vfs_bio.c revision 1.265 1 1.265 pgoyette /* $NetBSD: vfs_bio.c,v 1.265 2016/12/26 23:15:15 pgoyette Exp $ */
2 1.183 ad
3 1.183 ad /*-
4 1.217 ad * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.183 ad * All rights reserved.
6 1.183 ad *
7 1.183 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.217 ad * by Andrew Doran, and by Wasabi Systems, Inc.
9 1.183 ad *
10 1.183 ad * Redistribution and use in source and binary forms, with or without
11 1.183 ad * modification, are permitted provided that the following conditions
12 1.183 ad * are met:
13 1.183 ad * 1. Redistributions of source code must retain the above copyright
14 1.183 ad * notice, this list of conditions and the following disclaimer.
15 1.183 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.183 ad * notice, this list of conditions and the following disclaimer in the
17 1.183 ad * documentation and/or other materials provided with the distribution.
18 1.183 ad *
19 1.183 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.183 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.183 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.183 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.183 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.183 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.183 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.183 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.183 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.183 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.183 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.183 ad */
31 1.31 cgd
32 1.31 cgd /*-
33 1.31 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.31 cgd * The Regents of the University of California. All rights reserved.
35 1.31 cgd * (c) UNIX System Laboratories, Inc.
36 1.31 cgd * All or some portions of this file are derived from material licensed
37 1.31 cgd * to the University of California by American Telephone and Telegraph
38 1.31 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.31 cgd * the permission of UNIX System Laboratories, Inc.
40 1.31 cgd *
41 1.31 cgd * Redistribution and use in source and binary forms, with or without
42 1.31 cgd * modification, are permitted provided that the following conditions
43 1.31 cgd * are met:
44 1.31 cgd * 1. Redistributions of source code must retain the above copyright
45 1.31 cgd * notice, this list of conditions and the following disclaimer.
46 1.31 cgd * 2. Redistributions in binary form must reproduce the above copyright
47 1.31 cgd * notice, this list of conditions and the following disclaimer in the
48 1.31 cgd * documentation and/or other materials provided with the distribution.
49 1.93 agc * 3. Neither the name of the University nor the names of its contributors
50 1.93 agc * may be used to endorse or promote products derived from this software
51 1.93 agc * without specific prior written permission.
52 1.93 agc *
53 1.93 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.93 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.93 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.93 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.93 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.93 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.93 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.93 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.93 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.93 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.93 agc * SUCH DAMAGE.
64 1.93 agc *
65 1.93 agc * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 1.93 agc */
67 1.93 agc
68 1.93 agc /*-
69 1.93 agc * Copyright (c) 1994 Christopher G. Demetriou
70 1.93 agc *
71 1.93 agc * Redistribution and use in source and binary forms, with or without
72 1.93 agc * modification, are permitted provided that the following conditions
73 1.93 agc * are met:
74 1.93 agc * 1. Redistributions of source code must retain the above copyright
75 1.93 agc * notice, this list of conditions and the following disclaimer.
76 1.93 agc * 2. Redistributions in binary form must reproduce the above copyright
77 1.93 agc * notice, this list of conditions and the following disclaimer in the
78 1.93 agc * documentation and/or other materials provided with the distribution.
79 1.31 cgd * 3. All advertising materials mentioning features or use of this software
80 1.31 cgd * must display the following acknowledgement:
81 1.31 cgd * This product includes software developed by the University of
82 1.31 cgd * California, Berkeley and its contributors.
83 1.31 cgd * 4. Neither the name of the University nor the names of its contributors
84 1.31 cgd * may be used to endorse or promote products derived from this software
85 1.31 cgd * without specific prior written permission.
86 1.31 cgd *
87 1.31 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 1.31 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 1.31 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 1.31 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 1.31 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 1.31 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 1.31 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 1.31 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 1.31 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 1.31 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 1.31 cgd * SUCH DAMAGE.
98 1.31 cgd *
99 1.31 cgd * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 1.31 cgd */
101 1.31 cgd
102 1.31 cgd /*
103 1.221 rmind * The buffer cache subsystem.
104 1.221 rmind *
105 1.31 cgd * Some references:
106 1.31 cgd * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 1.31 cgd * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 1.31 cgd * UNIX Operating System (Addison Welley, 1989)
109 1.221 rmind *
110 1.221 rmind * Locking
111 1.221 rmind *
112 1.221 rmind * There are three locks:
113 1.221 rmind * - bufcache_lock: protects global buffer cache state.
114 1.221 rmind * - BC_BUSY: a long term per-buffer lock.
115 1.221 rmind * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 1.221 rmind *
117 1.221 rmind * For buffers associated with vnodes (a most common case) b_objlock points
118 1.221 rmind * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 1.221 rmind *
120 1.221 rmind * Lock order:
121 1.221 rmind * bufcache_lock ->
122 1.221 rmind * buf_t::b_objlock
123 1.31 cgd */
124 1.77 lukem
125 1.178 dsl #include <sys/cdefs.h>
126 1.265 pgoyette __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.265 2016/12/26 23:15:15 pgoyette Exp $");
127 1.178 dsl
128 1.256 pooka #ifdef _KERNEL_OPT
129 1.100 pk #include "opt_bufcache.h"
130 1.259 riz #include "opt_dtrace.h"
131 1.264 pgoyette #include "opt_biohist.h"
132 1.256 pooka #endif
133 1.81 matt
134 1.31 cgd #include <sys/param.h>
135 1.31 cgd #include <sys/systm.h>
136 1.100 pk #include <sys/kernel.h>
137 1.31 cgd #include <sys/proc.h>
138 1.31 cgd #include <sys/buf.h>
139 1.31 cgd #include <sys/vnode.h>
140 1.31 cgd #include <sys/mount.h>
141 1.31 cgd #include <sys/resourcevar.h>
142 1.100 pk #include <sys/sysctl.h>
143 1.35 mycroft #include <sys/conf.h>
144 1.160 elad #include <sys/kauth.h>
145 1.198 hannken #include <sys/fstrans.h>
146 1.183 ad #include <sys/intr.h>
147 1.183 ad #include <sys/cpu.h>
148 1.208 simonb #include <sys/wapbl.h>
149 1.232 jakllsch #include <sys/bitops.h>
150 1.252 joerg #include <sys/cprng.h>
151 1.259 riz #include <sys/sdt.h>
152 1.40 christos
153 1.227 uebayasi #include <uvm/uvm.h> /* extern struct uvm uvm */
154 1.71 thorpej
155 1.59 fvdl #include <miscfs/specfs/specdev.h>
156 1.59 fvdl
157 1.100 pk #ifndef BUFPAGES
158 1.100 pk # define BUFPAGES 0
159 1.100 pk #endif
160 1.100 pk
161 1.100 pk #ifdef BUFCACHE
162 1.100 pk # if (BUFCACHE < 5) || (BUFCACHE > 95)
163 1.100 pk # error BUFCACHE is not between 5 and 95
164 1.100 pk # endif
165 1.100 pk #else
166 1.114 tls # define BUFCACHE 15
167 1.100 pk #endif
168 1.100 pk
169 1.217 ad u_int nbuf; /* desired number of buffer headers */
170 1.100 pk u_int bufpages = BUFPAGES; /* optional hardwired count */
171 1.100 pk u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
172 1.100 pk
173 1.130 yamt /* Function prototypes */
174 1.131 yamt struct bqueue;
175 1.130 yamt
176 1.135 enami static void buf_setwm(void);
177 1.130 yamt static int buf_trim(void);
178 1.130 yamt static void *bufpool_page_alloc(struct pool *, int);
179 1.130 yamt static void bufpool_page_free(struct pool *, void *);
180 1.253 maxv static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
181 1.183 ad static buf_t *getnewbuf(int, int, int);
182 1.130 yamt static int buf_lotsfree(void);
183 1.130 yamt static int buf_canrelease(void);
184 1.183 ad static u_long buf_mempoolidx(u_long);
185 1.183 ad static u_long buf_roundsize(u_long);
186 1.229 rmind static void *buf_alloc(size_t);
187 1.170 christos static void buf_mrelease(void *, size_t);
188 1.183 ad static void binsheadfree(buf_t *, struct bqueue *);
189 1.183 ad static void binstailfree(buf_t *, struct bqueue *);
190 1.130 yamt #ifdef DEBUG
191 1.206 bouyer static int checkfreelist(buf_t *, struct bqueue *, int);
192 1.130 yamt #endif
193 1.183 ad static void biointr(void *);
194 1.183 ad static void biodone2(buf_t *);
195 1.183 ad static void bref(buf_t *);
196 1.183 ad static void brele(buf_t *);
197 1.215 pooka static void sysctl_kern_buf_setup(void);
198 1.215 pooka static void sysctl_vm_buf_setup(void);
199 1.100 pk
200 1.264 pgoyette /* Initialization for biohist */
201 1.264 pgoyette
202 1.264 pgoyette #ifdef BIOHIST
203 1.264 pgoyette #include <sys/biohist.h>
204 1.264 pgoyette #endif /* BIOHIST */
205 1.264 pgoyette
206 1.264 pgoyette KERNHIST_DEFINE(biohist);
207 1.264 pgoyette
208 1.264 pgoyette void
209 1.264 pgoyette biohist_init(void)
210 1.264 pgoyette {
211 1.264 pgoyette
212 1.264 pgoyette KERNHIST_INIT(biohist, BIOHIST_SIZE);
213 1.264 pgoyette }
214 1.264 pgoyette
215 1.31 cgd /*
216 1.31 cgd * Definitions for the buffer hash lists.
217 1.31 cgd */
218 1.31 cgd #define BUFHASH(dvp, lbn) \
219 1.73 chs (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
220 1.31 cgd LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
221 1.31 cgd u_long bufhash;
222 1.189 matt struct bqueue bufqueues[BQUEUES];
223 1.183 ad
224 1.183 ad static kcondvar_t needbuffer_cv;
225 1.31 cgd
226 1.31 cgd /*
227 1.87 pk * Buffer queue lock.
228 1.87 pk */
229 1.183 ad kmutex_t bufcache_lock;
230 1.183 ad kmutex_t buffer_lock;
231 1.87 pk
232 1.183 ad /* Software ISR for completed transfers. */
233 1.183 ad static void *biodone_sih;
234 1.153 yamt
235 1.183 ad /* Buffer pool for I/O buffers. */
236 1.183 ad static pool_cache_t buf_cache;
237 1.183 ad static pool_cache_t bufio_cache;
238 1.65 thorpej
239 1.232 jakllsch #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
240 1.232 jakllsch #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
241 1.232 jakllsch __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
242 1.100 pk
243 1.100 pk /* Buffer memory pools */
244 1.101 thorpej static struct pool bmempools[NMEMPOOLS];
245 1.100 pk
246 1.191 yamt static struct vm_map *buf_map;
247 1.100 pk
248 1.100 pk /*
249 1.100 pk * Buffer memory pool allocator.
250 1.100 pk */
251 1.101 thorpej static void *
252 1.166 yamt bufpool_page_alloc(struct pool *pp, int flags)
253 1.100 pk {
254 1.111 yamt
255 1.236 para return (void *)uvm_km_alloc(buf_map,
256 1.236 para MAXBSIZE, MAXBSIZE,
257 1.236 para ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
258 1.236 para | UVM_KMF_WIRED);
259 1.100 pk }
260 1.100 pk
261 1.101 thorpej static void
262 1.166 yamt bufpool_page_free(struct pool *pp, void *v)
263 1.100 pk {
264 1.144 yamt
265 1.236 para uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
266 1.100 pk }
267 1.100 pk
268 1.101 thorpej static struct pool_allocator bufmempool_allocator = {
269 1.162 christos .pa_alloc = bufpool_page_alloc,
270 1.162 christos .pa_free = bufpool_page_free,
271 1.162 christos .pa_pagesz = MAXBSIZE,
272 1.100 pk };
273 1.100 pk
274 1.100 pk /* Buffer memory management variables */
275 1.183 ad u_long bufmem_valimit;
276 1.183 ad u_long bufmem_hiwater;
277 1.183 ad u_long bufmem_lowater;
278 1.183 ad u_long bufmem;
279 1.100 pk
280 1.100 pk /*
281 1.100 pk * MD code can call this to set a hard limit on the amount
282 1.100 pk * of virtual memory used by the buffer cache.
283 1.100 pk */
284 1.101 thorpej int
285 1.101 thorpej buf_setvalimit(vsize_t sz)
286 1.100 pk {
287 1.100 pk
288 1.100 pk /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
289 1.100 pk if (sz < NMEMPOOLS * MAXBSIZE)
290 1.100 pk return EINVAL;
291 1.100 pk
292 1.100 pk bufmem_valimit = sz;
293 1.100 pk return 0;
294 1.100 pk }
295 1.100 pk
296 1.135 enami static void
297 1.135 enami buf_setwm(void)
298 1.135 enami {
299 1.135 enami
300 1.135 enami bufmem_hiwater = buf_memcalc();
301 1.135 enami /* lowater is approx. 2% of memory (with bufcache = 15) */
302 1.135 enami #define BUFMEM_WMSHIFT 3
303 1.135 enami #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
304 1.135 enami if (bufmem_hiwater < BUFMEM_HIWMMIN)
305 1.135 enami /* Ensure a reasonable minimum value */
306 1.135 enami bufmem_hiwater = BUFMEM_HIWMMIN;
307 1.135 enami bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
308 1.135 enami }
309 1.135 enami
310 1.99 dbj #ifdef DEBUG
311 1.99 dbj int debug_verify_freelist = 0;
312 1.131 yamt static int
313 1.206 bouyer checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
314 1.99 dbj {
315 1.183 ad buf_t *b;
316 1.183 ad
317 1.183 ad if (!debug_verify_freelist)
318 1.183 ad return 1;
319 1.131 yamt
320 1.131 yamt TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
321 1.100 pk if (b == bp)
322 1.206 bouyer return ison ? 1 : 0;
323 1.100 pk }
324 1.183 ad
325 1.206 bouyer return ison ? 0 : 1;
326 1.99 dbj }
327 1.99 dbj #endif
328 1.99 dbj
329 1.131 yamt /*
330 1.131 yamt * Insq/Remq for the buffer hash lists.
331 1.131 yamt * Call with buffer queue locked.
332 1.131 yamt */
333 1.183 ad static void
334 1.183 ad binsheadfree(buf_t *bp, struct bqueue *dp)
335 1.131 yamt {
336 1.131 yamt
337 1.206 bouyer KASSERT(mutex_owned(&bufcache_lock));
338 1.131 yamt KASSERT(bp->b_freelistindex == -1);
339 1.131 yamt TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
340 1.131 yamt dp->bq_bytes += bp->b_bufsize;
341 1.131 yamt bp->b_freelistindex = dp - bufqueues;
342 1.131 yamt }
343 1.131 yamt
344 1.183 ad static void
345 1.183 ad binstailfree(buf_t *bp, struct bqueue *dp)
346 1.131 yamt {
347 1.131 yamt
348 1.206 bouyer KASSERT(mutex_owned(&bufcache_lock));
349 1.257 martin KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
350 1.257 martin "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
351 1.131 yamt TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
352 1.131 yamt dp->bq_bytes += bp->b_bufsize;
353 1.131 yamt bp->b_freelistindex = dp - bufqueues;
354 1.131 yamt }
355 1.131 yamt
356 1.31 cgd void
357 1.183 ad bremfree(buf_t *bp)
358 1.31 cgd {
359 1.131 yamt struct bqueue *dp;
360 1.131 yamt int bqidx = bp->b_freelistindex;
361 1.94 yamt
362 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
363 1.31 cgd
364 1.131 yamt KASSERT(bqidx != -1);
365 1.131 yamt dp = &bufqueues[bqidx];
366 1.206 bouyer KDASSERT(checkfreelist(bp, dp, 1));
367 1.131 yamt KASSERT(dp->bq_bytes >= bp->b_bufsize);
368 1.131 yamt TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
369 1.131 yamt dp->bq_bytes -= bp->b_bufsize;
370 1.183 ad
371 1.183 ad /* For the sysctl helper. */
372 1.183 ad if (bp == dp->bq_marker)
373 1.183 ad dp->bq_marker = NULL;
374 1.183 ad
375 1.131 yamt #if defined(DIAGNOSTIC)
376 1.131 yamt bp->b_freelistindex = -1;
377 1.131 yamt #endif /* defined(DIAGNOSTIC) */
378 1.31 cgd }
379 1.31 cgd
380 1.183 ad /*
381 1.183 ad * Add a reference to an buffer structure that came from buf_cache.
382 1.183 ad */
383 1.183 ad static inline void
384 1.183 ad bref(buf_t *bp)
385 1.183 ad {
386 1.183 ad
387 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
388 1.183 ad KASSERT(bp->b_refcnt > 0);
389 1.183 ad
390 1.183 ad bp->b_refcnt++;
391 1.183 ad }
392 1.183 ad
393 1.183 ad /*
394 1.183 ad * Free an unused buffer structure that came from buf_cache.
395 1.183 ad */
396 1.183 ad static inline void
397 1.183 ad brele(buf_t *bp)
398 1.183 ad {
399 1.183 ad
400 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
401 1.183 ad KASSERT(bp->b_refcnt > 0);
402 1.183 ad
403 1.183 ad if (bp->b_refcnt-- == 1) {
404 1.183 ad buf_destroy(bp);
405 1.183 ad #ifdef DEBUG
406 1.183 ad memset((char *)bp, 0, sizeof(*bp));
407 1.183 ad #endif
408 1.183 ad pool_cache_put(buf_cache, bp);
409 1.183 ad }
410 1.183 ad }
411 1.183 ad
412 1.193 yamt /*
413 1.193 yamt * note that for some ports this is used by pmap bootstrap code to
414 1.193 yamt * determine kva size.
415 1.193 yamt */
416 1.101 thorpej u_long
417 1.101 thorpej buf_memcalc(void)
418 1.100 pk {
419 1.100 pk u_long n;
420 1.244 njoly vsize_t mapsz = 0;
421 1.100 pk
422 1.100 pk /*
423 1.100 pk * Determine the upper bound of memory to use for buffers.
424 1.100 pk *
425 1.100 pk * - If bufpages is specified, use that as the number
426 1.100 pk * pages.
427 1.100 pk *
428 1.100 pk * - Otherwise, use bufcache as the percentage of
429 1.100 pk * physical memory.
430 1.100 pk */
431 1.100 pk if (bufpages != 0) {
432 1.100 pk n = bufpages;
433 1.100 pk } else {
434 1.100 pk if (bufcache < 5) {
435 1.100 pk printf("forcing bufcache %d -> 5", bufcache);
436 1.100 pk bufcache = 5;
437 1.100 pk }
438 1.100 pk if (bufcache > 95) {
439 1.100 pk printf("forcing bufcache %d -> 95", bufcache);
440 1.100 pk bufcache = 95;
441 1.100 pk }
442 1.244 njoly if (buf_map != NULL)
443 1.244 njoly mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
444 1.243 para n = calc_cache_size(mapsz, bufcache,
445 1.193 yamt (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
446 1.193 yamt / PAGE_SIZE;
447 1.100 pk }
448 1.100 pk
449 1.100 pk n <<= PAGE_SHIFT;
450 1.100 pk if (bufmem_valimit != 0 && n > bufmem_valimit)
451 1.100 pk n = bufmem_valimit;
452 1.100 pk
453 1.100 pk return (n);
454 1.100 pk }
455 1.100 pk
456 1.31 cgd /*
457 1.31 cgd * Initialize buffers and hash links for buffers.
458 1.31 cgd */
459 1.31 cgd void
460 1.101 thorpej bufinit(void)
461 1.31 cgd {
462 1.131 yamt struct bqueue *dp;
463 1.127 thorpej int use_std;
464 1.100 pk u_int i;
465 1.250 pooka
466 1.250 pooka biodone_vfs = biodone;
467 1.100 pk
468 1.183 ad mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
469 1.183 ad mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
470 1.183 ad cv_init(&needbuffer_cv, "needbuf");
471 1.183 ad
472 1.100 pk if (bufmem_valimit != 0) {
473 1.100 pk vaddr_t minaddr = 0, maxaddr;
474 1.100 pk buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
475 1.169 thorpej bufmem_valimit, 0, false, 0);
476 1.100 pk if (buf_map == NULL)
477 1.100 pk panic("bufinit: cannot allocate submap");
478 1.100 pk } else
479 1.100 pk buf_map = kernel_map;
480 1.65 thorpej
481 1.192 yamt /*
482 1.192 yamt * Initialize buffer cache memory parameters.
483 1.192 yamt */
484 1.192 yamt bufmem = 0;
485 1.192 yamt buf_setwm();
486 1.192 yamt
487 1.100 pk /* On "small" machines use small pool page sizes where possible */
488 1.127 thorpej use_std = (physmem < atop(16*1024*1024));
489 1.127 thorpej
490 1.127 thorpej /*
491 1.127 thorpej * Also use them on systems that can map the pool pages using
492 1.127 thorpej * a direct-mapped segment.
493 1.127 thorpej */
494 1.127 thorpej #ifdef PMAP_MAP_POOLPAGE
495 1.127 thorpej use_std = 1;
496 1.127 thorpej #endif
497 1.100 pk
498 1.183 ad buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
499 1.183 ad "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
500 1.183 ad bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
501 1.183 ad "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
502 1.176 pooka
503 1.100 pk for (i = 0; i < NMEMPOOLS; i++) {
504 1.100 pk struct pool_allocator *pa;
505 1.100 pk struct pool *pp = &bmempools[i];
506 1.100 pk u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
507 1.222 pooka char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
508 1.232 jakllsch if (__predict_false(size >= 1048576))
509 1.232 jakllsch (void)snprintf(name, 8, "buf%um", size / 1048576);
510 1.232 jakllsch else if (__predict_true(size >= 1024))
511 1.232 jakllsch (void)snprintf(name, 8, "buf%uk", size / 1024);
512 1.165 christos else
513 1.232 jakllsch (void)snprintf(name, 8, "buf%ub", size);
514 1.127 thorpej pa = (size <= PAGE_SIZE && use_std)
515 1.100 pk ? &pool_allocator_nointr
516 1.100 pk : &bufmempool_allocator;
517 1.236 para pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
518 1.100 pk pool_setlowat(pp, 1);
519 1.126 thorpej pool_sethiwat(pp, 1);
520 1.100 pk }
521 1.100 pk
522 1.100 pk /* Initialize the buffer queues */
523 1.131 yamt for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
524 1.131 yamt TAILQ_INIT(&dp->bq_queue);
525 1.131 yamt dp->bq_bytes = 0;
526 1.131 yamt }
527 1.100 pk
528 1.100 pk /*
529 1.100 pk * Estimate hash table size based on the amount of memory we
530 1.100 pk * intend to use for the buffer cache. The average buffer
531 1.100 pk * size is dependent on our clients (i.e. filesystems).
532 1.100 pk *
533 1.100 pk * For now, use an empirical 3K per buffer.
534 1.100 pk */
535 1.100 pk nbuf = (bufmem_hiwater / 1024) / 3;
536 1.197 ad bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
537 1.215 pooka
538 1.215 pooka sysctl_kern_buf_setup();
539 1.215 pooka sysctl_vm_buf_setup();
540 1.100 pk }
541 1.100 pk
542 1.183 ad void
543 1.183 ad bufinit2(void)
544 1.183 ad {
545 1.183 ad
546 1.183 ad biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
547 1.183 ad NULL);
548 1.183 ad if (biodone_sih == NULL)
549 1.183 ad panic("bufinit2: can't establish soft interrupt");
550 1.183 ad }
551 1.183 ad
552 1.100 pk static int
553 1.100 pk buf_lotsfree(void)
554 1.100 pk {
555 1.252 joerg u_long guess;
556 1.128 hannken
557 1.122 simonb /* Always allocate if less than the low water mark. */
558 1.122 simonb if (bufmem < bufmem_lowater)
559 1.114 tls return 1;
560 1.142 perry
561 1.122 simonb /* Never allocate if greater than the high water mark. */
562 1.122 simonb if (bufmem > bufmem_hiwater)
563 1.122 simonb return 0;
564 1.114 tls
565 1.115 tls /* If there's anything on the AGE list, it should be eaten. */
566 1.131 yamt if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
567 1.115 tls return 0;
568 1.115 tls
569 1.122 simonb /*
570 1.122 simonb * The probabily of getting a new allocation is inversely
571 1.252 joerg * proportional to the current size of the cache above
572 1.252 joerg * the low water mark. Divide the total first to avoid overflows
573 1.252 joerg * in the product.
574 1.122 simonb */
575 1.252 joerg guess = cprng_fast32() % 16;
576 1.114 tls
577 1.252 joerg if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
578 1.252 joerg (bufmem - bufmem_lowater))
579 1.114 tls return 1;
580 1.114 tls
581 1.122 simonb /* Otherwise don't allocate. */
582 1.114 tls return 0;
583 1.100 pk }
584 1.100 pk
585 1.100 pk /*
586 1.116 yamt * Return estimate of bytes we think need to be
587 1.100 pk * released to help resolve low memory conditions.
588 1.116 yamt *
589 1.183 ad * => called with bufcache_lock held.
590 1.100 pk */
591 1.100 pk static int
592 1.100 pk buf_canrelease(void)
593 1.100 pk {
594 1.115 tls int pagedemand, ninvalid = 0;
595 1.115 tls
596 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
597 1.116 yamt
598 1.118 dan if (bufmem < bufmem_lowater)
599 1.118 dan return 0;
600 1.118 dan
601 1.141 tls if (bufmem > bufmem_hiwater)
602 1.141 tls return bufmem - bufmem_hiwater;
603 1.141 tls
604 1.131 yamt ninvalid += bufqueues[BQ_AGE].bq_bytes;
605 1.100 pk
606 1.115 tls pagedemand = uvmexp.freetarg - uvmexp.free;
607 1.115 tls if (pagedemand < 0)
608 1.115 tls return ninvalid;
609 1.115 tls return MAX(ninvalid, MIN(2 * MAXBSIZE,
610 1.115 tls MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
611 1.100 pk }
612 1.100 pk
613 1.100 pk /*
614 1.100 pk * Buffer memory allocation helper functions
615 1.100 pk */
616 1.183 ad static u_long
617 1.101 thorpej buf_mempoolidx(u_long size)
618 1.100 pk {
619 1.100 pk u_int n = 0;
620 1.100 pk
621 1.100 pk size -= 1;
622 1.100 pk size >>= MEMPOOL_INDEX_OFFSET;
623 1.100 pk while (size) {
624 1.100 pk size >>= 1;
625 1.100 pk n += 1;
626 1.100 pk }
627 1.100 pk if (n >= NMEMPOOLS)
628 1.100 pk panic("buf mem pool index %d", n);
629 1.100 pk return n;
630 1.100 pk }
631 1.100 pk
632 1.183 ad static u_long
633 1.101 thorpej buf_roundsize(u_long size)
634 1.100 pk {
635 1.100 pk /* Round up to nearest power of 2 */
636 1.100 pk return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
637 1.100 pk }
638 1.100 pk
639 1.183 ad static void *
640 1.229 rmind buf_alloc(size_t size)
641 1.100 pk {
642 1.100 pk u_int n = buf_mempoolidx(size);
643 1.170 christos void *addr;
644 1.100 pk
645 1.100 pk while (1) {
646 1.100 pk addr = pool_get(&bmempools[n], PR_NOWAIT);
647 1.100 pk if (addr != NULL)
648 1.100 pk break;
649 1.100 pk
650 1.100 pk /* No memory, see if we can free some. If so, try again */
651 1.183 ad mutex_enter(&bufcache_lock);
652 1.183 ad if (buf_drain(1) > 0) {
653 1.183 ad mutex_exit(&bufcache_lock);
654 1.100 pk continue;
655 1.183 ad }
656 1.183 ad
657 1.183 ad if (curlwp == uvm.pagedaemon_lwp) {
658 1.183 ad mutex_exit(&bufcache_lock);
659 1.183 ad return NULL;
660 1.183 ad }
661 1.100 pk
662 1.100 pk /* Wait for buffers to arrive on the LRU queue */
663 1.183 ad cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
664 1.183 ad mutex_exit(&bufcache_lock);
665 1.31 cgd }
666 1.100 pk
667 1.100 pk return addr;
668 1.100 pk }
669 1.100 pk
670 1.101 thorpej static void
671 1.170 christos buf_mrelease(void *addr, size_t size)
672 1.100 pk {
673 1.100 pk
674 1.100 pk pool_put(&bmempools[buf_mempoolidx(size)], addr);
675 1.31 cgd }
676 1.31 cgd
677 1.130 yamt /*
678 1.130 yamt * bread()/breadn() helper.
679 1.130 yamt */
680 1.183 ad static buf_t *
681 1.253 maxv bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
682 1.31 cgd {
683 1.183 ad buf_t *bp;
684 1.123 christos struct mount *mp;
685 1.31 cgd
686 1.34 mycroft bp = getblk(vp, blkno, size, 0, 0);
687 1.31 cgd
688 1.240 hannken /*
689 1.240 hannken * getblk() may return NULL if we are the pagedaemon.
690 1.240 hannken */
691 1.86 thorpej if (bp == NULL) {
692 1.240 hannken KASSERT(curlwp == uvm.pagedaemon_lwp);
693 1.240 hannken return NULL;
694 1.86 thorpej }
695 1.86 thorpej
696 1.31 cgd /*
697 1.34 mycroft * If buffer does not have data valid, start a read.
698 1.183 ad * Note that if buffer is BC_INVAL, getblk() won't return it.
699 1.87 pk * Therefore, it's valid if its I/O has completed or been delayed.
700 1.31 cgd */
701 1.183 ad if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
702 1.73 chs /* Start I/O for the buffer. */
703 1.34 mycroft SET(bp->b_flags, B_READ | async);
704 1.108 yamt if (async)
705 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
706 1.108 yamt else
707 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
708 1.112 hannken VOP_STRATEGY(vp, bp);
709 1.31 cgd
710 1.34 mycroft /* Pay for the read. */
711 1.194 ad curlwp->l_ru.ru_inblock++;
712 1.183 ad } else if (async)
713 1.179 ad brelse(bp, 0);
714 1.31 cgd
715 1.124 yamt if (vp->v_type == VBLK)
716 1.247 hannken mp = spec_node_getmountedfs(vp);
717 1.124 yamt else
718 1.124 yamt mp = vp->v_mount;
719 1.123 christos
720 1.123 christos /*
721 1.123 christos * Collect statistics on synchronous and asynchronous reads.
722 1.123 christos * Reads from block devices are charged to their associated
723 1.123 christos * filesystem (if any).
724 1.123 christos */
725 1.123 christos if (mp != NULL) {
726 1.123 christos if (async == 0)
727 1.123 christos mp->mnt_stat.f_syncreads++;
728 1.123 christos else
729 1.123 christos mp->mnt_stat.f_asyncreads++;
730 1.123 christos }
731 1.123 christos
732 1.34 mycroft return (bp);
733 1.34 mycroft }
734 1.34 mycroft
735 1.34 mycroft /*
736 1.34 mycroft * Read a disk block.
737 1.34 mycroft * This algorithm described in Bach (p.54).
738 1.34 mycroft */
739 1.40 christos int
740 1.255 maxv bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
741 1.34 mycroft {
742 1.183 ad buf_t *bp;
743 1.198 hannken int error;
744 1.34 mycroft
745 1.264 pgoyette KERNHIST_FUNC(__func__); KERNHIST_CALLED(biohist);
746 1.264 pgoyette
747 1.34 mycroft /* Get buffer for block. */
748 1.253 maxv bp = *bpp = bio_doread(vp, blkno, size, 0);
749 1.240 hannken if (bp == NULL)
750 1.240 hannken return ENOMEM;
751 1.31 cgd
752 1.80 chs /* Wait for the read to complete, and return result. */
753 1.198 hannken error = biowait(bp);
754 1.241 christos if (error == 0 && (flags & B_MODIFY) != 0)
755 1.198 hannken error = fscow_run(bp, true);
756 1.241 christos if (error) {
757 1.241 christos brelse(bp, 0);
758 1.241 christos *bpp = NULL;
759 1.240 hannken }
760 1.208 simonb
761 1.198 hannken return error;
762 1.31 cgd }
763 1.31 cgd
764 1.31 cgd /*
765 1.31 cgd * Read-ahead multiple disk blocks. The first is sync, the rest async.
766 1.31 cgd * Trivial modification to the breada algorithm presented in Bach (p.55).
767 1.31 cgd */
768 1.40 christos int
769 1.101 thorpej breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
770 1.254 maxv int *rasizes, int nrablks, int flags, buf_t **bpp)
771 1.31 cgd {
772 1.183 ad buf_t *bp;
773 1.198 hannken int error, i;
774 1.31 cgd
775 1.264 pgoyette KERNHIST_FUNC(__func__); KERNHIST_CALLED(biohist);
776 1.264 pgoyette
777 1.253 maxv bp = *bpp = bio_doread(vp, blkno, size, 0);
778 1.240 hannken if (bp == NULL)
779 1.240 hannken return ENOMEM;
780 1.31 cgd
781 1.31 cgd /*
782 1.31 cgd * For each of the read-ahead blocks, start a read, if necessary.
783 1.31 cgd */
784 1.183 ad mutex_enter(&bufcache_lock);
785 1.31 cgd for (i = 0; i < nrablks; i++) {
786 1.31 cgd /* If it's in the cache, just go on to next one. */
787 1.31 cgd if (incore(vp, rablks[i]))
788 1.31 cgd continue;
789 1.31 cgd
790 1.31 cgd /* Get a buffer for the read-ahead block */
791 1.183 ad mutex_exit(&bufcache_lock);
792 1.253 maxv (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
793 1.183 ad mutex_enter(&bufcache_lock);
794 1.31 cgd }
795 1.183 ad mutex_exit(&bufcache_lock);
796 1.31 cgd
797 1.80 chs /* Otherwise, we had to start a read for it; wait until it's valid. */
798 1.198 hannken error = biowait(bp);
799 1.242 hannken if (error == 0 && (flags & B_MODIFY) != 0)
800 1.198 hannken error = fscow_run(bp, true);
801 1.242 hannken if (error) {
802 1.242 hannken brelse(bp, 0);
803 1.242 hannken *bpp = NULL;
804 1.240 hannken }
805 1.240 hannken
806 1.198 hannken return error;
807 1.31 cgd }
808 1.31 cgd
809 1.31 cgd /*
810 1.31 cgd * Block write. Described in Bach (p.56)
811 1.31 cgd */
812 1.40 christos int
813 1.183 ad bwrite(buf_t *bp)
814 1.31 cgd {
815 1.183 ad int rv, sync, wasdelayed;
816 1.59 fvdl struct vnode *vp;
817 1.59 fvdl struct mount *mp;
818 1.31 cgd
819 1.264 pgoyette KERNHIST_FUNC(__func__); KERNHIST_CALLARGS(biohist, "bp=%p",
820 1.264 pgoyette bp, 0, 0, 0);
821 1.264 pgoyette
822 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
823 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
824 1.87 pk
825 1.76 chs vp = bp->b_vp;
826 1.260 dholland
827 1.260 dholland /*
828 1.260 dholland * dholland 20160728 AFAICT vp==NULL must be impossible as it
829 1.260 dholland * will crash upon reaching VOP_STRATEGY below... see further
830 1.260 dholland * analysis on tech-kern.
831 1.260 dholland */
832 1.260 dholland KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
833 1.260 dholland
834 1.76 chs if (vp != NULL) {
835 1.230 rmind KASSERT(bp->b_objlock == vp->v_interlock);
836 1.76 chs if (vp->v_type == VBLK)
837 1.247 hannken mp = spec_node_getmountedfs(vp);
838 1.76 chs else
839 1.76 chs mp = vp->v_mount;
840 1.76 chs } else {
841 1.76 chs mp = NULL;
842 1.76 chs }
843 1.76 chs
844 1.208 simonb if (mp && mp->mnt_wapbl) {
845 1.208 simonb if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
846 1.208 simonb bdwrite(bp);
847 1.208 simonb return 0;
848 1.208 simonb }
849 1.208 simonb }
850 1.208 simonb
851 1.38 cgd /*
852 1.38 cgd * Remember buffer type, to switch on it later. If the write was
853 1.38 cgd * synchronous, but the file system was mounted with MNT_ASYNC,
854 1.142 perry * convert it to a delayed write.
855 1.38 cgd * XXX note that this relies on delayed tape writes being converted
856 1.38 cgd * to async, not sync writes (which is safe, but ugly).
857 1.38 cgd */
858 1.31 cgd sync = !ISSET(bp->b_flags, B_ASYNC);
859 1.76 chs if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
860 1.37 cgd bdwrite(bp);
861 1.37 cgd return (0);
862 1.37 cgd }
863 1.46 mycroft
864 1.59 fvdl /*
865 1.59 fvdl * Collect statistics on synchronous and asynchronous writes.
866 1.59 fvdl * Writes to block devices are charged to their associated
867 1.59 fvdl * filesystem (if any).
868 1.59 fvdl */
869 1.76 chs if (mp != NULL) {
870 1.76 chs if (sync)
871 1.76 chs mp->mnt_stat.f_syncwrites++;
872 1.59 fvdl else
873 1.76 chs mp->mnt_stat.f_asyncwrites++;
874 1.59 fvdl }
875 1.59 fvdl
876 1.46 mycroft /*
877 1.46 mycroft * Pay for the I/O operation and make sure the buf is on the correct
878 1.46 mycroft * vnode queue.
879 1.46 mycroft */
880 1.184 ad bp->b_error = 0;
881 1.184 ad wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
882 1.183 ad CLR(bp->b_flags, B_READ);
883 1.184 ad if (wasdelayed) {
884 1.184 ad mutex_enter(&bufcache_lock);
885 1.184 ad mutex_enter(bp->b_objlock);
886 1.184 ad CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
887 1.46 mycroft reassignbuf(bp, bp->b_vp);
888 1.184 ad mutex_exit(&bufcache_lock);
889 1.184 ad } else {
890 1.194 ad curlwp->l_ru.ru_oublock++;
891 1.184 ad mutex_enter(bp->b_objlock);
892 1.184 ad CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
893 1.184 ad }
894 1.183 ad if (vp != NULL)
895 1.183 ad vp->v_numoutput++;
896 1.183 ad mutex_exit(bp->b_objlock);
897 1.32 mycroft
898 1.183 ad /* Initiate disk write. */
899 1.108 yamt if (sync)
900 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
901 1.108 yamt else
902 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
903 1.108 yamt
904 1.112 hannken VOP_STRATEGY(vp, bp);
905 1.31 cgd
906 1.34 mycroft if (sync) {
907 1.46 mycroft /* If I/O was synchronous, wait for it to complete. */
908 1.31 cgd rv = biowait(bp);
909 1.31 cgd
910 1.34 mycroft /* Release the buffer. */
911 1.179 ad brelse(bp, 0);
912 1.34 mycroft
913 1.34 mycroft return (rv);
914 1.34 mycroft } else {
915 1.34 mycroft return (0);
916 1.31 cgd }
917 1.31 cgd }
918 1.31 cgd
919 1.31 cgd int
920 1.101 thorpej vn_bwrite(void *v)
921 1.31 cgd {
922 1.40 christos struct vop_bwrite_args *ap = v;
923 1.34 mycroft
924 1.31 cgd return (bwrite(ap->a_bp));
925 1.31 cgd }
926 1.31 cgd
927 1.31 cgd /*
928 1.31 cgd * Delayed write.
929 1.31 cgd *
930 1.31 cgd * The buffer is marked dirty, but is not queued for I/O.
931 1.31 cgd * This routine should be used when the buffer is expected
932 1.31 cgd * to be modified again soon, typically a small write that
933 1.31 cgd * partially fills a buffer.
934 1.31 cgd *
935 1.31 cgd * NB: magnetic tapes cannot be delayed; they must be
936 1.31 cgd * written in the order that the writes are requested.
937 1.31 cgd *
938 1.31 cgd * Described in Leffler, et al. (pp. 208-213).
939 1.31 cgd */
940 1.31 cgd void
941 1.183 ad bdwrite(buf_t *bp)
942 1.31 cgd {
943 1.183 ad
944 1.264 pgoyette KERNHIST_FUNC(__func__); KERNHIST_CALLARGS(biohist, "bp=%p",
945 1.264 pgoyette bp, 0, 0, 0);
946 1.264 pgoyette
947 1.198 hannken KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
948 1.207 hannken bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
949 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
950 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
951 1.31 cgd
952 1.46 mycroft /* If this is a tape block, write the block now. */
953 1.173 ad if (bdev_type(bp->b_dev) == D_TAPE) {
954 1.90 pk bawrite(bp);
955 1.90 pk return;
956 1.46 mycroft }
957 1.46 mycroft
958 1.208 simonb if (wapbl_vphaswapbl(bp->b_vp)) {
959 1.208 simonb struct mount *mp = wapbl_vptomp(bp->b_vp);
960 1.208 simonb
961 1.208 simonb if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
962 1.208 simonb WAPBL_ADD_BUF(mp, bp);
963 1.208 simonb }
964 1.208 simonb }
965 1.208 simonb
966 1.31 cgd /*
967 1.31 cgd * If the block hasn't been seen before:
968 1.31 cgd * (1) Mark it as having been seen,
969 1.45 pk * (2) Charge for the write,
970 1.45 pk * (3) Make sure it's on its vnode's correct block list.
971 1.31 cgd */
972 1.230 rmind KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
973 1.97 dbj
974 1.183 ad if (!ISSET(bp->b_oflags, BO_DELWRI)) {
975 1.184 ad mutex_enter(&bufcache_lock);
976 1.184 ad mutex_enter(bp->b_objlock);
977 1.183 ad SET(bp->b_oflags, BO_DELWRI);
978 1.194 ad curlwp->l_ru.ru_oublock++;
979 1.31 cgd reassignbuf(bp, bp->b_vp);
980 1.184 ad mutex_exit(&bufcache_lock);
981 1.184 ad } else {
982 1.184 ad mutex_enter(bp->b_objlock);
983 1.31 cgd }
984 1.31 cgd /* Otherwise, the "write" is done, so mark and release the buffer. */
985 1.183 ad CLR(bp->b_oflags, BO_DONE);
986 1.183 ad mutex_exit(bp->b_objlock);
987 1.60 fvdl
988 1.179 ad brelse(bp, 0);
989 1.31 cgd }
990 1.31 cgd
991 1.31 cgd /*
992 1.31 cgd * Asynchronous block write; just an asynchronous bwrite().
993 1.31 cgd */
994 1.31 cgd void
995 1.183 ad bawrite(buf_t *bp)
996 1.31 cgd {
997 1.31 cgd
998 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
999 1.231 hannken KASSERT(bp->b_vp != NULL);
1000 1.87 pk
1001 1.31 cgd SET(bp->b_flags, B_ASYNC);
1002 1.231 hannken VOP_BWRITE(bp->b_vp, bp);
1003 1.31 cgd }
1004 1.31 cgd
1005 1.31 cgd /*
1006 1.31 cgd * Release a buffer on to the free lists.
1007 1.31 cgd * Described in Bach (p. 46).
1008 1.31 cgd */
1009 1.31 cgd void
1010 1.183 ad brelsel(buf_t *bp, int set)
1011 1.31 cgd {
1012 1.131 yamt struct bqueue *bufq;
1013 1.183 ad struct vnode *vp;
1014 1.31 cgd
1015 1.240 hannken KASSERT(bp != NULL);
1016 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1017 1.202 ad KASSERT(!cv_has_waiters(&bp->b_done));
1018 1.202 ad KASSERT(bp->b_refcnt > 0);
1019 1.202 ad
1020 1.183 ad SET(bp->b_cflags, set);
1021 1.179 ad
1022 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1023 1.183 ad KASSERT(bp->b_iodone == NULL);
1024 1.87 pk
1025 1.31 cgd /* Wake up any processes waiting for any buffer to become free. */
1026 1.183 ad cv_signal(&needbuffer_cv);
1027 1.31 cgd
1028 1.262 jdolecek /* Wake up any proceeses waiting for _this_ buffer to become free */
1029 1.199 ad if (ISSET(bp->b_cflags, BC_WANTED))
1030 1.183 ad CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1031 1.31 cgd
1032 1.225 hannken /* If it's clean clear the copy-on-write flag. */
1033 1.225 hannken if (ISSET(bp->b_flags, B_COWDONE)) {
1034 1.225 hannken mutex_enter(bp->b_objlock);
1035 1.225 hannken if (!ISSET(bp->b_oflags, BO_DELWRI))
1036 1.225 hannken CLR(bp->b_flags, B_COWDONE);
1037 1.225 hannken mutex_exit(bp->b_objlock);
1038 1.225 hannken }
1039 1.225 hannken
1040 1.31 cgd /*
1041 1.31 cgd * Determine which queue the buffer should be on, then put it there.
1042 1.31 cgd */
1043 1.31 cgd
1044 1.31 cgd /* If it's locked, don't report an error; try again later. */
1045 1.187 ad if (ISSET(bp->b_flags, B_LOCKED))
1046 1.174 ad bp->b_error = 0;
1047 1.31 cgd
1048 1.31 cgd /* If it's not cacheable, or an error, mark it invalid. */
1049 1.183 ad if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1050 1.183 ad SET(bp->b_cflags, BC_INVAL);
1051 1.31 cgd
1052 1.183 ad if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1053 1.50 mycroft /*
1054 1.50 mycroft * This is a delayed write buffer that was just flushed to
1055 1.50 mycroft * disk. It is still on the LRU queue. If it's become
1056 1.50 mycroft * invalid, then we need to move it to a different queue;
1057 1.50 mycroft * otherwise leave it in its current position.
1058 1.50 mycroft */
1059 1.183 ad CLR(bp->b_cflags, BC_VFLUSH);
1060 1.187 ad if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1061 1.187 ad !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1062 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1063 1.50 mycroft goto already_queued;
1064 1.99 dbj } else {
1065 1.50 mycroft bremfree(bp);
1066 1.99 dbj }
1067 1.50 mycroft }
1068 1.99 dbj
1069 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1070 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1071 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1072 1.50 mycroft
1073 1.183 ad if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1074 1.31 cgd /*
1075 1.31 cgd * If it's invalid or empty, dissociate it from its vnode
1076 1.31 cgd * and put on the head of the appropriate queue.
1077 1.31 cgd */
1078 1.208 simonb if (ISSET(bp->b_flags, B_LOCKED)) {
1079 1.208 simonb if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1080 1.208 simonb struct mount *mp = wapbl_vptomp(vp);
1081 1.208 simonb
1082 1.208 simonb KASSERT(bp->b_iodone
1083 1.208 simonb != mp->mnt_wapbl_op->wo_wapbl_biodone);
1084 1.208 simonb WAPBL_REMOVE_BUF(mp, bp);
1085 1.208 simonb }
1086 1.208 simonb }
1087 1.208 simonb
1088 1.183 ad mutex_enter(bp->b_objlock);
1089 1.183 ad CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1090 1.183 ad if ((vp = bp->b_vp) != NULL) {
1091 1.230 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1092 1.59 fvdl reassignbuf(bp, bp->b_vp);
1093 1.31 cgd brelvp(bp);
1094 1.230 rmind mutex_exit(vp->v_interlock);
1095 1.183 ad } else {
1096 1.183 ad KASSERT(bp->b_objlock == &buffer_lock);
1097 1.183 ad mutex_exit(bp->b_objlock);
1098 1.59 fvdl }
1099 1.183 ad
1100 1.31 cgd if (bp->b_bufsize <= 0)
1101 1.31 cgd /* no data */
1102 1.100 pk goto already_queued;
1103 1.31 cgd else
1104 1.31 cgd /* invalid data */
1105 1.31 cgd bufq = &bufqueues[BQ_AGE];
1106 1.31 cgd binsheadfree(bp, bufq);
1107 1.183 ad } else {
1108 1.31 cgd /*
1109 1.31 cgd * It has valid data. Put it on the end of the appropriate
1110 1.31 cgd * queue, so that it'll stick around for as long as possible.
1111 1.67 fvdl * If buf is AGE, but has dependencies, must put it on last
1112 1.67 fvdl * bufqueue to be scanned, ie LRU. This protects against the
1113 1.67 fvdl * livelock where BQ_AGE only has buffers with dependencies,
1114 1.67 fvdl * and we thus never get to the dependent buffers in BQ_LRU.
1115 1.31 cgd */
1116 1.187 ad if (ISSET(bp->b_flags, B_LOCKED)) {
1117 1.31 cgd /* locked in core */
1118 1.31 cgd bufq = &bufqueues[BQ_LOCKED];
1119 1.183 ad } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1120 1.31 cgd /* valid data */
1121 1.31 cgd bufq = &bufqueues[BQ_LRU];
1122 1.183 ad } else {
1123 1.67 fvdl /* stale but valid data */
1124 1.216 ad bufq = &bufqueues[BQ_AGE];
1125 1.67 fvdl }
1126 1.31 cgd binstailfree(bp, bufq);
1127 1.31 cgd }
1128 1.50 mycroft already_queued:
1129 1.31 cgd /* Unlock the buffer. */
1130 1.183 ad CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1131 1.183 ad CLR(bp->b_flags, B_ASYNC);
1132 1.199 ad cv_broadcast(&bp->b_busy);
1133 1.31 cgd
1134 1.183 ad if (bp->b_bufsize <= 0)
1135 1.183 ad brele(bp);
1136 1.183 ad }
1137 1.183 ad
1138 1.183 ad void
1139 1.183 ad brelse(buf_t *bp, int set)
1140 1.183 ad {
1141 1.183 ad
1142 1.183 ad mutex_enter(&bufcache_lock);
1143 1.183 ad brelsel(bp, set);
1144 1.183 ad mutex_exit(&bufcache_lock);
1145 1.31 cgd }
1146 1.31 cgd
1147 1.31 cgd /*
1148 1.31 cgd * Determine if a block is in the cache.
1149 1.31 cgd * Just look on what would be its hash chain. If it's there, return
1150 1.31 cgd * a pointer to it, unless it's marked invalid. If it's marked invalid,
1151 1.31 cgd * we normally don't return the buffer, unless the caller explicitly
1152 1.31 cgd * wants us to.
1153 1.31 cgd */
1154 1.183 ad buf_t *
1155 1.101 thorpej incore(struct vnode *vp, daddr_t blkno)
1156 1.31 cgd {
1157 1.183 ad buf_t *bp;
1158 1.183 ad
1159 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1160 1.31 cgd
1161 1.31 cgd /* Search hash chain */
1162 1.84 matt LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1163 1.31 cgd if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1164 1.183 ad !ISSET(bp->b_cflags, BC_INVAL)) {
1165 1.230 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1166 1.183 ad return (bp);
1167 1.183 ad }
1168 1.31 cgd }
1169 1.31 cgd
1170 1.73 chs return (NULL);
1171 1.31 cgd }
1172 1.31 cgd
1173 1.31 cgd /*
1174 1.31 cgd * Get a block of requested size that is associated with
1175 1.31 cgd * a given vnode and block offset. If it is found in the
1176 1.31 cgd * block cache, mark it as having been found, make it busy
1177 1.31 cgd * and return it. Otherwise, return an empty block of the
1178 1.31 cgd * correct size. It is up to the caller to insure that the
1179 1.31 cgd * cached blocks be of the correct size.
1180 1.31 cgd */
1181 1.183 ad buf_t *
1182 1.101 thorpej getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1183 1.31 cgd {
1184 1.183 ad int err, preserve;
1185 1.183 ad buf_t *bp;
1186 1.183 ad
1187 1.183 ad mutex_enter(&bufcache_lock);
1188 1.183 ad loop:
1189 1.73 chs bp = incore(vp, blkno);
1190 1.73 chs if (bp != NULL) {
1191 1.188 ad err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1192 1.183 ad if (err != 0) {
1193 1.183 ad if (err == EPASSTHROUGH)
1194 1.183 ad goto loop;
1195 1.183 ad mutex_exit(&bufcache_lock);
1196 1.183 ad return (NULL);
1197 1.31 cgd }
1198 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
1199 1.57 mycroft #ifdef DIAGNOSTIC
1200 1.183 ad if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1201 1.78 chs bp->b_bcount < size && vp->v_type != VBLK)
1202 1.73 chs panic("getblk: block size invariant failed");
1203 1.57 mycroft #endif
1204 1.73 chs bremfree(bp);
1205 1.100 pk preserve = 1;
1206 1.73 chs } else {
1207 1.183 ad if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1208 1.183 ad goto loop;
1209 1.183 ad
1210 1.183 ad if (incore(vp, blkno) != NULL) {
1211 1.183 ad /* The block has come into memory in the meantime. */
1212 1.183 ad brelsel(bp, 0);
1213 1.183 ad goto loop;
1214 1.87 pk }
1215 1.73 chs
1216 1.183 ad LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1217 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1218 1.230 rmind mutex_enter(vp->v_interlock);
1219 1.31 cgd bgetvp(vp, bp);
1220 1.230 rmind mutex_exit(vp->v_interlock);
1221 1.100 pk preserve = 0;
1222 1.31 cgd }
1223 1.183 ad mutex_exit(&bufcache_lock);
1224 1.183 ad
1225 1.96 yamt /*
1226 1.187 ad * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1227 1.96 yamt * if we re-size buffers here.
1228 1.96 yamt */
1229 1.187 ad if (ISSET(bp->b_flags, B_LOCKED)) {
1230 1.96 yamt KASSERT(bp->b_bufsize >= size);
1231 1.96 yamt } else {
1232 1.183 ad if (allocbuf(bp, size, preserve)) {
1233 1.183 ad mutex_enter(&bufcache_lock);
1234 1.183 ad LIST_REMOVE(bp, b_hash);
1235 1.183 ad mutex_exit(&bufcache_lock);
1236 1.183 ad brelse(bp, BC_INVAL);
1237 1.183 ad return NULL;
1238 1.183 ad }
1239 1.96 yamt }
1240 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1241 1.31 cgd return (bp);
1242 1.31 cgd }
1243 1.31 cgd
1244 1.31 cgd /*
1245 1.31 cgd * Get an empty, disassociated buffer of given size.
1246 1.31 cgd */
1247 1.183 ad buf_t *
1248 1.101 thorpej geteblk(int size)
1249 1.31 cgd {
1250 1.183 ad buf_t *bp;
1251 1.248 martin int error __diagused;
1252 1.31 cgd
1253 1.183 ad mutex_enter(&bufcache_lock);
1254 1.183 ad while ((bp = getnewbuf(0, 0, 0)) == NULL)
1255 1.31 cgd ;
1256 1.87 pk
1257 1.183 ad SET(bp->b_cflags, BC_INVAL);
1258 1.183 ad LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1259 1.183 ad mutex_exit(&bufcache_lock);
1260 1.109 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1261 1.183 ad error = allocbuf(bp, size, 0);
1262 1.183 ad KASSERT(error == 0);
1263 1.31 cgd return (bp);
1264 1.31 cgd }
1265 1.31 cgd
1266 1.31 cgd /*
1267 1.31 cgd * Expand or contract the actual memory allocated to a buffer.
1268 1.31 cgd *
1269 1.31 cgd * If the buffer shrinks, data is lost, so it's up to the
1270 1.31 cgd * caller to have written it out *first*; this routine will not
1271 1.31 cgd * start a write. If the buffer grows, it's the callers
1272 1.31 cgd * responsibility to fill out the buffer's additional contents.
1273 1.31 cgd */
1274 1.183 ad int
1275 1.183 ad allocbuf(buf_t *bp, int size, int preserve)
1276 1.31 cgd {
1277 1.208 simonb void *addr;
1278 1.100 pk vsize_t oldsize, desired_size;
1279 1.208 simonb int oldcount;
1280 1.183 ad int delta;
1281 1.31 cgd
1282 1.100 pk desired_size = buf_roundsize(size);
1283 1.31 cgd if (desired_size > MAXBSIZE)
1284 1.100 pk printf("allocbuf: buffer larger than MAXBSIZE requested");
1285 1.31 cgd
1286 1.208 simonb oldcount = bp->b_bcount;
1287 1.208 simonb
1288 1.100 pk bp->b_bcount = size;
1289 1.100 pk
1290 1.100 pk oldsize = bp->b_bufsize;
1291 1.214 joerg if (oldsize == desired_size) {
1292 1.214 joerg /*
1293 1.214 joerg * Do not short cut the WAPBL resize, as the buffer length
1294 1.214 joerg * could still have changed and this would corrupt the
1295 1.214 joerg * tracking of the transaction length.
1296 1.214 joerg */
1297 1.214 joerg goto out;
1298 1.214 joerg }
1299 1.31 cgd
1300 1.31 cgd /*
1301 1.100 pk * If we want a buffer of a different size, re-allocate the
1302 1.100 pk * buffer's memory; copy old content only if needed.
1303 1.31 cgd */
1304 1.229 rmind addr = buf_alloc(desired_size);
1305 1.183 ad if (addr == NULL)
1306 1.183 ad return ENOMEM;
1307 1.100 pk if (preserve)
1308 1.100 pk memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1309 1.100 pk if (bp->b_data != NULL)
1310 1.100 pk buf_mrelease(bp->b_data, oldsize);
1311 1.100 pk bp->b_data = addr;
1312 1.100 pk bp->b_bufsize = desired_size;
1313 1.31 cgd
1314 1.31 cgd /*
1315 1.183 ad * Update overall buffer memory counter (protected by bufcache_lock)
1316 1.31 cgd */
1317 1.100 pk delta = (long)desired_size - (long)oldsize;
1318 1.100 pk
1319 1.183 ad mutex_enter(&bufcache_lock);
1320 1.100 pk if ((bufmem += delta) > bufmem_hiwater) {
1321 1.100 pk /*
1322 1.100 pk * Need to trim overall memory usage.
1323 1.100 pk */
1324 1.100 pk while (buf_canrelease()) {
1325 1.154 yamt if (curcpu()->ci_schedstate.spc_flags &
1326 1.154 yamt SPCF_SHOULDYIELD) {
1327 1.183 ad mutex_exit(&bufcache_lock);
1328 1.168 ad preempt();
1329 1.183 ad mutex_enter(&bufcache_lock);
1330 1.154 yamt }
1331 1.100 pk if (buf_trim() == 0)
1332 1.100 pk break;
1333 1.31 cgd }
1334 1.31 cgd }
1335 1.183 ad mutex_exit(&bufcache_lock);
1336 1.208 simonb
1337 1.214 joerg out:
1338 1.208 simonb if (wapbl_vphaswapbl(bp->b_vp))
1339 1.208 simonb WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1340 1.208 simonb
1341 1.183 ad return 0;
1342 1.31 cgd }
1343 1.31 cgd
1344 1.31 cgd /*
1345 1.31 cgd * Find a buffer which is available for use.
1346 1.31 cgd * Select something from a free list.
1347 1.142 perry * Preference is to AGE list, then LRU list.
1348 1.87 pk *
1349 1.183 ad * Called with the buffer queues locked.
1350 1.87 pk * Return buffer locked.
1351 1.31 cgd */
1352 1.183 ad buf_t *
1353 1.101 thorpej getnewbuf(int slpflag, int slptimeo, int from_bufq)
1354 1.31 cgd {
1355 1.183 ad buf_t *bp;
1356 1.183 ad struct vnode *vp;
1357 1.31 cgd
1358 1.183 ad start:
1359 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1360 1.87 pk
1361 1.100 pk /*
1362 1.183 ad * Get a new buffer from the pool.
1363 1.100 pk */
1364 1.183 ad if (!from_bufq && buf_lotsfree()) {
1365 1.183 ad mutex_exit(&bufcache_lock);
1366 1.183 ad bp = pool_cache_get(buf_cache, PR_NOWAIT);
1367 1.183 ad if (bp != NULL) {
1368 1.183 ad memset((char *)bp, 0, sizeof(*bp));
1369 1.183 ad buf_init(bp);
1370 1.204 reinoud SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1371 1.183 ad mutex_enter(&bufcache_lock);
1372 1.131 yamt #if defined(DIAGNOSTIC)
1373 1.183 ad bp->b_freelistindex = -1;
1374 1.131 yamt #endif /* defined(DIAGNOSTIC) */
1375 1.183 ad return (bp);
1376 1.183 ad }
1377 1.183 ad mutex_enter(&bufcache_lock);
1378 1.100 pk }
1379 1.100 pk
1380 1.209 reinoud KASSERT(mutex_owned(&bufcache_lock));
1381 1.131 yamt if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1382 1.131 yamt (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1383 1.206 bouyer KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1384 1.31 cgd bremfree(bp);
1385 1.202 ad
1386 1.202 ad /* Buffer is no longer on free lists. */
1387 1.202 ad SET(bp->b_cflags, BC_BUSY);
1388 1.31 cgd } else {
1389 1.134 enami /*
1390 1.134 enami * XXX: !from_bufq should be removed.
1391 1.134 enami */
1392 1.173 ad if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1393 1.134 enami /* wait for a free buffer of any kind */
1394 1.183 ad if ((slpflag & PCATCH) != 0)
1395 1.183 ad (void)cv_timedwait_sig(&needbuffer_cv,
1396 1.183 ad &bufcache_lock, slptimeo);
1397 1.183 ad else
1398 1.183 ad (void)cv_timedwait(&needbuffer_cv,
1399 1.183 ad &bufcache_lock, slptimeo);
1400 1.134 enami }
1401 1.73 chs return (NULL);
1402 1.31 cgd }
1403 1.31 cgd
1404 1.100 pk #ifdef DIAGNOSTIC
1405 1.100 pk if (bp->b_bufsize <= 0)
1406 1.100 pk panic("buffer %p: on queue but empty", bp);
1407 1.100 pk #endif
1408 1.100 pk
1409 1.183 ad if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1410 1.50 mycroft /*
1411 1.50 mycroft * This is a delayed write buffer being flushed to disk. Make
1412 1.50 mycroft * sure it gets aged out of the queue when it's finished, and
1413 1.50 mycroft * leave it off the LRU queue.
1414 1.50 mycroft */
1415 1.183 ad CLR(bp->b_cflags, BC_VFLUSH);
1416 1.183 ad SET(bp->b_cflags, BC_AGE);
1417 1.50 mycroft goto start;
1418 1.50 mycroft }
1419 1.50 mycroft
1420 1.202 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1421 1.202 ad KASSERT(bp->b_refcnt > 0);
1422 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
1423 1.31 cgd
1424 1.75 chs /*
1425 1.75 chs * If buffer was a delayed write, start it and return NULL
1426 1.75 chs * (since we might sleep while starting the write).
1427 1.75 chs */
1428 1.183 ad if (ISSET(bp->b_oflags, BO_DELWRI)) {
1429 1.50 mycroft /*
1430 1.50 mycroft * This buffer has gone through the LRU, so make sure it gets
1431 1.50 mycroft * reused ASAP.
1432 1.50 mycroft */
1433 1.183 ad SET(bp->b_cflags, BC_AGE);
1434 1.183 ad mutex_exit(&bufcache_lock);
1435 1.50 mycroft bawrite(bp);
1436 1.183 ad mutex_enter(&bufcache_lock);
1437 1.75 chs return (NULL);
1438 1.31 cgd }
1439 1.31 cgd
1440 1.183 ad vp = bp->b_vp;
1441 1.59 fvdl
1442 1.31 cgd /* clear out various other fields */
1443 1.183 ad bp->b_cflags = BC_BUSY;
1444 1.183 ad bp->b_oflags = 0;
1445 1.183 ad bp->b_flags = 0;
1446 1.31 cgd bp->b_dev = NODEV;
1447 1.183 ad bp->b_blkno = 0;
1448 1.183 ad bp->b_lblkno = 0;
1449 1.183 ad bp->b_rawblkno = 0;
1450 1.31 cgd bp->b_iodone = 0;
1451 1.31 cgd bp->b_error = 0;
1452 1.31 cgd bp->b_resid = 0;
1453 1.31 cgd bp->b_bcount = 0;
1454 1.142 perry
1455 1.183 ad LIST_REMOVE(bp, b_hash);
1456 1.183 ad
1457 1.183 ad /* Disassociate us from our vnode, if we had one... */
1458 1.183 ad if (vp != NULL) {
1459 1.230 rmind mutex_enter(vp->v_interlock);
1460 1.183 ad brelvp(bp);
1461 1.230 rmind mutex_exit(vp->v_interlock);
1462 1.183 ad }
1463 1.183 ad
1464 1.142 perry return (bp);
1465 1.31 cgd }
1466 1.31 cgd
1467 1.31 cgd /*
1468 1.100 pk * Attempt to free an aged buffer off the queues.
1469 1.183 ad * Called with queue lock held.
1470 1.100 pk * Returns the amount of buffer memory freed.
1471 1.100 pk */
1472 1.130 yamt static int
1473 1.101 thorpej buf_trim(void)
1474 1.100 pk {
1475 1.183 ad buf_t *bp;
1476 1.245 christos long size;
1477 1.100 pk
1478 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1479 1.183 ad
1480 1.100 pk /* Instruct getnewbuf() to get buffers off the queues */
1481 1.101 thorpej if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1482 1.100 pk return 0;
1483 1.100 pk
1484 1.183 ad KASSERT((bp->b_cflags & BC_WANTED) == 0);
1485 1.100 pk size = bp->b_bufsize;
1486 1.100 pk bufmem -= size;
1487 1.100 pk if (size > 0) {
1488 1.100 pk buf_mrelease(bp->b_data, size);
1489 1.100 pk bp->b_bcount = bp->b_bufsize = 0;
1490 1.100 pk }
1491 1.100 pk /* brelse() will return the buffer to the global buffer pool */
1492 1.183 ad brelsel(bp, 0);
1493 1.100 pk return size;
1494 1.100 pk }
1495 1.100 pk
1496 1.101 thorpej int
1497 1.101 thorpej buf_drain(int n)
1498 1.100 pk {
1499 1.183 ad int size = 0, sz;
1500 1.100 pk
1501 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1502 1.116 yamt
1503 1.134 enami while (size < n && bufmem > bufmem_lowater) {
1504 1.134 enami sz = buf_trim();
1505 1.134 enami if (sz <= 0)
1506 1.134 enami break;
1507 1.134 enami size += sz;
1508 1.134 enami }
1509 1.114 tls
1510 1.100 pk return size;
1511 1.100 pk }
1512 1.100 pk
1513 1.259 riz SDT_PROVIDER_DEFINE(io);
1514 1.259 riz
1515 1.259 riz SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1516 1.259 riz SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1517 1.259 riz
1518 1.100 pk /*
1519 1.31 cgd * Wait for operations on the buffer to complete.
1520 1.31 cgd * When they do, extract and return the I/O's error value.
1521 1.31 cgd */
1522 1.31 cgd int
1523 1.183 ad biowait(buf_t *bp)
1524 1.31 cgd {
1525 1.142 perry
1526 1.264 pgoyette KERNHIST_FUNC(__func__);
1527 1.264 pgoyette
1528 1.202 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1529 1.202 ad KASSERT(bp->b_refcnt > 0);
1530 1.202 ad
1531 1.259 riz SDT_PROBE1(io, kernel, , wait__start, bp);
1532 1.259 riz
1533 1.183 ad mutex_enter(bp->b_objlock);
1534 1.264 pgoyette
1535 1.264 pgoyette KERNHIST_CALLARGS(biohist, "bp=%p, oflags=0x%x",
1536 1.264 pgoyette bp, bp->b_oflags, 0, 0);
1537 1.264 pgoyette
1538 1.264 pgoyette while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1539 1.264 pgoyette KERNHIST_LOG(biohist, "waiting bp=%p", bp, 0, 0, 0);
1540 1.183 ad cv_wait(&bp->b_done, bp->b_objlock);
1541 1.264 pgoyette }
1542 1.183 ad mutex_exit(bp->b_objlock);
1543 1.183 ad
1544 1.259 riz SDT_PROBE1(io, kernel, , wait__done, bp);
1545 1.259 riz
1546 1.264 pgoyette KERNHIST_LOG(biohist, " return %d", bp->b_error, 0, 0, 0);
1547 1.264 pgoyette
1548 1.183 ad return bp->b_error;
1549 1.31 cgd }
1550 1.31 cgd
1551 1.31 cgd /*
1552 1.31 cgd * Mark I/O complete on a buffer.
1553 1.31 cgd *
1554 1.31 cgd * If a callback has been requested, e.g. the pageout
1555 1.31 cgd * daemon, do so. Otherwise, awaken waiting processes.
1556 1.31 cgd *
1557 1.31 cgd * [ Leffler, et al., says on p.247:
1558 1.31 cgd * "This routine wakes up the blocked process, frees the buffer
1559 1.31 cgd * for an asynchronous write, or, for a request by the pagedaemon
1560 1.31 cgd * process, invokes a procedure specified in the buffer structure" ]
1561 1.31 cgd *
1562 1.31 cgd * In real life, the pagedaemon (or other system processes) wants
1563 1.263 dholland * to do async stuff too, and doesn't want the buffer brelse()'d.
1564 1.31 cgd * (for swap pager, that puts swap buffers on the free lists (!!!),
1565 1.229 rmind * for the vn device, that puts allocated buffers on the free lists!)
1566 1.31 cgd */
1567 1.31 cgd void
1568 1.183 ad biodone(buf_t *bp)
1569 1.183 ad {
1570 1.183 ad int s;
1571 1.183 ad
1572 1.264 pgoyette KERNHIST_FUNC(__func__);
1573 1.264 pgoyette
1574 1.183 ad KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1575 1.183 ad
1576 1.183 ad if (cpu_intr_p()) {
1577 1.183 ad /* From interrupt mode: defer to a soft interrupt. */
1578 1.183 ad s = splvm();
1579 1.183 ad TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1580 1.264 pgoyette
1581 1.264 pgoyette KERNHIST_CALLARGS(biohist, "bp=%p, softint scheduled",
1582 1.264 pgoyette bp, 0, 0, 0);
1583 1.183 ad softint_schedule(biodone_sih);
1584 1.183 ad splx(s);
1585 1.183 ad } else {
1586 1.183 ad /* Process now - the buffer may be freed soon. */
1587 1.183 ad biodone2(bp);
1588 1.183 ad }
1589 1.183 ad }
1590 1.183 ad
1591 1.259 riz SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1592 1.259 riz
1593 1.183 ad static void
1594 1.183 ad biodone2(buf_t *bp)
1595 1.31 cgd {
1596 1.183 ad void (*callout)(buf_t *);
1597 1.183 ad
1598 1.259 riz SDT_PROBE1(io, kernel, ,done, bp);
1599 1.259 riz
1600 1.264 pgoyette KERNHIST_FUNC(__func__);
1601 1.264 pgoyette KERNHIST_CALLARGS(biohist, "bp=%p", bp, 0, 0, 0);
1602 1.264 pgoyette
1603 1.183 ad mutex_enter(bp->b_objlock);
1604 1.183 ad /* Note that the transfer is done. */
1605 1.183 ad if (ISSET(bp->b_oflags, BO_DONE))
1606 1.183 ad panic("biodone2 already");
1607 1.186 hannken CLR(bp->b_flags, B_COWDONE);
1608 1.183 ad SET(bp->b_oflags, BO_DONE);
1609 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1610 1.31 cgd
1611 1.183 ad /* Wake up waiting writers. */
1612 1.183 ad if (!ISSET(bp->b_flags, B_READ))
1613 1.31 cgd vwakeup(bp);
1614 1.31 cgd
1615 1.183 ad if ((callout = bp->b_iodone) != NULL) {
1616 1.264 pgoyette KERNHIST_LOG(biohist, "callout %p", callout, 0, 0, 0);
1617 1.264 pgoyette
1618 1.183 ad /* Note callout done, then call out. */
1619 1.201 ad KASSERT(!cv_has_waiters(&bp->b_done));
1620 1.183 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1621 1.183 ad bp->b_iodone = NULL;
1622 1.183 ad mutex_exit(bp->b_objlock);
1623 1.183 ad (*callout)(bp);
1624 1.183 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1625 1.183 ad } else if (ISSET(bp->b_flags, B_ASYNC)) {
1626 1.183 ad /* If async, release. */
1627 1.264 pgoyette KERNHIST_LOG(biohist, "async", 0, 0, 0, 0);
1628 1.201 ad KASSERT(!cv_has_waiters(&bp->b_done));
1629 1.183 ad mutex_exit(bp->b_objlock);
1630 1.183 ad brelse(bp, 0);
1631 1.59 fvdl } else {
1632 1.183 ad /* Otherwise just wake up waiters in biowait(). */
1633 1.264 pgoyette KERNHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1634 1.183 ad cv_broadcast(&bp->b_done);
1635 1.183 ad mutex_exit(bp->b_objlock);
1636 1.31 cgd }
1637 1.183 ad }
1638 1.183 ad
1639 1.183 ad static void
1640 1.183 ad biointr(void *cookie)
1641 1.183 ad {
1642 1.183 ad struct cpu_info *ci;
1643 1.183 ad buf_t *bp;
1644 1.183 ad int s;
1645 1.183 ad
1646 1.264 pgoyette KERNHIST_FUNC(__func__); KERNHIST_CALLED(biohist);
1647 1.264 pgoyette
1648 1.183 ad ci = curcpu();
1649 1.60 fvdl
1650 1.265 pgoyette s = splvm();
1651 1.183 ad while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1652 1.183 ad KASSERT(curcpu() == ci);
1653 1.183 ad
1654 1.183 ad bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1655 1.183 ad TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1656 1.183 ad splx(s);
1657 1.183 ad
1658 1.264 pgoyette KERNHIST_LOG(biohist, "bp=%p", bp, 0, 0, 0);
1659 1.183 ad biodone2(bp);
1660 1.265 pgoyette
1661 1.265 pgoyette s = splvm();
1662 1.183 ad }
1663 1.265 pgoyette splx(s);
1664 1.31 cgd }
1665 1.31 cgd
1666 1.31 cgd /*
1667 1.100 pk * Wait for all buffers to complete I/O
1668 1.100 pk * Return the number of "stuck" buffers.
1669 1.100 pk */
1670 1.100 pk int
1671 1.100 pk buf_syncwait(void)
1672 1.100 pk {
1673 1.183 ad buf_t *bp;
1674 1.246 martin int iter, nbusy, nbusy_prev = 0, ihash;
1675 1.100 pk
1676 1.264 pgoyette KERNHIST_FUNC(__func__); KERNHIST_CALLED(biohist);
1677 1.264 pgoyette
1678 1.100 pk for (iter = 0; iter < 20;) {
1679 1.183 ad mutex_enter(&bufcache_lock);
1680 1.100 pk nbusy = 0;
1681 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1682 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1683 1.183 ad if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1684 1.183 ad nbusy += ((bp->b_flags & B_READ) == 0);
1685 1.100 pk }
1686 1.100 pk }
1687 1.183 ad mutex_exit(&bufcache_lock);
1688 1.100 pk
1689 1.100 pk if (nbusy == 0)
1690 1.100 pk break;
1691 1.100 pk if (nbusy_prev == 0)
1692 1.100 pk nbusy_prev = nbusy;
1693 1.100 pk printf("%d ", nbusy);
1694 1.224 pooka kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1695 1.100 pk if (nbusy >= nbusy_prev) /* we didn't flush anything */
1696 1.100 pk iter++;
1697 1.100 pk else
1698 1.100 pk nbusy_prev = nbusy;
1699 1.100 pk }
1700 1.100 pk
1701 1.100 pk if (nbusy) {
1702 1.100 pk #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1703 1.100 pk printf("giving up\nPrinting vnodes for busy buffers\n");
1704 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1705 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1706 1.183 ad if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1707 1.183 ad (bp->b_flags & B_READ) == 0)
1708 1.100 pk vprint(NULL, bp->b_vp);
1709 1.100 pk }
1710 1.100 pk }
1711 1.100 pk #endif
1712 1.100 pk }
1713 1.100 pk
1714 1.100 pk return nbusy;
1715 1.100 pk }
1716 1.100 pk
1717 1.117 atatat static void
1718 1.183 ad sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1719 1.117 atatat {
1720 1.117 atatat
1721 1.183 ad o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1722 1.117 atatat o->b_error = i->b_error;
1723 1.117 atatat o->b_prio = i->b_prio;
1724 1.117 atatat o->b_dev = i->b_dev;
1725 1.117 atatat o->b_bufsize = i->b_bufsize;
1726 1.117 atatat o->b_bcount = i->b_bcount;
1727 1.117 atatat o->b_resid = i->b_resid;
1728 1.182 ad o->b_addr = PTRTOUINT64(i->b_data);
1729 1.117 atatat o->b_blkno = i->b_blkno;
1730 1.117 atatat o->b_rawblkno = i->b_rawblkno;
1731 1.117 atatat o->b_iodone = PTRTOUINT64(i->b_iodone);
1732 1.117 atatat o->b_proc = PTRTOUINT64(i->b_proc);
1733 1.117 atatat o->b_vp = PTRTOUINT64(i->b_vp);
1734 1.117 atatat o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1735 1.117 atatat o->b_lblkno = i->b_lblkno;
1736 1.117 atatat }
1737 1.117 atatat
1738 1.100 pk #define KERN_BUFSLOP 20
1739 1.100 pk static int
1740 1.100 pk sysctl_dobuf(SYSCTLFN_ARGS)
1741 1.100 pk {
1742 1.183 ad buf_t *bp;
1743 1.117 atatat struct buf_sysctl bs;
1744 1.183 ad struct bqueue *bq;
1745 1.100 pk char *dp;
1746 1.117 atatat u_int i, op, arg;
1747 1.117 atatat size_t len, needed, elem_size, out_size;
1748 1.183 ad int error, elem_count, retries;
1749 1.117 atatat
1750 1.117 atatat if (namelen == 1 && name[0] == CTL_QUERY)
1751 1.146 atatat return (sysctl_query(SYSCTLFN_CALL(rnode)));
1752 1.117 atatat
1753 1.117 atatat if (namelen != 4)
1754 1.117 atatat return (EINVAL);
1755 1.100 pk
1756 1.183 ad retries = 100;
1757 1.183 ad retry:
1758 1.100 pk dp = oldp;
1759 1.117 atatat len = (oldp != NULL) ? *oldlenp : 0;
1760 1.117 atatat op = name[0];
1761 1.117 atatat arg = name[1];
1762 1.117 atatat elem_size = name[2];
1763 1.117 atatat elem_count = name[3];
1764 1.117 atatat out_size = MIN(sizeof(bs), elem_size);
1765 1.117 atatat
1766 1.117 atatat /*
1767 1.117 atatat * at the moment, these are just "placeholders" to make the
1768 1.117 atatat * API for retrieving kern.buf data more extensible in the
1769 1.117 atatat * future.
1770 1.117 atatat *
1771 1.117 atatat * XXX kern.buf currently has "netbsd32" issues. hopefully
1772 1.117 atatat * these will be resolved at a later point.
1773 1.117 atatat */
1774 1.117 atatat if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1775 1.117 atatat elem_size < 1 || elem_count < 0)
1776 1.117 atatat return (EINVAL);
1777 1.117 atatat
1778 1.100 pk error = 0;
1779 1.100 pk needed = 0;
1780 1.185 ad sysctl_unlock();
1781 1.183 ad mutex_enter(&bufcache_lock);
1782 1.100 pk for (i = 0; i < BQUEUES; i++) {
1783 1.183 ad bq = &bufqueues[i];
1784 1.183 ad TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1785 1.183 ad bq->bq_marker = bp;
1786 1.117 atatat if (len >= elem_size && elem_count > 0) {
1787 1.117 atatat sysctl_fillbuf(bp, &bs);
1788 1.183 ad mutex_exit(&bufcache_lock);
1789 1.117 atatat error = copyout(&bs, dp, out_size);
1790 1.183 ad mutex_enter(&bufcache_lock);
1791 1.100 pk if (error)
1792 1.183 ad break;
1793 1.183 ad if (bq->bq_marker != bp) {
1794 1.183 ad /*
1795 1.183 ad * This sysctl node is only for
1796 1.183 ad * statistics. Retry; if the
1797 1.183 ad * queue keeps changing, then
1798 1.183 ad * bail out.
1799 1.183 ad */
1800 1.183 ad if (retries-- == 0) {
1801 1.183 ad error = EAGAIN;
1802 1.183 ad break;
1803 1.183 ad }
1804 1.183 ad mutex_exit(&bufcache_lock);
1805 1.233 rmind sysctl_relock();
1806 1.183 ad goto retry;
1807 1.183 ad }
1808 1.100 pk dp += elem_size;
1809 1.100 pk len -= elem_size;
1810 1.100 pk }
1811 1.218 mrg needed += elem_size;
1812 1.218 mrg if (elem_count > 0 && elem_count != INT_MAX)
1813 1.218 mrg elem_count--;
1814 1.100 pk }
1815 1.183 ad if (error != 0)
1816 1.183 ad break;
1817 1.100 pk }
1818 1.183 ad mutex_exit(&bufcache_lock);
1819 1.185 ad sysctl_relock();
1820 1.100 pk
1821 1.117 atatat *oldlenp = needed;
1822 1.117 atatat if (oldp == NULL)
1823 1.183 ad *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1824 1.100 pk
1825 1.100 pk return (error);
1826 1.100 pk }
1827 1.100 pk
1828 1.100 pk static int
1829 1.183 ad sysctl_bufvm_update(SYSCTLFN_ARGS)
1830 1.100 pk {
1831 1.238 dsl int error, rv;
1832 1.100 pk struct sysctlnode node;
1833 1.239 dsl unsigned int temp_bufcache;
1834 1.239 dsl unsigned long temp_water;
1835 1.100 pk
1836 1.238 dsl /* Take a copy of the supplied node and its data */
1837 1.100 pk node = *rnode;
1838 1.239 dsl if (node.sysctl_data == &bufcache) {
1839 1.239 dsl node.sysctl_data = &temp_bufcache;
1840 1.239 dsl temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1841 1.239 dsl } else {
1842 1.239 dsl node.sysctl_data = &temp_water;
1843 1.239 dsl temp_water = *(unsigned long *)rnode->sysctl_data;
1844 1.239 dsl }
1845 1.238 dsl
1846 1.238 dsl /* Update the copy */
1847 1.100 pk error = sysctl_lookup(SYSCTLFN_CALL(&node));
1848 1.100 pk if (error || newp == NULL)
1849 1.100 pk return (error);
1850 1.100 pk
1851 1.183 ad if (rnode->sysctl_data == &bufcache) {
1852 1.239 dsl if (temp_bufcache > 100)
1853 1.183 ad return (EINVAL);
1854 1.239 dsl bufcache = temp_bufcache;
1855 1.183 ad buf_setwm();
1856 1.183 ad } else if (rnode->sysctl_data == &bufmem_lowater) {
1857 1.239 dsl if (bufmem_hiwater - temp_water < 16)
1858 1.136 enami return (EINVAL);
1859 1.239 dsl bufmem_lowater = temp_water;
1860 1.117 atatat } else if (rnode->sysctl_data == &bufmem_hiwater) {
1861 1.239 dsl if (temp_water - bufmem_lowater < 16)
1862 1.136 enami return (EINVAL);
1863 1.239 dsl bufmem_hiwater = temp_water;
1864 1.100 pk } else
1865 1.100 pk return (EINVAL);
1866 1.100 pk
1867 1.183 ad /* Drain until below new high water mark */
1868 1.185 ad sysctl_unlock();
1869 1.183 ad mutex_enter(&bufcache_lock);
1870 1.238 dsl while (bufmem > bufmem_hiwater) {
1871 1.238 dsl rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1872 1.183 ad if (rv <= 0)
1873 1.183 ad break;
1874 1.183 ad }
1875 1.183 ad mutex_exit(&bufcache_lock);
1876 1.185 ad sysctl_relock();
1877 1.100 pk
1878 1.100 pk return 0;
1879 1.100 pk }
1880 1.100 pk
1881 1.215 pooka static struct sysctllog *vfsbio_sysctllog;
1882 1.215 pooka
1883 1.215 pooka static void
1884 1.215 pooka sysctl_kern_buf_setup(void)
1885 1.100 pk {
1886 1.100 pk
1887 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1888 1.119 atatat CTLFLAG_PERMANENT,
1889 1.125 atatat CTLTYPE_NODE, "buf",
1890 1.125 atatat SYSCTL_DESCR("Kernel buffer cache information"),
1891 1.100 pk sysctl_dobuf, 0, NULL, 0,
1892 1.100 pk CTL_KERN, KERN_BUF, CTL_EOL);
1893 1.104 atatat }
1894 1.104 atatat
1895 1.215 pooka static void
1896 1.215 pooka sysctl_vm_buf_setup(void)
1897 1.104 atatat {
1898 1.104 atatat
1899 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1900 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1901 1.125 atatat CTLTYPE_INT, "bufcache",
1902 1.139 jrf SYSCTL_DESCR("Percentage of physical memory to use for "
1903 1.125 atatat "buffer cache"),
1904 1.183 ad sysctl_bufvm_update, 0, &bufcache, 0,
1905 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1906 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1907 1.122 simonb CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1908 1.237 dsl CTLTYPE_LONG, "bufmem",
1909 1.139 jrf SYSCTL_DESCR("Amount of kernel memory used by buffer "
1910 1.125 atatat "cache"),
1911 1.122 simonb NULL, 0, &bufmem, 0,
1912 1.122 simonb CTL_VM, CTL_CREATE, CTL_EOL);
1913 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1914 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1915 1.237 dsl CTLTYPE_LONG, "bufmem_lowater",
1916 1.125 atatat SYSCTL_DESCR("Minimum amount of kernel memory to "
1917 1.125 atatat "reserve for buffer cache"),
1918 1.117 atatat sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1919 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1920 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1921 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1922 1.237 dsl CTLTYPE_LONG, "bufmem_hiwater",
1923 1.125 atatat SYSCTL_DESCR("Maximum amount of kernel memory to use "
1924 1.125 atatat "for buffer cache"),
1925 1.117 atatat sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1926 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1927 1.100 pk }
1928 1.100 pk
1929 1.36 cgd #ifdef DEBUG
1930 1.31 cgd /*
1931 1.31 cgd * Print out statistics on the current allocation of the buffer pool.
1932 1.31 cgd * Can be enabled to print out on every ``sync'' by setting "syncprt"
1933 1.31 cgd * in vfs_syscalls.c using sysctl.
1934 1.31 cgd */
1935 1.31 cgd void
1936 1.101 thorpej vfs_bufstats(void)
1937 1.31 cgd {
1938 1.183 ad int i, j, count;
1939 1.183 ad buf_t *bp;
1940 1.131 yamt struct bqueue *dp;
1941 1.261 christos int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1942 1.145 christos static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1943 1.71 thorpej
1944 1.31 cgd for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1945 1.31 cgd count = 0;
1946 1.261 christos memset(counts, 0, sizeof(counts));
1947 1.131 yamt TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1948 1.261 christos counts[bp->b_bufsize / PAGE_SIZE]++;
1949 1.31 cgd count++;
1950 1.31 cgd }
1951 1.48 christos printf("%s: total-%d", bname[i], count);
1952 1.261 christos for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1953 1.31 cgd if (counts[j] != 0)
1954 1.71 thorpej printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1955 1.48 christos printf("\n");
1956 1.31 cgd }
1957 1.31 cgd }
1958 1.36 cgd #endif /* DEBUG */
1959 1.149 yamt
1960 1.150 yamt /* ------------------------------ */
1961 1.150 yamt
1962 1.183 ad buf_t *
1963 1.183 ad getiobuf(struct vnode *vp, bool waitok)
1964 1.149 yamt {
1965 1.183 ad buf_t *bp;
1966 1.149 yamt
1967 1.183 ad bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1968 1.183 ad if (bp == NULL)
1969 1.183 ad return bp;
1970 1.149 yamt
1971 1.183 ad buf_init(bp);
1972 1.149 yamt
1973 1.183 ad if ((bp->b_vp = vp) == NULL)
1974 1.183 ad bp->b_objlock = &buffer_lock;
1975 1.183 ad else
1976 1.230 rmind bp->b_objlock = vp->v_interlock;
1977 1.183 ad
1978 1.183 ad return bp;
1979 1.149 yamt }
1980 1.149 yamt
1981 1.149 yamt void
1982 1.183 ad putiobuf(buf_t *bp)
1983 1.149 yamt {
1984 1.149 yamt
1985 1.183 ad buf_destroy(bp);
1986 1.183 ad pool_cache_put(bufio_cache, bp);
1987 1.149 yamt }
1988 1.152 yamt
1989 1.152 yamt /*
1990 1.152 yamt * nestiobuf_iodone: b_iodone callback for nested buffers.
1991 1.152 yamt */
1992 1.152 yamt
1993 1.167 reinoud void
1994 1.183 ad nestiobuf_iodone(buf_t *bp)
1995 1.152 yamt {
1996 1.183 ad buf_t *mbp = bp->b_private;
1997 1.152 yamt int error;
1998 1.155 reinoud int donebytes;
1999 1.152 yamt
2000 1.155 reinoud KASSERT(bp->b_bcount <= bp->b_bufsize);
2001 1.152 yamt KASSERT(mbp != bp);
2002 1.155 reinoud
2003 1.195 reinoud error = bp->b_error;
2004 1.183 ad if (bp->b_error == 0 &&
2005 1.183 ad (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2006 1.155 reinoud /*
2007 1.155 reinoud * Not all got transfered, raise an error. We have no way to
2008 1.155 reinoud * propagate these conditions to mbp.
2009 1.155 reinoud */
2010 1.155 reinoud error = EIO;
2011 1.152 yamt }
2012 1.155 reinoud
2013 1.156 yamt donebytes = bp->b_bufsize;
2014 1.155 reinoud
2015 1.152 yamt putiobuf(bp);
2016 1.152 yamt nestiobuf_done(mbp, donebytes, error);
2017 1.152 yamt }
2018 1.152 yamt
2019 1.152 yamt /*
2020 1.152 yamt * nestiobuf_setup: setup a "nested" buffer.
2021 1.152 yamt *
2022 1.152 yamt * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2023 1.190 yamt * => 'bp' should be a buffer allocated by getiobuf.
2024 1.152 yamt * => 'offset' is a byte offset in the master buffer.
2025 1.152 yamt * => 'size' is a size in bytes of this nested buffer.
2026 1.152 yamt */
2027 1.152 yamt
2028 1.152 yamt void
2029 1.183 ad nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2030 1.152 yamt {
2031 1.152 yamt const int b_read = mbp->b_flags & B_READ;
2032 1.152 yamt struct vnode *vp = mbp->b_vp;
2033 1.152 yamt
2034 1.152 yamt KASSERT(mbp->b_bcount >= offset + size);
2035 1.152 yamt bp->b_vp = vp;
2036 1.210 hannken bp->b_dev = mbp->b_dev;
2037 1.183 ad bp->b_objlock = mbp->b_objlock;
2038 1.183 ad bp->b_cflags = BC_BUSY;
2039 1.183 ad bp->b_flags = B_ASYNC | b_read;
2040 1.152 yamt bp->b_iodone = nestiobuf_iodone;
2041 1.170 christos bp->b_data = (char *)mbp->b_data + offset;
2042 1.152 yamt bp->b_resid = bp->b_bcount = size;
2043 1.152 yamt bp->b_bufsize = bp->b_bcount;
2044 1.152 yamt bp->b_private = mbp;
2045 1.152 yamt BIO_COPYPRIO(bp, mbp);
2046 1.152 yamt if (!b_read && vp != NULL) {
2047 1.230 rmind mutex_enter(vp->v_interlock);
2048 1.183 ad vp->v_numoutput++;
2049 1.230 rmind mutex_exit(vp->v_interlock);
2050 1.152 yamt }
2051 1.152 yamt }
2052 1.152 yamt
2053 1.152 yamt /*
2054 1.152 yamt * nestiobuf_done: propagate completion to the master buffer.
2055 1.152 yamt *
2056 1.152 yamt * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2057 1.152 yamt * => 'error' is an errno(2) that 'donebytes' has been completed with.
2058 1.152 yamt */
2059 1.152 yamt
2060 1.152 yamt void
2061 1.183 ad nestiobuf_done(buf_t *mbp, int donebytes, int error)
2062 1.152 yamt {
2063 1.152 yamt
2064 1.152 yamt if (donebytes == 0) {
2065 1.152 yamt return;
2066 1.152 yamt }
2067 1.183 ad mutex_enter(mbp->b_objlock);
2068 1.152 yamt KASSERT(mbp->b_resid >= donebytes);
2069 1.152 yamt mbp->b_resid -= donebytes;
2070 1.195 reinoud if (error)
2071 1.195 reinoud mbp->b_error = error;
2072 1.152 yamt if (mbp->b_resid == 0) {
2073 1.226 reinoud if (mbp->b_error)
2074 1.226 reinoud mbp->b_resid = mbp->b_bcount;
2075 1.183 ad mutex_exit(mbp->b_objlock);
2076 1.183 ad biodone(mbp);
2077 1.183 ad } else
2078 1.183 ad mutex_exit(mbp->b_objlock);
2079 1.183 ad }
2080 1.183 ad
2081 1.183 ad void
2082 1.183 ad buf_init(buf_t *bp)
2083 1.183 ad {
2084 1.183 ad
2085 1.183 ad cv_init(&bp->b_busy, "biolock");
2086 1.183 ad cv_init(&bp->b_done, "biowait");
2087 1.183 ad bp->b_dev = NODEV;
2088 1.183 ad bp->b_error = 0;
2089 1.183 ad bp->b_flags = 0;
2090 1.204 reinoud bp->b_cflags = 0;
2091 1.183 ad bp->b_oflags = 0;
2092 1.183 ad bp->b_objlock = &buffer_lock;
2093 1.183 ad bp->b_iodone = NULL;
2094 1.202 ad bp->b_refcnt = 1;
2095 1.202 ad bp->b_dev = NODEV;
2096 1.202 ad bp->b_vnbufs.le_next = NOLIST;
2097 1.183 ad BIO_SETPRIO(bp, BPRIO_DEFAULT);
2098 1.183 ad }
2099 1.183 ad
2100 1.183 ad void
2101 1.183 ad buf_destroy(buf_t *bp)
2102 1.183 ad {
2103 1.183 ad
2104 1.183 ad cv_destroy(&bp->b_done);
2105 1.183 ad cv_destroy(&bp->b_busy);
2106 1.183 ad }
2107 1.183 ad
2108 1.183 ad int
2109 1.188 ad bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2110 1.183 ad {
2111 1.183 ad int error;
2112 1.183 ad
2113 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
2114 1.183 ad
2115 1.183 ad if ((bp->b_cflags & BC_BUSY) != 0) {
2116 1.183 ad if (curlwp == uvm.pagedaemon_lwp)
2117 1.183 ad return EDEADLK;
2118 1.183 ad bp->b_cflags |= BC_WANTED;
2119 1.183 ad bref(bp);
2120 1.188 ad if (interlock != NULL)
2121 1.188 ad mutex_exit(interlock);
2122 1.183 ad if (intr) {
2123 1.183 ad error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2124 1.183 ad timo);
2125 1.183 ad } else {
2126 1.183 ad error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2127 1.183 ad timo);
2128 1.152 yamt }
2129 1.183 ad brele(bp);
2130 1.188 ad if (interlock != NULL)
2131 1.188 ad mutex_enter(interlock);
2132 1.183 ad if (error != 0)
2133 1.183 ad return error;
2134 1.183 ad return EPASSTHROUGH;
2135 1.152 yamt }
2136 1.183 ad bp->b_cflags |= BC_BUSY;
2137 1.183 ad
2138 1.183 ad return 0;
2139 1.152 yamt }
2140