vfs_bio.c revision 1.115 1 /* $NetBSD: vfs_bio.c,v 1.115 2004/02/11 17:36:31 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.115 2004/02/11 17:36:31 tls Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118
119 /* Macros to clear/set/test flags. */
120 #define SET(t, f) (t) |= (f)
121 #define CLR(t, f) (t) &= ~(f)
122 #define ISSET(t, f) ((t) & (f))
123
124 /*
125 * Definitions for the buffer hash lists.
126 */
127 #define BUFHASH(dvp, lbn) \
128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 u_long bufhash;
131 #ifndef SOFTDEP
132 struct bio_ops bioops; /* I/O operation notification */
133 #endif
134
135 /*
136 * Insq/Remq for the buffer hash lists.
137 */
138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
139 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
140
141 /*
142 * Definitions for the buffer free lists.
143 */
144 #define BQUEUES 3 /* number of free buffer queues */
145
146 #define BQ_LOCKED 0 /* super-blocks &c */
147 #define BQ_LRU 1 /* lru, useful buffers */
148 #define BQ_AGE 2 /* rubbish */
149
150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 int needbuffer;
152
153 /*
154 * Buffer queue lock.
155 * Take this lock first if also taking some buffer's b_interlock.
156 */
157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158
159 /*
160 * Buffer pool for I/O buffers.
161 */
162 struct pool bufpool;
163
164 /* XXX - somewhat gross.. */
165 #if MAXBSIZE == 0x2000
166 #define NMEMPOOLS 4
167 #elif MAXBSIZE == 0x4000
168 #define NMEMPOOLS 5
169 #elif MAXBSIZE == 0x8000
170 #define NMEMPOOLS 6
171 #else
172 #define NMEMPOOLS 7
173 #endif
174
175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 #error update vfs_bio buffer memory parameters
178 #endif
179
180 /* Buffer memory pools */
181 static struct pool bmempools[NMEMPOOLS];
182
183 struct vm_map *buf_map;
184
185 /*
186 * Buffer memory pool allocator.
187 */
188 static void *
189 bufpool_page_alloc(struct pool *pp, int flags)
190 {
191
192 return (void *)uvm_km_kmemalloc1(buf_map,
193 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195 }
196
197 static void
198 bufpool_page_free(struct pool *pp, void *v)
199 {
200 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201 }
202
203 static struct pool_allocator bufmempool_allocator = {
204 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205 };
206
207 /* Buffer memory management variables */
208 u_long bufmem_valimit;
209 u_long bufmem_hiwater;
210 u_long bufmem_lowater;
211 u_long bufmem;
212
213 /*
214 * MD code can call this to set a hard limit on the amount
215 * of virtual memory used by the buffer cache.
216 */
217 int
218 buf_setvalimit(vsize_t sz)
219 {
220
221 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222 if (sz < NMEMPOOLS * MAXBSIZE)
223 return EINVAL;
224
225 bufmem_valimit = sz;
226 return 0;
227 }
228
229 static int buf_trim(void);
230
231 /*
232 * bread()/breadn() helper.
233 */
234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235 struct ucred *, int);
236 int count_lock_queue(void);
237
238 /*
239 * Insq/Remq for the buffer free lists.
240 * Call with buffer queue locked.
241 */
242 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244
245 #ifdef DEBUG
246 int debug_verify_freelist = 0;
247 static int checkfreelist(struct buf *bp, struct bqueues *dp)
248 {
249 struct buf *b;
250 TAILQ_FOREACH(b, dp, b_freelist) {
251 if (b == bp)
252 return 1;
253 }
254 return 0;
255 }
256 #endif
257
258 void
259 bremfree(struct buf *bp)
260 {
261 struct bqueues *dp = NULL;
262
263 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264
265 KDASSERT(!debug_verify_freelist ||
266 checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267 checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268 checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269
270 /*
271 * We only calculate the head of the freelist when removing
272 * the last element of the list as that is the only time that
273 * it is needed (e.g. to reset the tail pointer).
274 *
275 * NB: This makes an assumption about how tailq's are implemented.
276 *
277 * We break the TAILQ abstraction in order to efficiently remove a
278 * buffer from its freelist without having to know exactly which
279 * freelist it is on.
280 */
281 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283 if (dp->tqh_last == &bp->b_freelist.tqe_next)
284 break;
285 if (dp == &bufqueues[BQUEUES])
286 panic("bremfree: lost tail");
287 }
288 TAILQ_REMOVE(dp, bp, b_freelist);
289 }
290
291 u_long
292 buf_memcalc(void)
293 {
294 u_long n;
295
296 /*
297 * Determine the upper bound of memory to use for buffers.
298 *
299 * - If bufpages is specified, use that as the number
300 * pages.
301 *
302 * - Otherwise, use bufcache as the percentage of
303 * physical memory.
304 */
305 if (bufpages != 0) {
306 n = bufpages;
307 } else {
308 if (bufcache < 5) {
309 printf("forcing bufcache %d -> 5", bufcache);
310 bufcache = 5;
311 }
312 if (bufcache > 95) {
313 printf("forcing bufcache %d -> 95", bufcache);
314 bufcache = 95;
315 }
316 n = physmem / 100 * bufcache;
317 }
318
319 n <<= PAGE_SHIFT;
320 if (bufmem_valimit != 0 && n > bufmem_valimit)
321 n = bufmem_valimit;
322
323 return (n);
324 }
325
326 /*
327 * Initialize buffers and hash links for buffers.
328 */
329 void
330 bufinit(void)
331 {
332 struct bqueues *dp;
333 int smallmem;
334 u_int i;
335
336 /*
337 * Initialize buffer cache memory parameters.
338 */
339 bufmem = 0;
340 bufmem_hiwater = buf_memcalc();
341 /* lowater is approx. 2% of memory (with bufcache=15) */
342 bufmem_lowater = (bufmem_hiwater >> 3);
343 if (bufmem_lowater < 64 * 1024)
344 /* Ensure a reasonable minimum value */
345 bufmem_lowater = 64 * 1024;
346
347 if (bufmem_valimit != 0) {
348 vaddr_t minaddr = 0, maxaddr;
349 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350 bufmem_valimit, VM_MAP_PAGEABLE,
351 FALSE, 0);
352 if (buf_map == NULL)
353 panic("bufinit: cannot allocate submap");
354 } else
355 buf_map = kernel_map;
356
357 /*
358 * Initialize the buffer pools.
359 */
360 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361
362 /* On "small" machines use small pool page sizes where possible */
363 smallmem = (physmem < atop(16*1024*1024));
364
365 for (i = 0; i < NMEMPOOLS; i++) {
366 struct pool_allocator *pa;
367 struct pool *pp = &bmempools[i];
368 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369 char *name = malloc(8, M_TEMP, M_WAITOK);
370 snprintf(name, 8, "buf%dk", 1 << i);
371 pa = (size <= PAGE_SIZE && smallmem)
372 ? &pool_allocator_nointr
373 : &bufmempool_allocator;
374 pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa);
375 pool_setlowat(pp, 1);
376 }
377
378 /* Initialize the buffer queues */
379 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
380 TAILQ_INIT(dp);
381
382 /*
383 * Estimate hash table size based on the amount of memory we
384 * intend to use for the buffer cache. The average buffer
385 * size is dependent on our clients (i.e. filesystems).
386 *
387 * For now, use an empirical 3K per buffer.
388 */
389 nbuf = (bufmem_hiwater / 1024) / 3;
390 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
391 }
392
393 static int
394 buf_lotsfree(void)
395 {
396 int try, thresh;
397
398 if (bufmem < bufmem_lowater) {
399 return 1;
400 }
401
402 /* If there's anything on the AGE list, it should be eaten. */
403
404 if(TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
405 return 0;
406
407 try = random() & 0x0000000fL;
408
409 thresh = (16 * bufmem) / bufmem_hiwater;
410
411 if ((try > thresh) && (uvmexp.free > ( 2 * uvmexp.freetarg))) {
412 return 1;
413 }
414
415 return 0;
416 }
417
418 /*
419 * Return estimate of # of buffers we think need to be
420 * released to help resolve low memory conditions.
421 */
422 static int
423 buf_canrelease(void)
424 {
425 int pagedemand, ninvalid = 0;
426 struct buf *bp;
427
428 TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
429 ninvalid += bp->b_bufsize;
430
431 if (bufmem < bufmem_lowater)
432 return 0;
433
434 pagedemand = uvmexp.freetarg - uvmexp.free;
435 if (pagedemand < 0)
436 return ninvalid;
437 return MAX(ninvalid, MIN(2 * MAXBSIZE,
438 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
439 }
440
441 /*
442 * Buffer memory allocation helper functions
443 */
444 static __inline u_long
445 buf_mempoolidx(u_long size)
446 {
447 u_int n = 0;
448
449 size -= 1;
450 size >>= MEMPOOL_INDEX_OFFSET;
451 while (size) {
452 size >>= 1;
453 n += 1;
454 }
455 if (n >= NMEMPOOLS)
456 panic("buf mem pool index %d", n);
457 return n;
458 }
459
460 static __inline u_long
461 buf_roundsize(u_long size)
462 {
463 /* Round up to nearest power of 2 */
464 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
465 }
466
467 static __inline caddr_t
468 buf_malloc(size_t size)
469 {
470 u_int n = buf_mempoolidx(size);
471 caddr_t addr;
472 int s;
473
474 while (1) {
475 addr = pool_get(&bmempools[n], PR_NOWAIT);
476 if (addr != NULL)
477 break;
478
479 /* No memory, see if we can free some. If so, try again */
480 if (buf_drain(1) > 0)
481 continue;
482
483 /* Wait for buffers to arrive on the LRU queue */
484 s = splbio();
485 simple_lock(&bqueue_slock);
486 needbuffer = 1;
487 ltsleep(&needbuffer, PNORELOCK | (PRIBIO+1),
488 "buf_malloc", 0, &bqueue_slock);
489 splx(s);
490 }
491
492 return addr;
493 }
494
495 static void
496 buf_mrelease(caddr_t addr, size_t size)
497 {
498
499 pool_put(&bmempools[buf_mempoolidx(size)], addr);
500 }
501
502
503 static __inline struct buf *
504 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
505 int async)
506 {
507 struct buf *bp;
508 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
509 struct proc *p = l->l_proc;
510
511 bp = getblk(vp, blkno, size, 0, 0);
512
513 #ifdef DIAGNOSTIC
514 if (bp == NULL) {
515 panic("bio_doread: no such buf");
516 }
517 #endif
518
519 /*
520 * If buffer does not have data valid, start a read.
521 * Note that if buffer is B_INVAL, getblk() won't return it.
522 * Therefore, it's valid if its I/O has completed or been delayed.
523 */
524 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
525 /* Start I/O for the buffer. */
526 SET(bp->b_flags, B_READ | async);
527 if (async)
528 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
529 else
530 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
531 VOP_STRATEGY(vp, bp);
532
533 /* Pay for the read. */
534 p->p_stats->p_ru.ru_inblock++;
535 } else if (async) {
536 brelse(bp);
537 }
538
539 return (bp);
540 }
541
542 /*
543 * Read a disk block.
544 * This algorithm described in Bach (p.54).
545 */
546 int
547 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
548 struct buf **bpp)
549 {
550 struct buf *bp;
551
552 /* Get buffer for block. */
553 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
554
555 /* Wait for the read to complete, and return result. */
556 return (biowait(bp));
557 }
558
559 /*
560 * Read-ahead multiple disk blocks. The first is sync, the rest async.
561 * Trivial modification to the breada algorithm presented in Bach (p.55).
562 */
563 int
564 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
565 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
566 {
567 struct buf *bp;
568 int i;
569
570 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
571
572 /*
573 * For each of the read-ahead blocks, start a read, if necessary.
574 */
575 for (i = 0; i < nrablks; i++) {
576 /* If it's in the cache, just go on to next one. */
577 if (incore(vp, rablks[i]))
578 continue;
579
580 /* Get a buffer for the read-ahead block */
581 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
582 }
583
584 /* Otherwise, we had to start a read for it; wait until it's valid. */
585 return (biowait(bp));
586 }
587
588 /*
589 * Read with single-block read-ahead. Defined in Bach (p.55), but
590 * implemented as a call to breadn().
591 * XXX for compatibility with old file systems.
592 */
593 int
594 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
595 int rabsize, struct ucred *cred, struct buf **bpp)
596 {
597
598 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
599 }
600
601 /*
602 * Block write. Described in Bach (p.56)
603 */
604 int
605 bwrite(struct buf *bp)
606 {
607 int rv, sync, wasdelayed, s;
608 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
609 struct proc *p = l->l_proc;
610 struct vnode *vp;
611 struct mount *mp;
612
613 KASSERT(ISSET(bp->b_flags, B_BUSY));
614
615 vp = bp->b_vp;
616 if (vp != NULL) {
617 if (vp->v_type == VBLK)
618 mp = vp->v_specmountpoint;
619 else
620 mp = vp->v_mount;
621 } else {
622 mp = NULL;
623 }
624
625 /*
626 * Remember buffer type, to switch on it later. If the write was
627 * synchronous, but the file system was mounted with MNT_ASYNC,
628 * convert it to a delayed write.
629 * XXX note that this relies on delayed tape writes being converted
630 * to async, not sync writes (which is safe, but ugly).
631 */
632 sync = !ISSET(bp->b_flags, B_ASYNC);
633 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
634 bdwrite(bp);
635 return (0);
636 }
637
638 /*
639 * Collect statistics on synchronous and asynchronous writes.
640 * Writes to block devices are charged to their associated
641 * filesystem (if any).
642 */
643 if (mp != NULL) {
644 if (sync)
645 mp->mnt_stat.f_syncwrites++;
646 else
647 mp->mnt_stat.f_asyncwrites++;
648 }
649
650 s = splbio();
651 simple_lock(&bp->b_interlock);
652
653 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
654
655 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
656
657 /*
658 * Pay for the I/O operation and make sure the buf is on the correct
659 * vnode queue.
660 */
661 if (wasdelayed)
662 reassignbuf(bp, bp->b_vp);
663 else
664 p->p_stats->p_ru.ru_oublock++;
665
666 /* Initiate disk write. Make sure the appropriate party is charged. */
667 V_INCR_NUMOUTPUT(bp->b_vp);
668 simple_unlock(&bp->b_interlock);
669 splx(s);
670
671 if (sync)
672 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
673 else
674 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
675
676 VOP_STRATEGY(vp, bp);
677
678 if (sync) {
679 /* If I/O was synchronous, wait for it to complete. */
680 rv = biowait(bp);
681
682 /* Release the buffer. */
683 brelse(bp);
684
685 return (rv);
686 } else {
687 return (0);
688 }
689 }
690
691 int
692 vn_bwrite(void *v)
693 {
694 struct vop_bwrite_args *ap = v;
695
696 return (bwrite(ap->a_bp));
697 }
698
699 /*
700 * Delayed write.
701 *
702 * The buffer is marked dirty, but is not queued for I/O.
703 * This routine should be used when the buffer is expected
704 * to be modified again soon, typically a small write that
705 * partially fills a buffer.
706 *
707 * NB: magnetic tapes cannot be delayed; they must be
708 * written in the order that the writes are requested.
709 *
710 * Described in Leffler, et al. (pp. 208-213).
711 */
712 void
713 bdwrite(struct buf *bp)
714 {
715 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
716 struct proc *p = l->l_proc;
717 const struct bdevsw *bdev;
718 int s;
719
720 /* If this is a tape block, write the block now. */
721 bdev = bdevsw_lookup(bp->b_dev);
722 if (bdev != NULL && bdev->d_type == D_TAPE) {
723 bawrite(bp);
724 return;
725 }
726
727 /*
728 * If the block hasn't been seen before:
729 * (1) Mark it as having been seen,
730 * (2) Charge for the write,
731 * (3) Make sure it's on its vnode's correct block list.
732 */
733 s = splbio();
734 simple_lock(&bp->b_interlock);
735
736 KASSERT(ISSET(bp->b_flags, B_BUSY));
737
738 if (!ISSET(bp->b_flags, B_DELWRI)) {
739 SET(bp->b_flags, B_DELWRI);
740 p->p_stats->p_ru.ru_oublock++;
741 reassignbuf(bp, bp->b_vp);
742 }
743
744 /* Otherwise, the "write" is done, so mark and release the buffer. */
745 CLR(bp->b_flags, B_DONE);
746 simple_unlock(&bp->b_interlock);
747 splx(s);
748
749 brelse(bp);
750 }
751
752 /*
753 * Asynchronous block write; just an asynchronous bwrite().
754 */
755 void
756 bawrite(struct buf *bp)
757 {
758 int s;
759
760 s = splbio();
761 simple_lock(&bp->b_interlock);
762
763 KASSERT(ISSET(bp->b_flags, B_BUSY));
764
765 SET(bp->b_flags, B_ASYNC);
766 simple_unlock(&bp->b_interlock);
767 splx(s);
768 VOP_BWRITE(bp);
769 }
770
771 /*
772 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
773 * Call at splbio() and with the buffer interlock locked.
774 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
775 */
776 void
777 bdirty(struct buf *bp)
778 {
779 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
780 struct proc *p = l->l_proc;
781
782 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
783 KASSERT(ISSET(bp->b_flags, B_BUSY));
784
785 CLR(bp->b_flags, B_AGE);
786
787 if (!ISSET(bp->b_flags, B_DELWRI)) {
788 SET(bp->b_flags, B_DELWRI);
789 p->p_stats->p_ru.ru_oublock++;
790 reassignbuf(bp, bp->b_vp);
791 }
792 }
793
794 /*
795 * Release a buffer on to the free lists.
796 * Described in Bach (p. 46).
797 */
798 void
799 brelse(struct buf *bp)
800 {
801 struct bqueues *bufq;
802 int s;
803
804 /* Block disk interrupts. */
805 s = splbio();
806 simple_lock(&bqueue_slock);
807 simple_lock(&bp->b_interlock);
808
809 KASSERT(ISSET(bp->b_flags, B_BUSY));
810 KASSERT(!ISSET(bp->b_flags, B_CALL));
811
812 /* Wake up any processes waiting for any buffer to become free. */
813 if (needbuffer) {
814 needbuffer = 0;
815 wakeup(&needbuffer);
816 }
817
818 /* Wake up any proceeses waiting for _this_ buffer to become free. */
819 if (ISSET(bp->b_flags, B_WANTED)) {
820 CLR(bp->b_flags, B_WANTED|B_AGE);
821 wakeup(bp);
822 }
823
824 /*
825 * Determine which queue the buffer should be on, then put it there.
826 */
827
828 /* If it's locked, don't report an error; try again later. */
829 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
830 CLR(bp->b_flags, B_ERROR);
831
832 /* If it's not cacheable, or an error, mark it invalid. */
833 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
834 SET(bp->b_flags, B_INVAL);
835
836 if (ISSET(bp->b_flags, B_VFLUSH)) {
837 /*
838 * This is a delayed write buffer that was just flushed to
839 * disk. It is still on the LRU queue. If it's become
840 * invalid, then we need to move it to a different queue;
841 * otherwise leave it in its current position.
842 */
843 CLR(bp->b_flags, B_VFLUSH);
844 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
845 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
846 goto already_queued;
847 } else {
848 bremfree(bp);
849 }
850 }
851
852 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
853 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
854 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
855
856 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
857 /*
858 * If it's invalid or empty, dissociate it from its vnode
859 * and put on the head of the appropriate queue.
860 */
861 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
862 (*bioops.io_deallocate)(bp);
863 CLR(bp->b_flags, B_DONE|B_DELWRI);
864 if (bp->b_vp) {
865 reassignbuf(bp, bp->b_vp);
866 brelvp(bp);
867 }
868 if (bp->b_bufsize <= 0)
869 /* no data */
870 goto already_queued;
871 else
872 /* invalid data */
873 bufq = &bufqueues[BQ_AGE];
874 binsheadfree(bp, bufq);
875 } else {
876 /*
877 * It has valid data. Put it on the end of the appropriate
878 * queue, so that it'll stick around for as long as possible.
879 * If buf is AGE, but has dependencies, must put it on last
880 * bufqueue to be scanned, ie LRU. This protects against the
881 * livelock where BQ_AGE only has buffers with dependencies,
882 * and we thus never get to the dependent buffers in BQ_LRU.
883 */
884 if (ISSET(bp->b_flags, B_LOCKED))
885 /* locked in core */
886 bufq = &bufqueues[BQ_LOCKED];
887 else if (!ISSET(bp->b_flags, B_AGE))
888 /* valid data */
889 bufq = &bufqueues[BQ_LRU];
890 else {
891 /* stale but valid data */
892 int has_deps;
893
894 if (LIST_FIRST(&bp->b_dep) != NULL &&
895 bioops.io_countdeps)
896 has_deps = (*bioops.io_countdeps)(bp, 0);
897 else
898 has_deps = 0;
899 bufq = has_deps ? &bufqueues[BQ_LRU] :
900 &bufqueues[BQ_AGE];
901 }
902 binstailfree(bp, bufq);
903 }
904
905 already_queued:
906 /* Unlock the buffer. */
907 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
908 SET(bp->b_flags, B_CACHE);
909
910 /* Allow disk interrupts. */
911 simple_unlock(&bp->b_interlock);
912 simple_unlock(&bqueue_slock);
913 if (bp->b_bufsize <= 0) {
914 #ifdef DEBUG
915 memset((char *)bp, 0, sizeof(*bp));
916 #endif
917 pool_put(&bufpool, bp);
918 }
919 splx(s);
920 }
921
922 /*
923 * Determine if a block is in the cache.
924 * Just look on what would be its hash chain. If it's there, return
925 * a pointer to it, unless it's marked invalid. If it's marked invalid,
926 * we normally don't return the buffer, unless the caller explicitly
927 * wants us to.
928 */
929 struct buf *
930 incore(struct vnode *vp, daddr_t blkno)
931 {
932 struct buf *bp;
933
934 /* Search hash chain */
935 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
936 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
937 !ISSET(bp->b_flags, B_INVAL))
938 return (bp);
939 }
940
941 return (NULL);
942 }
943
944 /*
945 * Get a block of requested size that is associated with
946 * a given vnode and block offset. If it is found in the
947 * block cache, mark it as having been found, make it busy
948 * and return it. Otherwise, return an empty block of the
949 * correct size. It is up to the caller to insure that the
950 * cached blocks be of the correct size.
951 */
952 struct buf *
953 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
954 {
955 struct buf *bp;
956 int s, err;
957 int preserve;
958
959 start:
960 s = splbio();
961 simple_lock(&bqueue_slock);
962 bp = incore(vp, blkno);
963 if (bp != NULL) {
964 simple_lock(&bp->b_interlock);
965 if (ISSET(bp->b_flags, B_BUSY)) {
966 simple_unlock(&bqueue_slock);
967 if (curproc == uvm.pagedaemon_proc) {
968 simple_unlock(&bp->b_interlock);
969 splx(s);
970 return NULL;
971 }
972 SET(bp->b_flags, B_WANTED);
973 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
974 "getblk", slptimeo, &bp->b_interlock);
975 splx(s);
976 if (err)
977 return (NULL);
978 goto start;
979 }
980 #ifdef DIAGNOSTIC
981 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
982 bp->b_bcount < size && vp->v_type != VBLK)
983 panic("getblk: block size invariant failed");
984 #endif
985 SET(bp->b_flags, B_BUSY);
986 bremfree(bp);
987 preserve = 1;
988 } else {
989 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
990 simple_unlock(&bqueue_slock);
991 splx(s);
992 goto start;
993 }
994
995 binshash(bp, BUFHASH(vp, blkno));
996 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
997 bgetvp(vp, bp);
998 preserve = 0;
999 }
1000 simple_unlock(&bp->b_interlock);
1001 simple_unlock(&bqueue_slock);
1002 splx(s);
1003 /*
1004 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1005 * if we re-size buffers here.
1006 */
1007 if (ISSET(bp->b_flags, B_LOCKED)) {
1008 KASSERT(bp->b_bufsize >= size);
1009 } else {
1010 allocbuf(bp, size, preserve);
1011 }
1012 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1013 return (bp);
1014 }
1015
1016 /*
1017 * Get an empty, disassociated buffer of given size.
1018 */
1019 struct buf *
1020 geteblk(int size)
1021 {
1022 struct buf *bp;
1023 int s;
1024
1025 s = splbio();
1026 simple_lock(&bqueue_slock);
1027 while ((bp = getnewbuf(0, 0, 0)) == 0)
1028 ;
1029
1030 SET(bp->b_flags, B_INVAL);
1031 binshash(bp, &invalhash);
1032 simple_unlock(&bqueue_slock);
1033 simple_unlock(&bp->b_interlock);
1034 splx(s);
1035 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1036 allocbuf(bp, size, 0);
1037 return (bp);
1038 }
1039
1040 /*
1041 * Expand or contract the actual memory allocated to a buffer.
1042 *
1043 * If the buffer shrinks, data is lost, so it's up to the
1044 * caller to have written it out *first*; this routine will not
1045 * start a write. If the buffer grows, it's the callers
1046 * responsibility to fill out the buffer's additional contents.
1047 */
1048 void
1049 allocbuf(struct buf *bp, int size, int preserve)
1050 {
1051 vsize_t oldsize, desired_size;
1052 caddr_t addr;
1053 int s, delta;
1054
1055 desired_size = buf_roundsize(size);
1056 if (desired_size > MAXBSIZE)
1057 printf("allocbuf: buffer larger than MAXBSIZE requested");
1058
1059 bp->b_bcount = size;
1060
1061 oldsize = bp->b_bufsize;
1062 if (oldsize == desired_size)
1063 return;
1064
1065 /*
1066 * If we want a buffer of a different size, re-allocate the
1067 * buffer's memory; copy old content only if needed.
1068 */
1069 addr = buf_malloc(desired_size);
1070 if (preserve)
1071 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1072 if (bp->b_data != NULL)
1073 buf_mrelease(bp->b_data, oldsize);
1074 bp->b_data = addr;
1075 bp->b_bufsize = desired_size;
1076
1077 /*
1078 * Update overall buffer memory counter (protected by bqueue_slock)
1079 */
1080 delta = (long)desired_size - (long)oldsize;
1081
1082 s = splbio();
1083 simple_lock(&bqueue_slock);
1084 if ((bufmem += delta) > bufmem_hiwater) {
1085 /*
1086 * Need to trim overall memory usage.
1087 */
1088 while (buf_canrelease()) {
1089 if (buf_trim() == 0)
1090 break;
1091 }
1092 }
1093
1094 simple_unlock(&bqueue_slock);
1095 splx(s);
1096 }
1097
1098 /*
1099 * Find a buffer which is available for use.
1100 * Select something from a free list.
1101 * Preference is to AGE list, then LRU list.
1102 *
1103 * Called at splbio and with buffer queues locked.
1104 * Return buffer locked.
1105 */
1106 struct buf *
1107 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1108 {
1109 struct buf *bp;
1110
1111 start:
1112 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1113
1114 /*
1115 * Get a new buffer from the pool; but use NOWAIT because
1116 * we have the buffer queues locked.
1117 */
1118 if (buf_lotsfree() && !from_bufq &&
1119 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1120 memset((char *)bp, 0, sizeof(*bp));
1121 BUF_INIT(bp);
1122 bp->b_dev = NODEV;
1123 bp->b_vnbufs.le_next = NOLIST;
1124 bp->b_flags = B_BUSY;
1125 simple_lock(&bp->b_interlock);
1126 return (bp);
1127 }
1128
1129 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1130 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1131 simple_lock(&bp->b_interlock);
1132 bremfree(bp);
1133 } else {
1134 /* wait for a free buffer of any kind */
1135 needbuffer = 1;
1136 ltsleep(&needbuffer, slpflag|(PRIBIO+1),
1137 "getnewbuf", slptimeo, &bqueue_slock);
1138 return (NULL);
1139 }
1140
1141 #ifdef DIAGNOSTIC
1142 if (bp->b_bufsize <= 0)
1143 panic("buffer %p: on queue but empty", bp);
1144 #endif
1145
1146 if (ISSET(bp->b_flags, B_VFLUSH)) {
1147 /*
1148 * This is a delayed write buffer being flushed to disk. Make
1149 * sure it gets aged out of the queue when it's finished, and
1150 * leave it off the LRU queue.
1151 */
1152 CLR(bp->b_flags, B_VFLUSH);
1153 SET(bp->b_flags, B_AGE);
1154 simple_unlock(&bp->b_interlock);
1155 goto start;
1156 }
1157
1158 /* Buffer is no longer on free lists. */
1159 SET(bp->b_flags, B_BUSY);
1160
1161 /*
1162 * If buffer was a delayed write, start it and return NULL
1163 * (since we might sleep while starting the write).
1164 */
1165 if (ISSET(bp->b_flags, B_DELWRI)) {
1166 /*
1167 * This buffer has gone through the LRU, so make sure it gets
1168 * reused ASAP.
1169 */
1170 SET(bp->b_flags, B_AGE);
1171 simple_unlock(&bp->b_interlock);
1172 simple_unlock(&bqueue_slock);
1173 bawrite(bp);
1174 simple_lock(&bqueue_slock);
1175 return (NULL);
1176 }
1177
1178 /* disassociate us from our vnode, if we had one... */
1179 if (bp->b_vp)
1180 brelvp(bp);
1181
1182 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1183 (*bioops.io_deallocate)(bp);
1184
1185 /* clear out various other fields */
1186 bp->b_flags = B_BUSY;
1187 bp->b_dev = NODEV;
1188 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1189 bp->b_iodone = 0;
1190 bp->b_error = 0;
1191 bp->b_resid = 0;
1192 bp->b_bcount = 0;
1193
1194 bremhash(bp);
1195 return (bp);
1196 }
1197
1198 /*
1199 * Attempt to free an aged buffer off the queues.
1200 * Called at splbio and with queue lock held.
1201 * Returns the amount of buffer memory freed.
1202 */
1203 int
1204 buf_trim(void)
1205 {
1206 struct buf *bp;
1207 long size = 0;
1208 int wanted;
1209
1210 /* Instruct getnewbuf() to get buffers off the queues */
1211 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1212 return 0;
1213
1214 wanted = ISSET(bp->b_flags, B_WANTED);
1215 simple_unlock(&bp->b_interlock);
1216 if (wanted) {
1217 printf("buftrim: got WANTED buffer\n");
1218 SET(bp->b_flags, B_INVAL);
1219 binshash(bp, &invalhash);
1220 simple_unlock(&bqueue_slock);
1221 goto out;
1222 }
1223 size = bp->b_bufsize;
1224 bufmem -= size;
1225 simple_unlock(&bqueue_slock);
1226 if (size > 0) {
1227 buf_mrelease(bp->b_data, size);
1228 bp->b_bcount = bp->b_bufsize = 0;
1229 }
1230
1231 out:
1232 /* brelse() will return the buffer to the global buffer pool */
1233 brelse(bp);
1234 simple_lock(&bqueue_slock);
1235 return size;
1236 }
1237
1238 int
1239 buf_drain(int n)
1240 {
1241 int s, size = 0;
1242
1243 /* If not asked for a specific amount, make our own estimate */
1244 if (n == 0)
1245 n = buf_canrelease();
1246
1247 s = splbio();
1248 simple_lock(&bqueue_slock);
1249 while (size < n && bufmem > bufmem_lowater)
1250 size += buf_trim();
1251
1252 simple_unlock(&bqueue_slock);
1253 splx(s);
1254 return size;
1255 }
1256
1257 /*
1258 * Wait for operations on the buffer to complete.
1259 * When they do, extract and return the I/O's error value.
1260 */
1261 int
1262 biowait(struct buf *bp)
1263 {
1264 int s, error;
1265
1266 s = splbio();
1267 simple_lock(&bp->b_interlock);
1268 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1269 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1270
1271 /* check for interruption of I/O (e.g. via NFS), then errors. */
1272 if (ISSET(bp->b_flags, B_EINTR)) {
1273 CLR(bp->b_flags, B_EINTR);
1274 error = EINTR;
1275 } else if (ISSET(bp->b_flags, B_ERROR))
1276 error = bp->b_error ? bp->b_error : EIO;
1277 else
1278 error = 0;
1279
1280 simple_unlock(&bp->b_interlock);
1281 splx(s);
1282 return (error);
1283 }
1284
1285 /*
1286 * Mark I/O complete on a buffer.
1287 *
1288 * If a callback has been requested, e.g. the pageout
1289 * daemon, do so. Otherwise, awaken waiting processes.
1290 *
1291 * [ Leffler, et al., says on p.247:
1292 * "This routine wakes up the blocked process, frees the buffer
1293 * for an asynchronous write, or, for a request by the pagedaemon
1294 * process, invokes a procedure specified in the buffer structure" ]
1295 *
1296 * In real life, the pagedaemon (or other system processes) wants
1297 * to do async stuff to, and doesn't want the buffer brelse()'d.
1298 * (for swap pager, that puts swap buffers on the free lists (!!!),
1299 * for the vn device, that puts malloc'd buffers on the free lists!)
1300 */
1301 void
1302 biodone(struct buf *bp)
1303 {
1304 int s = splbio();
1305
1306 simple_lock(&bp->b_interlock);
1307 if (ISSET(bp->b_flags, B_DONE))
1308 panic("biodone already");
1309 SET(bp->b_flags, B_DONE); /* note that it's done */
1310 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1311
1312 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1313 (*bioops.io_complete)(bp);
1314
1315 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1316 vwakeup(bp);
1317
1318 /*
1319 * If necessary, call out. Unlock the buffer before calling
1320 * iodone() as the buffer isn't valid any more when it return.
1321 */
1322 if (ISSET(bp->b_flags, B_CALL)) {
1323 CLR(bp->b_flags, B_CALL); /* but note callout done */
1324 simple_unlock(&bp->b_interlock);
1325 (*bp->b_iodone)(bp);
1326 } else {
1327 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1328 simple_unlock(&bp->b_interlock);
1329 brelse(bp);
1330 } else { /* or just wakeup the buffer */
1331 CLR(bp->b_flags, B_WANTED);
1332 wakeup(bp);
1333 simple_unlock(&bp->b_interlock);
1334 }
1335 }
1336
1337 splx(s);
1338 }
1339
1340 /*
1341 * Return a count of buffers on the "locked" queue.
1342 */
1343 int
1344 count_lock_queue(void)
1345 {
1346 struct buf *bp;
1347 int n = 0;
1348
1349 simple_lock(&bqueue_slock);
1350 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1351 n++;
1352 simple_unlock(&bqueue_slock);
1353 return (n);
1354 }
1355
1356 /*
1357 * Wait for all buffers to complete I/O
1358 * Return the number of "stuck" buffers.
1359 */
1360 int
1361 buf_syncwait(void)
1362 {
1363 struct buf *bp;
1364 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1365
1366 dcount = 10000;
1367 for (iter = 0; iter < 20;) {
1368 s = splbio();
1369 simple_lock(&bqueue_slock);
1370 nbusy = 0;
1371 for (ihash = 0; ihash < bufhash+1; ihash++) {
1372 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1373 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1374 nbusy++;
1375 /*
1376 * With soft updates, some buffers that are
1377 * written will be remarked as dirty until other
1378 * buffers are written.
1379 */
1380 if (bp->b_vp && bp->b_vp->v_mount
1381 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1382 && (bp->b_flags & B_DELWRI)) {
1383 simple_lock(&bp->b_interlock);
1384 bremfree(bp);
1385 bp->b_flags |= B_BUSY;
1386 nbusy++;
1387 simple_unlock(&bp->b_interlock);
1388 simple_unlock(&bqueue_slock);
1389 bawrite(bp);
1390 if (dcount-- <= 0) {
1391 printf("softdep ");
1392 goto fail;
1393 }
1394 simple_lock(&bqueue_slock);
1395 }
1396 }
1397 }
1398
1399 simple_unlock(&bqueue_slock);
1400 splx(s);
1401
1402 if (nbusy == 0)
1403 break;
1404 if (nbusy_prev == 0)
1405 nbusy_prev = nbusy;
1406 printf("%d ", nbusy);
1407 tsleep(&nbusy, PRIBIO, "bflush",
1408 (iter == 0) ? 1 : hz / 25 * iter);
1409 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1410 iter++;
1411 else
1412 nbusy_prev = nbusy;
1413 }
1414
1415 if (nbusy) {
1416 fail:;
1417 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1418 printf("giving up\nPrinting vnodes for busy buffers\n");
1419 for (ihash = 0; ihash < bufhash+1; ihash++) {
1420 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1421 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1422 vprint(NULL, bp->b_vp);
1423 }
1424 }
1425 #endif
1426 }
1427
1428 return nbusy;
1429 }
1430
1431 #define KERN_BUFSLOP 20
1432 static int
1433 sysctl_dobuf(SYSCTLFN_ARGS)
1434 {
1435 struct buf *bp;
1436 char *dp;
1437 u_int i, elem_size;
1438 size_t len, buflen, needed;
1439 int error, s;
1440
1441 dp = oldp;
1442 len = buflen = oldp != NULL ? *oldlenp : 0;
1443 error = 0;
1444 needed = 0;
1445 elem_size = sizeof(struct buf);
1446
1447 s = splbio();
1448 simple_lock(&bqueue_slock);
1449 for (i = 0; i < BQUEUES; i++) {
1450 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1451 if (len >= elem_size) {
1452 error = copyout(bp, dp, elem_size);
1453 if (error)
1454 goto cleanup;
1455 dp += elem_size;
1456 len -= elem_size;
1457 }
1458 needed += elem_size;
1459 }
1460 }
1461 cleanup:
1462 simple_unlock(&bqueue_slock);
1463 splx(s);
1464
1465 if (oldp != NULL) {
1466 *oldlenp = (char *)dp - (char *)oldp;
1467 if (needed > *oldlenp)
1468 error = ENOMEM;
1469 } else {
1470 needed += KERN_BUFSLOP;
1471 *oldlenp = needed;
1472 }
1473
1474 return (error);
1475 }
1476
1477 static int sysctlnum_bufcache, sysctlnum_bufmemhiwater, sysctlnum_bufmemlowater;
1478
1479 static int
1480 sysctl_bufvm_update(SYSCTLFN_ARGS)
1481 {
1482 int t, error;
1483 struct sysctlnode node;
1484
1485 node = *rnode;
1486 node.sysctl_data = &t;
1487 t = *(int*)rnode->sysctl_data;
1488 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1489 if (error || newp == NULL)
1490 return (error);
1491
1492 if (rnode->sysctl_num == sysctlnum_bufcache) {
1493 if (t < 0 || t > 100)
1494 return (EINVAL);
1495 bufcache = t;
1496 bufmem_hiwater = buf_memcalc();
1497 bufmem_lowater = (bufmem_hiwater >> 3);
1498 if (bufmem_lowater < 64 * 1024)
1499 /* Ensure a reasonable minimum value */
1500 bufmem_lowater = 64 * 1024;
1501
1502 } else if (rnode->sysctl_num == sysctlnum_bufmemlowater) {
1503 bufmem_lowater = t;
1504 } else if (rnode->sysctl_num == sysctlnum_bufmemhiwater) {
1505 bufmem_hiwater = t;
1506 } else
1507 return (EINVAL);
1508
1509 /* Drain until below new high water mark */
1510 while ((t = bufmem - bufmem_hiwater) >= 0) {
1511 if (buf_drain(t / (2*1024)) <= 0)
1512 break;
1513 }
1514
1515 return 0;
1516 }
1517
1518 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1519 {
1520
1521 sysctl_createv(SYSCTL_PERMANENT,
1522 CTLTYPE_NODE, "kern", NULL,
1523 NULL, 0, NULL, 0,
1524 CTL_KERN, CTL_EOL);
1525 sysctl_createv(SYSCTL_PERMANENT,
1526 CTLTYPE_NODE, "buf", NULL,
1527 sysctl_dobuf, 0, NULL, 0,
1528 CTL_KERN, KERN_BUF, CTL_EOL);
1529 }
1530
1531 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1532 {
1533 struct sysctlnode *rnode;
1534
1535 sysctl_createv(SYSCTL_PERMANENT,
1536 CTLTYPE_NODE, "vm", NULL,
1537 NULL, 0, NULL, 0,
1538 CTL_VM, CTL_EOL);
1539
1540 rnode = NULL;
1541 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
1542 CTLTYPE_INT, "bufcache", &rnode,
1543 sysctl_bufvm_update, 0, &bufcache, 0,
1544 CTL_VM, CTL_CREATE, CTL_EOL) == 0)
1545 sysctlnum_bufcache = rnode->sysctl_num;
1546
1547 rnode = NULL;
1548 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
1549 CTLTYPE_INT, "bufmem_lowater", &rnode,
1550 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1551 CTL_VM, CTL_CREATE, CTL_EOL) == 0)
1552 sysctlnum_bufmemlowater = rnode->sysctl_num;
1553
1554 rnode = NULL;
1555 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
1556 CTLTYPE_INT, "bufmem_hiwater", &rnode,
1557 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1558 CTL_VM, CTL_CREATE, CTL_EOL) == 0)
1559 sysctlnum_bufmemhiwater = rnode->sysctl_num;
1560 }
1561
1562 #ifdef DEBUG
1563 /*
1564 * Print out statistics on the current allocation of the buffer pool.
1565 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1566 * in vfs_syscalls.c using sysctl.
1567 */
1568 void
1569 vfs_bufstats(void)
1570 {
1571 int s, i, j, count;
1572 struct buf *bp;
1573 struct bqueues *dp;
1574 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1575 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1576
1577 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1578 count = 0;
1579 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1580 counts[j] = 0;
1581 s = splbio();
1582 TAILQ_FOREACH(bp, dp, b_freelist) {
1583 counts[bp->b_bufsize/PAGE_SIZE]++;
1584 count++;
1585 }
1586 splx(s);
1587 printf("%s: total-%d", bname[i], count);
1588 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1589 if (counts[j] != 0)
1590 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1591 printf("\n");
1592 }
1593 }
1594 #endif /* DEBUG */
1595