cgd /* If it's in the cache, just go on to next one. */
763 1.31 cgd if (incore(vp, rablks[i]))
764 1.31 cgd continue;
765 1.31 cgd
766 1.31 cgd /* Get a buffer for the read-ahead block */
767 1.183 ad mutex_exit(&bufcache_lock);
768 1.34 mycroft (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
769 1.183 ad mutex_enter(&bufcache_lock);
770 1.31 cgd }
771 1.183 ad mutex_exit(&bufcache_lock);
772 1.31 cgd
773 1.80 chs /* Otherwise, we had to start a read for it; wait until it's valid. */
774 1.198 hannken error = biowait(bp);
775 1.198 hannken if (error == 0 && (flags & B_MODIFY) != 0)
776 1.198 hannken error = fscow_run(bp, true);
777 1.198 hannken return error;
778 1.31 cgd }
779 1.31 cgd
780 1.31 cgd /*
781 1.31 cgd * Block write. Described in Bach (p.56)
782 1.31 cgd */
783 1.40 christos int
784 1.183 ad bwrite(buf_t *bp)
785 1.31 cgd {
786 1.183 ad int rv, sync, wasdelayed;
787 1.59 fvdl struct vnode *vp;
788 1.59 fvdl struct mount *mp;
789 1.31 cgd
790 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
791 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
792 1.87 pk
793 1.76 chs vp = bp->b_vp;
794 1.76 chs if (vp != NULL) {
795 1.183 ad KASSERT(bp->b_objlock == &vp->v_interlock);
796 1.76 chs if (vp->v_type == VBLK)
797 1.76 chs mp = vp->v_specmountpoint;
798 1.76 chs else
799 1.76 chs mp = vp->v_mount;
800 1.76 chs } else {
801 1.76 chs mp = NULL;
802 1.76 chs }
803 1.76 chs
804 1.208 simonb if (mp && mp->mnt_wapbl) {
805 1.208 simonb if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
806 1.208 simonb bdwrite(bp);
807 1.208 simonb return 0;
808 1.208 simonb }
809 1.208 simonb }
810 1.208 simonb
811 1.38 cgd /*
812 1.38 cgd * Remember buffer type, to switch on it later. If the write was
813 1.38 cgd * synchronous, but the file system was mounted with MNT_ASYNC,
814 1.142 perry * convert it to a delayed write.
815 1.38 cgd * XXX note that this relies on delayed tape writes being converted
816 1.38 cgd * to async, not sync writes (which is safe, but ugly).
817 1.38 cgd */
818 1.31 cgd sync = !ISSET(bp->b_flags, B_ASYNC);
819 1.76 chs if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
820 1.37 cgd bdwrite(bp);
821 1.37 cgd return (0);
822 1.37 cgd }
823 1.46 mycroft
824 1.59 fvdl /*
825 1.59 fvdl * Collect statistics on synchronous and asynchronous writes.
826 1.59 fvdl * Writes to block devices are charged to their associated
827 1.59 fvdl * filesystem (if any).
828 1.59 fvdl */
829 1.76 chs if (mp != NULL) {
830 1.76 chs if (sync)
831 1.76 chs mp->mnt_stat.f_syncwrites++;
832 1.59 fvdl else
833 1.76 chs mp->mnt_stat.f_asyncwrites++;
834 1.59 fvdl }
835 1.59 fvdl
836 1.46 mycroft /*
837 1.46 mycroft * Pay for the I/O operation and make sure the buf is on the correct
838 1.46 mycroft * vnode queue.
839 1.46 mycroft */
840 1.184 ad bp->b_error = 0;
841 1.184 ad wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
842 1.183 ad CLR(bp->b_flags, B_READ);
843 1.184 ad if (wasdelayed) {
844 1.184 ad mutex_enter(&bufcache_lock);
845 1.184 ad mutex_enter(bp->b_objlock);
846 1.184 ad CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
847 1.46 mycroft reassignbuf(bp, bp->b_vp);
848 1.184 ad mutex_exit(&bufcache_lock);
849 1.184 ad } else {
850 1.194 ad curlwp->l_ru.ru_oublock++;
851 1.184 ad mutex_enter(bp->b_objlock);
852 1.184 ad CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
853 1.184 ad }
854 1.183 ad if (vp != NULL)
855 1.183 ad vp->v_numoutput++;
856 1.183 ad mutex_exit(bp->b_objlock);
857 1.32 mycroft
858 1.183 ad /* Initiate disk write. */
859 1.108 yamt if (sync)
860 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
861 1.108 yamt else
862 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
863 1.108 yamt
864 1.112 hannken VOP_STRATEGY(vp, bp);
865 1.31 cgd
866 1.34 mycroft if (sync) {
867 1.46 mycroft /* If I/O was synchronous, wait for it to complete. */
868 1.31 cgd rv = biowait(bp);
869 1.31 cgd
870 1.34 mycroft /* Release the buffer. */
871 1.179 ad brelse(bp, 0);
872 1.34 mycroft
873 1.34 mycroft return (rv);
874 1.34 mycroft } else {
875 1.34 mycroft return (0);
876 1.31 cgd }
877 1.31 cgd }
878 1.31 cgd
879 1.31 cgd int
880 1.101 thorpej vn_bwrite(void *v)
881 1.31 cgd {
882 1.40 christos struct vop_bwrite_args *ap = v;
883 1.34 mycroft
884 1.31 cgd return (bwrite(ap->a_bp));
885 1.31 cgd }
886 1.31 cgd
887 1.31 cgd /*
888 1.31 cgd * Delayed write.
889 1.31 cgd *
890 1.31 cgd * The buffer is marked dirty, but is not queued for I/O.
891 1.31 cgd * This routine should be used when the buffer is expected
892 1.31 cgd * to be modified again soon, typically a small write that
893 1.31 cgd * partially fills a buffer.
894 1.31 cgd *
895 1.31 cgd * NB: magnetic tapes cannot be delayed; they must be
896 1.31 cgd * written in the order that the writes are requested.
897 1.31 cgd *
898 1.31 cgd * Described in Leffler, et al. (pp. 208-213).
899 1.31 cgd */
900 1.31 cgd void
901 1.183 ad bdwrite(buf_t *bp)
902 1.31 cgd {
903 1.183 ad
904 1.198 hannken KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
905 1.207 hannken bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
906 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
907 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
908 1.31 cgd
909 1.46 mycroft /* If this is a tape block, write the block now. */
910 1.173 ad if (bdev_type(bp->b_dev) == D_TAPE) {
911 1.90 pk bawrite(bp);
912 1.90 pk return;
913 1.46 mycroft }
914 1.46 mycroft
915 1.208 simonb if (wapbl_vphaswapbl(bp->b_vp)) {
916 1.208 simonb struct mount *mp = wapbl_vptomp(bp->b_vp);
917 1.208 simonb
918 1.208 simonb if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
919 1.208 simonb WAPBL_ADD_BUF(mp, bp);
920 1.208 simonb }
921 1.208 simonb }
922 1.208 simonb
923 1.31 cgd /*
924 1.31 cgd * If the block hasn't been seen before:
925 1.31 cgd * (1) Mark it as having been seen,
926 1.45 pk * (2) Charge for the write,
927 1.45 pk * (3) Make sure it's on its vnode's correct block list.
928 1.31 cgd */
929 1.183 ad KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
930 1.97 dbj
931 1.183 ad if (!ISSET(bp->b_oflags, BO_DELWRI)) {
932 1.184 ad mutex_enter(&bufcache_lock);
933 1.184 ad mutex_enter(bp->b_objlock);
934 1.183 ad SET(bp->b_oflags, BO_DELWRI);
935 1.194 ad curlwp->l_ru.ru_oublock++;
936 1.31 cgd reassignbuf(bp, bp->b_vp);
937 1.184 ad mutex_exit(&bufcache_lock);
938 1.184 ad } else {
939 1.184 ad mutex_enter(bp->b_objlock);
940 1.31 cgd }
941 1.31 cgd /* Otherwise, the "write" is done, so mark and release the buffer. */
942 1.183 ad CLR(bp->b_oflags, BO_DONE);
943 1.183 ad mutex_exit(bp->b_objlock);
944 1.60 fvdl
945 1.179 ad brelse(bp, 0);
946 1.31 cgd }
947 1.31 cgd
948 1.31 cgd /*
949 1.31 cgd * Asynchronous block write; just an asynchronous bwrite().
950 1.31 cgd */
951 1.31 cgd void
952 1.183 ad bawrite(buf_t *bp)
953 1.31 cgd {
954 1.31 cgd
955 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
956 1.87 pk
957 1.31 cgd SET(bp->b_flags, B_ASYNC);
958 1.31 cgd VOP_BWRITE(bp);
959 1.31 cgd }
960 1.31 cgd
961 1.31 cgd /*
962 1.31 cgd * Release a buffer on to the free lists.
963 1.31 cgd * Described in Bach (p. 46).
964 1.31 cgd */
965 1.31 cgd void
966 1.183 ad brelsel(buf_t *bp, int set)
967 1.31 cgd {
968 1.131 yamt struct bqueue *bufq;
969 1.183 ad struct vnode *vp;
970 1.31 cgd
971 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
972 1.202 ad KASSERT(!cv_has_waiters(&bp->b_done));
973 1.202 ad KASSERT(bp->b_refcnt > 0);
974 1.202 ad
975 1.183 ad SET(bp->b_cflags, set);
976 1.179 ad
977 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
978 1.183 ad KASSERT(bp->b_iodone == NULL);
979 1.87 pk
980 1.31 cgd /* Wake up any processes waiting for any buffer to become free. */
981 1.183 ad cv_signal(&needbuffer_cv);
982 1.31 cgd
983 1.183 ad /* Wake up any proceeses waiting for _this_ buffer to become */
984 1.199 ad if (ISSET(bp->b_cflags, BC_WANTED))
985 1.183 ad CLR(bp->b_cflags, BC_WANTED|BC_AGE);
986 1.31 cgd
987 1.31 cgd /*
988 1.31 cgd * Determine which queue the buffer should be on, then put it there.
989 1.31 cgd */
990 1.31 cgd
991 1.31 cgd /* If it's locked, don't report an error; try again later. */
992 1.187 ad if (ISSET(bp->b_flags, B_LOCKED))
993 1.174 ad bp->b_error = 0;
994 1.31 cgd
995 1.31 cgd /* If it's not cacheable, or an error, mark it invalid. */
996 1.183 ad if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
997 1.183 ad SET(bp->b_cflags, BC_INVAL);
998 1.31 cgd
999 1.183 ad if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1000 1.50 mycroft /*
1001 1.50 mycroft * This is a delayed write buffer that was just flushed to
1002 1.50 mycroft * disk. It is still on the LRU queue. If it's become
1003 1.50 mycroft * invalid, then we need to move it to a different queue;
1004 1.50 mycroft * otherwise leave it in its current position.
1005 1.50 mycroft */
1006 1.183 ad CLR(bp->b_cflags, BC_VFLUSH);
1007 1.187 ad if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1008 1.187 ad !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1009 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1010 1.50 mycroft goto already_queued;
1011 1.99 dbj } else {
1012 1.50 mycroft bremfree(bp);
1013 1.99 dbj }
1014 1.50 mycroft }
1015 1.99 dbj
1016 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1017 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1018 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1019 1.50 mycroft
1020 1.183 ad if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1021 1.31 cgd /*
1022 1.31 cgd * If it's invalid or empty, dissociate it from its vnode
1023 1.31 cgd * and put on the head of the appropriate queue.
1024 1.31 cgd */
1025 1.208 simonb if (ISSET(bp->b_flags, B_LOCKED)) {
1026 1.208 simonb if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1027 1.208 simonb struct mount *mp = wapbl_vptomp(vp);
1028 1.208 simonb
1029 1.208 simonb KASSERT(bp->b_iodone
1030 1.208 simonb != mp->mnt_wapbl_op->wo_wapbl_biodone);
1031 1.208 simonb WAPBL_REMOVE_BUF(mp, bp);
1032 1.208 simonb }
1033 1.208 simonb }
1034 1.208 simonb
1035 1.183 ad mutex_enter(bp->b_objlock);
1036 1.183 ad CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1037 1.183 ad if ((vp = bp->b_vp) != NULL) {
1038 1.183 ad KASSERT(bp->b_objlock == &vp->v_interlock);
1039 1.59 fvdl reassignbuf(bp, bp->b_vp);
1040 1.31 cgd brelvp(bp);
1041 1.183 ad mutex_exit(&vp->v_interlock);
1042 1.183 ad } else {
1043 1.183 ad KASSERT(bp->b_objlock == &buffer_lock);
1044 1.183 ad mutex_exit(bp->b_objlock);
1045 1.59 fvdl }
1046 1.183 ad
1047 1.31 cgd if (bp->b_bufsize <= 0)
1048 1.31 cgd /* no data */
1049 1.100 pk goto already_queued;
1050 1.31 cgd else
1051 1.31 cgd /* invalid data */
1052 1.31 cgd bufq = &bufqueues[BQ_AGE];
1053 1.31 cgd binsheadfree(bp, bufq);
1054 1.183 ad } else {
1055 1.31 cgd /*
1056 1.31 cgd * It has valid data. Put it on the end of the appropriate
1057 1.31 cgd * queue, so that it'll stick around for as long as possible.
1058 1.67 fvdl * If buf is AGE, but has dependencies, must put it on last
1059 1.67 fvdl * bufqueue to be scanned, ie LRU. This protects against the
1060 1.67 fvdl * livelock where BQ_AGE only has buffers with dependencies,
1061 1.67 fvdl * and we thus never get to the dependent buffers in BQ_LRU.
1062 1.31 cgd */
1063 1.187 ad if (ISSET(bp->b_flags, B_LOCKED)) {
1064 1.31 cgd /* locked in core */
1065 1.31 cgd bufq = &bufqueues[BQ_LOCKED];
1066 1.183 ad } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1067 1.31 cgd /* valid data */
1068 1.31 cgd bufq = &bufqueues[BQ_LRU];
1069 1.183 ad } else {
1070 1.67 fvdl /* stale but valid data */
1071 1.216 ad bufq = &bufqueues[BQ_AGE];
1072 1.67 fvdl }
1073 1.31 cgd binstailfree(bp, bufq);
1074 1.31 cgd }
1075 1.50 mycroft already_queued:
1076 1.31 cgd /* Unlock the buffer. */
1077 1.183 ad CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1078 1.183 ad CLR(bp->b_flags, B_ASYNC);
1079 1.199 ad cv_broadcast(&bp->b_busy);
1080 1.31 cgd
1081 1.183 ad if (bp->b_bufsize <= 0)
1082 1.183 ad brele(bp);
1083 1.183 ad }
1084 1.183 ad
1085 1.183 ad void
1086 1.183 ad brelse(buf_t *bp, int set)
1087 1.183 ad {
1088 1.183 ad
1089 1.183 ad mutex_enter(&bufcache_lock);
1090 1.183 ad brelsel(bp, set);
1091 1.183 ad mutex_exit(&bufcache_lock);
1092 1.31 cgd }
1093 1.31 cgd
1094 1.31 cgd /*
1095 1.31 cgd * Determine if a block is in the cache.
1096 1.31 cgd * Just look on what would be its hash chain. If it's there, return
1097 1.31 cgd * a pointer to it, unless it's marked invalid. If it's marked invalid,
1098 1.31 cgd * we normally don't return the buffer, unless the caller explicitly
1099 1.31 cgd * wants us to.
1100 1.31 cgd */
1101 1.183 ad buf_t *
1102 1.101 thorpej incore(struct vnode *vp, daddr_t blkno)
1103 1.31 cgd {
1104 1.183 ad buf_t *bp;
1105 1.183 ad
1106 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1107 1.31 cgd
1108 1.31 cgd /* Search hash chain */
1109 1.84 matt LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1110 1.31 cgd if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1111 1.183 ad !ISSET(bp->b_cflags, BC_INVAL)) {
1112 1.183 ad KASSERT(bp->b_objlock == &vp->v_interlock);
1113 1.183 ad return (bp);
1114 1.183 ad }
1115 1.31 cgd }
1116 1.31 cgd
1117 1.73 chs return (NULL);
1118 1.31 cgd }
1119 1.31 cgd
1120 1.31 cgd /*
1121 1.31 cgd * Get a block of requested size that is associated with
1122 1.31 cgd * a given vnode and block offset. If it is found in the
1123 1.31 cgd * block cache, mark it as having been found, make it busy
1124 1.31 cgd * and return it. Otherwise, return an empty block of the
1125 1.31 cgd * correct size. It is up to the caller to insure that the
1126 1.31 cgd * cached blocks be of the correct size.
1127 1.31 cgd */
1128 1.183 ad buf_t *
1129 1.101 thorpej getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1130 1.31 cgd {
1131 1.183 ad int err, preserve;
1132 1.183 ad buf_t *bp;
1133 1.183 ad
1134 1.183 ad mutex_enter(&bufcache_lock);
1135 1.183 ad loop:
1136 1.73 chs bp = incore(vp, blkno);
1137 1.73 chs if (bp != NULL) {
1138 1.188 ad err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1139 1.183 ad if (err != 0) {
1140 1.183 ad if (err == EPASSTHROUGH)
1141 1.183 ad goto loop;
1142 1.183 ad mutex_exit(&bufcache_lock);
1143 1.183 ad return (NULL);
1144 1.31 cgd }
1145 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
1146 1.57 mycroft #ifdef DIAGNOSTIC
1147 1.183 ad if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1148 1.78 chs bp->b_bcount < size && vp->v_type != VBLK)
1149 1.73 chs panic("getblk: block size invariant failed");
1150 1.57 mycroft #endif
1151 1.73 chs bremfree(bp);
1152 1.100 pk preserve = 1;
1153 1.73 chs } else {
1154 1.183 ad if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1155 1.183 ad goto loop;
1156 1.183 ad
1157 1.183 ad if (incore(vp, blkno) != NULL) {
1158 1.183 ad /* The block has come into memory in the meantime. */
1159 1.183 ad brelsel(bp, 0);
1160 1.183 ad goto loop;
1161 1.87 pk }
1162 1.73 chs
1163 1.183 ad LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1164 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1165 1.183 ad mutex_enter(&vp->v_interlock);
1166 1.31 cgd bgetvp(vp, bp);
1167 1.183 ad mutex_exit(&vp->v_interlock);
1168 1.100 pk preserve = 0;
1169 1.31 cgd }
1170 1.183 ad mutex_exit(&bufcache_lock);
1171 1.183 ad
1172 1.96 yamt /*
1173 1.187 ad * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1174 1.96 yamt * if we re-size buffers here.
1175 1.96 yamt */
1176 1.187 ad if (ISSET(bp->b_flags, B_LOCKED)) {
1177 1.96 yamt KASSERT(bp->b_bufsize >= size);
1178 1.96 yamt } else {
1179 1.183 ad if (allocbuf(bp, size, preserve)) {
1180 1.183 ad mutex_enter(&bufcache_lock);
1181 1.183 ad LIST_REMOVE(bp, b_hash);
1182 1.183 ad mutex_exit(&bufcache_lock);
1183 1.183 ad brelse(bp, BC_INVAL);
1184 1.183 ad return NULL;
1185 1.183 ad }
1186 1.96 yamt }
1187 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1188 1.31 cgd return (bp);
1189 1.31 cgd }
1190 1.31 cgd
1191 1.31 cgd /*
1192 1.31 cgd * Get an empty, disassociated buffer of given size.
1193 1.31 cgd */
1194 1.183 ad buf_t *
1195 1.101 thorpej geteblk(int size)
1196 1.31 cgd {
1197 1.183 ad buf_t *bp;
1198 1.183 ad int error;
1199 1.31 cgd
1200 1.183 ad mutex_enter(&bufcache_lock);
1201 1.183 ad while ((bp = getnewbuf(0, 0, 0)) == NULL)
1202 1.31 cgd ;
1203 1.87 pk
1204 1.183 ad SET(bp->b_cflags, BC_INVAL);
1205 1.183 ad LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1206 1.183 ad mutex_exit(&bufcache_lock);
1207 1.109 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1208 1.183 ad error = allocbuf(bp, size, 0);
1209 1.183 ad KASSERT(error == 0);
1210 1.31 cgd return (bp);
1211 1.31 cgd }
1212 1.31 cgd
1213 1.31 cgd /*
1214 1.31 cgd * Expand or contract the actual memory allocated to a buffer.
1215 1.31 cgd *
1216 1.31 cgd * If the buffer shrinks, data is lost, so it's up to the
1217 1.31 cgd * caller to have written it out *first*; this routine will not
1218 1.31 cgd * start a write. If the buffer grows, it's the callers
1219 1.31 cgd * responsibility to fill out the buffer's additional contents.
1220 1.31 cgd */
1221 1.183 ad int
1222 1.183 ad allocbuf(buf_t *bp, int size, int preserve)
1223 1.31 cgd {
1224 1.208 simonb void *addr;
1225 1.100 pk vsize_t oldsize, desired_size;
1226 1.208 simonb int oldcount;
1227 1.183 ad int delta;
1228 1.31 cgd
1229 1.100 pk desired_size = buf_roundsize(size);
1230 1.31 cgd if (desired_size > MAXBSIZE)
1231 1.100 pk printf("allocbuf: buffer larger than MAXBSIZE requested");
1232 1.31 cgd
1233 1.208 simonb oldcount = bp->b_bcount;
1234 1.208 simonb
1235 1.100 pk bp->b_bcount = size;
1236 1.100 pk
1237 1.100 pk oldsize = bp->b_bufsize;
1238 1.214 joerg if (oldsize == desired_size) {
1239 1.214 joerg /*
1240 1.214 joerg * Do not short cut the WAPBL resize, as the buffer length
1241 1.214 joerg * could still have changed and this would corrupt the
1242 1.214 joerg * tracking of the transaction length.
1243 1.214 joerg */
1244 1.214 joerg goto out;
1245 1.214 joerg }
1246 1.31 cgd
1247 1.31 cgd /*
1248 1.100 pk * If we want a buffer of a different size, re-allocate the
1249 1.100 pk * buffer's memory; copy old content only if needed.
1250 1.31 cgd */
1251 1.100 pk addr = buf_malloc(desired_size);
1252 1.183 ad if (addr == NULL)
1253 1.183 ad return ENOMEM;
1254 1.100 pk if (preserve)
1255 1.100 pk memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1256 1.100 pk if (bp->b_data != NULL)
1257 1.100 pk buf_mrelease(bp->b_data, oldsize);
1258 1.100 pk bp->b_data = addr;
1259 1.100 pk bp->b_bufsize = desired_size;
1260 1.31 cgd
1261 1.31 cgd /*
1262 1.183 ad * Update overall buffer memory counter (protected by bufcache_lock)
1263 1.31 cgd */
1264 1.100 pk delta = (long)desired_size - (long)oldsize;
1265 1.100 pk
1266 1.183 ad mutex_enter(&bufcache_lock);
1267 1.100 pk if ((bufmem += delta) > bufmem_hiwater) {
1268 1.100 pk /*
1269 1.100 pk * Need to trim overall memory usage.
1270 1.100 pk */
1271 1.100 pk while (buf_canrelease()) {
1272 1.154 yamt if (curcpu()->ci_schedstate.spc_flags &
1273 1.154 yamt SPCF_SHOULDYIELD) {
1274 1.183 ad mutex_exit(&bufcache_lock);
1275 1.168 ad preempt();
1276 1.183 ad mutex_enter(&bufcache_lock);
1277 1.154 yamt }
1278 1.100 pk if (buf_trim() == 0)
1279 1.100 pk break;
1280 1.31 cgd }
1281 1.31 cgd }
1282 1.183 ad mutex_exit(&bufcache_lock);
1283 1.208 simonb
1284 1.214 joerg out:
1285 1.208 simonb if (wapbl_vphaswapbl(bp->b_vp))
1286 1.208 simonb WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1287 1.208 simonb
1288 1.183 ad return 0;
1289 1.31 cgd }
1290 1.31 cgd
1291 1.31 cgd /*
1292 1.31 cgd * Find a buffer which is available for use.
1293 1.31 cgd * Select something from a free list.
1294 1.142 perry * Preference is to AGE list, then LRU list.
1295 1.87 pk *
1296 1.183 ad * Called with the buffer queues locked.
1297 1.87 pk * Return buffer locked.
1298 1.31 cgd */
1299 1.183 ad buf_t *
1300 1.101 thorpej getnewbuf(int slpflag, int slptimeo, int from_bufq)
1301 1.31 cgd {
1302 1.183 ad buf_t *bp;
1303 1.183 ad struct vnode *vp;
1304 1.31 cgd
1305 1.183 ad start:
1306 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1307 1.87 pk
1308 1.100 pk /*
1309 1.183 ad * Get a new buffer from the pool.
1310 1.100 pk */
1311 1.183 ad if (!from_bufq && buf_lotsfree()) {
1312 1.183 ad mutex_exit(&bufcache_lock);
1313 1.183 ad bp = pool_cache_get(buf_cache, PR_NOWAIT);
1314 1.183 ad if (bp != NULL) {
1315 1.183 ad memset((char *)bp, 0, sizeof(*bp));
1316 1.183 ad buf_init(bp);
1317 1.204 reinoud SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1318 1.183 ad mutex_enter(&bufcache_lock);
1319 1.131 yamt #if defined(DIAGNOSTIC)
1320 1.183 ad bp->b_freelistindex = -1;
1321 1.131 yamt #endif /* defined(DIAGNOSTIC) */
1322 1.183 ad return (bp);
1323 1.183 ad }
1324 1.183 ad mutex_enter(&bufcache_lock);
1325 1.100 pk }
1326 1.100 pk
1327 1.209 reinoud KASSERT(mutex_owned(&bufcache_lock));
1328 1.131 yamt if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1329 1.131 yamt (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1330 1.206 bouyer KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1331 1.31 cgd bremfree(bp);
1332 1.202 ad
1333 1.202 ad /* Buffer is no longer on free lists. */
1334 1.202 ad SET(bp->b_cflags, BC_BUSY);
1335 1.31 cgd } else {
1336 1.134 enami /*
1337 1.134 enami * XXX: !from_bufq should be removed.
1338 1.134 enami */
1339 1.173 ad if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1340 1.134 enami /* wait for a free buffer of any kind */
1341 1.183 ad if ((slpflag & PCATCH) != 0)
1342 1.183 ad (void)cv_timedwait_sig(&needbuffer_cv,
1343 1.183 ad &bufcache_lock, slptimeo);
1344 1.183 ad else
1345 1.183 ad (void)cv_timedwait(&needbuffer_cv,
1346 1.183 ad &bufcache_lock, slptimeo);
1347 1.134 enami }
1348 1.73 chs return (NULL);
1349 1.31 cgd }
1350 1.31 cgd
1351 1.100 pk #ifdef DIAGNOSTIC
1352 1.100 pk if (bp->b_bufsize <= 0)
1353 1.100 pk panic("buffer %p: on queue but empty", bp);
1354 1.100 pk #endif
1355 1.100 pk
1356 1.183 ad if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1357 1.50 mycroft /*
1358 1.50 mycroft * This is a delayed write buffer being flushed to disk. Make
1359 1.50 mycroft * sure it gets aged out of the queue when it's finished, and
1360 1.50 mycroft * leave it off the LRU queue.
1361 1.50 mycroft */
1362 1.183 ad CLR(bp->b_cflags, BC_VFLUSH);
1363 1.183 ad SET(bp->b_cflags, BC_AGE);
1364 1.50 mycroft goto start;
1365 1.50 mycroft }
1366 1.50 mycroft
1367 1.202 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1368 1.202 ad KASSERT(bp->b_refcnt > 0);
1369 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
1370 1.31 cgd
1371 1.75 chs /*
1372 1.75 chs * If buffer was a delayed write, start it and return NULL
1373 1.75 chs * (since we might sleep while starting the write).
1374 1.75 chs */
1375 1.183 ad if (ISSET(bp->b_oflags, BO_DELWRI)) {
1376 1.50 mycroft /*
1377 1.50 mycroft * This buffer has gone through the LRU, so make sure it gets
1378 1.50 mycroft * reused ASAP.
1379 1.50 mycroft */
1380 1.183 ad SET(bp->b_cflags, BC_AGE);
1381 1.183 ad mutex_exit(&bufcache_lock);
1382 1.50 mycroft bawrite(bp);
1383 1.183 ad mutex_enter(&bufcache_lock);
1384 1.75 chs return (NULL);
1385 1.31 cgd }
1386 1.31 cgd
1387 1.183 ad vp = bp->b_vp;
1388 1.59 fvdl
1389 1.31 cgd /* clear out various other fields */
1390 1.183 ad bp->b_cflags = BC_BUSY;
1391 1.183 ad bp->b_oflags = 0;
1392 1.183 ad bp->b_flags = 0;
1393 1.31 cgd bp->b_dev = NODEV;
1394 1.183 ad bp->b_blkno = 0;
1395 1.183 ad bp->b_lblkno = 0;
1396 1.183 ad bp->b_rawblkno = 0;
1397 1.31 cgd bp->b_iodone = 0;
1398 1.31 cgd bp->b_error = 0;
1399 1.31 cgd bp->b_resid = 0;
1400 1.31 cgd bp->b_bcount = 0;
1401 1.142 perry
1402 1.183 ad LIST_REMOVE(bp, b_hash);
1403 1.183 ad
1404 1.183 ad /* Disassociate us from our vnode, if we had one... */
1405 1.183 ad if (vp != NULL) {
1406 1.183 ad mutex_enter(&vp->v_interlock);
1407 1.183 ad brelvp(bp);
1408 1.183 ad mutex_exit(&vp->v_interlock);
1409 1.183 ad }
1410 1.183 ad
1411 1.142 perry return (bp);
1412 1.31 cgd }
1413 1.31 cgd
1414 1.31 cgd /*
1415 1.100 pk * Attempt to free an aged buffer off the queues.
1416 1.183 ad * Called with queue lock held.
1417 1.100 pk * Returns the amount of buffer memory freed.
1418 1.100 pk */
1419 1.130 yamt static int
1420 1.101 thorpej buf_trim(void)
1421 1.100 pk {
1422 1.183 ad buf_t *bp;
1423 1.100 pk long size = 0;
1424 1.100 pk
1425 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1426 1.183 ad
1427 1.100 pk /* Instruct getnewbuf() to get buffers off the queues */
1428 1.101 thorpej if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1429 1.100 pk return 0;
1430 1.100 pk
1431 1.183 ad KASSERT((bp->b_cflags & BC_WANTED) == 0);
1432 1.100 pk size = bp->b_bufsize;
1433 1.100 pk bufmem -= size;
1434 1.100 pk if (size > 0) {
1435 1.100 pk buf_mrelease(bp->b_data, size);
1436 1.100 pk bp->b_bcount = bp->b_bufsize = 0;
1437 1.100 pk }
1438 1.100 pk /* brelse() will return the buffer to the global buffer pool */
1439 1.183 ad brelsel(bp, 0);
1440 1.100 pk return size;
1441 1.100 pk }
1442 1.100 pk
1443 1.101 thorpej int
1444 1.101 thorpej buf_drain(int n)
1445 1.100 pk {
1446 1.183 ad int size = 0, sz;
1447 1.100 pk
1448 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1449 1.116 yamt
1450 1.134 enami while (size < n && bufmem > bufmem_lowater) {
1451 1.134 enami sz = buf_trim();
1452 1.134 enami if (sz <= 0)
1453 1.134 enami break;
1454 1.134 enami size += sz;
1455 1.134 enami }
1456 1.114 tls
1457 1.100 pk return size;
1458 1.100 pk }
1459 1.100 pk
1460 1.100 pk /*
1461 1.31 cgd * Wait for operations on the buffer to complete.
1462 1.31 cgd * When they do, extract and return the I/O's error value.
1463 1.31 cgd */
1464 1.31 cgd int
1465 1.183 ad biowait(buf_t *bp)
1466 1.31 cgd {
1467 1.142 perry
1468 1.202 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1469 1.202 ad KASSERT(bp->b_refcnt > 0);
1470 1.202 ad
1471 1.183 ad mutex_enter(bp->b_objlock);
1472 1.183 ad while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1473 1.183 ad cv_wait(&bp->b_done, bp->b_objlock);
1474 1.183 ad mutex_exit(bp->b_objlock);
1475 1.183 ad
1476 1.183 ad return bp->b_error;
1477 1.31 cgd }
1478 1.31 cgd
1479 1.31 cgd /*
1480 1.31 cgd * Mark I/O complete on a buffer.
1481 1.31 cgd *
1482 1.31 cgd * If a callback has been requested, e.g. the pageout
1483 1.31 cgd * daemon, do so. Otherwise, awaken waiting processes.
1484 1.31 cgd *
1485 1.31 cgd * [ Leffler, et al., says on p.247:
1486 1.31 cgd * "This routine wakes up the blocked process, frees the buffer
1487 1.31 cgd * for an asynchronous write, or, for a request by the pagedaemon
1488 1.31 cgd * process, invokes a procedure specified in the buffer structure" ]
1489 1.31 cgd *
1490 1.31 cgd * In real life, the pagedaemon (or other system processes) wants
1491 1.31 cgd * to do async stuff to, and doesn't want the buffer brelse()'d.
1492 1.31 cgd * (for swap pager, that puts swap buffers on the free lists (!!!),
1493 1.31 cgd * for the vn device, that puts malloc'd buffers on the free lists!)
1494 1.31 cgd */
1495 1.31 cgd void
1496 1.183 ad biodone(buf_t *bp)
1497 1.183 ad {
1498 1.183 ad int s;
1499 1.183 ad
1500 1.183 ad KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1501 1.183 ad
1502 1.183 ad if (cpu_intr_p()) {
1503 1.183 ad /* From interrupt mode: defer to a soft interrupt. */
1504 1.183 ad s = splvm();
1505 1.183 ad TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1506 1.183 ad softint_schedule(biodone_sih);
1507 1.183 ad splx(s);
1508 1.183 ad } else {
1509 1.183 ad /* Process now - the buffer may be freed soon. */
1510 1.183 ad biodone2(bp);
1511 1.183 ad }
1512 1.183 ad }
1513 1.183 ad
1514 1.183 ad static void
1515 1.183 ad biodone2(buf_t *bp)
1516 1.31 cgd {
1517 1.183 ad void (*callout)(buf_t *);
1518 1.183 ad
1519 1.183 ad mutex_enter(bp->b_objlock);
1520 1.183 ad /* Note that the transfer is done. */
1521 1.183 ad if (ISSET(bp->b_oflags, BO_DONE))
1522 1.183 ad panic("biodone2 already");
1523 1.186 hannken CLR(bp->b_flags, B_COWDONE);
1524 1.183 ad SET(bp->b_oflags, BO_DONE);
1525 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1526 1.31 cgd
1527 1.183 ad /* Wake up waiting writers. */
1528 1.183 ad if (!ISSET(bp->b_flags, B_READ))
1529 1.31 cgd vwakeup(bp);
1530 1.31 cgd
1531 1.183 ad if ((callout = bp->b_iodone) != NULL) {
1532 1.183 ad /* Note callout done, then call out. */
1533 1.201 ad KASSERT(!cv_has_waiters(&bp->b_done));
1534 1.183 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1535 1.183 ad bp->b_iodone = NULL;
1536 1.183 ad mutex_exit(bp->b_objlock);
1537 1.183 ad (*callout)(bp);
1538 1.183 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1539 1.183 ad } else if (ISSET(bp->b_flags, B_ASYNC)) {
1540 1.183 ad /* If async, release. */
1541 1.201 ad KASSERT(!cv_has_waiters(&bp->b_done));
1542 1.183 ad mutex_exit(bp->b_objlock);
1543 1.183 ad brelse(bp, 0);
1544 1.59 fvdl } else {
1545 1.183 ad /* Otherwise just wake up waiters in biowait(). */
1546 1.183 ad cv_broadcast(&bp->b_done);
1547 1.183 ad mutex_exit(bp->b_objlock);
1548 1.31 cgd }
1549 1.183 ad }
1550 1.183 ad
1551 1.183 ad static void
1552 1.183 ad biointr(void *cookie)
1553 1.183 ad {
1554 1.183 ad struct cpu_info *ci;
1555 1.183 ad buf_t *bp;
1556 1.183 ad int s;
1557 1.183 ad
1558 1.183 ad ci = curcpu();
1559 1.60 fvdl
1560 1.183 ad while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1561 1.183 ad KASSERT(curcpu() == ci);
1562 1.183 ad
1563 1.183 ad s = splvm();
1564 1.183 ad bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1565 1.183 ad TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1566 1.183 ad splx(s);
1567 1.183 ad
1568 1.183 ad biodone2(bp);
1569 1.183 ad }
1570 1.31 cgd }
1571 1.31 cgd
1572 1.31 cgd /*
1573 1.31 cgd * Return a count of buffers on the "locked" queue.
1574 1.31 cgd */
1575 1.31 cgd int
1576 1.101 thorpej count_lock_queue(void)
1577 1.31 cgd {
1578 1.183 ad buf_t *bp;
1579 1.66 augustss int n = 0;
1580 1.31 cgd
1581 1.183 ad mutex_enter(&bufcache_lock);
1582 1.131 yamt TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1583 1.31 cgd n++;
1584 1.183 ad mutex_exit(&bufcache_lock);
1585 1.31 cgd return (n);
1586 1.31 cgd }
1587 1.31 cgd
1588 1.100 pk /*
1589 1.100 pk * Wait for all buffers to complete I/O
1590 1.100 pk * Return the number of "stuck" buffers.
1591 1.100 pk */
1592 1.100 pk int
1593 1.100 pk buf_syncwait(void)
1594 1.100 pk {
1595 1.183 ad buf_t *bp;
1596 1.183 ad int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1597 1.100 pk
1598 1.100 pk dcount = 10000;
1599 1.100 pk for (iter = 0; iter < 20;) {
1600 1.183 ad mutex_enter(&bufcache_lock);
1601 1.100 pk nbusy = 0;
1602 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1603 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1604 1.183 ad if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1605 1.183 ad nbusy += ((bp->b_flags & B_READ) == 0);
1606 1.100 pk }
1607 1.100 pk }
1608 1.183 ad mutex_exit(&bufcache_lock);
1609 1.100 pk
1610 1.100 pk if (nbusy == 0)
1611 1.100 pk break;
1612 1.100 pk if (nbusy_prev == 0)
1613 1.100 pk nbusy_prev = nbusy;
1614 1.100 pk printf("%d ", nbusy);
1615 1.200 ad kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1616 1.100 pk if (nbusy >= nbusy_prev) /* we didn't flush anything */
1617 1.100 pk iter++;
1618 1.100 pk else
1619 1.100 pk nbusy_prev = nbusy;
1620 1.100 pk }
1621 1.100 pk
1622 1.100 pk if (nbusy) {
1623 1.100 pk #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1624 1.100 pk printf("giving up\nPrinting vnodes for busy buffers\n");
1625 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1626 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1627 1.183 ad if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1628 1.183 ad (bp->b_flags & B_READ) == 0)
1629 1.100 pk vprint(NULL, bp->b_vp);
1630 1.100 pk }
1631 1.100 pk }
1632 1.100 pk #endif
1633 1.100 pk }
1634 1.100 pk
1635 1.100 pk return nbusy;
1636 1.100 pk }
1637 1.100 pk
1638 1.117 atatat static void
1639 1.183 ad sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1640 1.117 atatat {
1641 1.117 atatat
1642 1.183 ad o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1643 1.117 atatat o->b_error = i->b_error;
1644 1.117 atatat o->b_prio = i->b_prio;
1645 1.117 atatat o->b_dev = i->b_dev;
1646 1.117 atatat o->b_bufsize = i->b_bufsize;
1647 1.117 atatat o->b_bcount = i->b_bcount;
1648 1.117 atatat o->b_resid = i->b_resid;
1649 1.182 ad o->b_addr = PTRTOUINT64(i->b_data);
1650 1.117 atatat o->b_blkno = i->b_blkno;
1651 1.117 atatat o->b_rawblkno = i->b_rawblkno;
1652 1.117 atatat o->b_iodone = PTRTOUINT64(i->b_iodone);
1653 1.117 atatat o->b_proc = PTRTOUINT64(i->b_proc);
1654 1.117 atatat o->b_vp = PTRTOUINT64(i->b_vp);
1655 1.117 atatat o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1656 1.117 atatat o->b_lblkno = i->b_lblkno;
1657 1.117 atatat }
1658 1.117 atatat
1659 1.100 pk #define KERN_BUFSLOP 20
1660 1.100 pk static int
1661 1.100 pk sysctl_dobuf(SYSCTLFN_ARGS)
1662 1.100 pk {
1663 1.183 ad buf_t *bp;
1664 1.117 atatat struct buf_sysctl bs;
1665 1.183 ad struct bqueue *bq;
1666 1.100 pk char *dp;
1667 1.117 atatat u_int i, op, arg;
1668 1.117 atatat size_t len, needed, elem_size, out_size;
1669 1.183 ad int error, elem_count, retries;
1670 1.117 atatat
1671 1.117 atatat if (namelen == 1 && name[0] == CTL_QUERY)
1672 1.146 atatat return (sysctl_query(SYSCTLFN_CALL(rnode)));
1673 1.117 atatat
1674 1.117 atatat if (namelen != 4)
1675 1.117 atatat return (EINVAL);
1676 1.100 pk
1677 1.183 ad retries = 100;
1678 1.183 ad retry:
1679 1.100 pk dp = oldp;
1680 1.117 atatat len = (oldp != NULL) ? *oldlenp : 0;
1681 1.117 atatat op = name[0];
1682 1.117 atatat arg = name[1];
1683 1.117 atatat elem_size = name[2];
1684 1.117 atatat elem_count = name[3];
1685 1.117 atatat out_size = MIN(sizeof(bs), elem_size);
1686 1.117 atatat
1687 1.117 atatat /*
1688 1.117 atatat * at the moment, these are just "placeholders" to make the
1689 1.117 atatat * API for retrieving kern.buf data more extensible in the
1690 1.117 atatat * future.
1691 1.117 atatat *
1692 1.117 atatat * XXX kern.buf currently has "netbsd32" issues. hopefully
1693 1.117 atatat * these will be resolved at a later point.
1694 1.117 atatat */
1695 1.117 atatat if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1696 1.117 atatat elem_size < 1 || elem_count < 0)
1697 1.117 atatat return (EINVAL);
1698 1.117 atatat
1699 1.100 pk error = 0;
1700 1.100 pk needed = 0;
1701 1.185 ad sysctl_unlock();
1702 1.183 ad mutex_enter(&bufcache_lock);
1703 1.100 pk for (i = 0; i < BQUEUES; i++) {
1704 1.183 ad bq = &bufqueues[i];
1705 1.183 ad TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1706 1.183 ad bq->bq_marker = bp;
1707 1.117 atatat if (len >= elem_size && elem_count > 0) {
1708 1.117 atatat sysctl_fillbuf(bp, &bs);
1709 1.183 ad mutex_exit(&bufcache_lock);
1710 1.117 atatat error = copyout(&bs, dp, out_size);
1711 1.183 ad mutex_enter(&bufcache_lock);
1712 1.100 pk if (error)
1713 1.183 ad break;
1714 1.183 ad if (bq->bq_marker != bp) {
1715 1.183 ad /*
1716 1.183 ad * This sysctl node is only for
1717 1.183 ad * statistics. Retry; if the
1718 1.183 ad * queue keeps changing, then
1719 1.183 ad * bail out.
1720 1.183 ad */
1721 1.183 ad if (retries-- == 0) {
1722 1.183 ad error = EAGAIN;
1723 1.183 ad break;
1724 1.183 ad }
1725 1.183 ad mutex_exit(&bufcache_lock);
1726 1.183 ad goto retry;
1727 1.183 ad }
1728 1.100 pk dp += elem_size;
1729 1.100 pk len -= elem_size;
1730 1.100 pk }
1731 1.218 mrg needed += elem_size;
1732 1.218 mrg if (elem_count > 0 && elem_count != INT_MAX)
1733 1.218 mrg elem_count--;
1734 1.100 pk }
1735 1.183 ad if (error != 0)
1736 1.183 ad break;
1737 1.100 pk }
1738 1.183 ad mutex_exit(&bufcache_lock);
1739 1.185 ad sysctl_relock();
1740 1.100 pk
1741 1.117 atatat *oldlenp = needed;
1742 1.117 atatat if (oldp == NULL)
1743 1.183 ad *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1744 1.100 pk
1745 1.100 pk return (error);
1746 1.100 pk }
1747 1.100 pk
1748 1.100 pk static int
1749 1.183 ad sysctl_bufvm_update(SYSCTLFN_ARGS)
1750 1.100 pk {
1751 1.183 ad int t, error, rv;
1752 1.100 pk struct sysctlnode node;
1753 1.100 pk
1754 1.100 pk node = *rnode;
1755 1.100 pk node.sysctl_data = &t;
1756 1.143 chs t = *(int *)rnode->sysctl_data;
1757 1.100 pk error = sysctl_lookup(SYSCTLFN_CALL(&node));
1758 1.100 pk if (error || newp == NULL)
1759 1.100 pk return (error);
1760 1.100 pk
1761 1.143 chs if (t < 0)
1762 1.143 chs return EINVAL;
1763 1.183 ad if (rnode->sysctl_data == &bufcache) {
1764 1.183 ad if (t > 100)
1765 1.183 ad return (EINVAL);
1766 1.183 ad bufcache = t;
1767 1.183 ad buf_setwm();
1768 1.183 ad } else if (rnode->sysctl_data == &bufmem_lowater) {
1769 1.143 chs if (bufmem_hiwater - t < 16)
1770 1.136 enami return (EINVAL);
1771 1.100 pk bufmem_lowater = t;
1772 1.117 atatat } else if (rnode->sysctl_data == &bufmem_hiwater) {
1773 1.143 chs if (t - bufmem_lowater < 16)
1774 1.136 enami return (EINVAL);
1775 1.100 pk bufmem_hiwater = t;
1776 1.100 pk } else
1777 1.100 pk return (EINVAL);
1778 1.100 pk
1779 1.183 ad /* Drain until below new high water mark */
1780 1.185 ad sysctl_unlock();
1781 1.183 ad mutex_enter(&bufcache_lock);
1782 1.183 ad while ((t = bufmem - bufmem_hiwater) >= 0) {
1783 1.183 ad rv = buf_drain(t / (2 * 1024));
1784 1.183 ad if (rv <= 0)
1785 1.183 ad break;
1786 1.183 ad }
1787 1.183 ad mutex_exit(&bufcache_lock);
1788 1.185 ad sysctl_relock();
1789 1.100 pk
1790 1.100 pk return 0;
1791 1.100 pk }
1792 1.100 pk
1793 1.215 pooka static struct sysctllog *vfsbio_sysctllog;
1794 1.215 pooka
1795 1.215 pooka static void
1796 1.215 pooka sysctl_kern_buf_setup(void)
1797 1.100 pk {
1798 1.100 pk
1799 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1800 1.119 atatat CTLFLAG_PERMANENT,
1801 1.104 atatat CTLTYPE_NODE, "kern", NULL,
1802 1.104 atatat NULL, 0, NULL, 0,
1803 1.104 atatat CTL_KERN, CTL_EOL);
1804 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1805 1.119 atatat CTLFLAG_PERMANENT,
1806 1.125 atatat CTLTYPE_NODE, "buf",
1807 1.125 atatat SYSCTL_DESCR("Kernel buffer cache information"),
1808 1.100 pk sysctl_dobuf, 0, NULL, 0,
1809 1.100 pk CTL_KERN, KERN_BUF, CTL_EOL);
1810 1.104 atatat }
1811 1.104 atatat
1812 1.215 pooka static void
1813 1.215 pooka sysctl_vm_buf_setup(void)
1814 1.104 atatat {
1815 1.104 atatat
1816 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1817 1.119 atatat CTLFLAG_PERMANENT,
1818 1.104 atatat CTLTYPE_NODE, "vm", NULL,
1819 1.104 atatat NULL, 0, NULL, 0,
1820 1.104 atatat CTL_VM, CTL_EOL);
1821 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1822 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 1.125 atatat CTLTYPE_INT, "bufcache",
1824 1.139 jrf SYSCTL_DESCR("Percentage of physical memory to use for "
1825 1.125 atatat "buffer cache"),
1826 1.183 ad sysctl_bufvm_update, 0, &bufcache, 0,
1827 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1828 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1829 1.122 simonb CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830 1.183 ad CTLTYPE_INT, "bufmem",
1831 1.139 jrf SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832 1.125 atatat "cache"),
1833 1.122 simonb NULL, 0, &bufmem, 0,
1834 1.122 simonb CTL_VM, CTL_CREATE, CTL_EOL);
1835 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1836 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 1.183 ad CTLTYPE_INT, "bufmem_lowater",
1838 1.125 atatat SYSCTL_DESCR("Minimum amount of kernel memory to "
1839 1.125 atatat "reserve for buffer cache"),
1840 1.117 atatat sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1842 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1843 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844 1.183 ad CTLTYPE_INT, "bufmem_hiwater",
1845 1.125 atatat SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846 1.125 atatat "for buffer cache"),
1847 1.117 atatat sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1849 1.100 pk }
1850 1.100 pk
1851 1.36 cgd #ifdef DEBUG
1852 1.31 cgd /*
1853 1.31 cgd * Print out statistics on the current allocation of the buffer pool.
1854 1.31 cgd * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855 1.31 cgd * in vfs_syscalls.c using sysctl.
1856 1.31 cgd */
1857 1.31 cgd void
1858 1.101 thorpej vfs_bufstats(void)
1859 1.31 cgd {
1860 1.183 ad int i, j, count;
1861 1.183 ad buf_t *bp;
1862 1.131 yamt struct bqueue *dp;
1863 1.72 simonb int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864 1.145 christos static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1865 1.71 thorpej
1866 1.31 cgd for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867 1.31 cgd count = 0;
1868 1.71 thorpej for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869 1.31 cgd counts[j] = 0;
1870 1.131 yamt TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871 1.71 thorpej counts[bp->b_bufsize/PAGE_SIZE]++;
1872 1.31 cgd count++;
1873 1.31 cgd }
1874 1.48 christos printf("%s: total-%d", bname[i], count);
1875 1.71 thorpej for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876 1.31 cgd if (counts[j] != 0)
1877 1.71 thorpej printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878 1.48 christos printf("\n");
1879 1.31 cgd }
1880 1.31 cgd }
1881 1.36 cgd #endif /* DEBUG */
1882 1.149 yamt
1883 1.150 yamt /* ------------------------------ */
1884 1.150 yamt
1885 1.183 ad buf_t *
1886 1.183 ad getiobuf(struct vnode *vp, bool waitok)
1887 1.149 yamt {
1888 1.183 ad buf_t *bp;
1889 1.149 yamt
1890 1.183 ad bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891 1.183 ad if (bp == NULL)
1892 1.183 ad return bp;
1893 1.149 yamt
1894 1.183 ad buf_init(bp);
1895 1.149 yamt
1896 1.183 ad if ((bp->b_vp = vp) == NULL)
1897 1.183 ad bp->b_objlock = &buffer_lock;
1898 1.183 ad else
1899 1.183 ad bp->b_objlock = &vp->v_interlock;
1900 1.183 ad
1901 1.183 ad return bp;
1902 1.149 yamt }
1903 1.149 yamt
1904 1.149 yamt void
1905 1.183 ad putiobuf(buf_t *bp)
1906 1.149 yamt {
1907 1.149 yamt
1908 1.183 ad buf_destroy(bp);
1909 1.183 ad pool_cache_put(bufio_cache, bp);
1910 1.149 yamt }
1911 1.152 yamt
1912 1.152 yamt /*
1913 1.152 yamt * nestiobuf_iodone: b_iodone callback for nested buffers.
1914 1.152 yamt */
1915 1.152 yamt
1916 1.167 reinoud void
1917 1.183 ad nestiobuf_iodone(buf_t *bp)
1918 1.152 yamt {
1919 1.183 ad buf_t *mbp = bp->b_private;
1920 1.152 yamt int error;
1921 1.155 reinoud int donebytes;
1922 1.152 yamt
1923 1.155 reinoud KASSERT(bp->b_bcount <= bp->b_bufsize);
1924 1.152 yamt KASSERT(mbp != bp);
1925 1.155 reinoud
1926 1.195 reinoud error = bp->b_error;
1927 1.183 ad if (bp->b_error == 0 &&
1928 1.183 ad (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1929 1.155 reinoud /*
1930 1.155 reinoud * Not all got transfered, raise an error. We have no way to
1931 1.155 reinoud * propagate these conditions to mbp.
1932 1.155 reinoud */
1933 1.155 reinoud error = EIO;
1934 1.152 yamt }
1935 1.155 reinoud
1936 1.156 yamt donebytes = bp->b_bufsize;
1937 1.155 reinoud
1938 1.152 yamt putiobuf(bp);
1939 1.152 yamt nestiobuf_done(mbp, donebytes, error);
1940 1.152 yamt }
1941 1.152 yamt
1942 1.152 yamt /*
1943 1.152 yamt * nestiobuf_setup: setup a "nested" buffer.
1944 1.152 yamt *
1945 1.152 yamt * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946 1.190 yamt * => 'bp' should be a buffer allocated by getiobuf.
1947 1.152 yamt * => 'offset' is a byte offset in the master buffer.
1948 1.152 yamt * => 'size' is a size in bytes of this nested buffer.
1949 1.152 yamt */
1950 1.152 yamt
1951 1.152 yamt void
1952 1.183 ad nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1953 1.152 yamt {
1954 1.152 yamt const int b_read = mbp->b_flags & B_READ;
1955 1.152 yamt struct vnode *vp = mbp->b_vp;
1956 1.152 yamt
1957 1.152 yamt KASSERT(mbp->b_bcount >= offset + size);
1958 1.152 yamt bp->b_vp = vp;
1959 1.210 hannken bp->b_dev = mbp->b_dev;
1960 1.183 ad bp->b_objlock = mbp->b_objlock;
1961 1.183 ad bp->b_cflags = BC_BUSY;
1962 1.183 ad bp->b_flags = B_ASYNC | b_read;
1963 1.152 yamt bp->b_iodone = nestiobuf_iodone;
1964 1.170 christos bp->b_data = (char *)mbp->b_data + offset;
1965 1.152 yamt bp->b_resid = bp->b_bcount = size;
1966 1.152 yamt bp->b_bufsize = bp->b_bcount;
1967 1.152 yamt bp->b_private = mbp;
1968 1.152 yamt BIO_COPYPRIO(bp, mbp);
1969 1.152 yamt if (!b_read && vp != NULL) {
1970 1.183 ad mutex_enter(&vp->v_interlock);
1971 1.183 ad vp->v_numoutput++;
1972 1.183 ad mutex_exit(&vp->v_interlock);
1973 1.152 yamt }
1974 1.152 yamt }
1975 1.152 yamt
1976 1.152 yamt /*
1977 1.152 yamt * nestiobuf_done: propagate completion to the master buffer.
1978 1.152 yamt *
1979 1.152 yamt * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1980 1.152 yamt * => 'error' is an errno(2) that 'donebytes' has been completed with.
1981 1.152 yamt */
1982 1.152 yamt
1983 1.152 yamt void
1984 1.183 ad nestiobuf_done(buf_t *mbp, int donebytes, int error)
1985 1.152 yamt {
1986 1.152 yamt
1987 1.152 yamt if (donebytes == 0) {
1988 1.152 yamt return;
1989 1.152 yamt }
1990 1.183 ad mutex_enter(mbp->b_objlock);
1991 1.152 yamt KASSERT(mbp->b_resid >= donebytes);
1992 1.152 yamt mbp->b_resid -= donebytes;
1993 1.195 reinoud if (error)
1994 1.195 reinoud mbp->b_error = error;
1995 1.152 yamt if (mbp->b_resid == 0) {
1996 1.183 ad mutex_exit(mbp->b_objlock);
1997 1.183 ad biodone(mbp);
1998 1.183 ad } else
1999 1.183 ad mutex_exit(mbp->b_objlock);
2000 1.183 ad }
2001 1.183 ad
2002 1.183 ad void
2003 1.183 ad buf_init(buf_t *bp)
2004 1.183 ad {
2005 1.183 ad
2006 1.183 ad cv_init(&bp->b_busy, "biolock");
2007 1.183 ad cv_init(&bp->b_done, "biowait");
2008 1.183 ad bp->b_dev = NODEV;
2009 1.183 ad bp->b_error = 0;
2010 1.183 ad bp->b_flags = 0;
2011 1.204 reinoud bp->b_cflags = 0;
2012 1.183 ad bp->b_oflags = 0;
2013 1.183 ad bp->b_objlock = &buffer_lock;
2014 1.183 ad bp->b_iodone = NULL;
2015 1.202 ad bp->b_refcnt = 1;
2016 1.202 ad bp->b_dev = NODEV;
2017 1.202 ad bp->b_vnbufs.le_next = NOLIST;
2018 1.183 ad BIO_SETPRIO(bp, BPRIO_DEFAULT);
2019 1.183 ad }
2020 1.183 ad
2021 1.183 ad void
2022 1.183 ad buf_destroy(buf_t *bp)
2023 1.183 ad {
2024 1.183 ad
2025 1.183 ad cv_destroy(&bp->b_done);
2026 1.183 ad cv_destroy(&bp->b_busy);
2027 1.183 ad }
2028 1.183 ad
2029 1.183 ad int
2030 1.188 ad bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2031 1.183 ad {
2032 1.183 ad int error;
2033 1.183 ad
2034 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
2035 1.183 ad
2036 1.183 ad if ((bp->b_cflags & BC_BUSY) != 0) {
2037 1.183 ad if (curlwp == uvm.pagedaemon_lwp)
2038 1.183 ad return EDEADLK;
2039 1.183 ad bp->b_cflags |= BC_WANTED;
2040 1.183 ad bref(bp);
2041 1.188 ad if (interlock != NULL)
2042 1.188 ad mutex_exit(interlock);
2043 1.183 ad if (intr) {
2044 1.183 ad error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2045 1.183 ad timo);
2046 1.183 ad } else {
2047 1.183 ad error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2048 1.183 ad timo);
2049 1.152 yamt }
2050 1.183 ad brele(bp);
2051 1.188 ad if (interlock != NULL)
2052 1.188 ad mutex_enter(interlock);
2053 1.183 ad if (error != 0)
2054 1.183 ad return error;
2055 1.183 ad return EPASSTHROUGH;
2056 1.152 yamt }
2057 1.183 ad bp->b_cflags |= BC_BUSY;
2058 1.183 ad
2059 1.183 ad return 0;
2060 1.152 yamt }
2061