vfs_bio.c revision 1.281 1 1.281 ad /* $NetBSD: vfs_bio.c,v 1.281 2019/12/08 19:49:25 ad Exp $ */
2 1.183 ad
3 1.183 ad /*-
4 1.280 ad * Copyright (c) 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 1.183 ad * All rights reserved.
6 1.183 ad *
7 1.183 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.217 ad * by Andrew Doran, and by Wasabi Systems, Inc.
9 1.183 ad *
10 1.183 ad * Redistribution and use in source and binary forms, with or without
11 1.183 ad * modification, are permitted provided that the following conditions
12 1.183 ad * are met:
13 1.183 ad * 1. Redistributions of source code must retain the above copyright
14 1.183 ad * notice, this list of conditions and the following disclaimer.
15 1.183 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.183 ad * notice, this list of conditions and the following disclaimer in the
17 1.183 ad * documentation and/or other materials provided with the distribution.
18 1.183 ad *
19 1.183 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.183 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.183 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.183 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.183 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.183 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.183 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.183 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.183 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.183 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.183 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.183 ad */
31 1.31 cgd
32 1.31 cgd /*-
33 1.31 cgd * Copyright (c) 1982, 1986, 1989, 1993
34 1.31 cgd * The Regents of the University of California. All rights reserved.
35 1.31 cgd * (c) UNIX System Laboratories, Inc.
36 1.31 cgd * All or some portions of this file are derived from material licensed
37 1.31 cgd * to the University of California by American Telephone and Telegraph
38 1.31 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 1.31 cgd * the permission of UNIX System Laboratories, Inc.
40 1.31 cgd *
41 1.31 cgd * Redistribution and use in source and binary forms, with or without
42 1.31 cgd * modification, are permitted provided that the following conditions
43 1.31 cgd * are met:
44 1.31 cgd * 1. Redistributions of source code must retain the above copyright
45 1.31 cgd * notice, this list of conditions and the following disclaimer.
46 1.31 cgd * 2. Redistributions in binary form must reproduce the above copyright
47 1.31 cgd * notice, this list of conditions and the following disclaimer in the
48 1.31 cgd * documentation and/or other materials provided with the distribution.
49 1.93 agc * 3. Neither the name of the University nor the names of its contributors
50 1.93 agc * may be used to endorse or promote products derived from this software
51 1.93 agc * without specific prior written permission.
52 1.93 agc *
53 1.93 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.93 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.93 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.93 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.93 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.93 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.93 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.93 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.93 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.93 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.93 agc * SUCH DAMAGE.
64 1.93 agc *
65 1.93 agc * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 1.93 agc */
67 1.93 agc
68 1.93 agc /*-
69 1.93 agc * Copyright (c) 1994 Christopher G. Demetriou
70 1.93 agc *
71 1.93 agc * Redistribution and use in source and binary forms, with or without
72 1.93 agc * modification, are permitted provided that the following conditions
73 1.93 agc * are met:
74 1.93 agc * 1. Redistributions of source code must retain the above copyright
75 1.93 agc * notice, this list of conditions and the following disclaimer.
76 1.93 agc * 2. Redistributions in binary form must reproduce the above copyright
77 1.93 agc * notice, this list of conditions and the following disclaimer in the
78 1.93 agc * documentation and/or other materials provided with the distribution.
79 1.31 cgd * 3. All advertising materials mentioning features or use of this software
80 1.31 cgd * must display the following acknowledgement:
81 1.31 cgd * This product includes software developed by the University of
82 1.31 cgd * California, Berkeley and its contributors.
83 1.31 cgd * 4. Neither the name of the University nor the names of its contributors
84 1.31 cgd * may be used to endorse or promote products derived from this software
85 1.31 cgd * without specific prior written permission.
86 1.31 cgd *
87 1.31 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 1.31 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 1.31 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 1.31 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 1.31 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 1.31 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 1.31 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 1.31 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 1.31 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 1.31 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 1.31 cgd * SUCH DAMAGE.
98 1.31 cgd *
99 1.31 cgd * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 1.31 cgd */
101 1.31 cgd
102 1.31 cgd /*
103 1.221 rmind * The buffer cache subsystem.
104 1.221 rmind *
105 1.31 cgd * Some references:
106 1.31 cgd * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 1.31 cgd * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 1.31 cgd * UNIX Operating System (Addison Welley, 1989)
109 1.221 rmind *
110 1.221 rmind * Locking
111 1.221 rmind *
112 1.221 rmind * There are three locks:
113 1.221 rmind * - bufcache_lock: protects global buffer cache state.
114 1.221 rmind * - BC_BUSY: a long term per-buffer lock.
115 1.221 rmind * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 1.221 rmind *
117 1.221 rmind * For buffers associated with vnodes (a most common case) b_objlock points
118 1.221 rmind * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 1.221 rmind *
120 1.221 rmind * Lock order:
121 1.221 rmind * bufcache_lock ->
122 1.221 rmind * buf_t::b_objlock
123 1.31 cgd */
124 1.77 lukem
125 1.178 dsl #include <sys/cdefs.h>
126 1.281 ad __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.281 2019/12/08 19:49:25 ad Exp $");
127 1.178 dsl
128 1.256 pooka #ifdef _KERNEL_OPT
129 1.100 pk #include "opt_bufcache.h"
130 1.259 riz #include "opt_dtrace.h"
131 1.264 pgoyette #include "opt_biohist.h"
132 1.256 pooka #endif
133 1.81 matt
134 1.31 cgd #include <sys/param.h>
135 1.31 cgd #include <sys/systm.h>
136 1.100 pk #include <sys/kernel.h>
137 1.31 cgd #include <sys/proc.h>
138 1.31 cgd #include <sys/buf.h>
139 1.31 cgd #include <sys/vnode.h>
140 1.31 cgd #include <sys/mount.h>
141 1.31 cgd #include <sys/resourcevar.h>
142 1.100 pk #include <sys/sysctl.h>
143 1.35 mycroft #include <sys/conf.h>
144 1.160 elad #include <sys/kauth.h>
145 1.198 hannken #include <sys/fstrans.h>
146 1.183 ad #include <sys/intr.h>
147 1.183 ad #include <sys/cpu.h>
148 1.208 simonb #include <sys/wapbl.h>
149 1.232 jakllsch #include <sys/bitops.h>
150 1.252 joerg #include <sys/cprng.h>
151 1.259 riz #include <sys/sdt.h>
152 1.40 christos
153 1.227 uebayasi #include <uvm/uvm.h> /* extern struct uvm uvm */
154 1.71 thorpej
155 1.59 fvdl #include <miscfs/specfs/specdev.h>
156 1.59 fvdl
157 1.100 pk #ifndef BUFPAGES
158 1.100 pk # define BUFPAGES 0
159 1.100 pk #endif
160 1.100 pk
161 1.100 pk #ifdef BUFCACHE
162 1.100 pk # if (BUFCACHE < 5) || (BUFCACHE > 95)
163 1.100 pk # error BUFCACHE is not between 5 and 95
164 1.100 pk # endif
165 1.100 pk #else
166 1.114 tls # define BUFCACHE 15
167 1.100 pk #endif
168 1.100 pk
169 1.217 ad u_int nbuf; /* desired number of buffer headers */
170 1.100 pk u_int bufpages = BUFPAGES; /* optional hardwired count */
171 1.100 pk u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
172 1.100 pk
173 1.274 chs /*
174 1.274 chs * Definitions for the buffer free lists.
175 1.274 chs */
176 1.274 chs #define BQUEUES 3 /* number of free buffer queues */
177 1.274 chs
178 1.274 chs #define BQ_LOCKED 0 /* super-blocks &c */
179 1.274 chs #define BQ_LRU 1 /* lru, useful buffers */
180 1.274 chs #define BQ_AGE 2 /* rubbish */
181 1.274 chs
182 1.274 chs struct bqueue {
183 1.274 chs TAILQ_HEAD(, buf) bq_queue;
184 1.274 chs uint64_t bq_bytes;
185 1.274 chs buf_t *bq_marker;
186 1.274 chs };
187 1.280 ad static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
188 1.274 chs
189 1.130 yamt /* Function prototypes */
190 1.135 enami static void buf_setwm(void);
191 1.130 yamt static int buf_trim(void);
192 1.130 yamt static void *bufpool_page_alloc(struct pool *, int);
193 1.130 yamt static void bufpool_page_free(struct pool *, void *);
194 1.253 maxv static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
195 1.183 ad static buf_t *getnewbuf(int, int, int);
196 1.130 yamt static int buf_lotsfree(void);
197 1.130 yamt static int buf_canrelease(void);
198 1.183 ad static u_long buf_mempoolidx(u_long);
199 1.183 ad static u_long buf_roundsize(u_long);
200 1.229 rmind static void *buf_alloc(size_t);
201 1.170 christos static void buf_mrelease(void *, size_t);
202 1.183 ad static void binsheadfree(buf_t *, struct bqueue *);
203 1.183 ad static void binstailfree(buf_t *, struct bqueue *);
204 1.130 yamt #ifdef DEBUG
205 1.206 bouyer static int checkfreelist(buf_t *, struct bqueue *, int);
206 1.130 yamt #endif
207 1.183 ad static void biointr(void *);
208 1.183 ad static void biodone2(buf_t *);
209 1.183 ad static void bref(buf_t *);
210 1.183 ad static void brele(buf_t *);
211 1.215 pooka static void sysctl_kern_buf_setup(void);
212 1.215 pooka static void sysctl_vm_buf_setup(void);
213 1.100 pk
214 1.264 pgoyette /* Initialization for biohist */
215 1.264 pgoyette
216 1.264 pgoyette #include <sys/biohist.h>
217 1.264 pgoyette
218 1.266 pgoyette BIOHIST_DEFINE(biohist);
219 1.264 pgoyette
220 1.264 pgoyette void
221 1.264 pgoyette biohist_init(void)
222 1.264 pgoyette {
223 1.270 riastrad
224 1.266 pgoyette BIOHIST_INIT(biohist, BIOHIST_SIZE);
225 1.264 pgoyette }
226 1.264 pgoyette
227 1.31 cgd /*
228 1.31 cgd * Definitions for the buffer hash lists.
229 1.31 cgd */
230 1.31 cgd #define BUFHASH(dvp, lbn) \
231 1.73 chs (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
232 1.31 cgd LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
233 1.31 cgd u_long bufhash;
234 1.183 ad
235 1.183 ad static kcondvar_t needbuffer_cv;
236 1.31 cgd
237 1.31 cgd /*
238 1.87 pk * Buffer queue lock.
239 1.87 pk */
240 1.280 ad kmutex_t bufcache_lock __cacheline_aligned;
241 1.280 ad kmutex_t buffer_lock __cacheline_aligned;
242 1.87 pk
243 1.183 ad /* Software ISR for completed transfers. */
244 1.183 ad static void *biodone_sih;
245 1.153 yamt
246 1.183 ad /* Buffer pool for I/O buffers. */
247 1.183 ad static pool_cache_t buf_cache;
248 1.183 ad static pool_cache_t bufio_cache;
249 1.65 thorpej
250 1.232 jakllsch #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
251 1.232 jakllsch #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
252 1.232 jakllsch __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
253 1.100 pk
254 1.100 pk /* Buffer memory pools */
255 1.101 thorpej static struct pool bmempools[NMEMPOOLS];
256 1.100 pk
257 1.191 yamt static struct vm_map *buf_map;
258 1.100 pk
259 1.100 pk /*
260 1.100 pk * Buffer memory pool allocator.
261 1.100 pk */
262 1.101 thorpej static void *
263 1.166 yamt bufpool_page_alloc(struct pool *pp, int flags)
264 1.100 pk {
265 1.111 yamt
266 1.236 para return (void *)uvm_km_alloc(buf_map,
267 1.236 para MAXBSIZE, MAXBSIZE,
268 1.236 para ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
269 1.236 para | UVM_KMF_WIRED);
270 1.100 pk }
271 1.100 pk
272 1.101 thorpej static void
273 1.166 yamt bufpool_page_free(struct pool *pp, void *v)
274 1.100 pk {
275 1.144 yamt
276 1.236 para uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
277 1.100 pk }
278 1.100 pk
279 1.101 thorpej static struct pool_allocator bufmempool_allocator = {
280 1.162 christos .pa_alloc = bufpool_page_alloc,
281 1.162 christos .pa_free = bufpool_page_free,
282 1.162 christos .pa_pagesz = MAXBSIZE,
283 1.100 pk };
284 1.100 pk
285 1.100 pk /* Buffer memory management variables */
286 1.183 ad u_long bufmem_valimit;
287 1.183 ad u_long bufmem_hiwater;
288 1.183 ad u_long bufmem_lowater;
289 1.183 ad u_long bufmem;
290 1.100 pk
291 1.100 pk /*
292 1.100 pk * MD code can call this to set a hard limit on the amount
293 1.100 pk * of virtual memory used by the buffer cache.
294 1.100 pk */
295 1.101 thorpej int
296 1.101 thorpej buf_setvalimit(vsize_t sz)
297 1.100 pk {
298 1.100 pk
299 1.100 pk /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
300 1.100 pk if (sz < NMEMPOOLS * MAXBSIZE)
301 1.100 pk return EINVAL;
302 1.100 pk
303 1.100 pk bufmem_valimit = sz;
304 1.100 pk return 0;
305 1.100 pk }
306 1.100 pk
307 1.135 enami static void
308 1.135 enami buf_setwm(void)
309 1.135 enami {
310 1.135 enami
311 1.135 enami bufmem_hiwater = buf_memcalc();
312 1.135 enami /* lowater is approx. 2% of memory (with bufcache = 15) */
313 1.135 enami #define BUFMEM_WMSHIFT 3
314 1.135 enami #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
315 1.135 enami if (bufmem_hiwater < BUFMEM_HIWMMIN)
316 1.135 enami /* Ensure a reasonable minimum value */
317 1.135 enami bufmem_hiwater = BUFMEM_HIWMMIN;
318 1.135 enami bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
319 1.135 enami }
320 1.135 enami
321 1.99 dbj #ifdef DEBUG
322 1.99 dbj int debug_verify_freelist = 0;
323 1.131 yamt static int
324 1.206 bouyer checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
325 1.99 dbj {
326 1.183 ad buf_t *b;
327 1.183 ad
328 1.183 ad if (!debug_verify_freelist)
329 1.183 ad return 1;
330 1.131 yamt
331 1.131 yamt TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
332 1.100 pk if (b == bp)
333 1.206 bouyer return ison ? 1 : 0;
334 1.100 pk }
335 1.183 ad
336 1.206 bouyer return ison ? 0 : 1;
337 1.99 dbj }
338 1.99 dbj #endif
339 1.99 dbj
340 1.131 yamt /*
341 1.131 yamt * Insq/Remq for the buffer hash lists.
342 1.131 yamt * Call with buffer queue locked.
343 1.131 yamt */
344 1.183 ad static void
345 1.183 ad binsheadfree(buf_t *bp, struct bqueue *dp)
346 1.131 yamt {
347 1.131 yamt
348 1.206 bouyer KASSERT(mutex_owned(&bufcache_lock));
349 1.131 yamt KASSERT(bp->b_freelistindex == -1);
350 1.131 yamt TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
351 1.131 yamt dp->bq_bytes += bp->b_bufsize;
352 1.131 yamt bp->b_freelistindex = dp - bufqueues;
353 1.131 yamt }
354 1.131 yamt
355 1.183 ad static void
356 1.183 ad binstailfree(buf_t *bp, struct bqueue *dp)
357 1.131 yamt {
358 1.131 yamt
359 1.206 bouyer KASSERT(mutex_owned(&bufcache_lock));
360 1.257 martin KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
361 1.257 martin "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
362 1.131 yamt TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
363 1.131 yamt dp->bq_bytes += bp->b_bufsize;
364 1.131 yamt bp->b_freelistindex = dp - bufqueues;
365 1.131 yamt }
366 1.131 yamt
367 1.31 cgd void
368 1.183 ad bremfree(buf_t *bp)
369 1.31 cgd {
370 1.131 yamt struct bqueue *dp;
371 1.131 yamt int bqidx = bp->b_freelistindex;
372 1.94 yamt
373 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
374 1.31 cgd
375 1.131 yamt KASSERT(bqidx != -1);
376 1.131 yamt dp = &bufqueues[bqidx];
377 1.206 bouyer KDASSERT(checkfreelist(bp, dp, 1));
378 1.131 yamt KASSERT(dp->bq_bytes >= bp->b_bufsize);
379 1.131 yamt TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
380 1.131 yamt dp->bq_bytes -= bp->b_bufsize;
381 1.183 ad
382 1.183 ad /* For the sysctl helper. */
383 1.183 ad if (bp == dp->bq_marker)
384 1.183 ad dp->bq_marker = NULL;
385 1.183 ad
386 1.131 yamt #if defined(DIAGNOSTIC)
387 1.131 yamt bp->b_freelistindex = -1;
388 1.131 yamt #endif /* defined(DIAGNOSTIC) */
389 1.31 cgd }
390 1.31 cgd
391 1.183 ad /*
392 1.183 ad * Add a reference to an buffer structure that came from buf_cache.
393 1.183 ad */
394 1.183 ad static inline void
395 1.183 ad bref(buf_t *bp)
396 1.183 ad {
397 1.183 ad
398 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
399 1.183 ad KASSERT(bp->b_refcnt > 0);
400 1.183 ad
401 1.183 ad bp->b_refcnt++;
402 1.183 ad }
403 1.183 ad
404 1.183 ad /*
405 1.183 ad * Free an unused buffer structure that came from buf_cache.
406 1.183 ad */
407 1.183 ad static inline void
408 1.183 ad brele(buf_t *bp)
409 1.183 ad {
410 1.183 ad
411 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
412 1.183 ad KASSERT(bp->b_refcnt > 0);
413 1.183 ad
414 1.183 ad if (bp->b_refcnt-- == 1) {
415 1.183 ad buf_destroy(bp);
416 1.183 ad #ifdef DEBUG
417 1.183 ad memset((char *)bp, 0, sizeof(*bp));
418 1.183 ad #endif
419 1.183 ad pool_cache_put(buf_cache, bp);
420 1.183 ad }
421 1.183 ad }
422 1.183 ad
423 1.193 yamt /*
424 1.193 yamt * note that for some ports this is used by pmap bootstrap code to
425 1.193 yamt * determine kva size.
426 1.193 yamt */
427 1.101 thorpej u_long
428 1.101 thorpej buf_memcalc(void)
429 1.100 pk {
430 1.100 pk u_long n;
431 1.244 njoly vsize_t mapsz = 0;
432 1.100 pk
433 1.100 pk /*
434 1.100 pk * Determine the upper bound of memory to use for buffers.
435 1.100 pk *
436 1.100 pk * - If bufpages is specified, use that as the number
437 1.100 pk * pages.
438 1.100 pk *
439 1.100 pk * - Otherwise, use bufcache as the percentage of
440 1.100 pk * physical memory.
441 1.100 pk */
442 1.100 pk if (bufpages != 0) {
443 1.100 pk n = bufpages;
444 1.100 pk } else {
445 1.100 pk if (bufcache < 5) {
446 1.100 pk printf("forcing bufcache %d -> 5", bufcache);
447 1.100 pk bufcache = 5;
448 1.100 pk }
449 1.100 pk if (bufcache > 95) {
450 1.100 pk printf("forcing bufcache %d -> 95", bufcache);
451 1.100 pk bufcache = 95;
452 1.100 pk }
453 1.244 njoly if (buf_map != NULL)
454 1.244 njoly mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
455 1.243 para n = calc_cache_size(mapsz, bufcache,
456 1.193 yamt (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
457 1.193 yamt / PAGE_SIZE;
458 1.100 pk }
459 1.100 pk
460 1.100 pk n <<= PAGE_SHIFT;
461 1.100 pk if (bufmem_valimit != 0 && n > bufmem_valimit)
462 1.100 pk n = bufmem_valimit;
463 1.100 pk
464 1.100 pk return (n);
465 1.100 pk }
466 1.100 pk
467 1.31 cgd /*
468 1.31 cgd * Initialize buffers and hash links for buffers.
469 1.31 cgd */
470 1.31 cgd void
471 1.101 thorpej bufinit(void)
472 1.31 cgd {
473 1.131 yamt struct bqueue *dp;
474 1.127 thorpej int use_std;
475 1.100 pk u_int i;
476 1.250 pooka
477 1.250 pooka biodone_vfs = biodone;
478 1.100 pk
479 1.183 ad mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
480 1.183 ad mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
481 1.183 ad cv_init(&needbuffer_cv, "needbuf");
482 1.183 ad
483 1.100 pk if (bufmem_valimit != 0) {
484 1.100 pk vaddr_t minaddr = 0, maxaddr;
485 1.100 pk buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
486 1.169 thorpej bufmem_valimit, 0, false, 0);
487 1.100 pk if (buf_map == NULL)
488 1.100 pk panic("bufinit: cannot allocate submap");
489 1.100 pk } else
490 1.100 pk buf_map = kernel_map;
491 1.65 thorpej
492 1.192 yamt /*
493 1.192 yamt * Initialize buffer cache memory parameters.
494 1.192 yamt */
495 1.192 yamt bufmem = 0;
496 1.192 yamt buf_setwm();
497 1.192 yamt
498 1.100 pk /* On "small" machines use small pool page sizes where possible */
499 1.127 thorpej use_std = (physmem < atop(16*1024*1024));
500 1.127 thorpej
501 1.127 thorpej /*
502 1.127 thorpej * Also use them on systems that can map the pool pages using
503 1.127 thorpej * a direct-mapped segment.
504 1.127 thorpej */
505 1.127 thorpej #ifdef PMAP_MAP_POOLPAGE
506 1.127 thorpej use_std = 1;
507 1.127 thorpej #endif
508 1.100 pk
509 1.183 ad buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
510 1.183 ad "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
511 1.183 ad bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
512 1.183 ad "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
513 1.176 pooka
514 1.100 pk for (i = 0; i < NMEMPOOLS; i++) {
515 1.100 pk struct pool_allocator *pa;
516 1.100 pk struct pool *pp = &bmempools[i];
517 1.100 pk u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
518 1.222 pooka char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
519 1.232 jakllsch if (__predict_false(size >= 1048576))
520 1.232 jakllsch (void)snprintf(name, 8, "buf%um", size / 1048576);
521 1.232 jakllsch else if (__predict_true(size >= 1024))
522 1.232 jakllsch (void)snprintf(name, 8, "buf%uk", size / 1024);
523 1.165 christos else
524 1.232 jakllsch (void)snprintf(name, 8, "buf%ub", size);
525 1.127 thorpej pa = (size <= PAGE_SIZE && use_std)
526 1.100 pk ? &pool_allocator_nointr
527 1.100 pk : &bufmempool_allocator;
528 1.236 para pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
529 1.100 pk pool_setlowat(pp, 1);
530 1.126 thorpej pool_sethiwat(pp, 1);
531 1.100 pk }
532 1.100 pk
533 1.100 pk /* Initialize the buffer queues */
534 1.131 yamt for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
535 1.131 yamt TAILQ_INIT(&dp->bq_queue);
536 1.131 yamt dp->bq_bytes = 0;
537 1.131 yamt }
538 1.100 pk
539 1.100 pk /*
540 1.100 pk * Estimate hash table size based on the amount of memory we
541 1.100 pk * intend to use for the buffer cache. The average buffer
542 1.100 pk * size is dependent on our clients (i.e. filesystems).
543 1.100 pk *
544 1.100 pk * For now, use an empirical 3K per buffer.
545 1.100 pk */
546 1.100 pk nbuf = (bufmem_hiwater / 1024) / 3;
547 1.197 ad bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
548 1.215 pooka
549 1.215 pooka sysctl_kern_buf_setup();
550 1.215 pooka sysctl_vm_buf_setup();
551 1.100 pk }
552 1.100 pk
553 1.183 ad void
554 1.183 ad bufinit2(void)
555 1.183 ad {
556 1.183 ad
557 1.183 ad biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
558 1.183 ad NULL);
559 1.183 ad if (biodone_sih == NULL)
560 1.183 ad panic("bufinit2: can't establish soft interrupt");
561 1.183 ad }
562 1.183 ad
563 1.100 pk static int
564 1.100 pk buf_lotsfree(void)
565 1.100 pk {
566 1.252 joerg u_long guess;
567 1.128 hannken
568 1.122 simonb /* Always allocate if less than the low water mark. */
569 1.122 simonb if (bufmem < bufmem_lowater)
570 1.114 tls return 1;
571 1.142 perry
572 1.122 simonb /* Never allocate if greater than the high water mark. */
573 1.122 simonb if (bufmem > bufmem_hiwater)
574 1.122 simonb return 0;
575 1.114 tls
576 1.115 tls /* If there's anything on the AGE list, it should be eaten. */
577 1.131 yamt if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
578 1.115 tls return 0;
579 1.115 tls
580 1.122 simonb /*
581 1.122 simonb * The probabily of getting a new allocation is inversely
582 1.252 joerg * proportional to the current size of the cache above
583 1.252 joerg * the low water mark. Divide the total first to avoid overflows
584 1.252 joerg * in the product.
585 1.122 simonb */
586 1.252 joerg guess = cprng_fast32() % 16;
587 1.114 tls
588 1.252 joerg if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
589 1.252 joerg (bufmem - bufmem_lowater))
590 1.114 tls return 1;
591 1.114 tls
592 1.122 simonb /* Otherwise don't allocate. */
593 1.114 tls return 0;
594 1.100 pk }
595 1.100 pk
596 1.100 pk /*
597 1.116 yamt * Return estimate of bytes we think need to be
598 1.100 pk * released to help resolve low memory conditions.
599 1.116 yamt *
600 1.183 ad * => called with bufcache_lock held.
601 1.100 pk */
602 1.100 pk static int
603 1.100 pk buf_canrelease(void)
604 1.100 pk {
605 1.115 tls int pagedemand, ninvalid = 0;
606 1.115 tls
607 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
608 1.116 yamt
609 1.118 dan if (bufmem < bufmem_lowater)
610 1.118 dan return 0;
611 1.118 dan
612 1.141 tls if (bufmem > bufmem_hiwater)
613 1.141 tls return bufmem - bufmem_hiwater;
614 1.141 tls
615 1.131 yamt ninvalid += bufqueues[BQ_AGE].bq_bytes;
616 1.100 pk
617 1.115 tls pagedemand = uvmexp.freetarg - uvmexp.free;
618 1.115 tls if (pagedemand < 0)
619 1.115 tls return ninvalid;
620 1.115 tls return MAX(ninvalid, MIN(2 * MAXBSIZE,
621 1.115 tls MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
622 1.100 pk }
623 1.100 pk
624 1.100 pk /*
625 1.100 pk * Buffer memory allocation helper functions
626 1.100 pk */
627 1.183 ad static u_long
628 1.101 thorpej buf_mempoolidx(u_long size)
629 1.100 pk {
630 1.100 pk u_int n = 0;
631 1.100 pk
632 1.100 pk size -= 1;
633 1.100 pk size >>= MEMPOOL_INDEX_OFFSET;
634 1.100 pk while (size) {
635 1.100 pk size >>= 1;
636 1.100 pk n += 1;
637 1.100 pk }
638 1.100 pk if (n >= NMEMPOOLS)
639 1.100 pk panic("buf mem pool index %d", n);
640 1.100 pk return n;
641 1.100 pk }
642 1.100 pk
643 1.183 ad static u_long
644 1.101 thorpej buf_roundsize(u_long size)
645 1.100 pk {
646 1.100 pk /* Round up to nearest power of 2 */
647 1.100 pk return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
648 1.100 pk }
649 1.100 pk
650 1.183 ad static void *
651 1.229 rmind buf_alloc(size_t size)
652 1.100 pk {
653 1.100 pk u_int n = buf_mempoolidx(size);
654 1.170 christos void *addr;
655 1.100 pk
656 1.100 pk while (1) {
657 1.100 pk addr = pool_get(&bmempools[n], PR_NOWAIT);
658 1.100 pk if (addr != NULL)
659 1.100 pk break;
660 1.100 pk
661 1.100 pk /* No memory, see if we can free some. If so, try again */
662 1.183 ad mutex_enter(&bufcache_lock);
663 1.183 ad if (buf_drain(1) > 0) {
664 1.183 ad mutex_exit(&bufcache_lock);
665 1.100 pk continue;
666 1.183 ad }
667 1.183 ad
668 1.183 ad if (curlwp == uvm.pagedaemon_lwp) {
669 1.183 ad mutex_exit(&bufcache_lock);
670 1.183 ad return NULL;
671 1.183 ad }
672 1.100 pk
673 1.100 pk /* Wait for buffers to arrive on the LRU queue */
674 1.183 ad cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
675 1.183 ad mutex_exit(&bufcache_lock);
676 1.31 cgd }
677 1.100 pk
678 1.100 pk return addr;
679 1.100 pk }
680 1.100 pk
681 1.101 thorpej static void
682 1.170 christos buf_mrelease(void *addr, size_t size)
683 1.100 pk {
684 1.100 pk
685 1.100 pk pool_put(&bmempools[buf_mempoolidx(size)], addr);
686 1.31 cgd }
687 1.31 cgd
688 1.130 yamt /*
689 1.130 yamt * bread()/breadn() helper.
690 1.130 yamt */
691 1.183 ad static buf_t *
692 1.253 maxv bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
693 1.31 cgd {
694 1.183 ad buf_t *bp;
695 1.123 christos struct mount *mp;
696 1.31 cgd
697 1.34 mycroft bp = getblk(vp, blkno, size, 0, 0);
698 1.31 cgd
699 1.240 hannken /*
700 1.240 hannken * getblk() may return NULL if we are the pagedaemon.
701 1.240 hannken */
702 1.86 thorpej if (bp == NULL) {
703 1.240 hannken KASSERT(curlwp == uvm.pagedaemon_lwp);
704 1.240 hannken return NULL;
705 1.86 thorpej }
706 1.86 thorpej
707 1.31 cgd /*
708 1.34 mycroft * If buffer does not have data valid, start a read.
709 1.183 ad * Note that if buffer is BC_INVAL, getblk() won't return it.
710 1.87 pk * Therefore, it's valid if its I/O has completed or been delayed.
711 1.31 cgd */
712 1.183 ad if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
713 1.73 chs /* Start I/O for the buffer. */
714 1.34 mycroft SET(bp->b_flags, B_READ | async);
715 1.108 yamt if (async)
716 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
717 1.108 yamt else
718 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
719 1.112 hannken VOP_STRATEGY(vp, bp);
720 1.31 cgd
721 1.34 mycroft /* Pay for the read. */
722 1.194 ad curlwp->l_ru.ru_inblock++;
723 1.183 ad } else if (async)
724 1.179 ad brelse(bp, 0);
725 1.31 cgd
726 1.124 yamt if (vp->v_type == VBLK)
727 1.247 hannken mp = spec_node_getmountedfs(vp);
728 1.124 yamt else
729 1.124 yamt mp = vp->v_mount;
730 1.123 christos
731 1.123 christos /*
732 1.123 christos * Collect statistics on synchronous and asynchronous reads.
733 1.123 christos * Reads from block devices are charged to their associated
734 1.123 christos * filesystem (if any).
735 1.123 christos */
736 1.123 christos if (mp != NULL) {
737 1.123 christos if (async == 0)
738 1.123 christos mp->mnt_stat.f_syncreads++;
739 1.123 christos else
740 1.123 christos mp->mnt_stat.f_asyncreads++;
741 1.123 christos }
742 1.123 christos
743 1.34 mycroft return (bp);
744 1.34 mycroft }
745 1.34 mycroft
746 1.34 mycroft /*
747 1.34 mycroft * Read a disk block.
748 1.34 mycroft * This algorithm described in Bach (p.54).
749 1.34 mycroft */
750 1.40 christos int
751 1.255 maxv bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
752 1.34 mycroft {
753 1.183 ad buf_t *bp;
754 1.198 hannken int error;
755 1.34 mycroft
756 1.266 pgoyette BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
757 1.264 pgoyette
758 1.34 mycroft /* Get buffer for block. */
759 1.253 maxv bp = *bpp = bio_doread(vp, blkno, size, 0);
760 1.240 hannken if (bp == NULL)
761 1.240 hannken return ENOMEM;
762 1.31 cgd
763 1.80 chs /* Wait for the read to complete, and return result. */
764 1.198 hannken error = biowait(bp);
765 1.241 christos if (error == 0 && (flags & B_MODIFY) != 0)
766 1.198 hannken error = fscow_run(bp, true);
767 1.241 christos if (error) {
768 1.241 christos brelse(bp, 0);
769 1.241 christos *bpp = NULL;
770 1.240 hannken }
771 1.208 simonb
772 1.198 hannken return error;
773 1.31 cgd }
774 1.31 cgd
775 1.31 cgd /*
776 1.31 cgd * Read-ahead multiple disk blocks. The first is sync, the rest async.
777 1.31 cgd * Trivial modification to the breada algorithm presented in Bach (p.55).
778 1.31 cgd */
779 1.40 christos int
780 1.101 thorpej breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
781 1.254 maxv int *rasizes, int nrablks, int flags, buf_t **bpp)
782 1.31 cgd {
783 1.183 ad buf_t *bp;
784 1.198 hannken int error, i;
785 1.31 cgd
786 1.266 pgoyette BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
787 1.264 pgoyette
788 1.253 maxv bp = *bpp = bio_doread(vp, blkno, size, 0);
789 1.240 hannken if (bp == NULL)
790 1.240 hannken return ENOMEM;
791 1.31 cgd
792 1.31 cgd /*
793 1.31 cgd * For each of the read-ahead blocks, start a read, if necessary.
794 1.31 cgd */
795 1.183 ad mutex_enter(&bufcache_lock);
796 1.31 cgd for (i = 0; i < nrablks; i++) {
797 1.31 cgd /* If it's in the cache, just go on to next one. */
798 1.31 cgd if (incore(vp, rablks[i]))
799 1.31 cgd continue;
800 1.31 cgd
801 1.31 cgd /* Get a buffer for the read-ahead block */
802 1.183 ad mutex_exit(&bufcache_lock);
803 1.253 maxv (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
804 1.183 ad mutex_enter(&bufcache_lock);
805 1.31 cgd }
806 1.183 ad mutex_exit(&bufcache_lock);
807 1.31 cgd
808 1.80 chs /* Otherwise, we had to start a read for it; wait until it's valid. */
809 1.198 hannken error = biowait(bp);
810 1.242 hannken if (error == 0 && (flags & B_MODIFY) != 0)
811 1.198 hannken error = fscow_run(bp, true);
812 1.242 hannken if (error) {
813 1.242 hannken brelse(bp, 0);
814 1.242 hannken *bpp = NULL;
815 1.240 hannken }
816 1.240 hannken
817 1.198 hannken return error;
818 1.31 cgd }
819 1.31 cgd
820 1.31 cgd /*
821 1.31 cgd * Block write. Described in Bach (p.56)
822 1.31 cgd */
823 1.40 christos int
824 1.183 ad bwrite(buf_t *bp)
825 1.31 cgd {
826 1.183 ad int rv, sync, wasdelayed;
827 1.59 fvdl struct vnode *vp;
828 1.59 fvdl struct mount *mp;
829 1.31 cgd
830 1.276 pgoyette BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
831 1.276 pgoyette (uintptr_t)bp, 0, 0, 0);
832 1.264 pgoyette
833 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
834 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
835 1.87 pk
836 1.76 chs vp = bp->b_vp;
837 1.260 dholland
838 1.260 dholland /*
839 1.260 dholland * dholland 20160728 AFAICT vp==NULL must be impossible as it
840 1.260 dholland * will crash upon reaching VOP_STRATEGY below... see further
841 1.260 dholland * analysis on tech-kern.
842 1.260 dholland */
843 1.260 dholland KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
844 1.260 dholland
845 1.76 chs if (vp != NULL) {
846 1.230 rmind KASSERT(bp->b_objlock == vp->v_interlock);
847 1.76 chs if (vp->v_type == VBLK)
848 1.247 hannken mp = spec_node_getmountedfs(vp);
849 1.76 chs else
850 1.76 chs mp = vp->v_mount;
851 1.76 chs } else {
852 1.76 chs mp = NULL;
853 1.76 chs }
854 1.76 chs
855 1.208 simonb if (mp && mp->mnt_wapbl) {
856 1.208 simonb if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
857 1.208 simonb bdwrite(bp);
858 1.208 simonb return 0;
859 1.208 simonb }
860 1.208 simonb }
861 1.208 simonb
862 1.38 cgd /*
863 1.38 cgd * Remember buffer type, to switch on it later. If the write was
864 1.38 cgd * synchronous, but the file system was mounted with MNT_ASYNC,
865 1.142 perry * convert it to a delayed write.
866 1.38 cgd * XXX note that this relies on delayed tape writes being converted
867 1.38 cgd * to async, not sync writes (which is safe, but ugly).
868 1.38 cgd */
869 1.31 cgd sync = !ISSET(bp->b_flags, B_ASYNC);
870 1.76 chs if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
871 1.37 cgd bdwrite(bp);
872 1.37 cgd return (0);
873 1.37 cgd }
874 1.46 mycroft
875 1.59 fvdl /*
876 1.59 fvdl * Collect statistics on synchronous and asynchronous writes.
877 1.59 fvdl * Writes to block devices are charged to their associated
878 1.59 fvdl * filesystem (if any).
879 1.59 fvdl */
880 1.76 chs if (mp != NULL) {
881 1.76 chs if (sync)
882 1.76 chs mp->mnt_stat.f_syncwrites++;
883 1.59 fvdl else
884 1.76 chs mp->mnt_stat.f_asyncwrites++;
885 1.59 fvdl }
886 1.59 fvdl
887 1.46 mycroft /*
888 1.46 mycroft * Pay for the I/O operation and make sure the buf is on the correct
889 1.46 mycroft * vnode queue.
890 1.46 mycroft */
891 1.184 ad bp->b_error = 0;
892 1.184 ad wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
893 1.183 ad CLR(bp->b_flags, B_READ);
894 1.184 ad if (wasdelayed) {
895 1.184 ad mutex_enter(&bufcache_lock);
896 1.184 ad mutex_enter(bp->b_objlock);
897 1.184 ad CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
898 1.46 mycroft reassignbuf(bp, bp->b_vp);
899 1.184 ad mutex_exit(&bufcache_lock);
900 1.184 ad } else {
901 1.194 ad curlwp->l_ru.ru_oublock++;
902 1.184 ad mutex_enter(bp->b_objlock);
903 1.184 ad CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
904 1.184 ad }
905 1.183 ad if (vp != NULL)
906 1.183 ad vp->v_numoutput++;
907 1.183 ad mutex_exit(bp->b_objlock);
908 1.32 mycroft
909 1.183 ad /* Initiate disk write. */
910 1.108 yamt if (sync)
911 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
912 1.108 yamt else
913 1.108 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
914 1.108 yamt
915 1.112 hannken VOP_STRATEGY(vp, bp);
916 1.31 cgd
917 1.34 mycroft if (sync) {
918 1.46 mycroft /* If I/O was synchronous, wait for it to complete. */
919 1.31 cgd rv = biowait(bp);
920 1.31 cgd
921 1.34 mycroft /* Release the buffer. */
922 1.179 ad brelse(bp, 0);
923 1.34 mycroft
924 1.34 mycroft return (rv);
925 1.34 mycroft } else {
926 1.34 mycroft return (0);
927 1.31 cgd }
928 1.31 cgd }
929 1.31 cgd
930 1.31 cgd int
931 1.101 thorpej vn_bwrite(void *v)
932 1.31 cgd {
933 1.40 christos struct vop_bwrite_args *ap = v;
934 1.34 mycroft
935 1.31 cgd return (bwrite(ap->a_bp));
936 1.31 cgd }
937 1.31 cgd
938 1.31 cgd /*
939 1.31 cgd * Delayed write.
940 1.31 cgd *
941 1.31 cgd * The buffer is marked dirty, but is not queued for I/O.
942 1.31 cgd * This routine should be used when the buffer is expected
943 1.31 cgd * to be modified again soon, typically a small write that
944 1.31 cgd * partially fills a buffer.
945 1.31 cgd *
946 1.31 cgd * NB: magnetic tapes cannot be delayed; they must be
947 1.31 cgd * written in the order that the writes are requested.
948 1.31 cgd *
949 1.31 cgd * Described in Leffler, et al. (pp. 208-213).
950 1.31 cgd */
951 1.31 cgd void
952 1.183 ad bdwrite(buf_t *bp)
953 1.31 cgd {
954 1.183 ad
955 1.276 pgoyette BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
956 1.276 pgoyette (uintptr_t)bp, 0, 0, 0);
957 1.264 pgoyette
958 1.198 hannken KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
959 1.207 hannken bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
960 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
961 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
962 1.31 cgd
963 1.46 mycroft /* If this is a tape block, write the block now. */
964 1.173 ad if (bdev_type(bp->b_dev) == D_TAPE) {
965 1.90 pk bawrite(bp);
966 1.90 pk return;
967 1.46 mycroft }
968 1.46 mycroft
969 1.208 simonb if (wapbl_vphaswapbl(bp->b_vp)) {
970 1.208 simonb struct mount *mp = wapbl_vptomp(bp->b_vp);
971 1.208 simonb
972 1.208 simonb if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
973 1.208 simonb WAPBL_ADD_BUF(mp, bp);
974 1.208 simonb }
975 1.208 simonb }
976 1.208 simonb
977 1.31 cgd /*
978 1.31 cgd * If the block hasn't been seen before:
979 1.31 cgd * (1) Mark it as having been seen,
980 1.45 pk * (2) Charge for the write,
981 1.45 pk * (3) Make sure it's on its vnode's correct block list.
982 1.31 cgd */
983 1.230 rmind KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
984 1.97 dbj
985 1.183 ad if (!ISSET(bp->b_oflags, BO_DELWRI)) {
986 1.184 ad mutex_enter(&bufcache_lock);
987 1.184 ad mutex_enter(bp->b_objlock);
988 1.183 ad SET(bp->b_oflags, BO_DELWRI);
989 1.194 ad curlwp->l_ru.ru_oublock++;
990 1.31 cgd reassignbuf(bp, bp->b_vp);
991 1.184 ad mutex_exit(&bufcache_lock);
992 1.184 ad } else {
993 1.184 ad mutex_enter(bp->b_objlock);
994 1.31 cgd }
995 1.31 cgd /* Otherwise, the "write" is done, so mark and release the buffer. */
996 1.183 ad CLR(bp->b_oflags, BO_DONE);
997 1.183 ad mutex_exit(bp->b_objlock);
998 1.60 fvdl
999 1.179 ad brelse(bp, 0);
1000 1.31 cgd }
1001 1.31 cgd
1002 1.31 cgd /*
1003 1.31 cgd * Asynchronous block write; just an asynchronous bwrite().
1004 1.31 cgd */
1005 1.31 cgd void
1006 1.183 ad bawrite(buf_t *bp)
1007 1.31 cgd {
1008 1.31 cgd
1009 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1010 1.231 hannken KASSERT(bp->b_vp != NULL);
1011 1.87 pk
1012 1.31 cgd SET(bp->b_flags, B_ASYNC);
1013 1.231 hannken VOP_BWRITE(bp->b_vp, bp);
1014 1.31 cgd }
1015 1.31 cgd
1016 1.31 cgd /*
1017 1.31 cgd * Release a buffer on to the free lists.
1018 1.31 cgd * Described in Bach (p. 46).
1019 1.31 cgd */
1020 1.31 cgd void
1021 1.183 ad brelsel(buf_t *bp, int set)
1022 1.31 cgd {
1023 1.131 yamt struct bqueue *bufq;
1024 1.183 ad struct vnode *vp;
1025 1.31 cgd
1026 1.240 hannken KASSERT(bp != NULL);
1027 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1028 1.202 ad KASSERT(!cv_has_waiters(&bp->b_done));
1029 1.202 ad KASSERT(bp->b_refcnt > 0);
1030 1.270 riastrad
1031 1.183 ad SET(bp->b_cflags, set);
1032 1.179 ad
1033 1.183 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1034 1.183 ad KASSERT(bp->b_iodone == NULL);
1035 1.87 pk
1036 1.31 cgd /* Wake up any processes waiting for any buffer to become free. */
1037 1.183 ad cv_signal(&needbuffer_cv);
1038 1.31 cgd
1039 1.262 jdolecek /* Wake up any proceeses waiting for _this_ buffer to become free */
1040 1.199 ad if (ISSET(bp->b_cflags, BC_WANTED))
1041 1.183 ad CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1042 1.31 cgd
1043 1.225 hannken /* If it's clean clear the copy-on-write flag. */
1044 1.225 hannken if (ISSET(bp->b_flags, B_COWDONE)) {
1045 1.225 hannken mutex_enter(bp->b_objlock);
1046 1.225 hannken if (!ISSET(bp->b_oflags, BO_DELWRI))
1047 1.225 hannken CLR(bp->b_flags, B_COWDONE);
1048 1.225 hannken mutex_exit(bp->b_objlock);
1049 1.225 hannken }
1050 1.225 hannken
1051 1.31 cgd /*
1052 1.31 cgd * Determine which queue the buffer should be on, then put it there.
1053 1.31 cgd */
1054 1.31 cgd
1055 1.31 cgd /* If it's locked, don't report an error; try again later. */
1056 1.187 ad if (ISSET(bp->b_flags, B_LOCKED))
1057 1.174 ad bp->b_error = 0;
1058 1.31 cgd
1059 1.31 cgd /* If it's not cacheable, or an error, mark it invalid. */
1060 1.183 ad if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1061 1.183 ad SET(bp->b_cflags, BC_INVAL);
1062 1.31 cgd
1063 1.183 ad if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1064 1.50 mycroft /*
1065 1.50 mycroft * This is a delayed write buffer that was just flushed to
1066 1.50 mycroft * disk. It is still on the LRU queue. If it's become
1067 1.50 mycroft * invalid, then we need to move it to a different queue;
1068 1.50 mycroft * otherwise leave it in its current position.
1069 1.50 mycroft */
1070 1.183 ad CLR(bp->b_cflags, BC_VFLUSH);
1071 1.187 ad if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1072 1.187 ad !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1073 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1074 1.50 mycroft goto already_queued;
1075 1.99 dbj } else {
1076 1.50 mycroft bremfree(bp);
1077 1.99 dbj }
1078 1.50 mycroft }
1079 1.99 dbj
1080 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1081 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1082 1.206 bouyer KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1083 1.50 mycroft
1084 1.183 ad if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1085 1.31 cgd /*
1086 1.31 cgd * If it's invalid or empty, dissociate it from its vnode
1087 1.31 cgd * and put on the head of the appropriate queue.
1088 1.31 cgd */
1089 1.208 simonb if (ISSET(bp->b_flags, B_LOCKED)) {
1090 1.208 simonb if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1091 1.208 simonb struct mount *mp = wapbl_vptomp(vp);
1092 1.208 simonb
1093 1.208 simonb KASSERT(bp->b_iodone
1094 1.208 simonb != mp->mnt_wapbl_op->wo_wapbl_biodone);
1095 1.208 simonb WAPBL_REMOVE_BUF(mp, bp);
1096 1.208 simonb }
1097 1.208 simonb }
1098 1.208 simonb
1099 1.183 ad mutex_enter(bp->b_objlock);
1100 1.183 ad CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1101 1.183 ad if ((vp = bp->b_vp) != NULL) {
1102 1.230 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1103 1.59 fvdl reassignbuf(bp, bp->b_vp);
1104 1.31 cgd brelvp(bp);
1105 1.230 rmind mutex_exit(vp->v_interlock);
1106 1.183 ad } else {
1107 1.183 ad KASSERT(bp->b_objlock == &buffer_lock);
1108 1.183 ad mutex_exit(bp->b_objlock);
1109 1.59 fvdl }
1110 1.281 ad /* We want to dispose of the buffer, so wake everybody. */
1111 1.281 ad cv_broadcast(&bp->b_busy);
1112 1.31 cgd if (bp->b_bufsize <= 0)
1113 1.31 cgd /* no data */
1114 1.100 pk goto already_queued;
1115 1.31 cgd else
1116 1.31 cgd /* invalid data */
1117 1.31 cgd bufq = &bufqueues[BQ_AGE];
1118 1.31 cgd binsheadfree(bp, bufq);
1119 1.183 ad } else {
1120 1.31 cgd /*
1121 1.31 cgd * It has valid data. Put it on the end of the appropriate
1122 1.31 cgd * queue, so that it'll stick around for as long as possible.
1123 1.67 fvdl * If buf is AGE, but has dependencies, must put it on last
1124 1.67 fvdl * bufqueue to be scanned, ie LRU. This protects against the
1125 1.67 fvdl * livelock where BQ_AGE only has buffers with dependencies,
1126 1.67 fvdl * and we thus never get to the dependent buffers in BQ_LRU.
1127 1.31 cgd */
1128 1.187 ad if (ISSET(bp->b_flags, B_LOCKED)) {
1129 1.31 cgd /* locked in core */
1130 1.31 cgd bufq = &bufqueues[BQ_LOCKED];
1131 1.183 ad } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1132 1.31 cgd /* valid data */
1133 1.31 cgd bufq = &bufqueues[BQ_LRU];
1134 1.183 ad } else {
1135 1.67 fvdl /* stale but valid data */
1136 1.216 ad bufq = &bufqueues[BQ_AGE];
1137 1.67 fvdl }
1138 1.31 cgd binstailfree(bp, bufq);
1139 1.31 cgd }
1140 1.50 mycroft already_queued:
1141 1.31 cgd /* Unlock the buffer. */
1142 1.183 ad CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1143 1.183 ad CLR(bp->b_flags, B_ASYNC);
1144 1.280 ad cv_signal(&bp->b_busy);
1145 1.31 cgd
1146 1.183 ad if (bp->b_bufsize <= 0)
1147 1.183 ad brele(bp);
1148 1.183 ad }
1149 1.183 ad
1150 1.183 ad void
1151 1.183 ad brelse(buf_t *bp, int set)
1152 1.183 ad {
1153 1.183 ad
1154 1.183 ad mutex_enter(&bufcache_lock);
1155 1.183 ad brelsel(bp, set);
1156 1.183 ad mutex_exit(&bufcache_lock);
1157 1.31 cgd }
1158 1.31 cgd
1159 1.31 cgd /*
1160 1.31 cgd * Determine if a block is in the cache.
1161 1.31 cgd * Just look on what would be its hash chain. If it's there, return
1162 1.31 cgd * a pointer to it, unless it's marked invalid. If it's marked invalid,
1163 1.31 cgd * we normally don't return the buffer, unless the caller explicitly
1164 1.31 cgd * wants us to.
1165 1.31 cgd */
1166 1.183 ad buf_t *
1167 1.101 thorpej incore(struct vnode *vp, daddr_t blkno)
1168 1.31 cgd {
1169 1.183 ad buf_t *bp;
1170 1.183 ad
1171 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1172 1.31 cgd
1173 1.31 cgd /* Search hash chain */
1174 1.84 matt LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1175 1.31 cgd if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1176 1.183 ad !ISSET(bp->b_cflags, BC_INVAL)) {
1177 1.230 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1178 1.183 ad return (bp);
1179 1.183 ad }
1180 1.31 cgd }
1181 1.31 cgd
1182 1.73 chs return (NULL);
1183 1.31 cgd }
1184 1.31 cgd
1185 1.31 cgd /*
1186 1.31 cgd * Get a block of requested size that is associated with
1187 1.31 cgd * a given vnode and block offset. If it is found in the
1188 1.31 cgd * block cache, mark it as having been found, make it busy
1189 1.31 cgd * and return it. Otherwise, return an empty block of the
1190 1.31 cgd * correct size. It is up to the caller to insure that the
1191 1.31 cgd * cached blocks be of the correct size.
1192 1.31 cgd */
1193 1.183 ad buf_t *
1194 1.101 thorpej getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1195 1.31 cgd {
1196 1.183 ad int err, preserve;
1197 1.183 ad buf_t *bp;
1198 1.183 ad
1199 1.183 ad mutex_enter(&bufcache_lock);
1200 1.183 ad loop:
1201 1.73 chs bp = incore(vp, blkno);
1202 1.73 chs if (bp != NULL) {
1203 1.188 ad err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1204 1.183 ad if (err != 0) {
1205 1.183 ad if (err == EPASSTHROUGH)
1206 1.183 ad goto loop;
1207 1.183 ad mutex_exit(&bufcache_lock);
1208 1.183 ad return (NULL);
1209 1.31 cgd }
1210 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
1211 1.57 mycroft #ifdef DIAGNOSTIC
1212 1.183 ad if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1213 1.78 chs bp->b_bcount < size && vp->v_type != VBLK)
1214 1.73 chs panic("getblk: block size invariant failed");
1215 1.57 mycroft #endif
1216 1.73 chs bremfree(bp);
1217 1.100 pk preserve = 1;
1218 1.73 chs } else {
1219 1.183 ad if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1220 1.183 ad goto loop;
1221 1.183 ad
1222 1.183 ad if (incore(vp, blkno) != NULL) {
1223 1.183 ad /* The block has come into memory in the meantime. */
1224 1.183 ad brelsel(bp, 0);
1225 1.183 ad goto loop;
1226 1.87 pk }
1227 1.73 chs
1228 1.183 ad LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1229 1.64 thorpej bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1230 1.230 rmind mutex_enter(vp->v_interlock);
1231 1.31 cgd bgetvp(vp, bp);
1232 1.230 rmind mutex_exit(vp->v_interlock);
1233 1.100 pk preserve = 0;
1234 1.31 cgd }
1235 1.183 ad mutex_exit(&bufcache_lock);
1236 1.183 ad
1237 1.96 yamt /*
1238 1.187 ad * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1239 1.96 yamt * if we re-size buffers here.
1240 1.96 yamt */
1241 1.187 ad if (ISSET(bp->b_flags, B_LOCKED)) {
1242 1.96 yamt KASSERT(bp->b_bufsize >= size);
1243 1.96 yamt } else {
1244 1.183 ad if (allocbuf(bp, size, preserve)) {
1245 1.183 ad mutex_enter(&bufcache_lock);
1246 1.183 ad LIST_REMOVE(bp, b_hash);
1247 1.271 skrll brelsel(bp, BC_INVAL);
1248 1.183 ad mutex_exit(&bufcache_lock);
1249 1.183 ad return NULL;
1250 1.183 ad }
1251 1.96 yamt }
1252 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1253 1.31 cgd return (bp);
1254 1.31 cgd }
1255 1.31 cgd
1256 1.31 cgd /*
1257 1.31 cgd * Get an empty, disassociated buffer of given size.
1258 1.31 cgd */
1259 1.183 ad buf_t *
1260 1.101 thorpej geteblk(int size)
1261 1.31 cgd {
1262 1.183 ad buf_t *bp;
1263 1.248 martin int error __diagused;
1264 1.31 cgd
1265 1.183 ad mutex_enter(&bufcache_lock);
1266 1.183 ad while ((bp = getnewbuf(0, 0, 0)) == NULL)
1267 1.31 cgd ;
1268 1.87 pk
1269 1.183 ad SET(bp->b_cflags, BC_INVAL);
1270 1.183 ad LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1271 1.183 ad mutex_exit(&bufcache_lock);
1272 1.109 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1273 1.183 ad error = allocbuf(bp, size, 0);
1274 1.183 ad KASSERT(error == 0);
1275 1.31 cgd return (bp);
1276 1.31 cgd }
1277 1.31 cgd
1278 1.31 cgd /*
1279 1.31 cgd * Expand or contract the actual memory allocated to a buffer.
1280 1.31 cgd *
1281 1.31 cgd * If the buffer shrinks, data is lost, so it's up to the
1282 1.31 cgd * caller to have written it out *first*; this routine will not
1283 1.31 cgd * start a write. If the buffer grows, it's the callers
1284 1.31 cgd * responsibility to fill out the buffer's additional contents.
1285 1.31 cgd */
1286 1.183 ad int
1287 1.183 ad allocbuf(buf_t *bp, int size, int preserve)
1288 1.31 cgd {
1289 1.208 simonb void *addr;
1290 1.100 pk vsize_t oldsize, desired_size;
1291 1.208 simonb int oldcount;
1292 1.183 ad int delta;
1293 1.31 cgd
1294 1.100 pk desired_size = buf_roundsize(size);
1295 1.31 cgd if (desired_size > MAXBSIZE)
1296 1.100 pk printf("allocbuf: buffer larger than MAXBSIZE requested");
1297 1.31 cgd
1298 1.208 simonb oldcount = bp->b_bcount;
1299 1.208 simonb
1300 1.100 pk bp->b_bcount = size;
1301 1.100 pk
1302 1.100 pk oldsize = bp->b_bufsize;
1303 1.214 joerg if (oldsize == desired_size) {
1304 1.214 joerg /*
1305 1.214 joerg * Do not short cut the WAPBL resize, as the buffer length
1306 1.214 joerg * could still have changed and this would corrupt the
1307 1.214 joerg * tracking of the transaction length.
1308 1.214 joerg */
1309 1.214 joerg goto out;
1310 1.214 joerg }
1311 1.31 cgd
1312 1.31 cgd /*
1313 1.100 pk * If we want a buffer of a different size, re-allocate the
1314 1.100 pk * buffer's memory; copy old content only if needed.
1315 1.31 cgd */
1316 1.229 rmind addr = buf_alloc(desired_size);
1317 1.183 ad if (addr == NULL)
1318 1.183 ad return ENOMEM;
1319 1.100 pk if (preserve)
1320 1.100 pk memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1321 1.100 pk if (bp->b_data != NULL)
1322 1.100 pk buf_mrelease(bp->b_data, oldsize);
1323 1.100 pk bp->b_data = addr;
1324 1.100 pk bp->b_bufsize = desired_size;
1325 1.31 cgd
1326 1.31 cgd /*
1327 1.183 ad * Update overall buffer memory counter (protected by bufcache_lock)
1328 1.31 cgd */
1329 1.100 pk delta = (long)desired_size - (long)oldsize;
1330 1.100 pk
1331 1.183 ad mutex_enter(&bufcache_lock);
1332 1.100 pk if ((bufmem += delta) > bufmem_hiwater) {
1333 1.100 pk /*
1334 1.100 pk * Need to trim overall memory usage.
1335 1.100 pk */
1336 1.100 pk while (buf_canrelease()) {
1337 1.154 yamt if (curcpu()->ci_schedstate.spc_flags &
1338 1.154 yamt SPCF_SHOULDYIELD) {
1339 1.183 ad mutex_exit(&bufcache_lock);
1340 1.168 ad preempt();
1341 1.183 ad mutex_enter(&bufcache_lock);
1342 1.154 yamt }
1343 1.100 pk if (buf_trim() == 0)
1344 1.100 pk break;
1345 1.31 cgd }
1346 1.31 cgd }
1347 1.183 ad mutex_exit(&bufcache_lock);
1348 1.208 simonb
1349 1.214 joerg out:
1350 1.208 simonb if (wapbl_vphaswapbl(bp->b_vp))
1351 1.208 simonb WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1352 1.208 simonb
1353 1.183 ad return 0;
1354 1.31 cgd }
1355 1.31 cgd
1356 1.31 cgd /*
1357 1.31 cgd * Find a buffer which is available for use.
1358 1.31 cgd * Select something from a free list.
1359 1.142 perry * Preference is to AGE list, then LRU list.
1360 1.87 pk *
1361 1.183 ad * Called with the buffer queues locked.
1362 1.87 pk * Return buffer locked.
1363 1.31 cgd */
1364 1.277 hannken static buf_t *
1365 1.101 thorpej getnewbuf(int slpflag, int slptimeo, int from_bufq)
1366 1.31 cgd {
1367 1.183 ad buf_t *bp;
1368 1.183 ad struct vnode *vp;
1369 1.277 hannken struct mount *transmp = NULL;
1370 1.31 cgd
1371 1.183 ad start:
1372 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1373 1.87 pk
1374 1.100 pk /*
1375 1.183 ad * Get a new buffer from the pool.
1376 1.100 pk */
1377 1.183 ad if (!from_bufq && buf_lotsfree()) {
1378 1.183 ad mutex_exit(&bufcache_lock);
1379 1.183 ad bp = pool_cache_get(buf_cache, PR_NOWAIT);
1380 1.183 ad if (bp != NULL) {
1381 1.183 ad memset((char *)bp, 0, sizeof(*bp));
1382 1.183 ad buf_init(bp);
1383 1.204 reinoud SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1384 1.183 ad mutex_enter(&bufcache_lock);
1385 1.131 yamt #if defined(DIAGNOSTIC)
1386 1.183 ad bp->b_freelistindex = -1;
1387 1.131 yamt #endif /* defined(DIAGNOSTIC) */
1388 1.183 ad return (bp);
1389 1.183 ad }
1390 1.183 ad mutex_enter(&bufcache_lock);
1391 1.100 pk }
1392 1.100 pk
1393 1.209 reinoud KASSERT(mutex_owned(&bufcache_lock));
1394 1.277 hannken if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
1395 1.277 hannken KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
1396 1.277 hannken } else {
1397 1.277 hannken TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
1398 1.277 hannken if (ISSET(bp->b_cflags, BC_VFLUSH) ||
1399 1.277 hannken !ISSET(bp->b_oflags, BO_DELWRI))
1400 1.277 hannken break;
1401 1.277 hannken if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
1402 1.277 hannken KASSERT(transmp == NULL);
1403 1.277 hannken transmp = bp->b_vp->v_mount;
1404 1.277 hannken break;
1405 1.277 hannken }
1406 1.277 hannken }
1407 1.277 hannken }
1408 1.277 hannken if (bp != NULL) {
1409 1.206 bouyer KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1410 1.31 cgd bremfree(bp);
1411 1.202 ad
1412 1.202 ad /* Buffer is no longer on free lists. */
1413 1.202 ad SET(bp->b_cflags, BC_BUSY);
1414 1.31 cgd } else {
1415 1.134 enami /*
1416 1.134 enami * XXX: !from_bufq should be removed.
1417 1.134 enami */
1418 1.173 ad if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1419 1.134 enami /* wait for a free buffer of any kind */
1420 1.183 ad if ((slpflag & PCATCH) != 0)
1421 1.183 ad (void)cv_timedwait_sig(&needbuffer_cv,
1422 1.183 ad &bufcache_lock, slptimeo);
1423 1.183 ad else
1424 1.183 ad (void)cv_timedwait(&needbuffer_cv,
1425 1.183 ad &bufcache_lock, slptimeo);
1426 1.134 enami }
1427 1.73 chs return (NULL);
1428 1.31 cgd }
1429 1.31 cgd
1430 1.100 pk #ifdef DIAGNOSTIC
1431 1.100 pk if (bp->b_bufsize <= 0)
1432 1.100 pk panic("buffer %p: on queue but empty", bp);
1433 1.100 pk #endif
1434 1.100 pk
1435 1.183 ad if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1436 1.50 mycroft /*
1437 1.50 mycroft * This is a delayed write buffer being flushed to disk. Make
1438 1.50 mycroft * sure it gets aged out of the queue when it's finished, and
1439 1.50 mycroft * leave it off the LRU queue.
1440 1.50 mycroft */
1441 1.183 ad CLR(bp->b_cflags, BC_VFLUSH);
1442 1.183 ad SET(bp->b_cflags, BC_AGE);
1443 1.50 mycroft goto start;
1444 1.50 mycroft }
1445 1.50 mycroft
1446 1.202 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1447 1.202 ad KASSERT(bp->b_refcnt > 0);
1448 1.203 ad KASSERT(!cv_has_waiters(&bp->b_done));
1449 1.31 cgd
1450 1.75 chs /*
1451 1.75 chs * If buffer was a delayed write, start it and return NULL
1452 1.75 chs * (since we might sleep while starting the write).
1453 1.75 chs */
1454 1.183 ad if (ISSET(bp->b_oflags, BO_DELWRI)) {
1455 1.50 mycroft /*
1456 1.50 mycroft * This buffer has gone through the LRU, so make sure it gets
1457 1.50 mycroft * reused ASAP.
1458 1.50 mycroft */
1459 1.183 ad SET(bp->b_cflags, BC_AGE);
1460 1.183 ad mutex_exit(&bufcache_lock);
1461 1.50 mycroft bawrite(bp);
1462 1.277 hannken KASSERT(transmp != NULL);
1463 1.277 hannken fstrans_done(transmp);
1464 1.183 ad mutex_enter(&bufcache_lock);
1465 1.75 chs return (NULL);
1466 1.31 cgd }
1467 1.31 cgd
1468 1.277 hannken KASSERT(transmp == NULL);
1469 1.277 hannken
1470 1.183 ad vp = bp->b_vp;
1471 1.59 fvdl
1472 1.31 cgd /* clear out various other fields */
1473 1.183 ad bp->b_cflags = BC_BUSY;
1474 1.183 ad bp->b_oflags = 0;
1475 1.183 ad bp->b_flags = 0;
1476 1.31 cgd bp->b_dev = NODEV;
1477 1.183 ad bp->b_blkno = 0;
1478 1.183 ad bp->b_lblkno = 0;
1479 1.183 ad bp->b_rawblkno = 0;
1480 1.31 cgd bp->b_iodone = 0;
1481 1.31 cgd bp->b_error = 0;
1482 1.31 cgd bp->b_resid = 0;
1483 1.31 cgd bp->b_bcount = 0;
1484 1.142 perry
1485 1.183 ad LIST_REMOVE(bp, b_hash);
1486 1.183 ad
1487 1.183 ad /* Disassociate us from our vnode, if we had one... */
1488 1.183 ad if (vp != NULL) {
1489 1.230 rmind mutex_enter(vp->v_interlock);
1490 1.183 ad brelvp(bp);
1491 1.230 rmind mutex_exit(vp->v_interlock);
1492 1.183 ad }
1493 1.183 ad
1494 1.142 perry return (bp);
1495 1.31 cgd }
1496 1.31 cgd
1497 1.31 cgd /*
1498 1.100 pk * Attempt to free an aged buffer off the queues.
1499 1.183 ad * Called with queue lock held.
1500 1.100 pk * Returns the amount of buffer memory freed.
1501 1.100 pk */
1502 1.130 yamt static int
1503 1.101 thorpej buf_trim(void)
1504 1.100 pk {
1505 1.183 ad buf_t *bp;
1506 1.245 christos long size;
1507 1.100 pk
1508 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1509 1.183 ad
1510 1.100 pk /* Instruct getnewbuf() to get buffers off the queues */
1511 1.101 thorpej if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1512 1.100 pk return 0;
1513 1.100 pk
1514 1.183 ad KASSERT((bp->b_cflags & BC_WANTED) == 0);
1515 1.100 pk size = bp->b_bufsize;
1516 1.100 pk bufmem -= size;
1517 1.100 pk if (size > 0) {
1518 1.100 pk buf_mrelease(bp->b_data, size);
1519 1.100 pk bp->b_bcount = bp->b_bufsize = 0;
1520 1.100 pk }
1521 1.100 pk /* brelse() will return the buffer to the global buffer pool */
1522 1.183 ad brelsel(bp, 0);
1523 1.100 pk return size;
1524 1.100 pk }
1525 1.100 pk
1526 1.101 thorpej int
1527 1.101 thorpej buf_drain(int n)
1528 1.100 pk {
1529 1.183 ad int size = 0, sz;
1530 1.100 pk
1531 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
1532 1.116 yamt
1533 1.134 enami while (size < n && bufmem > bufmem_lowater) {
1534 1.134 enami sz = buf_trim();
1535 1.134 enami if (sz <= 0)
1536 1.134 enami break;
1537 1.134 enami size += sz;
1538 1.134 enami }
1539 1.114 tls
1540 1.100 pk return size;
1541 1.100 pk }
1542 1.100 pk
1543 1.259 riz SDT_PROVIDER_DEFINE(io);
1544 1.259 riz
1545 1.259 riz SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1546 1.259 riz SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1547 1.259 riz
1548 1.100 pk /*
1549 1.31 cgd * Wait for operations on the buffer to complete.
1550 1.31 cgd * When they do, extract and return the I/O's error value.
1551 1.31 cgd */
1552 1.31 cgd int
1553 1.183 ad biowait(buf_t *bp)
1554 1.31 cgd {
1555 1.142 perry
1556 1.266 pgoyette BIOHIST_FUNC(__func__);
1557 1.264 pgoyette
1558 1.202 ad KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1559 1.202 ad KASSERT(bp->b_refcnt > 0);
1560 1.202 ad
1561 1.259 riz SDT_PROBE1(io, kernel, , wait__start, bp);
1562 1.259 riz
1563 1.183 ad mutex_enter(bp->b_objlock);
1564 1.264 pgoyette
1565 1.276 pgoyette BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
1566 1.276 pgoyette (uintptr_t)bp, bp->b_oflags,
1567 1.276 pgoyette (uintptr_t)__builtin_return_address(0), 0);
1568 1.264 pgoyette
1569 1.264 pgoyette while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1570 1.276 pgoyette BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1571 1.183 ad cv_wait(&bp->b_done, bp->b_objlock);
1572 1.264 pgoyette }
1573 1.183 ad mutex_exit(bp->b_objlock);
1574 1.183 ad
1575 1.259 riz SDT_PROBE1(io, kernel, , wait__done, bp);
1576 1.259 riz
1577 1.276 pgoyette BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
1578 1.264 pgoyette
1579 1.183 ad return bp->b_error;
1580 1.31 cgd }
1581 1.31 cgd
1582 1.31 cgd /*
1583 1.31 cgd * Mark I/O complete on a buffer.
1584 1.31 cgd *
1585 1.31 cgd * If a callback has been requested, e.g. the pageout
1586 1.31 cgd * daemon, do so. Otherwise, awaken waiting processes.
1587 1.31 cgd *
1588 1.31 cgd * [ Leffler, et al., says on p.247:
1589 1.31 cgd * "This routine wakes up the blocked process, frees the buffer
1590 1.31 cgd * for an asynchronous write, or, for a request by the pagedaemon
1591 1.31 cgd * process, invokes a procedure specified in the buffer structure" ]
1592 1.31 cgd *
1593 1.31 cgd * In real life, the pagedaemon (or other system processes) wants
1594 1.263 dholland * to do async stuff too, and doesn't want the buffer brelse()'d.
1595 1.31 cgd * (for swap pager, that puts swap buffers on the free lists (!!!),
1596 1.229 rmind * for the vn device, that puts allocated buffers on the free lists!)
1597 1.31 cgd */
1598 1.31 cgd void
1599 1.183 ad biodone(buf_t *bp)
1600 1.183 ad {
1601 1.183 ad int s;
1602 1.183 ad
1603 1.266 pgoyette BIOHIST_FUNC(__func__);
1604 1.264 pgoyette
1605 1.183 ad KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1606 1.183 ad
1607 1.183 ad if (cpu_intr_p()) {
1608 1.183 ad /* From interrupt mode: defer to a soft interrupt. */
1609 1.183 ad s = splvm();
1610 1.183 ad TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1611 1.264 pgoyette
1612 1.276 pgoyette BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
1613 1.276 pgoyette (uintptr_t)bp, 0, 0, 0);
1614 1.183 ad softint_schedule(biodone_sih);
1615 1.183 ad splx(s);
1616 1.183 ad } else {
1617 1.183 ad /* Process now - the buffer may be freed soon. */
1618 1.183 ad biodone2(bp);
1619 1.183 ad }
1620 1.183 ad }
1621 1.183 ad
1622 1.259 riz SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1623 1.259 riz
1624 1.183 ad static void
1625 1.183 ad biodone2(buf_t *bp)
1626 1.31 cgd {
1627 1.183 ad void (*callout)(buf_t *);
1628 1.183 ad
1629 1.259 riz SDT_PROBE1(io, kernel, ,done, bp);
1630 1.259 riz
1631 1.266 pgoyette BIOHIST_FUNC(__func__);
1632 1.276 pgoyette BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1633 1.264 pgoyette
1634 1.183 ad mutex_enter(bp->b_objlock);
1635 1.183 ad /* Note that the transfer is done. */
1636 1.183 ad if (ISSET(bp->b_oflags, BO_DONE))
1637 1.183 ad panic("biodone2 already");
1638 1.186 hannken CLR(bp->b_flags, B_COWDONE);
1639 1.183 ad SET(bp->b_oflags, BO_DONE);
1640 1.108 yamt BIO_SETPRIO(bp, BPRIO_DEFAULT);
1641 1.31 cgd
1642 1.183 ad /* Wake up waiting writers. */
1643 1.183 ad if (!ISSET(bp->b_flags, B_READ))
1644 1.31 cgd vwakeup(bp);
1645 1.31 cgd
1646 1.183 ad if ((callout = bp->b_iodone) != NULL) {
1647 1.276 pgoyette BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
1648 1.276 pgoyette 0, 0, 0);
1649 1.264 pgoyette
1650 1.183 ad /* Note callout done, then call out. */
1651 1.201 ad KASSERT(!cv_has_waiters(&bp->b_done));
1652 1.183 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1653 1.183 ad bp->b_iodone = NULL;
1654 1.183 ad mutex_exit(bp->b_objlock);
1655 1.183 ad (*callout)(bp);
1656 1.183 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1657 1.183 ad } else if (ISSET(bp->b_flags, B_ASYNC)) {
1658 1.183 ad /* If async, release. */
1659 1.266 pgoyette BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
1660 1.201 ad KASSERT(!cv_has_waiters(&bp->b_done));
1661 1.183 ad mutex_exit(bp->b_objlock);
1662 1.183 ad brelse(bp, 0);
1663 1.59 fvdl } else {
1664 1.183 ad /* Otherwise just wake up waiters in biowait(). */
1665 1.266 pgoyette BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1666 1.183 ad cv_broadcast(&bp->b_done);
1667 1.183 ad mutex_exit(bp->b_objlock);
1668 1.31 cgd }
1669 1.183 ad }
1670 1.183 ad
1671 1.183 ad static void
1672 1.183 ad biointr(void *cookie)
1673 1.183 ad {
1674 1.183 ad struct cpu_info *ci;
1675 1.183 ad buf_t *bp;
1676 1.183 ad int s;
1677 1.183 ad
1678 1.266 pgoyette BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1679 1.264 pgoyette
1680 1.183 ad ci = curcpu();
1681 1.60 fvdl
1682 1.265 pgoyette s = splvm();
1683 1.183 ad while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1684 1.183 ad KASSERT(curcpu() == ci);
1685 1.183 ad
1686 1.183 ad bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1687 1.183 ad TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1688 1.183 ad splx(s);
1689 1.183 ad
1690 1.276 pgoyette BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1691 1.183 ad biodone2(bp);
1692 1.265 pgoyette
1693 1.265 pgoyette s = splvm();
1694 1.183 ad }
1695 1.265 pgoyette splx(s);
1696 1.31 cgd }
1697 1.31 cgd
1698 1.31 cgd /*
1699 1.100 pk * Wait for all buffers to complete I/O
1700 1.100 pk * Return the number of "stuck" buffers.
1701 1.100 pk */
1702 1.100 pk int
1703 1.100 pk buf_syncwait(void)
1704 1.100 pk {
1705 1.183 ad buf_t *bp;
1706 1.246 martin int iter, nbusy, nbusy_prev = 0, ihash;
1707 1.100 pk
1708 1.266 pgoyette BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1709 1.264 pgoyette
1710 1.100 pk for (iter = 0; iter < 20;) {
1711 1.183 ad mutex_enter(&bufcache_lock);
1712 1.100 pk nbusy = 0;
1713 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1714 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1715 1.183 ad if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1716 1.183 ad nbusy += ((bp->b_flags & B_READ) == 0);
1717 1.100 pk }
1718 1.100 pk }
1719 1.183 ad mutex_exit(&bufcache_lock);
1720 1.100 pk
1721 1.100 pk if (nbusy == 0)
1722 1.100 pk break;
1723 1.100 pk if (nbusy_prev == 0)
1724 1.100 pk nbusy_prev = nbusy;
1725 1.100 pk printf("%d ", nbusy);
1726 1.224 pooka kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1727 1.100 pk if (nbusy >= nbusy_prev) /* we didn't flush anything */
1728 1.100 pk iter++;
1729 1.100 pk else
1730 1.100 pk nbusy_prev = nbusy;
1731 1.100 pk }
1732 1.100 pk
1733 1.100 pk if (nbusy) {
1734 1.100 pk #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1735 1.100 pk printf("giving up\nPrinting vnodes for busy buffers\n");
1736 1.100 pk for (ihash = 0; ihash < bufhash+1; ihash++) {
1737 1.100 pk LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1738 1.183 ad if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1739 1.183 ad (bp->b_flags & B_READ) == 0)
1740 1.100 pk vprint(NULL, bp->b_vp);
1741 1.100 pk }
1742 1.100 pk }
1743 1.100 pk #endif
1744 1.100 pk }
1745 1.100 pk
1746 1.100 pk return nbusy;
1747 1.100 pk }
1748 1.100 pk
1749 1.117 atatat static void
1750 1.278 maxv sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
1751 1.117 atatat {
1752 1.278 maxv const bool allowaddr = get_expose_address(curproc);
1753 1.278 maxv
1754 1.278 maxv memset(o, 0, sizeof(*o));
1755 1.117 atatat
1756 1.183 ad o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1757 1.117 atatat o->b_error = i->b_error;
1758 1.117 atatat o->b_prio = i->b_prio;
1759 1.117 atatat o->b_dev = i->b_dev;
1760 1.117 atatat o->b_bufsize = i->b_bufsize;
1761 1.117 atatat o->b_bcount = i->b_bcount;
1762 1.117 atatat o->b_resid = i->b_resid;
1763 1.278 maxv COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
1764 1.117 atatat o->b_blkno = i->b_blkno;
1765 1.117 atatat o->b_rawblkno = i->b_rawblkno;
1766 1.278 maxv COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
1767 1.278 maxv COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
1768 1.278 maxv COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
1769 1.278 maxv COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
1770 1.117 atatat o->b_lblkno = i->b_lblkno;
1771 1.117 atatat }
1772 1.117 atatat
1773 1.100 pk #define KERN_BUFSLOP 20
1774 1.100 pk static int
1775 1.100 pk sysctl_dobuf(SYSCTLFN_ARGS)
1776 1.100 pk {
1777 1.183 ad buf_t *bp;
1778 1.117 atatat struct buf_sysctl bs;
1779 1.183 ad struct bqueue *bq;
1780 1.100 pk char *dp;
1781 1.117 atatat u_int i, op, arg;
1782 1.117 atatat size_t len, needed, elem_size, out_size;
1783 1.183 ad int error, elem_count, retries;
1784 1.117 atatat
1785 1.117 atatat if (namelen == 1 && name[0] == CTL_QUERY)
1786 1.146 atatat return (sysctl_query(SYSCTLFN_CALL(rnode)));
1787 1.117 atatat
1788 1.117 atatat if (namelen != 4)
1789 1.117 atatat return (EINVAL);
1790 1.100 pk
1791 1.183 ad retries = 100;
1792 1.183 ad retry:
1793 1.100 pk dp = oldp;
1794 1.117 atatat len = (oldp != NULL) ? *oldlenp : 0;
1795 1.117 atatat op = name[0];
1796 1.117 atatat arg = name[1];
1797 1.117 atatat elem_size = name[2];
1798 1.117 atatat elem_count = name[3];
1799 1.117 atatat out_size = MIN(sizeof(bs), elem_size);
1800 1.117 atatat
1801 1.117 atatat /*
1802 1.117 atatat * at the moment, these are just "placeholders" to make the
1803 1.117 atatat * API for retrieving kern.buf data more extensible in the
1804 1.117 atatat * future.
1805 1.117 atatat *
1806 1.117 atatat * XXX kern.buf currently has "netbsd32" issues. hopefully
1807 1.117 atatat * these will be resolved at a later point.
1808 1.117 atatat */
1809 1.117 atatat if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1810 1.117 atatat elem_size < 1 || elem_count < 0)
1811 1.117 atatat return (EINVAL);
1812 1.117 atatat
1813 1.100 pk error = 0;
1814 1.100 pk needed = 0;
1815 1.185 ad sysctl_unlock();
1816 1.183 ad mutex_enter(&bufcache_lock);
1817 1.100 pk for (i = 0; i < BQUEUES; i++) {
1818 1.183 ad bq = &bufqueues[i];
1819 1.183 ad TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1820 1.183 ad bq->bq_marker = bp;
1821 1.117 atatat if (len >= elem_size && elem_count > 0) {
1822 1.117 atatat sysctl_fillbuf(bp, &bs);
1823 1.183 ad mutex_exit(&bufcache_lock);
1824 1.117 atatat error = copyout(&bs, dp, out_size);
1825 1.183 ad mutex_enter(&bufcache_lock);
1826 1.100 pk if (error)
1827 1.183 ad break;
1828 1.183 ad if (bq->bq_marker != bp) {
1829 1.183 ad /*
1830 1.183 ad * This sysctl node is only for
1831 1.183 ad * statistics. Retry; if the
1832 1.183 ad * queue keeps changing, then
1833 1.183 ad * bail out.
1834 1.183 ad */
1835 1.183 ad if (retries-- == 0) {
1836 1.183 ad error = EAGAIN;
1837 1.183 ad break;
1838 1.183 ad }
1839 1.183 ad mutex_exit(&bufcache_lock);
1840 1.233 rmind sysctl_relock();
1841 1.183 ad goto retry;
1842 1.183 ad }
1843 1.100 pk dp += elem_size;
1844 1.100 pk len -= elem_size;
1845 1.100 pk }
1846 1.218 mrg needed += elem_size;
1847 1.218 mrg if (elem_count > 0 && elem_count != INT_MAX)
1848 1.218 mrg elem_count--;
1849 1.100 pk }
1850 1.183 ad if (error != 0)
1851 1.183 ad break;
1852 1.100 pk }
1853 1.183 ad mutex_exit(&bufcache_lock);
1854 1.185 ad sysctl_relock();
1855 1.100 pk
1856 1.117 atatat *oldlenp = needed;
1857 1.117 atatat if (oldp == NULL)
1858 1.183 ad *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1859 1.100 pk
1860 1.100 pk return (error);
1861 1.100 pk }
1862 1.100 pk
1863 1.100 pk static int
1864 1.183 ad sysctl_bufvm_update(SYSCTLFN_ARGS)
1865 1.100 pk {
1866 1.238 dsl int error, rv;
1867 1.100 pk struct sysctlnode node;
1868 1.239 dsl unsigned int temp_bufcache;
1869 1.239 dsl unsigned long temp_water;
1870 1.100 pk
1871 1.238 dsl /* Take a copy of the supplied node and its data */
1872 1.100 pk node = *rnode;
1873 1.239 dsl if (node.sysctl_data == &bufcache) {
1874 1.239 dsl node.sysctl_data = &temp_bufcache;
1875 1.239 dsl temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1876 1.239 dsl } else {
1877 1.239 dsl node.sysctl_data = &temp_water;
1878 1.239 dsl temp_water = *(unsigned long *)rnode->sysctl_data;
1879 1.239 dsl }
1880 1.238 dsl
1881 1.238 dsl /* Update the copy */
1882 1.100 pk error = sysctl_lookup(SYSCTLFN_CALL(&node));
1883 1.100 pk if (error || newp == NULL)
1884 1.100 pk return (error);
1885 1.100 pk
1886 1.183 ad if (rnode->sysctl_data == &bufcache) {
1887 1.239 dsl if (temp_bufcache > 100)
1888 1.183 ad return (EINVAL);
1889 1.239 dsl bufcache = temp_bufcache;
1890 1.183 ad buf_setwm();
1891 1.183 ad } else if (rnode->sysctl_data == &bufmem_lowater) {
1892 1.239 dsl if (bufmem_hiwater - temp_water < 16)
1893 1.136 enami return (EINVAL);
1894 1.239 dsl bufmem_lowater = temp_water;
1895 1.117 atatat } else if (rnode->sysctl_data == &bufmem_hiwater) {
1896 1.239 dsl if (temp_water - bufmem_lowater < 16)
1897 1.136 enami return (EINVAL);
1898 1.239 dsl bufmem_hiwater = temp_water;
1899 1.100 pk } else
1900 1.100 pk return (EINVAL);
1901 1.100 pk
1902 1.183 ad /* Drain until below new high water mark */
1903 1.185 ad sysctl_unlock();
1904 1.183 ad mutex_enter(&bufcache_lock);
1905 1.238 dsl while (bufmem > bufmem_hiwater) {
1906 1.238 dsl rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1907 1.183 ad if (rv <= 0)
1908 1.183 ad break;
1909 1.183 ad }
1910 1.183 ad mutex_exit(&bufcache_lock);
1911 1.185 ad sysctl_relock();
1912 1.100 pk
1913 1.100 pk return 0;
1914 1.100 pk }
1915 1.100 pk
1916 1.215 pooka static struct sysctllog *vfsbio_sysctllog;
1917 1.215 pooka
1918 1.215 pooka static void
1919 1.215 pooka sysctl_kern_buf_setup(void)
1920 1.100 pk {
1921 1.100 pk
1922 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1923 1.119 atatat CTLFLAG_PERMANENT,
1924 1.125 atatat CTLTYPE_NODE, "buf",
1925 1.125 atatat SYSCTL_DESCR("Kernel buffer cache information"),
1926 1.100 pk sysctl_dobuf, 0, NULL, 0,
1927 1.100 pk CTL_KERN, KERN_BUF, CTL_EOL);
1928 1.104 atatat }
1929 1.104 atatat
1930 1.215 pooka static void
1931 1.215 pooka sysctl_vm_buf_setup(void)
1932 1.104 atatat {
1933 1.104 atatat
1934 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1935 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1936 1.125 atatat CTLTYPE_INT, "bufcache",
1937 1.139 jrf SYSCTL_DESCR("Percentage of physical memory to use for "
1938 1.125 atatat "buffer cache"),
1939 1.183 ad sysctl_bufvm_update, 0, &bufcache, 0,
1940 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1941 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1942 1.122 simonb CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1943 1.237 dsl CTLTYPE_LONG, "bufmem",
1944 1.139 jrf SYSCTL_DESCR("Amount of kernel memory used by buffer "
1945 1.125 atatat "cache"),
1946 1.122 simonb NULL, 0, &bufmem, 0,
1947 1.122 simonb CTL_VM, CTL_CREATE, CTL_EOL);
1948 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1949 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1950 1.237 dsl CTLTYPE_LONG, "bufmem_lowater",
1951 1.125 atatat SYSCTL_DESCR("Minimum amount of kernel memory to "
1952 1.125 atatat "reserve for buffer cache"),
1953 1.117 atatat sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1954 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1955 1.215 pooka sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1956 1.119 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1957 1.237 dsl CTLTYPE_LONG, "bufmem_hiwater",
1958 1.125 atatat SYSCTL_DESCR("Maximum amount of kernel memory to use "
1959 1.125 atatat "for buffer cache"),
1960 1.117 atatat sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1961 1.117 atatat CTL_VM, CTL_CREATE, CTL_EOL);
1962 1.100 pk }
1963 1.100 pk
1964 1.36 cgd #ifdef DEBUG
1965 1.31 cgd /*
1966 1.31 cgd * Print out statistics on the current allocation of the buffer pool.
1967 1.31 cgd * Can be enabled to print out on every ``sync'' by setting "syncprt"
1968 1.31 cgd * in vfs_syscalls.c using sysctl.
1969 1.31 cgd */
1970 1.31 cgd void
1971 1.101 thorpej vfs_bufstats(void)
1972 1.31 cgd {
1973 1.183 ad int i, j, count;
1974 1.183 ad buf_t *bp;
1975 1.131 yamt struct bqueue *dp;
1976 1.261 christos int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1977 1.145 christos static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1978 1.71 thorpej
1979 1.31 cgd for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1980 1.31 cgd count = 0;
1981 1.261 christos memset(counts, 0, sizeof(counts));
1982 1.131 yamt TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1983 1.261 christos counts[bp->b_bufsize / PAGE_SIZE]++;
1984 1.31 cgd count++;
1985 1.31 cgd }
1986 1.48 christos printf("%s: total-%d", bname[i], count);
1987 1.261 christos for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1988 1.31 cgd if (counts[j] != 0)
1989 1.71 thorpej printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1990 1.48 christos printf("\n");
1991 1.31 cgd }
1992 1.31 cgd }
1993 1.36 cgd #endif /* DEBUG */
1994 1.149 yamt
1995 1.150 yamt /* ------------------------------ */
1996 1.150 yamt
1997 1.183 ad buf_t *
1998 1.183 ad getiobuf(struct vnode *vp, bool waitok)
1999 1.149 yamt {
2000 1.183 ad buf_t *bp;
2001 1.149 yamt
2002 1.183 ad bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
2003 1.183 ad if (bp == NULL)
2004 1.183 ad return bp;
2005 1.149 yamt
2006 1.183 ad buf_init(bp);
2007 1.149 yamt
2008 1.268 skrll if ((bp->b_vp = vp) != NULL) {
2009 1.268 skrll bp->b_objlock = vp->v_interlock;
2010 1.269 skrll } else {
2011 1.268 skrll KASSERT(bp->b_objlock == &buffer_lock);
2012 1.269 skrll }
2013 1.270 riastrad
2014 1.183 ad return bp;
2015 1.149 yamt }
2016 1.149 yamt
2017 1.149 yamt void
2018 1.183 ad putiobuf(buf_t *bp)
2019 1.149 yamt {
2020 1.149 yamt
2021 1.183 ad buf_destroy(bp);
2022 1.183 ad pool_cache_put(bufio_cache, bp);
2023 1.149 yamt }
2024 1.152 yamt
2025 1.152 yamt /*
2026 1.152 yamt * nestiobuf_iodone: b_iodone callback for nested buffers.
2027 1.152 yamt */
2028 1.152 yamt
2029 1.167 reinoud void
2030 1.183 ad nestiobuf_iodone(buf_t *bp)
2031 1.152 yamt {
2032 1.183 ad buf_t *mbp = bp->b_private;
2033 1.152 yamt int error;
2034 1.155 reinoud int donebytes;
2035 1.152 yamt
2036 1.155 reinoud KASSERT(bp->b_bcount <= bp->b_bufsize);
2037 1.152 yamt KASSERT(mbp != bp);
2038 1.155 reinoud
2039 1.195 reinoud error = bp->b_error;
2040 1.183 ad if (bp->b_error == 0 &&
2041 1.183 ad (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2042 1.155 reinoud /*
2043 1.155 reinoud * Not all got transfered, raise an error. We have no way to
2044 1.155 reinoud * propagate these conditions to mbp.
2045 1.155 reinoud */
2046 1.155 reinoud error = EIO;
2047 1.152 yamt }
2048 1.155 reinoud
2049 1.156 yamt donebytes = bp->b_bufsize;
2050 1.155 reinoud
2051 1.152 yamt putiobuf(bp);
2052 1.152 yamt nestiobuf_done(mbp, donebytes, error);
2053 1.152 yamt }
2054 1.152 yamt
2055 1.152 yamt /*
2056 1.152 yamt * nestiobuf_setup: setup a "nested" buffer.
2057 1.152 yamt *
2058 1.152 yamt * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2059 1.190 yamt * => 'bp' should be a buffer allocated by getiobuf.
2060 1.152 yamt * => 'offset' is a byte offset in the master buffer.
2061 1.152 yamt * => 'size' is a size in bytes of this nested buffer.
2062 1.152 yamt */
2063 1.152 yamt
2064 1.152 yamt void
2065 1.183 ad nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2066 1.152 yamt {
2067 1.272 jdolecek const int b_pass = mbp->b_flags & (B_READ|B_MEDIA_FLAGS);
2068 1.152 yamt struct vnode *vp = mbp->b_vp;
2069 1.152 yamt
2070 1.152 yamt KASSERT(mbp->b_bcount >= offset + size);
2071 1.152 yamt bp->b_vp = vp;
2072 1.210 hannken bp->b_dev = mbp->b_dev;
2073 1.183 ad bp->b_objlock = mbp->b_objlock;
2074 1.183 ad bp->b_cflags = BC_BUSY;
2075 1.272 jdolecek bp->b_flags = B_ASYNC | b_pass;
2076 1.152 yamt bp->b_iodone = nestiobuf_iodone;
2077 1.170 christos bp->b_data = (char *)mbp->b_data + offset;
2078 1.152 yamt bp->b_resid = bp->b_bcount = size;
2079 1.152 yamt bp->b_bufsize = bp->b_bcount;
2080 1.152 yamt bp->b_private = mbp;
2081 1.152 yamt BIO_COPYPRIO(bp, mbp);
2082 1.272 jdolecek if (BUF_ISWRITE(bp) && vp != NULL) {
2083 1.230 rmind mutex_enter(vp->v_interlock);
2084 1.183 ad vp->v_numoutput++;
2085 1.230 rmind mutex_exit(vp->v_interlock);
2086 1.152 yamt }
2087 1.152 yamt }
2088 1.152 yamt
2089 1.152 yamt /*
2090 1.152 yamt * nestiobuf_done: propagate completion to the master buffer.
2091 1.152 yamt *
2092 1.152 yamt * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2093 1.152 yamt * => 'error' is an errno(2) that 'donebytes' has been completed with.
2094 1.152 yamt */
2095 1.152 yamt
2096 1.152 yamt void
2097 1.183 ad nestiobuf_done(buf_t *mbp, int donebytes, int error)
2098 1.152 yamt {
2099 1.152 yamt
2100 1.152 yamt if (donebytes == 0) {
2101 1.152 yamt return;
2102 1.152 yamt }
2103 1.183 ad mutex_enter(mbp->b_objlock);
2104 1.152 yamt KASSERT(mbp->b_resid >= donebytes);
2105 1.152 yamt mbp->b_resid -= donebytes;
2106 1.195 reinoud if (error)
2107 1.195 reinoud mbp->b_error = error;
2108 1.152 yamt if (mbp->b_resid == 0) {
2109 1.226 reinoud if (mbp->b_error)
2110 1.226 reinoud mbp->b_resid = mbp->b_bcount;
2111 1.183 ad mutex_exit(mbp->b_objlock);
2112 1.183 ad biodone(mbp);
2113 1.183 ad } else
2114 1.183 ad mutex_exit(mbp->b_objlock);
2115 1.183 ad }
2116 1.183 ad
2117 1.183 ad void
2118 1.183 ad buf_init(buf_t *bp)
2119 1.183 ad {
2120 1.183 ad
2121 1.183 ad cv_init(&bp->b_busy, "biolock");
2122 1.183 ad cv_init(&bp->b_done, "biowait");
2123 1.183 ad bp->b_dev = NODEV;
2124 1.183 ad bp->b_error = 0;
2125 1.183 ad bp->b_flags = 0;
2126 1.204 reinoud bp->b_cflags = 0;
2127 1.183 ad bp->b_oflags = 0;
2128 1.183 ad bp->b_objlock = &buffer_lock;
2129 1.183 ad bp->b_iodone = NULL;
2130 1.202 ad bp->b_refcnt = 1;
2131 1.202 ad bp->b_dev = NODEV;
2132 1.202 ad bp->b_vnbufs.le_next = NOLIST;
2133 1.183 ad BIO_SETPRIO(bp, BPRIO_DEFAULT);
2134 1.183 ad }
2135 1.183 ad
2136 1.183 ad void
2137 1.183 ad buf_destroy(buf_t *bp)
2138 1.183 ad {
2139 1.183 ad
2140 1.183 ad cv_destroy(&bp->b_done);
2141 1.183 ad cv_destroy(&bp->b_busy);
2142 1.183 ad }
2143 1.183 ad
2144 1.183 ad int
2145 1.188 ad bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2146 1.183 ad {
2147 1.183 ad int error;
2148 1.183 ad
2149 1.183 ad KASSERT(mutex_owned(&bufcache_lock));
2150 1.183 ad
2151 1.183 ad if ((bp->b_cflags & BC_BUSY) != 0) {
2152 1.183 ad if (curlwp == uvm.pagedaemon_lwp)
2153 1.183 ad return EDEADLK;
2154 1.183 ad bp->b_cflags |= BC_WANTED;
2155 1.183 ad bref(bp);
2156 1.188 ad if (interlock != NULL)
2157 1.188 ad mutex_exit(interlock);
2158 1.183 ad if (intr) {
2159 1.183 ad error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2160 1.183 ad timo);
2161 1.183 ad } else {
2162 1.183 ad error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2163 1.183 ad timo);
2164 1.152 yamt }
2165 1.183 ad brele(bp);
2166 1.188 ad if (interlock != NULL)
2167 1.188 ad mutex_enter(interlock);
2168 1.183 ad if (error != 0)
2169 1.183 ad return error;
2170 1.183 ad return EPASSTHROUGH;
2171 1.152 yamt }
2172 1.183 ad bp->b_cflags |= BC_BUSY;
2173 1.183 ad
2174 1.183 ad return 0;
2175 1.152 yamt }
2176 1.274 chs
2177 1.274 chs /*
2178 1.274 chs * Nothing outside this file should really need to know about nbuf,
2179 1.274 chs * but a few things still want to read it, so give them a way to do that.
2180 1.274 chs */
2181 1.279 msaitoh u_int
2182 1.274 chs buf_nbuf(void)
2183 1.274 chs {
2184 1.274 chs
2185 1.274 chs return nbuf;
2186 1.274 chs }
2187