vfs_bio.c revision 1.106 1 /* $NetBSD: vfs_bio.c,v 1.106 2004/01/09 06:26:15 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.106 2004/01/09 06:26:15 tls Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 20
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118
119 /* Macros to clear/set/test flags. */
120 #define SET(t, f) (t) |= (f)
121 #define CLR(t, f) (t) &= ~(f)
122 #define ISSET(t, f) ((t) & (f))
123
124 /*
125 * Definitions for the buffer hash lists.
126 */
127 #define BUFHASH(dvp, lbn) \
128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 u_long bufhash;
131 #ifndef SOFTDEP
132 struct bio_ops bioops; /* I/O operation notification */
133 #endif
134
135 /*
136 * Insq/Remq for the buffer hash lists.
137 */
138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
139 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
140
141 /*
142 * Definitions for the buffer free lists.
143 */
144 #define BQUEUES 3 /* number of free buffer queues */
145
146 #define BQ_LOCKED 0 /* super-blocks &c */
147 #define BQ_LRU 1 /* lru, useful buffers */
148 #define BQ_AGE 2 /* rubbish */
149
150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 int needbuffer;
152
153 /*
154 * Buffer queue lock.
155 * Take this lock first if also taking some buffer's b_interlock.
156 */
157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158
159 /*
160 * Buffer pool for I/O buffers.
161 */
162 struct pool bufpool;
163
164 /* XXX - somewhat gross.. */
165 #if MAXBSIZE == 0x2000
166 #define NMEMPOOLS 4
167 #elif MAXBSIZE == 0x4000
168 #define NMEMPOOLS 5
169 #elif MAXBSIZE == 0x8000
170 #define NMEMPOOLS 6
171 #else
172 #define NMEMPOOLS 7
173 #endif
174
175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 #error update vfs_bio buffer memory parameters
178 #endif
179
180 /* Buffer memory pools */
181 static struct pool bmempools[NMEMPOOLS];
182
183 struct vm_map *buf_map;
184
185 /*
186 * Buffer memory pool allocator.
187 */
188 static void *
189 bufpool_page_alloc(struct pool *pp, int flags)
190 {
191 return (void *)uvm_km_kmemalloc1(buf_map,
192 uvm.kernel_object, MAXBSIZE, MAXBSIZE,
193 UVM_UNKNOWN_OFFSET,
194 (flags & PR_WAITOK) ? 0
195 : UVM_KMF_NOWAIT);
196 }
197
198 static void
199 bufpool_page_free(struct pool *pp, void *v)
200 {
201 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
202 }
203
204 static struct pool_allocator bufmempool_allocator = {
205 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
206 };
207
208 /* Buffer memory management variables */
209 u_long bufmem_valimit;
210 u_long bufmem_hiwater;
211 u_long bufmem_lowater;
212 u_long bufmem;
213
214 /*
215 * MD code can call this to set a hard limit on the amount
216 * of virtual memory used by the buffer cache.
217 */
218 int
219 buf_setvalimit(vsize_t sz)
220 {
221
222 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
223 if (sz < NMEMPOOLS * MAXBSIZE)
224 return EINVAL;
225
226 bufmem_valimit = sz;
227 return 0;
228 }
229
230 static int buf_trim(void);
231
232 /*
233 * bread()/breadn() helper.
234 */
235 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
236 struct ucred *, int);
237 int count_lock_queue(void);
238
239 /*
240 * Insq/Remq for the buffer free lists.
241 * Call with buffer queue locked.
242 */
243 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
244 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
245
246 #ifdef DEBUG
247 int debug_verify_freelist = 0;
248 static int checkfreelist(struct buf *bp, struct bqueues *dp)
249 {
250 struct buf *b;
251 TAILQ_FOREACH(b, dp, b_freelist) {
252 if (b == bp)
253 return 1;
254 }
255 return 0;
256 }
257 #endif
258
259 void
260 bremfree(struct buf *bp)
261 {
262 struct bqueues *dp = NULL;
263
264 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
265
266 KDASSERT(!debug_verify_freelist ||
267 checkfreelist(bp, &bufqueues[BQ_AGE]) ||
268 checkfreelist(bp, &bufqueues[BQ_LRU]) ||
269 checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
270
271 /*
272 * We only calculate the head of the freelist when removing
273 * the last element of the list as that is the only time that
274 * it is needed (e.g. to reset the tail pointer).
275 *
276 * NB: This makes an assumption about how tailq's are implemented.
277 *
278 * We break the TAILQ abstraction in order to efficiently remove a
279 * buffer from its freelist without having to know exactly which
280 * freelist it is on.
281 */
282 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
283 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
284 if (dp->tqh_last == &bp->b_freelist.tqe_next)
285 break;
286 if (dp == &bufqueues[BQUEUES])
287 panic("bremfree: lost tail");
288 }
289 TAILQ_REMOVE(dp, bp, b_freelist);
290 }
291
292 u_long
293 buf_memcalc(void)
294 {
295 u_long n;
296
297 /*
298 * Determine the upper bound of memory to use for buffers.
299 *
300 * - If bufpages is specified, use that as the number
301 * pages.
302 *
303 * - Otherwise, use bufcache as the percentage of
304 * physical memory.
305 */
306 if (bufpages != 0) {
307 n = bufpages;
308 } else {
309 if (bufcache < 5) {
310 printf("forcing bufcache %d -> 5", bufcache);
311 bufcache = 5;
312 }
313 if (bufcache > 95) {
314 printf("forcing bufcache %d -> 95", bufcache);
315 bufcache = 95;
316 }
317 n = physmem / 100 * bufcache;
318 }
319
320 n <<= PAGE_SHIFT;
321 if (bufmem_valimit != 0 && n > bufmem_valimit)
322 n = bufmem_valimit;
323
324 return (n);
325 }
326
327 /*
328 * Initialize buffers and hash links for buffers.
329 */
330 void
331 bufinit(void)
332 {
333 struct bqueues *dp;
334 int smallmem;
335 u_int i;
336
337 /*
338 * Initialize buffer cache memory parameters.
339 */
340 bufmem = 0;
341 bufmem_hiwater = buf_memcalc();
342 /* lowater is approx. 2% of memory (with bufcache=30) */
343 bufmem_lowater = (bufmem_hiwater >> 4);
344 if (bufmem_lowater < 64 * 1024)
345 /* Ensure a reasonable minimum value */
346 bufmem_lowater = 64 * 1024;
347
348 if (bufmem_valimit != 0) {
349 vaddr_t minaddr = 0, maxaddr;
350 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
351 bufmem_valimit, VM_MAP_PAGEABLE,
352 FALSE, 0);
353 if (buf_map == NULL)
354 panic("bufinit: cannot allocate submap");
355 } else
356 buf_map = kernel_map;
357
358 /*
359 * Initialize the buffer pools.
360 */
361 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
362
363 /* On "small" machines use small pool page sizes where possible */
364 smallmem = (physmem < atop(16*1024*1024));
365
366 for (i = 0; i < NMEMPOOLS; i++) {
367 struct pool_allocator *pa;
368 struct pool *pp = &bmempools[i];
369 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
370 char *name = malloc(8, M_TEMP, M_WAITOK);
371 snprintf(name, 8, "buf%dk", 1 << i);
372 pa = (size <= PAGE_SIZE && smallmem)
373 ? &pool_allocator_nointr
374 : &bufmempool_allocator;
375 pool_init(pp, size, 0, 0, 0, name, pa);
376 pool_setlowat(pp, 1);
377 }
378
379 /* Initialize the buffer queues */
380 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
381 TAILQ_INIT(dp);
382
383 /*
384 * Estimate hash table size based on the amount of memory we
385 * intend to use for the buffer cache. The average buffer
386 * size is dependent on our clients (i.e. filesystems).
387 *
388 * For now, use an empirical 3K per buffer.
389 */
390 nbuf = (bufmem_hiwater / 1024) / 3;
391 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
392 }
393
394 static int
395 buf_lotsfree(void)
396 {
397 return (bufmem < bufmem_lowater ||
398 (bufmem < bufmem_hiwater && uvmexp.free > 2*uvmexp.freetarg));
399 }
400
401 /*
402 * Return estimate of # of buffers we think need to be
403 * released to help resolve low memory conditions.
404 */
405 static int
406 buf_canrelease(void)
407 {
408 int n;
409
410 if (bufmem < bufmem_lowater)
411 return 0;
412
413 n = uvmexp.freetarg - uvmexp.free;
414 if (n < 0)
415 n = 0;
416 return 2*n;
417 }
418
419 /*
420 * Buffer memory allocation helper functions
421 */
422 static __inline u_long
423 buf_mempoolidx(u_long size)
424 {
425 u_int n = 0;
426
427 size -= 1;
428 size >>= MEMPOOL_INDEX_OFFSET;
429 while (size) {
430 size >>= 1;
431 n += 1;
432 }
433 if (n >= NMEMPOOLS)
434 panic("buf mem pool index %d", n);
435 return n;
436 }
437
438 static __inline u_long
439 buf_roundsize(u_long size)
440 {
441 /* Round up to nearest power of 2 */
442 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
443 }
444
445 static __inline caddr_t
446 buf_malloc(size_t size)
447 {
448 u_int n = buf_mempoolidx(size);
449 caddr_t addr;
450 int s;
451
452 while (1) {
453 addr = pool_get(&bmempools[n], PR_NOWAIT);
454 if (addr != NULL)
455 break;
456
457 /* No memory, see if we can free some. If so, try again */
458 if (buf_drain(1) > 0)
459 continue;
460
461 /* Wait for buffers to arrive on the LRU queue */
462 s = splbio();
463 simple_lock(&bqueue_slock);
464 needbuffer = 1;
465 ltsleep(&needbuffer, PNORELOCK | (PRIBIO+1),
466 "buf_malloc", 0, &bqueue_slock);
467 splx(s);
468 }
469
470 return addr;
471 }
472
473 static void
474 buf_mrelease(caddr_t addr, size_t size)
475 {
476
477 pool_put(&bmempools[buf_mempoolidx(size)], addr);
478 pool_reclaim(&bmempools[buf_mempoolidx(size)]);
479 }
480
481
482 static __inline struct buf *
483 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
484 int async)
485 {
486 struct buf *bp;
487 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
488 struct proc *p = l->l_proc;
489
490 bp = getblk(vp, blkno, size, 0, 0);
491
492 #ifdef DIAGNOSTIC
493 if (bp == NULL) {
494 panic("bio_doread: no such buf");
495 }
496 #endif
497
498 /*
499 * If buffer does not have data valid, start a read.
500 * Note that if buffer is B_INVAL, getblk() won't return it.
501 * Therefore, it's valid if its I/O has completed or been delayed.
502 */
503 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
504 /* Start I/O for the buffer. */
505 SET(bp->b_flags, B_READ | async);
506 VOP_STRATEGY(bp);
507
508 /* Pay for the read. */
509 p->p_stats->p_ru.ru_inblock++;
510 } else if (async) {
511 brelse(bp);
512 }
513
514 return (bp);
515 }
516
517 /*
518 * Read a disk block.
519 * This algorithm described in Bach (p.54).
520 */
521 int
522 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
523 struct buf **bpp)
524 {
525 struct buf *bp;
526
527 /* Get buffer for block. */
528 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
529
530 /* Wait for the read to complete, and return result. */
531 return (biowait(bp));
532 }
533
534 /*
535 * Read-ahead multiple disk blocks. The first is sync, the rest async.
536 * Trivial modification to the breada algorithm presented in Bach (p.55).
537 */
538 int
539 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
540 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
541 {
542 struct buf *bp;
543 int i;
544
545 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
546
547 /*
548 * For each of the read-ahead blocks, start a read, if necessary.
549 */
550 for (i = 0; i < nrablks; i++) {
551 /* If it's in the cache, just go on to next one. */
552 if (incore(vp, rablks[i]))
553 continue;
554
555 /* Get a buffer for the read-ahead block */
556 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
557 }
558
559 /* Otherwise, we had to start a read for it; wait until it's valid. */
560 return (biowait(bp));
561 }
562
563 /*
564 * Read with single-block read-ahead. Defined in Bach (p.55), but
565 * implemented as a call to breadn().
566 * XXX for compatibility with old file systems.
567 */
568 int
569 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
570 int rabsize, struct ucred *cred, struct buf **bpp)
571 {
572
573 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
574 }
575
576 /*
577 * Block write. Described in Bach (p.56)
578 */
579 int
580 bwrite(struct buf *bp)
581 {
582 int rv, sync, wasdelayed, s;
583 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
584 struct proc *p = l->l_proc;
585 struct vnode *vp;
586 struct mount *mp;
587
588 KASSERT(ISSET(bp->b_flags, B_BUSY));
589
590 vp = bp->b_vp;
591 if (vp != NULL) {
592 if (vp->v_type == VBLK)
593 mp = vp->v_specmountpoint;
594 else
595 mp = vp->v_mount;
596 } else {
597 mp = NULL;
598 }
599
600 /*
601 * Remember buffer type, to switch on it later. If the write was
602 * synchronous, but the file system was mounted with MNT_ASYNC,
603 * convert it to a delayed write.
604 * XXX note that this relies on delayed tape writes being converted
605 * to async, not sync writes (which is safe, but ugly).
606 */
607 sync = !ISSET(bp->b_flags, B_ASYNC);
608 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
609 bdwrite(bp);
610 return (0);
611 }
612
613 /*
614 * Collect statistics on synchronous and asynchronous writes.
615 * Writes to block devices are charged to their associated
616 * filesystem (if any).
617 */
618 if (mp != NULL) {
619 if (sync)
620 mp->mnt_stat.f_syncwrites++;
621 else
622 mp->mnt_stat.f_asyncwrites++;
623 }
624
625 s = splbio();
626 simple_lock(&bp->b_interlock);
627
628 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
629
630 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
631
632 /*
633 * Pay for the I/O operation and make sure the buf is on the correct
634 * vnode queue.
635 */
636 if (wasdelayed)
637 reassignbuf(bp, bp->b_vp);
638 else
639 p->p_stats->p_ru.ru_oublock++;
640
641 /* Initiate disk write. Make sure the appropriate party is charged. */
642 V_INCR_NUMOUTPUT(bp->b_vp);
643 simple_unlock(&bp->b_interlock);
644 splx(s);
645
646 VOP_STRATEGY(bp);
647
648 if (sync) {
649 /* If I/O was synchronous, wait for it to complete. */
650 rv = biowait(bp);
651
652 /* Release the buffer. */
653 brelse(bp);
654
655 return (rv);
656 } else {
657 return (0);
658 }
659 }
660
661 int
662 vn_bwrite(void *v)
663 {
664 struct vop_bwrite_args *ap = v;
665
666 return (bwrite(ap->a_bp));
667 }
668
669 /*
670 * Delayed write.
671 *
672 * The buffer is marked dirty, but is not queued for I/O.
673 * This routine should be used when the buffer is expected
674 * to be modified again soon, typically a small write that
675 * partially fills a buffer.
676 *
677 * NB: magnetic tapes cannot be delayed; they must be
678 * written in the order that the writes are requested.
679 *
680 * Described in Leffler, et al. (pp. 208-213).
681 */
682 void
683 bdwrite(struct buf *bp)
684 {
685 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
686 struct proc *p = l->l_proc;
687 const struct bdevsw *bdev;
688 int s;
689
690 /* If this is a tape block, write the block now. */
691 bdev = bdevsw_lookup(bp->b_dev);
692 if (bdev != NULL && bdev->d_type == D_TAPE) {
693 bawrite(bp);
694 return;
695 }
696
697 /*
698 * If the block hasn't been seen before:
699 * (1) Mark it as having been seen,
700 * (2) Charge for the write,
701 * (3) Make sure it's on its vnode's correct block list.
702 */
703 s = splbio();
704 simple_lock(&bp->b_interlock);
705
706 KASSERT(ISSET(bp->b_flags, B_BUSY));
707
708 if (!ISSET(bp->b_flags, B_DELWRI)) {
709 SET(bp->b_flags, B_DELWRI);
710 p->p_stats->p_ru.ru_oublock++;
711 reassignbuf(bp, bp->b_vp);
712 }
713
714 /* Otherwise, the "write" is done, so mark and release the buffer. */
715 CLR(bp->b_flags, B_DONE);
716 simple_unlock(&bp->b_interlock);
717 splx(s);
718
719 brelse(bp);
720 }
721
722 /*
723 * Asynchronous block write; just an asynchronous bwrite().
724 */
725 void
726 bawrite(struct buf *bp)
727 {
728 int s;
729
730 s = splbio();
731 simple_lock(&bp->b_interlock);
732
733 KASSERT(ISSET(bp->b_flags, B_BUSY));
734
735 SET(bp->b_flags, B_ASYNC);
736 simple_unlock(&bp->b_interlock);
737 splx(s);
738 VOP_BWRITE(bp);
739 }
740
741 /*
742 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
743 * Call at splbio() and with the buffer interlock locked.
744 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
745 */
746 void
747 bdirty(struct buf *bp)
748 {
749 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
750 struct proc *p = l->l_proc;
751
752 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
753 KASSERT(ISSET(bp->b_flags, B_BUSY));
754
755 CLR(bp->b_flags, B_AGE);
756
757 if (!ISSET(bp->b_flags, B_DELWRI)) {
758 SET(bp->b_flags, B_DELWRI);
759 p->p_stats->p_ru.ru_oublock++;
760 reassignbuf(bp, bp->b_vp);
761 }
762 }
763
764 /*
765 * Release a buffer on to the free lists.
766 * Described in Bach (p. 46).
767 */
768 void
769 brelse(struct buf *bp)
770 {
771 struct bqueues *bufq;
772 int s;
773
774 /* Block disk interrupts. */
775 s = splbio();
776 simple_lock(&bqueue_slock);
777 simple_lock(&bp->b_interlock);
778
779 KASSERT(ISSET(bp->b_flags, B_BUSY));
780 KASSERT(!ISSET(bp->b_flags, B_CALL));
781
782 /* Wake up any processes waiting for any buffer to become free. */
783 if (needbuffer) {
784 needbuffer = 0;
785 wakeup(&needbuffer);
786 }
787
788 /* Wake up any proceeses waiting for _this_ buffer to become free. */
789 if (ISSET(bp->b_flags, B_WANTED)) {
790 CLR(bp->b_flags, B_WANTED|B_AGE);
791 wakeup(bp);
792 }
793
794 /*
795 * Determine which queue the buffer should be on, then put it there.
796 */
797
798 /* If it's locked, don't report an error; try again later. */
799 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
800 CLR(bp->b_flags, B_ERROR);
801
802 /* If it's not cacheable, or an error, mark it invalid. */
803 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
804 SET(bp->b_flags, B_INVAL);
805
806 if (ISSET(bp->b_flags, B_VFLUSH)) {
807 /*
808 * This is a delayed write buffer that was just flushed to
809 * disk. It is still on the LRU queue. If it's become
810 * invalid, then we need to move it to a different queue;
811 * otherwise leave it in its current position.
812 */
813 CLR(bp->b_flags, B_VFLUSH);
814 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
815 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
816 goto already_queued;
817 } else {
818 bremfree(bp);
819 }
820 }
821
822 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
823 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
824 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
825
826 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
827 /*
828 * If it's invalid or empty, dissociate it from its vnode
829 * and put on the head of the appropriate queue.
830 */
831 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
832 (*bioops.io_deallocate)(bp);
833 CLR(bp->b_flags, B_DONE|B_DELWRI);
834 if (bp->b_vp) {
835 reassignbuf(bp, bp->b_vp);
836 brelvp(bp);
837 }
838 if (bp->b_bufsize <= 0)
839 /* no data */
840 goto already_queued;
841 else
842 /* invalid data */
843 bufq = &bufqueues[BQ_AGE];
844 binsheadfree(bp, bufq);
845 } else {
846 /*
847 * It has valid data. Put it on the end of the appropriate
848 * queue, so that it'll stick around for as long as possible.
849 * If buf is AGE, but has dependencies, must put it on last
850 * bufqueue to be scanned, ie LRU. This protects against the
851 * livelock where BQ_AGE only has buffers with dependencies,
852 * and we thus never get to the dependent buffers in BQ_LRU.
853 */
854 if (ISSET(bp->b_flags, B_LOCKED))
855 /* locked in core */
856 bufq = &bufqueues[BQ_LOCKED];
857 else if (!ISSET(bp->b_flags, B_AGE))
858 /* valid data */
859 bufq = &bufqueues[BQ_LRU];
860 else {
861 /* stale but valid data */
862 int has_deps;
863
864 if (LIST_FIRST(&bp->b_dep) != NULL &&
865 bioops.io_countdeps)
866 has_deps = (*bioops.io_countdeps)(bp, 0);
867 else
868 has_deps = 0;
869 bufq = has_deps ? &bufqueues[BQ_LRU] :
870 &bufqueues[BQ_AGE];
871 }
872 binstailfree(bp, bufq);
873 }
874
875 already_queued:
876 /* Unlock the buffer. */
877 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
878 SET(bp->b_flags, B_CACHE);
879
880 /* Allow disk interrupts. */
881 simple_unlock(&bp->b_interlock);
882 simple_unlock(&bqueue_slock);
883 if (bp->b_bufsize <= 0) {
884 #ifdef DEBUG
885 memset((char *)bp, 0, sizeof(*bp));
886 #endif
887 pool_put(&bufpool, bp);
888 }
889 splx(s);
890 }
891
892 /*
893 * Determine if a block is in the cache.
894 * Just look on what would be its hash chain. If it's there, return
895 * a pointer to it, unless it's marked invalid. If it's marked invalid,
896 * we normally don't return the buffer, unless the caller explicitly
897 * wants us to.
898 */
899 struct buf *
900 incore(struct vnode *vp, daddr_t blkno)
901 {
902 struct buf *bp;
903
904 /* Search hash chain */
905 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
906 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
907 !ISSET(bp->b_flags, B_INVAL))
908 return (bp);
909 }
910
911 return (NULL);
912 }
913
914 /*
915 * Get a block of requested size that is associated with
916 * a given vnode and block offset. If it is found in the
917 * block cache, mark it as having been found, make it busy
918 * and return it. Otherwise, return an empty block of the
919 * correct size. It is up to the caller to insure that the
920 * cached blocks be of the correct size.
921 */
922 struct buf *
923 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
924 {
925 struct buf *bp;
926 int s, err;
927 int preserve;
928
929 start:
930 s = splbio();
931 simple_lock(&bqueue_slock);
932 bp = incore(vp, blkno);
933 if (bp != NULL) {
934 simple_lock(&bp->b_interlock);
935 if (ISSET(bp->b_flags, B_BUSY)) {
936 simple_unlock(&bqueue_slock);
937 if (curproc == uvm.pagedaemon_proc) {
938 simple_unlock(&bp->b_interlock);
939 splx(s);
940 return NULL;
941 }
942 SET(bp->b_flags, B_WANTED);
943 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
944 "getblk", slptimeo, &bp->b_interlock);
945 splx(s);
946 if (err)
947 return (NULL);
948 goto start;
949 }
950 #ifdef DIAGNOSTIC
951 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
952 bp->b_bcount < size && vp->v_type != VBLK)
953 panic("getblk: block size invariant failed");
954 #endif
955 SET(bp->b_flags, B_BUSY);
956 bremfree(bp);
957 preserve = 1;
958 } else {
959 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
960 simple_unlock(&bqueue_slock);
961 splx(s);
962 goto start;
963 }
964
965 binshash(bp, BUFHASH(vp, blkno));
966 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
967 bgetvp(vp, bp);
968 preserve = 0;
969 }
970 simple_unlock(&bp->b_interlock);
971 simple_unlock(&bqueue_slock);
972 splx(s);
973 /*
974 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
975 * if we re-size buffers here.
976 */
977 if (ISSET(bp->b_flags, B_LOCKED)) {
978 KASSERT(bp->b_bufsize >= size);
979 } else {
980 allocbuf(bp, size, preserve);
981 }
982 return (bp);
983 }
984
985 /*
986 * Get an empty, disassociated buffer of given size.
987 */
988 struct buf *
989 geteblk(int size)
990 {
991 struct buf *bp;
992 int s;
993
994 s = splbio();
995 simple_lock(&bqueue_slock);
996 while ((bp = getnewbuf(0, 0, 0)) == 0)
997 ;
998
999 SET(bp->b_flags, B_INVAL);
1000 binshash(bp, &invalhash);
1001 simple_unlock(&bqueue_slock);
1002 simple_unlock(&bp->b_interlock);
1003 splx(s);
1004 allocbuf(bp, size, 0);
1005 return (bp);
1006 }
1007
1008 /*
1009 * Expand or contract the actual memory allocated to a buffer.
1010 *
1011 * If the buffer shrinks, data is lost, so it's up to the
1012 * caller to have written it out *first*; this routine will not
1013 * start a write. If the buffer grows, it's the callers
1014 * responsibility to fill out the buffer's additional contents.
1015 */
1016 void
1017 allocbuf(struct buf *bp, int size, int preserve)
1018 {
1019 vsize_t oldsize, desired_size;
1020 caddr_t addr;
1021 int s, delta;
1022
1023 desired_size = buf_roundsize(size);
1024 if (desired_size > MAXBSIZE)
1025 printf("allocbuf: buffer larger than MAXBSIZE requested");
1026
1027 bp->b_bcount = size;
1028
1029 oldsize = bp->b_bufsize;
1030 if (oldsize == desired_size)
1031 return;
1032
1033 /*
1034 * If we want a buffer of a different size, re-allocate the
1035 * buffer's memory; copy old content only if needed.
1036 */
1037 addr = buf_malloc(desired_size);
1038 if (preserve)
1039 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1040 if (bp->b_data != NULL)
1041 buf_mrelease(bp->b_data, oldsize);
1042 bp->b_data = addr;
1043 bp->b_bufsize = desired_size;
1044
1045 /*
1046 * Update overall buffer memory counter (protected by bqueue_slock)
1047 */
1048 delta = (long)desired_size - (long)oldsize;
1049
1050 s = splbio();
1051 simple_lock(&bqueue_slock);
1052 if ((bufmem += delta) > bufmem_hiwater) {
1053 /*
1054 * Need to trim overall memory usage.
1055 */
1056 while (buf_canrelease()) {
1057 if (buf_trim() == 0)
1058 break;
1059 }
1060 }
1061
1062 simple_unlock(&bqueue_slock);
1063 splx(s);
1064 }
1065
1066 /*
1067 * Find a buffer which is available for use.
1068 * Select something from a free list.
1069 * Preference is to AGE list, then LRU list.
1070 *
1071 * Called at splbio and with buffer queues locked.
1072 * Return buffer locked.
1073 */
1074 struct buf *
1075 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1076 {
1077 struct buf *bp;
1078
1079 start:
1080 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1081
1082 /*
1083 * Get a new buffer from the pool; but use NOWAIT because
1084 * we have the buffer queues locked.
1085 */
1086 if (buf_lotsfree() && !from_bufq &&
1087 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1088 memset((char *)bp, 0, sizeof(*bp));
1089 BUF_INIT(bp);
1090 bp->b_dev = NODEV;
1091 bp->b_vnbufs.le_next = NOLIST;
1092 bp->b_flags = B_BUSY;
1093 simple_lock(&bp->b_interlock);
1094 return (bp);
1095 }
1096
1097 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1098 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1099 simple_lock(&bp->b_interlock);
1100 bremfree(bp);
1101 } else {
1102 /* wait for a free buffer of any kind */
1103 needbuffer = 1;
1104 ltsleep(&needbuffer, slpflag|(PRIBIO+1),
1105 "getnewbuf", slptimeo, &bqueue_slock);
1106 return (NULL);
1107 }
1108
1109 #ifdef DIAGNOSTIC
1110 if (bp->b_bufsize <= 0)
1111 panic("buffer %p: on queue but empty", bp);
1112 #endif
1113
1114 if (ISSET(bp->b_flags, B_VFLUSH)) {
1115 /*
1116 * This is a delayed write buffer being flushed to disk. Make
1117 * sure it gets aged out of the queue when it's finished, and
1118 * leave it off the LRU queue.
1119 */
1120 CLR(bp->b_flags, B_VFLUSH);
1121 SET(bp->b_flags, B_AGE);
1122 simple_unlock(&bp->b_interlock);
1123 goto start;
1124 }
1125
1126 /* Buffer is no longer on free lists. */
1127 SET(bp->b_flags, B_BUSY);
1128
1129 /*
1130 * If buffer was a delayed write, start it and return NULL
1131 * (since we might sleep while starting the write).
1132 */
1133 if (ISSET(bp->b_flags, B_DELWRI)) {
1134 /*
1135 * This buffer has gone through the LRU, so make sure it gets
1136 * reused ASAP.
1137 */
1138 SET(bp->b_flags, B_AGE);
1139 simple_unlock(&bp->b_interlock);
1140 simple_unlock(&bqueue_slock);
1141 bawrite(bp);
1142 simple_lock(&bqueue_slock);
1143 return (NULL);
1144 }
1145
1146 /* disassociate us from our vnode, if we had one... */
1147 if (bp->b_vp)
1148 brelvp(bp);
1149
1150 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1151 (*bioops.io_deallocate)(bp);
1152
1153 /* clear out various other fields */
1154 bp->b_flags = B_BUSY;
1155 bp->b_dev = NODEV;
1156 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1157 bp->b_iodone = 0;
1158 bp->b_error = 0;
1159 bp->b_resid = 0;
1160 bp->b_bcount = 0;
1161
1162 bremhash(bp);
1163 return (bp);
1164 }
1165
1166 /*
1167 * Attempt to free an aged buffer off the queues.
1168 * Called at splbio and with queue lock held.
1169 * Returns the amount of buffer memory freed.
1170 */
1171 int
1172 buf_trim(void)
1173 {
1174 struct buf *bp;
1175 long size = 0;
1176 int wanted;
1177
1178 /* Instruct getnewbuf() to get buffers off the queues */
1179 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1180 return 0;
1181
1182 wanted = ISSET(bp->b_flags, B_WANTED);
1183 simple_unlock(&bp->b_interlock);
1184 if (wanted) {
1185 printf("buftrim: got WANTED buffer\n");
1186 SET(bp->b_flags, B_INVAL);
1187 binshash(bp, &invalhash);
1188 simple_unlock(&bqueue_slock);
1189 goto out;
1190 }
1191 size = bp->b_bufsize;
1192 bufmem -= size;
1193 simple_unlock(&bqueue_slock);
1194 if (size > 0) {
1195 buf_mrelease(bp->b_data, size);
1196 bp->b_bcount = bp->b_bufsize = 0;
1197 }
1198
1199 out:
1200 /* brelse() will return the buffer to the global buffer pool */
1201 brelse(bp);
1202 simple_lock(&bqueue_slock);
1203 return size;
1204 }
1205
1206 int
1207 buf_drain(int n)
1208 {
1209 int s, size = 0;
1210
1211 /* If not asked for a specific amount, make our own estimate */
1212 if (n == 0)
1213 n = buf_canrelease();
1214
1215 s = splbio();
1216 simple_lock(&bqueue_slock);
1217 while (n-- > 0 && bufmem > bufmem_lowater)
1218 size += buf_trim();
1219 simple_unlock(&bqueue_slock);
1220 splx(s);
1221 return size;
1222 }
1223
1224 /*
1225 * Wait for operations on the buffer to complete.
1226 * When they do, extract and return the I/O's error value.
1227 */
1228 int
1229 biowait(struct buf *bp)
1230 {
1231 int s, error;
1232
1233 s = splbio();
1234 simple_lock(&bp->b_interlock);
1235 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1236 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1237
1238 /* check for interruption of I/O (e.g. via NFS), then errors. */
1239 if (ISSET(bp->b_flags, B_EINTR)) {
1240 CLR(bp->b_flags, B_EINTR);
1241 error = EINTR;
1242 } else if (ISSET(bp->b_flags, B_ERROR))
1243 error = bp->b_error ? bp->b_error : EIO;
1244 else
1245 error = 0;
1246
1247 simple_unlock(&bp->b_interlock);
1248 splx(s);
1249 return (error);
1250 }
1251
1252 /*
1253 * Mark I/O complete on a buffer.
1254 *
1255 * If a callback has been requested, e.g. the pageout
1256 * daemon, do so. Otherwise, awaken waiting processes.
1257 *
1258 * [ Leffler, et al., says on p.247:
1259 * "This routine wakes up the blocked process, frees the buffer
1260 * for an asynchronous write, or, for a request by the pagedaemon
1261 * process, invokes a procedure specified in the buffer structure" ]
1262 *
1263 * In real life, the pagedaemon (or other system processes) wants
1264 * to do async stuff to, and doesn't want the buffer brelse()'d.
1265 * (for swap pager, that puts swap buffers on the free lists (!!!),
1266 * for the vn device, that puts malloc'd buffers on the free lists!)
1267 */
1268 void
1269 biodone(struct buf *bp)
1270 {
1271 int s = splbio();
1272
1273 simple_lock(&bp->b_interlock);
1274 if (ISSET(bp->b_flags, B_DONE))
1275 panic("biodone already");
1276 SET(bp->b_flags, B_DONE); /* note that it's done */
1277
1278 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1279 (*bioops.io_complete)(bp);
1280
1281 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1282 vwakeup(bp);
1283
1284 /*
1285 * If necessary, call out. Unlock the buffer before calling
1286 * iodone() as the buffer isn't valid any more when it return.
1287 */
1288 if (ISSET(bp->b_flags, B_CALL)) {
1289 CLR(bp->b_flags, B_CALL); /* but note callout done */
1290 simple_unlock(&bp->b_interlock);
1291 (*bp->b_iodone)(bp);
1292 } else {
1293 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1294 simple_unlock(&bp->b_interlock);
1295 brelse(bp);
1296 } else { /* or just wakeup the buffer */
1297 CLR(bp->b_flags, B_WANTED);
1298 wakeup(bp);
1299 simple_unlock(&bp->b_interlock);
1300 }
1301 }
1302
1303 splx(s);
1304 }
1305
1306 /*
1307 * Return a count of buffers on the "locked" queue.
1308 */
1309 int
1310 count_lock_queue(void)
1311 {
1312 struct buf *bp;
1313 int n = 0;
1314
1315 simple_lock(&bqueue_slock);
1316 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1317 n++;
1318 simple_unlock(&bqueue_slock);
1319 return (n);
1320 }
1321
1322 /*
1323 * Wait for all buffers to complete I/O
1324 * Return the number of "stuck" buffers.
1325 */
1326 int
1327 buf_syncwait(void)
1328 {
1329 struct buf *bp;
1330 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1331
1332 dcount = 10000;
1333 for (iter = 0; iter < 20;) {
1334 s = splbio();
1335 simple_lock(&bqueue_slock);
1336 nbusy = 0;
1337 for (ihash = 0; ihash < bufhash+1; ihash++) {
1338 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1339 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1340 nbusy++;
1341 /*
1342 * With soft updates, some buffers that are
1343 * written will be remarked as dirty until other
1344 * buffers are written.
1345 */
1346 if (bp->b_vp && bp->b_vp->v_mount
1347 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1348 && (bp->b_flags & B_DELWRI)) {
1349 simple_lock(&bp->b_interlock);
1350 bremfree(bp);
1351 bp->b_flags |= B_BUSY;
1352 nbusy++;
1353 simple_unlock(&bp->b_interlock);
1354 simple_unlock(&bqueue_slock);
1355 bawrite(bp);
1356 if (dcount-- <= 0) {
1357 printf("softdep ");
1358 goto fail;
1359 }
1360 simple_lock(&bqueue_slock);
1361 }
1362 }
1363 }
1364
1365 simple_unlock(&bqueue_slock);
1366 splx(s);
1367
1368 if (nbusy == 0)
1369 break;
1370 if (nbusy_prev == 0)
1371 nbusy_prev = nbusy;
1372 printf("%d ", nbusy);
1373 tsleep(&nbusy, PRIBIO, "bflush",
1374 (iter == 0) ? 1 : hz / 25 * iter);
1375 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1376 iter++;
1377 else
1378 nbusy_prev = nbusy;
1379 }
1380
1381 if (nbusy) {
1382 fail:;
1383 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1384 printf("giving up\nPrinting vnodes for busy buffers\n");
1385 for (ihash = 0; ihash < bufhash+1; ihash++) {
1386 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1387 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1388 vprint(NULL, bp->b_vp);
1389 }
1390 }
1391 #endif
1392 }
1393
1394 return nbusy;
1395 }
1396
1397 #define KERN_BUFSLOP 20
1398 static int
1399 sysctl_dobuf(SYSCTLFN_ARGS)
1400 {
1401 struct buf *bp;
1402 char *dp;
1403 u_int i, elem_size;
1404 size_t len, buflen, needed;
1405 int error, s;
1406
1407 dp = oldp;
1408 len = buflen = oldp != NULL ? *oldlenp : 0;
1409 error = 0;
1410 needed = 0;
1411 elem_size = sizeof(struct buf);
1412
1413 s = splbio();
1414 simple_lock(&bqueue_slock);
1415 for (i = 0; i < BQUEUES; i++) {
1416 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1417 if (len >= sizeof(elem_size)) {
1418 error = copyout(bp, dp, elem_size);
1419 if (error)
1420 goto cleanup;
1421 dp += elem_size;
1422 len -= elem_size;
1423 }
1424 needed += elem_size;
1425 }
1426 }
1427 cleanup:
1428 simple_unlock(&bqueue_slock);
1429 splx(s);
1430
1431 if (oldp != NULL) {
1432 *oldlenp = (char *)dp - (char *)oldp;
1433 if (needed > *oldlenp)
1434 error = ENOMEM;
1435 } else {
1436 needed += KERN_BUFSLOP;
1437 *oldlenp = needed;
1438 }
1439
1440 return (error);
1441 }
1442
1443 static int sysctlnum_bufcache, sysctlnum_bufmemhiwater, sysctlnum_bufmemlowater;
1444
1445 static int
1446 sysctl_bufvm_update(SYSCTLFN_ARGS)
1447 {
1448 int t, error;
1449 struct sysctlnode node;
1450
1451 node = *rnode;
1452 node.sysctl_data = &t;
1453 t = *(int*)rnode->sysctl_data;
1454 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1455 if (error || newp == NULL)
1456 return (error);
1457
1458 if (rnode->sysctl_num == sysctlnum_bufcache) {
1459 if (t < 0 || t > 100)
1460 return (EINVAL);
1461 bufcache = t;
1462 bufmem_hiwater = buf_memcalc();
1463 bufmem_lowater = (bufmem_hiwater >> 4);
1464 } else if (rnode->sysctl_num == sysctlnum_bufmemlowater) {
1465 bufmem_lowater = t;
1466 } else if (rnode->sysctl_num == sysctlnum_bufmemhiwater) {
1467 bufmem_hiwater = t;
1468 } else
1469 return (EINVAL);
1470
1471 /* Drain until below new high water mark */
1472 while ((t = bufmem - bufmem_hiwater) >= 0) {
1473 if (buf_drain(t / (2*1024)) <= 0)
1474 break;
1475 }
1476
1477 return 0;
1478 }
1479
1480 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1481 {
1482
1483 sysctl_createv(SYSCTL_PERMANENT,
1484 CTLTYPE_NODE, "kern", NULL,
1485 NULL, 0, NULL, 0,
1486 CTL_KERN, CTL_EOL);
1487 sysctl_createv(SYSCTL_PERMANENT,
1488 CTLTYPE_NODE, "buf", NULL,
1489 sysctl_dobuf, 0, NULL, 0,
1490 CTL_KERN, KERN_BUF, CTL_EOL);
1491 }
1492
1493 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1494 {
1495 struct sysctlnode *rnode;
1496
1497 sysctl_createv(SYSCTL_PERMANENT,
1498 CTLTYPE_NODE, "vm", NULL,
1499 NULL, 0, NULL, 0,
1500 CTL_VM, CTL_EOL);
1501
1502 rnode = NULL;
1503 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
1504 CTLTYPE_INT, "bufcache", &rnode,
1505 sysctl_bufvm_update, 0, &bufcache, 0,
1506 CTL_VM, CTL_CREATE, CTL_EOL) == 0)
1507 sysctlnum_bufcache = rnode->sysctl_num;
1508
1509 rnode = NULL;
1510 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
1511 CTLTYPE_INT, "bufmem_lowater", &rnode,
1512 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1513 CTL_VM, CTL_CREATE, CTL_EOL) == 0)
1514 sysctlnum_bufmemlowater = rnode->sysctl_num;
1515
1516 rnode = NULL;
1517 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
1518 CTLTYPE_INT, "bufmem_hiwater", &rnode,
1519 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1520 CTL_VM, CTL_CREATE, CTL_EOL) == 0)
1521 sysctlnum_bufmemhiwater = rnode->sysctl_num;
1522 }
1523
1524 #ifdef DEBUG
1525 /*
1526 * Print out statistics on the current allocation of the buffer pool.
1527 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1528 * in vfs_syscalls.c using sysctl.
1529 */
1530 void
1531 vfs_bufstats(void)
1532 {
1533 int s, i, j, count;
1534 struct buf *bp;
1535 struct bqueues *dp;
1536 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1537 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1538
1539 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1540 count = 0;
1541 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1542 counts[j] = 0;
1543 s = splbio();
1544 TAILQ_FOREACH(bp, dp, b_freelist) {
1545 counts[bp->b_bufsize/PAGE_SIZE]++;
1546 count++;
1547 }
1548 splx(s);
1549 printf("%s: total-%d", bname[i], count);
1550 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1551 if (counts[j] != 0)
1552 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1553 printf("\n");
1554 }
1555 }
1556 #endif /* DEBUG */
1557