vfs_bio.c revision 1.122 1 /* $NetBSD: vfs_bio.c,v 1.122 2004/03/26 00:31:55 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.122 2004/03/26 00:31:55 simonb Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118
119 /* Macros to clear/set/test flags. */
120 #define SET(t, f) (t) |= (f)
121 #define CLR(t, f) (t) &= ~(f)
122 #define ISSET(t, f) ((t) & (f))
123
124 /*
125 * Definitions for the buffer hash lists.
126 */
127 #define BUFHASH(dvp, lbn) \
128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 u_long bufhash;
131 #ifndef SOFTDEP
132 struct bio_ops bioops; /* I/O operation notification */
133 #endif
134
135 /*
136 * Insq/Remq for the buffer hash lists.
137 */
138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
139 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
140
141 /*
142 * Definitions for the buffer free lists.
143 */
144 #define BQUEUES 3 /* number of free buffer queues */
145
146 #define BQ_LOCKED 0 /* super-blocks &c */
147 #define BQ_LRU 1 /* lru, useful buffers */
148 #define BQ_AGE 2 /* rubbish */
149
150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 int needbuffer;
152
153 /*
154 * Buffer queue lock.
155 * Take this lock first if also taking some buffer's b_interlock.
156 */
157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158
159 /*
160 * Buffer pool for I/O buffers.
161 */
162 struct pool bufpool;
163
164 /* XXX - somewhat gross.. */
165 #if MAXBSIZE == 0x2000
166 #define NMEMPOOLS 4
167 #elif MAXBSIZE == 0x4000
168 #define NMEMPOOLS 5
169 #elif MAXBSIZE == 0x8000
170 #define NMEMPOOLS 6
171 #else
172 #define NMEMPOOLS 7
173 #endif
174
175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 #error update vfs_bio buffer memory parameters
178 #endif
179
180 /* Buffer memory pools */
181 static struct pool bmempools[NMEMPOOLS];
182
183 struct vm_map *buf_map;
184
185 /*
186 * Buffer memory pool allocator.
187 */
188 static void *
189 bufpool_page_alloc(struct pool *pp, int flags)
190 {
191
192 return (void *)uvm_km_kmemalloc1(buf_map,
193 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195 }
196
197 static void
198 bufpool_page_free(struct pool *pp, void *v)
199 {
200 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201 }
202
203 static struct pool_allocator bufmempool_allocator = {
204 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205 };
206
207 /* Buffer memory management variables */
208 u_long bufmem_valimit;
209 u_long bufmem_hiwater;
210 u_long bufmem_lowater;
211 u_long bufmem;
212
213 /*
214 * MD code can call this to set a hard limit on the amount
215 * of virtual memory used by the buffer cache.
216 */
217 int
218 buf_setvalimit(vsize_t sz)
219 {
220
221 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222 if (sz < NMEMPOOLS * MAXBSIZE)
223 return EINVAL;
224
225 bufmem_valimit = sz;
226 return 0;
227 }
228
229 static int buf_trim(void);
230
231 /*
232 * bread()/breadn() helper.
233 */
234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235 struct ucred *, int);
236 int count_lock_queue(void);
237
238 /*
239 * Insq/Remq for the buffer free lists.
240 * Call with buffer queue locked.
241 */
242 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244
245 #ifdef DEBUG
246 int debug_verify_freelist = 0;
247 static int checkfreelist(struct buf *bp, struct bqueues *dp)
248 {
249 struct buf *b;
250 TAILQ_FOREACH(b, dp, b_freelist) {
251 if (b == bp)
252 return 1;
253 }
254 return 0;
255 }
256 #endif
257
258 void
259 bremfree(struct buf *bp)
260 {
261 struct bqueues *dp = NULL;
262
263 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264
265 KDASSERT(!debug_verify_freelist ||
266 checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267 checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268 checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269
270 /*
271 * We only calculate the head of the freelist when removing
272 * the last element of the list as that is the only time that
273 * it is needed (e.g. to reset the tail pointer).
274 *
275 * NB: This makes an assumption about how tailq's are implemented.
276 *
277 * We break the TAILQ abstraction in order to efficiently remove a
278 * buffer from its freelist without having to know exactly which
279 * freelist it is on.
280 */
281 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283 if (dp->tqh_last == &bp->b_freelist.tqe_next)
284 break;
285 if (dp == &bufqueues[BQUEUES])
286 panic("bremfree: lost tail");
287 }
288 TAILQ_REMOVE(dp, bp, b_freelist);
289 }
290
291 u_long
292 buf_memcalc(void)
293 {
294 u_long n;
295
296 /*
297 * Determine the upper bound of memory to use for buffers.
298 *
299 * - If bufpages is specified, use that as the number
300 * pages.
301 *
302 * - Otherwise, use bufcache as the percentage of
303 * physical memory.
304 */
305 if (bufpages != 0) {
306 n = bufpages;
307 } else {
308 if (bufcache < 5) {
309 printf("forcing bufcache %d -> 5", bufcache);
310 bufcache = 5;
311 }
312 if (bufcache > 95) {
313 printf("forcing bufcache %d -> 95", bufcache);
314 bufcache = 95;
315 }
316 n = physmem / 100 * bufcache;
317 }
318
319 n <<= PAGE_SHIFT;
320 if (bufmem_valimit != 0 && n > bufmem_valimit)
321 n = bufmem_valimit;
322
323 return (n);
324 }
325
326 /*
327 * Initialize buffers and hash links for buffers.
328 */
329 void
330 bufinit(void)
331 {
332 struct bqueues *dp;
333 int smallmem;
334 u_int i;
335
336 /*
337 * Initialize buffer cache memory parameters.
338 */
339 bufmem = 0;
340 bufmem_hiwater = buf_memcalc();
341 /* lowater is approx. 2% of memory (with bufcache=15) */
342 bufmem_lowater = (bufmem_hiwater >> 3);
343 if (bufmem_lowater < 64 * 1024)
344 /* Ensure a reasonable minimum value */
345 bufmem_lowater = 64 * 1024;
346
347 if (bufmem_valimit != 0) {
348 vaddr_t minaddr = 0, maxaddr;
349 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350 bufmem_valimit, VM_MAP_PAGEABLE,
351 FALSE, 0);
352 if (buf_map == NULL)
353 panic("bufinit: cannot allocate submap");
354 } else
355 buf_map = kernel_map;
356
357 /*
358 * Initialize the buffer pools.
359 */
360 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361
362 /* On "small" machines use small pool page sizes where possible */
363 smallmem = (physmem < atop(16*1024*1024));
364
365 for (i = 0; i < NMEMPOOLS; i++) {
366 struct pool_allocator *pa;
367 struct pool *pp = &bmempools[i];
368 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369 char *name = malloc(8, M_TEMP, M_WAITOK);
370 snprintf(name, 8, "buf%dk", 1 << i);
371 pa = (size <= PAGE_SIZE && smallmem)
372 ? &pool_allocator_nointr
373 : &bufmempool_allocator;
374 pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa);
375 pool_setlowat(pp, 1);
376 }
377
378 /* Initialize the buffer queues */
379 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
380 TAILQ_INIT(dp);
381
382 /*
383 * Estimate hash table size based on the amount of memory we
384 * intend to use for the buffer cache. The average buffer
385 * size is dependent on our clients (i.e. filesystems).
386 *
387 * For now, use an empirical 3K per buffer.
388 */
389 nbuf = (bufmem_hiwater / 1024) / 3;
390 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
391 }
392
393 static int
394 buf_lotsfree(void)
395 {
396 int try, thresh;
397
398 /* Always allocate if less than the low water mark. */
399 if (bufmem < bufmem_lowater)
400 return 1;
401
402 /* Never allocate if greater than the high water mark. */
403 if (bufmem > bufmem_hiwater)
404 return 0;
405
406 /* If there's anything on the AGE list, it should be eaten. */
407 if (TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
408 return 0;
409
410 /*
411 * The probabily of getting a new allocation is inversely
412 * proportional to the current size of the cache, using
413 * a granularity of 16 steps.
414 */
415 try = random() & 0x0000000fL;
416
417 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
418 thresh = bufmem / (bufmem_hiwater / 16);
419
420 if ((try > thresh) && (uvmexp.free > (2 * uvmexp.freetarg))) {
421 return 1;
422 }
423
424 /* Otherwise don't allocate. */
425 return 0;
426 }
427
428 /*
429 * Return estimate of bytes we think need to be
430 * released to help resolve low memory conditions.
431 *
432 * => called at splbio.
433 * => called with bqueue_slock held.
434 */
435 static int
436 buf_canrelease(void)
437 {
438 int pagedemand, ninvalid = 0;
439 struct buf *bp;
440
441 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
442
443 if (bufmem < bufmem_lowater)
444 return 0;
445
446 TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
447 ninvalid += bp->b_bufsize;
448
449 pagedemand = uvmexp.freetarg - uvmexp.free;
450 if (pagedemand < 0)
451 return ninvalid;
452 return MAX(ninvalid, MIN(2 * MAXBSIZE,
453 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
454 }
455
456 /*
457 * Buffer memory allocation helper functions
458 */
459 static __inline u_long
460 buf_mempoolidx(u_long size)
461 {
462 u_int n = 0;
463
464 size -= 1;
465 size >>= MEMPOOL_INDEX_OFFSET;
466 while (size) {
467 size >>= 1;
468 n += 1;
469 }
470 if (n >= NMEMPOOLS)
471 panic("buf mem pool index %d", n);
472 return n;
473 }
474
475 static __inline u_long
476 buf_roundsize(u_long size)
477 {
478 /* Round up to nearest power of 2 */
479 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
480 }
481
482 static __inline caddr_t
483 buf_malloc(size_t size)
484 {
485 u_int n = buf_mempoolidx(size);
486 caddr_t addr;
487 int s;
488
489 while (1) {
490 addr = pool_get(&bmempools[n], PR_NOWAIT);
491 if (addr != NULL)
492 break;
493
494 /* No memory, see if we can free some. If so, try again */
495 if (buf_drain(1) > 0)
496 continue;
497
498 /* Wait for buffers to arrive on the LRU queue */
499 s = splbio();
500 simple_lock(&bqueue_slock);
501 needbuffer = 1;
502 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
503 "buf_malloc", 0, &bqueue_slock);
504 splx(s);
505 }
506
507 return addr;
508 }
509
510 static void
511 buf_mrelease(caddr_t addr, size_t size)
512 {
513
514 pool_put(&bmempools[buf_mempoolidx(size)], addr);
515 }
516
517
518 static __inline struct buf *
519 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
520 int async)
521 {
522 struct buf *bp;
523 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
524 struct proc *p = l->l_proc;
525
526 bp = getblk(vp, blkno, size, 0, 0);
527
528 #ifdef DIAGNOSTIC
529 if (bp == NULL) {
530 panic("bio_doread: no such buf");
531 }
532 #endif
533
534 /*
535 * If buffer does not have data valid, start a read.
536 * Note that if buffer is B_INVAL, getblk() won't return it.
537 * Therefore, it's valid if its I/O has completed or been delayed.
538 */
539 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
540 /* Start I/O for the buffer. */
541 SET(bp->b_flags, B_READ | async);
542 if (async)
543 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
544 else
545 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
546 VOP_STRATEGY(vp, bp);
547
548 /* Pay for the read. */
549 p->p_stats->p_ru.ru_inblock++;
550 } else if (async) {
551 brelse(bp);
552 }
553
554 return (bp);
555 }
556
557 /*
558 * Read a disk block.
559 * This algorithm described in Bach (p.54).
560 */
561 int
562 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
563 struct buf **bpp)
564 {
565 struct buf *bp;
566
567 /* Get buffer for block. */
568 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
569
570 /* Wait for the read to complete, and return result. */
571 return (biowait(bp));
572 }
573
574 /*
575 * Read-ahead multiple disk blocks. The first is sync, the rest async.
576 * Trivial modification to the breada algorithm presented in Bach (p.55).
577 */
578 int
579 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
580 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
581 {
582 struct buf *bp;
583 int i;
584
585 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
586
587 /*
588 * For each of the read-ahead blocks, start a read, if necessary.
589 */
590 for (i = 0; i < nrablks; i++) {
591 /* If it's in the cache, just go on to next one. */
592 if (incore(vp, rablks[i]))
593 continue;
594
595 /* Get a buffer for the read-ahead block */
596 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
597 }
598
599 /* Otherwise, we had to start a read for it; wait until it's valid. */
600 return (biowait(bp));
601 }
602
603 /*
604 * Read with single-block read-ahead. Defined in Bach (p.55), but
605 * implemented as a call to breadn().
606 * XXX for compatibility with old file systems.
607 */
608 int
609 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
610 int rabsize, struct ucred *cred, struct buf **bpp)
611 {
612
613 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
614 }
615
616 /*
617 * Block write. Described in Bach (p.56)
618 */
619 int
620 bwrite(struct buf *bp)
621 {
622 int rv, sync, wasdelayed, s;
623 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
624 struct proc *p = l->l_proc;
625 struct vnode *vp;
626 struct mount *mp;
627
628 KASSERT(ISSET(bp->b_flags, B_BUSY));
629
630 vp = bp->b_vp;
631 if (vp != NULL) {
632 if (vp->v_type == VBLK)
633 mp = vp->v_specmountpoint;
634 else
635 mp = vp->v_mount;
636 } else {
637 mp = NULL;
638 }
639
640 /*
641 * Remember buffer type, to switch on it later. If the write was
642 * synchronous, but the file system was mounted with MNT_ASYNC,
643 * convert it to a delayed write.
644 * XXX note that this relies on delayed tape writes being converted
645 * to async, not sync writes (which is safe, but ugly).
646 */
647 sync = !ISSET(bp->b_flags, B_ASYNC);
648 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
649 bdwrite(bp);
650 return (0);
651 }
652
653 /*
654 * Collect statistics on synchronous and asynchronous writes.
655 * Writes to block devices are charged to their associated
656 * filesystem (if any).
657 */
658 if (mp != NULL) {
659 if (sync)
660 mp->mnt_stat.f_syncwrites++;
661 else
662 mp->mnt_stat.f_asyncwrites++;
663 }
664
665 s = splbio();
666 simple_lock(&bp->b_interlock);
667
668 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
669
670 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
671
672 /*
673 * Pay for the I/O operation and make sure the buf is on the correct
674 * vnode queue.
675 */
676 if (wasdelayed)
677 reassignbuf(bp, bp->b_vp);
678 else
679 p->p_stats->p_ru.ru_oublock++;
680
681 /* Initiate disk write. Make sure the appropriate party is charged. */
682 V_INCR_NUMOUTPUT(bp->b_vp);
683 simple_unlock(&bp->b_interlock);
684 splx(s);
685
686 if (sync)
687 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
688 else
689 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
690
691 VOP_STRATEGY(vp, bp);
692
693 if (sync) {
694 /* If I/O was synchronous, wait for it to complete. */
695 rv = biowait(bp);
696
697 /* Release the buffer. */
698 brelse(bp);
699
700 return (rv);
701 } else {
702 return (0);
703 }
704 }
705
706 int
707 vn_bwrite(void *v)
708 {
709 struct vop_bwrite_args *ap = v;
710
711 return (bwrite(ap->a_bp));
712 }
713
714 /*
715 * Delayed write.
716 *
717 * The buffer is marked dirty, but is not queued for I/O.
718 * This routine should be used when the buffer is expected
719 * to be modified again soon, typically a small write that
720 * partially fills a buffer.
721 *
722 * NB: magnetic tapes cannot be delayed; they must be
723 * written in the order that the writes are requested.
724 *
725 * Described in Leffler, et al. (pp. 208-213).
726 */
727 void
728 bdwrite(struct buf *bp)
729 {
730 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
731 struct proc *p = l->l_proc;
732 const struct bdevsw *bdev;
733 int s;
734
735 /* If this is a tape block, write the block now. */
736 bdev = bdevsw_lookup(bp->b_dev);
737 if (bdev != NULL && bdev->d_type == D_TAPE) {
738 bawrite(bp);
739 return;
740 }
741
742 /*
743 * If the block hasn't been seen before:
744 * (1) Mark it as having been seen,
745 * (2) Charge for the write,
746 * (3) Make sure it's on its vnode's correct block list.
747 */
748 s = splbio();
749 simple_lock(&bp->b_interlock);
750
751 KASSERT(ISSET(bp->b_flags, B_BUSY));
752
753 if (!ISSET(bp->b_flags, B_DELWRI)) {
754 SET(bp->b_flags, B_DELWRI);
755 p->p_stats->p_ru.ru_oublock++;
756 reassignbuf(bp, bp->b_vp);
757 }
758
759 /* Otherwise, the "write" is done, so mark and release the buffer. */
760 CLR(bp->b_flags, B_DONE);
761 simple_unlock(&bp->b_interlock);
762 splx(s);
763
764 brelse(bp);
765 }
766
767 /*
768 * Asynchronous block write; just an asynchronous bwrite().
769 */
770 void
771 bawrite(struct buf *bp)
772 {
773 int s;
774
775 s = splbio();
776 simple_lock(&bp->b_interlock);
777
778 KASSERT(ISSET(bp->b_flags, B_BUSY));
779
780 SET(bp->b_flags, B_ASYNC);
781 simple_unlock(&bp->b_interlock);
782 splx(s);
783 VOP_BWRITE(bp);
784 }
785
786 /*
787 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
788 * Call at splbio() and with the buffer interlock locked.
789 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
790 */
791 void
792 bdirty(struct buf *bp)
793 {
794 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
795 struct proc *p = l->l_proc;
796
797 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
798 KASSERT(ISSET(bp->b_flags, B_BUSY));
799
800 CLR(bp->b_flags, B_AGE);
801
802 if (!ISSET(bp->b_flags, B_DELWRI)) {
803 SET(bp->b_flags, B_DELWRI);
804 p->p_stats->p_ru.ru_oublock++;
805 reassignbuf(bp, bp->b_vp);
806 }
807 }
808
809 /*
810 * Release a buffer on to the free lists.
811 * Described in Bach (p. 46).
812 */
813 void
814 brelse(struct buf *bp)
815 {
816 struct bqueues *bufq;
817 int s;
818
819 /* Block disk interrupts. */
820 s = splbio();
821 simple_lock(&bqueue_slock);
822 simple_lock(&bp->b_interlock);
823
824 KASSERT(ISSET(bp->b_flags, B_BUSY));
825 KASSERT(!ISSET(bp->b_flags, B_CALL));
826
827 /* Wake up any processes waiting for any buffer to become free. */
828 if (needbuffer) {
829 needbuffer = 0;
830 wakeup(&needbuffer);
831 }
832
833 /* Wake up any proceeses waiting for _this_ buffer to become free. */
834 if (ISSET(bp->b_flags, B_WANTED)) {
835 CLR(bp->b_flags, B_WANTED|B_AGE);
836 wakeup(bp);
837 }
838
839 /*
840 * Determine which queue the buffer should be on, then put it there.
841 */
842
843 /* If it's locked, don't report an error; try again later. */
844 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
845 CLR(bp->b_flags, B_ERROR);
846
847 /* If it's not cacheable, or an error, mark it invalid. */
848 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
849 SET(bp->b_flags, B_INVAL);
850
851 if (ISSET(bp->b_flags, B_VFLUSH)) {
852 /*
853 * This is a delayed write buffer that was just flushed to
854 * disk. It is still on the LRU queue. If it's become
855 * invalid, then we need to move it to a different queue;
856 * otherwise leave it in its current position.
857 */
858 CLR(bp->b_flags, B_VFLUSH);
859 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
860 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
861 goto already_queued;
862 } else {
863 bremfree(bp);
864 }
865 }
866
867 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
868 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
869 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
870
871 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
872 /*
873 * If it's invalid or empty, dissociate it from its vnode
874 * and put on the head of the appropriate queue.
875 */
876 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
877 (*bioops.io_deallocate)(bp);
878 CLR(bp->b_flags, B_DONE|B_DELWRI);
879 if (bp->b_vp) {
880 reassignbuf(bp, bp->b_vp);
881 brelvp(bp);
882 }
883 if (bp->b_bufsize <= 0)
884 /* no data */
885 goto already_queued;
886 else
887 /* invalid data */
888 bufq = &bufqueues[BQ_AGE];
889 binsheadfree(bp, bufq);
890 } else {
891 /*
892 * It has valid data. Put it on the end of the appropriate
893 * queue, so that it'll stick around for as long as possible.
894 * If buf is AGE, but has dependencies, must put it on last
895 * bufqueue to be scanned, ie LRU. This protects against the
896 * livelock where BQ_AGE only has buffers with dependencies,
897 * and we thus never get to the dependent buffers in BQ_LRU.
898 */
899 if (ISSET(bp->b_flags, B_LOCKED))
900 /* locked in core */
901 bufq = &bufqueues[BQ_LOCKED];
902 else if (!ISSET(bp->b_flags, B_AGE))
903 /* valid data */
904 bufq = &bufqueues[BQ_LRU];
905 else {
906 /* stale but valid data */
907 int has_deps;
908
909 if (LIST_FIRST(&bp->b_dep) != NULL &&
910 bioops.io_countdeps)
911 has_deps = (*bioops.io_countdeps)(bp, 0);
912 else
913 has_deps = 0;
914 bufq = has_deps ? &bufqueues[BQ_LRU] :
915 &bufqueues[BQ_AGE];
916 }
917 binstailfree(bp, bufq);
918 }
919
920 already_queued:
921 /* Unlock the buffer. */
922 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
923 SET(bp->b_flags, B_CACHE);
924
925 /* Allow disk interrupts. */
926 simple_unlock(&bp->b_interlock);
927 simple_unlock(&bqueue_slock);
928 if (bp->b_bufsize <= 0) {
929 #ifdef DEBUG
930 memset((char *)bp, 0, sizeof(*bp));
931 #endif
932 pool_put(&bufpool, bp);
933 }
934 splx(s);
935 }
936
937 /*
938 * Determine if a block is in the cache.
939 * Just look on what would be its hash chain. If it's there, return
940 * a pointer to it, unless it's marked invalid. If it's marked invalid,
941 * we normally don't return the buffer, unless the caller explicitly
942 * wants us to.
943 */
944 struct buf *
945 incore(struct vnode *vp, daddr_t blkno)
946 {
947 struct buf *bp;
948
949 /* Search hash chain */
950 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
951 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
952 !ISSET(bp->b_flags, B_INVAL))
953 return (bp);
954 }
955
956 return (NULL);
957 }
958
959 /*
960 * Get a block of requested size that is associated with
961 * a given vnode and block offset. If it is found in the
962 * block cache, mark it as having been found, make it busy
963 * and return it. Otherwise, return an empty block of the
964 * correct size. It is up to the caller to insure that the
965 * cached blocks be of the correct size.
966 */
967 struct buf *
968 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
969 {
970 struct buf *bp;
971 int s, err;
972 int preserve;
973
974 start:
975 s = splbio();
976 simple_lock(&bqueue_slock);
977 bp = incore(vp, blkno);
978 if (bp != NULL) {
979 simple_lock(&bp->b_interlock);
980 if (ISSET(bp->b_flags, B_BUSY)) {
981 simple_unlock(&bqueue_slock);
982 if (curproc == uvm.pagedaemon_proc) {
983 simple_unlock(&bp->b_interlock);
984 splx(s);
985 return NULL;
986 }
987 SET(bp->b_flags, B_WANTED);
988 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
989 "getblk", slptimeo, &bp->b_interlock);
990 splx(s);
991 if (err)
992 return (NULL);
993 goto start;
994 }
995 #ifdef DIAGNOSTIC
996 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
997 bp->b_bcount < size && vp->v_type != VBLK)
998 panic("getblk: block size invariant failed");
999 #endif
1000 SET(bp->b_flags, B_BUSY);
1001 bremfree(bp);
1002 preserve = 1;
1003 } else {
1004 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1005 simple_unlock(&bqueue_slock);
1006 splx(s);
1007 goto start;
1008 }
1009
1010 binshash(bp, BUFHASH(vp, blkno));
1011 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1012 bgetvp(vp, bp);
1013 preserve = 0;
1014 }
1015 simple_unlock(&bp->b_interlock);
1016 simple_unlock(&bqueue_slock);
1017 splx(s);
1018 /*
1019 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1020 * if we re-size buffers here.
1021 */
1022 if (ISSET(bp->b_flags, B_LOCKED)) {
1023 KASSERT(bp->b_bufsize >= size);
1024 } else {
1025 allocbuf(bp, size, preserve);
1026 }
1027 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1028 return (bp);
1029 }
1030
1031 /*
1032 * Get an empty, disassociated buffer of given size.
1033 */
1034 struct buf *
1035 geteblk(int size)
1036 {
1037 struct buf *bp;
1038 int s;
1039
1040 s = splbio();
1041 simple_lock(&bqueue_slock);
1042 while ((bp = getnewbuf(0, 0, 0)) == 0)
1043 ;
1044
1045 SET(bp->b_flags, B_INVAL);
1046 binshash(bp, &invalhash);
1047 simple_unlock(&bqueue_slock);
1048 simple_unlock(&bp->b_interlock);
1049 splx(s);
1050 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1051 allocbuf(bp, size, 0);
1052 return (bp);
1053 }
1054
1055 /*
1056 * Expand or contract the actual memory allocated to a buffer.
1057 *
1058 * If the buffer shrinks, data is lost, so it's up to the
1059 * caller to have written it out *first*; this routine will not
1060 * start a write. If the buffer grows, it's the callers
1061 * responsibility to fill out the buffer's additional contents.
1062 */
1063 void
1064 allocbuf(struct buf *bp, int size, int preserve)
1065 {
1066 vsize_t oldsize, desired_size;
1067 caddr_t addr;
1068 int s, delta;
1069
1070 desired_size = buf_roundsize(size);
1071 if (desired_size > MAXBSIZE)
1072 printf("allocbuf: buffer larger than MAXBSIZE requested");
1073
1074 bp->b_bcount = size;
1075
1076 oldsize = bp->b_bufsize;
1077 if (oldsize == desired_size)
1078 return;
1079
1080 /*
1081 * If we want a buffer of a different size, re-allocate the
1082 * buffer's memory; copy old content only if needed.
1083 */
1084 addr = buf_malloc(desired_size);
1085 if (preserve)
1086 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1087 if (bp->b_data != NULL)
1088 buf_mrelease(bp->b_data, oldsize);
1089 bp->b_data = addr;
1090 bp->b_bufsize = desired_size;
1091
1092 /*
1093 * Update overall buffer memory counter (protected by bqueue_slock)
1094 */
1095 delta = (long)desired_size - (long)oldsize;
1096
1097 s = splbio();
1098 simple_lock(&bqueue_slock);
1099 if ((bufmem += delta) > bufmem_hiwater) {
1100 /*
1101 * Need to trim overall memory usage.
1102 */
1103 while (buf_canrelease()) {
1104 if (buf_trim() == 0)
1105 break;
1106 }
1107 }
1108
1109 simple_unlock(&bqueue_slock);
1110 splx(s);
1111 }
1112
1113 /*
1114 * Find a buffer which is available for use.
1115 * Select something from a free list.
1116 * Preference is to AGE list, then LRU list.
1117 *
1118 * Called at splbio and with buffer queues locked.
1119 * Return buffer locked.
1120 */
1121 struct buf *
1122 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1123 {
1124 struct buf *bp;
1125
1126 start:
1127 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1128
1129 /*
1130 * Get a new buffer from the pool; but use NOWAIT because
1131 * we have the buffer queues locked.
1132 */
1133 if (buf_lotsfree() && !from_bufq &&
1134 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1135 memset((char *)bp, 0, sizeof(*bp));
1136 BUF_INIT(bp);
1137 bp->b_dev = NODEV;
1138 bp->b_vnbufs.le_next = NOLIST;
1139 bp->b_flags = B_BUSY;
1140 simple_lock(&bp->b_interlock);
1141 return (bp);
1142 }
1143
1144 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1145 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1146 simple_lock(&bp->b_interlock);
1147 bremfree(bp);
1148 } else {
1149 /* wait for a free buffer of any kind */
1150 needbuffer = 1;
1151 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1152 "getnewbuf", slptimeo, &bqueue_slock);
1153 return (NULL);
1154 }
1155
1156 #ifdef DIAGNOSTIC
1157 if (bp->b_bufsize <= 0)
1158 panic("buffer %p: on queue but empty", bp);
1159 #endif
1160
1161 if (ISSET(bp->b_flags, B_VFLUSH)) {
1162 /*
1163 * This is a delayed write buffer being flushed to disk. Make
1164 * sure it gets aged out of the queue when it's finished, and
1165 * leave it off the LRU queue.
1166 */
1167 CLR(bp->b_flags, B_VFLUSH);
1168 SET(bp->b_flags, B_AGE);
1169 simple_unlock(&bp->b_interlock);
1170 goto start;
1171 }
1172
1173 /* Buffer is no longer on free lists. */
1174 SET(bp->b_flags, B_BUSY);
1175
1176 /*
1177 * If buffer was a delayed write, start it and return NULL
1178 * (since we might sleep while starting the write).
1179 */
1180 if (ISSET(bp->b_flags, B_DELWRI)) {
1181 /*
1182 * This buffer has gone through the LRU, so make sure it gets
1183 * reused ASAP.
1184 */
1185 SET(bp->b_flags, B_AGE);
1186 simple_unlock(&bp->b_interlock);
1187 simple_unlock(&bqueue_slock);
1188 bawrite(bp);
1189 simple_lock(&bqueue_slock);
1190 return (NULL);
1191 }
1192
1193 /* disassociate us from our vnode, if we had one... */
1194 if (bp->b_vp)
1195 brelvp(bp);
1196
1197 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1198 (*bioops.io_deallocate)(bp);
1199
1200 /* clear out various other fields */
1201 bp->b_flags = B_BUSY;
1202 bp->b_dev = NODEV;
1203 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1204 bp->b_iodone = 0;
1205 bp->b_error = 0;
1206 bp->b_resid = 0;
1207 bp->b_bcount = 0;
1208
1209 bremhash(bp);
1210 return (bp);
1211 }
1212
1213 /*
1214 * Attempt to free an aged buffer off the queues.
1215 * Called at splbio and with queue lock held.
1216 * Returns the amount of buffer memory freed.
1217 */
1218 int
1219 buf_trim(void)
1220 {
1221 struct buf *bp;
1222 long size = 0;
1223 int wanted;
1224
1225 /* Instruct getnewbuf() to get buffers off the queues */
1226 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1227 return 0;
1228
1229 wanted = ISSET(bp->b_flags, B_WANTED);
1230 simple_unlock(&bp->b_interlock);
1231 if (wanted) {
1232 printf("buftrim: got WANTED buffer\n");
1233 SET(bp->b_flags, B_INVAL);
1234 binshash(bp, &invalhash);
1235 simple_unlock(&bqueue_slock);
1236 goto out;
1237 }
1238 size = bp->b_bufsize;
1239 bufmem -= size;
1240 simple_unlock(&bqueue_slock);
1241 if (size > 0) {
1242 buf_mrelease(bp->b_data, size);
1243 bp->b_bcount = bp->b_bufsize = 0;
1244 }
1245
1246 out:
1247 /* brelse() will return the buffer to the global buffer pool */
1248 brelse(bp);
1249 simple_lock(&bqueue_slock);
1250 return size;
1251 }
1252
1253 int
1254 buf_drain(int n)
1255 {
1256 int s, size = 0;
1257
1258 s = splbio();
1259 simple_lock(&bqueue_slock);
1260
1261 /* If not asked for a specific amount, make our own estimate */
1262 if (n == 0)
1263 n = buf_canrelease();
1264
1265 while (size < n && bufmem > bufmem_lowater)
1266 size += buf_trim();
1267
1268 simple_unlock(&bqueue_slock);
1269 splx(s);
1270 return size;
1271 }
1272
1273 /*
1274 * Wait for operations on the buffer to complete.
1275 * When they do, extract and return the I/O's error value.
1276 */
1277 int
1278 biowait(struct buf *bp)
1279 {
1280 int s, error;
1281
1282 s = splbio();
1283 simple_lock(&bp->b_interlock);
1284 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1285 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1286
1287 /* check for interruption of I/O (e.g. via NFS), then errors. */
1288 if (ISSET(bp->b_flags, B_EINTR)) {
1289 CLR(bp->b_flags, B_EINTR);
1290 error = EINTR;
1291 } else if (ISSET(bp->b_flags, B_ERROR))
1292 error = bp->b_error ? bp->b_error : EIO;
1293 else
1294 error = 0;
1295
1296 simple_unlock(&bp->b_interlock);
1297 splx(s);
1298 return (error);
1299 }
1300
1301 /*
1302 * Mark I/O complete on a buffer.
1303 *
1304 * If a callback has been requested, e.g. the pageout
1305 * daemon, do so. Otherwise, awaken waiting processes.
1306 *
1307 * [ Leffler, et al., says on p.247:
1308 * "This routine wakes up the blocked process, frees the buffer
1309 * for an asynchronous write, or, for a request by the pagedaemon
1310 * process, invokes a procedure specified in the buffer structure" ]
1311 *
1312 * In real life, the pagedaemon (or other system processes) wants
1313 * to do async stuff to, and doesn't want the buffer brelse()'d.
1314 * (for swap pager, that puts swap buffers on the free lists (!!!),
1315 * for the vn device, that puts malloc'd buffers on the free lists!)
1316 */
1317 void
1318 biodone(struct buf *bp)
1319 {
1320 int s = splbio();
1321
1322 simple_lock(&bp->b_interlock);
1323 if (ISSET(bp->b_flags, B_DONE))
1324 panic("biodone already");
1325 SET(bp->b_flags, B_DONE); /* note that it's done */
1326 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1327
1328 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1329 (*bioops.io_complete)(bp);
1330
1331 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1332 vwakeup(bp);
1333
1334 /*
1335 * If necessary, call out. Unlock the buffer before calling
1336 * iodone() as the buffer isn't valid any more when it return.
1337 */
1338 if (ISSET(bp->b_flags, B_CALL)) {
1339 CLR(bp->b_flags, B_CALL); /* but note callout done */
1340 simple_unlock(&bp->b_interlock);
1341 (*bp->b_iodone)(bp);
1342 } else {
1343 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1344 simple_unlock(&bp->b_interlock);
1345 brelse(bp);
1346 } else { /* or just wakeup the buffer */
1347 CLR(bp->b_flags, B_WANTED);
1348 wakeup(bp);
1349 simple_unlock(&bp->b_interlock);
1350 }
1351 }
1352
1353 splx(s);
1354 }
1355
1356 /*
1357 * Return a count of buffers on the "locked" queue.
1358 */
1359 int
1360 count_lock_queue(void)
1361 {
1362 struct buf *bp;
1363 int n = 0;
1364
1365 simple_lock(&bqueue_slock);
1366 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1367 n++;
1368 simple_unlock(&bqueue_slock);
1369 return (n);
1370 }
1371
1372 /*
1373 * Wait for all buffers to complete I/O
1374 * Return the number of "stuck" buffers.
1375 */
1376 int
1377 buf_syncwait(void)
1378 {
1379 struct buf *bp;
1380 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1381
1382 dcount = 10000;
1383 for (iter = 0; iter < 20;) {
1384 s = splbio();
1385 simple_lock(&bqueue_slock);
1386 nbusy = 0;
1387 for (ihash = 0; ihash < bufhash+1; ihash++) {
1388 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1389 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1390 nbusy++;
1391 /*
1392 * With soft updates, some buffers that are
1393 * written will be remarked as dirty until other
1394 * buffers are written.
1395 */
1396 if (bp->b_vp && bp->b_vp->v_mount
1397 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1398 && (bp->b_flags & B_DELWRI)) {
1399 simple_lock(&bp->b_interlock);
1400 bremfree(bp);
1401 bp->b_flags |= B_BUSY;
1402 nbusy++;
1403 simple_unlock(&bp->b_interlock);
1404 simple_unlock(&bqueue_slock);
1405 bawrite(bp);
1406 if (dcount-- <= 0) {
1407 printf("softdep ");
1408 goto fail;
1409 }
1410 simple_lock(&bqueue_slock);
1411 }
1412 }
1413 }
1414
1415 simple_unlock(&bqueue_slock);
1416 splx(s);
1417
1418 if (nbusy == 0)
1419 break;
1420 if (nbusy_prev == 0)
1421 nbusy_prev = nbusy;
1422 printf("%d ", nbusy);
1423 tsleep(&nbusy, PRIBIO, "bflush",
1424 (iter == 0) ? 1 : hz / 25 * iter);
1425 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1426 iter++;
1427 else
1428 nbusy_prev = nbusy;
1429 }
1430
1431 if (nbusy) {
1432 fail:;
1433 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1434 printf("giving up\nPrinting vnodes for busy buffers\n");
1435 for (ihash = 0; ihash < bufhash+1; ihash++) {
1436 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1437 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1438 vprint(NULL, bp->b_vp);
1439 }
1440 }
1441 #endif
1442 }
1443
1444 return nbusy;
1445 }
1446
1447 static void
1448 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1449 {
1450
1451 o->b_flags = i->b_flags;
1452 o->b_error = i->b_error;
1453 o->b_prio = i->b_prio;
1454 o->b_dev = i->b_dev;
1455 o->b_bufsize = i->b_bufsize;
1456 o->b_bcount = i->b_bcount;
1457 o->b_resid = i->b_resid;
1458 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1459 o->b_blkno = i->b_blkno;
1460 o->b_rawblkno = i->b_rawblkno;
1461 o->b_iodone = PTRTOUINT64(i->b_iodone);
1462 o->b_proc = PTRTOUINT64(i->b_proc);
1463 o->b_vp = PTRTOUINT64(i->b_vp);
1464 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1465 o->b_lblkno = i->b_lblkno;
1466 }
1467
1468 #define KERN_BUFSLOP 20
1469 static int
1470 sysctl_dobuf(SYSCTLFN_ARGS)
1471 {
1472 struct buf *bp;
1473 struct buf_sysctl bs;
1474 char *dp;
1475 u_int i, op, arg;
1476 size_t len, needed, elem_size, out_size;
1477 int error, s, elem_count;
1478
1479 if (namelen == 1 && name[0] == CTL_QUERY)
1480 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1481
1482 if (namelen != 4)
1483 return (EINVAL);
1484
1485 dp = oldp;
1486 len = (oldp != NULL) ? *oldlenp : 0;
1487 op = name[0];
1488 arg = name[1];
1489 elem_size = name[2];
1490 elem_count = name[3];
1491 out_size = MIN(sizeof(bs), elem_size);
1492
1493 /*
1494 * at the moment, these are just "placeholders" to make the
1495 * API for retrieving kern.buf data more extensible in the
1496 * future.
1497 *
1498 * XXX kern.buf currently has "netbsd32" issues. hopefully
1499 * these will be resolved at a later point.
1500 */
1501 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1502 elem_size < 1 || elem_count < 0)
1503 return (EINVAL);
1504
1505 error = 0;
1506 needed = 0;
1507 s = splbio();
1508 simple_lock(&bqueue_slock);
1509 for (i = 0; i < BQUEUES; i++) {
1510 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1511 if (len >= elem_size && elem_count > 0) {
1512 sysctl_fillbuf(bp, &bs);
1513 error = copyout(&bs, dp, out_size);
1514 if (error)
1515 goto cleanup;
1516 dp += elem_size;
1517 len -= elem_size;
1518 }
1519 if (elem_count > 0) {
1520 needed += elem_size;
1521 if (elem_count != INT_MAX)
1522 elem_count--;
1523 }
1524 }
1525 }
1526 cleanup:
1527 simple_unlock(&bqueue_slock);
1528 splx(s);
1529
1530 *oldlenp = needed;
1531 if (oldp == NULL)
1532 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1533
1534 return (error);
1535 }
1536
1537 static int
1538 sysctl_bufvm_update(SYSCTLFN_ARGS)
1539 {
1540 int t, error;
1541 struct sysctlnode node;
1542
1543 node = *rnode;
1544 node.sysctl_data = &t;
1545 t = *(int*)rnode->sysctl_data;
1546 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1547 if (error || newp == NULL)
1548 return (error);
1549
1550 if (rnode->sysctl_data == &bufcache) {
1551 if (t < 0 || t > 100)
1552 return (EINVAL);
1553 bufcache = t;
1554 bufmem_hiwater = buf_memcalc();
1555 bufmem_lowater = (bufmem_hiwater >> 3);
1556 if (bufmem_lowater < 64 * 1024)
1557 /* Ensure a reasonable minimum value */
1558 bufmem_lowater = 64 * 1024;
1559
1560 } else if (rnode->sysctl_data == &bufmem_lowater) {
1561 bufmem_lowater = t;
1562 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1563 bufmem_hiwater = t;
1564 } else
1565 return (EINVAL);
1566
1567 /* Drain until below new high water mark */
1568 while ((t = bufmem - bufmem_hiwater) >= 0) {
1569 if (buf_drain(t / (2*1024)) <= 0)
1570 break;
1571 }
1572
1573 return 0;
1574 }
1575
1576 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1577 {
1578
1579 sysctl_createv(clog, 0, NULL, NULL,
1580 CTLFLAG_PERMANENT,
1581 CTLTYPE_NODE, "kern", NULL,
1582 NULL, 0, NULL, 0,
1583 CTL_KERN, CTL_EOL);
1584 sysctl_createv(clog, 0, NULL, NULL,
1585 CTLFLAG_PERMANENT,
1586 CTLTYPE_NODE, "buf", NULL,
1587 sysctl_dobuf, 0, NULL, 0,
1588 CTL_KERN, KERN_BUF, CTL_EOL);
1589 }
1590
1591 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1592 {
1593
1594 sysctl_createv(clog, 0, NULL, NULL,
1595 CTLFLAG_PERMANENT,
1596 CTLTYPE_NODE, "vm", NULL,
1597 NULL, 0, NULL, 0,
1598 CTL_VM, CTL_EOL);
1599
1600 sysctl_createv(clog, 0, NULL, NULL,
1601 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1602 CTLTYPE_INT, "bufcache", NULL,
1603 sysctl_bufvm_update, 0, &bufcache, 0,
1604 CTL_VM, CTL_CREATE, CTL_EOL);
1605 sysctl_createv(clog, 0, NULL, NULL,
1606 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1607 CTLTYPE_INT, "bufmem", NULL,
1608 NULL, 0, &bufmem, 0,
1609 CTL_VM, CTL_CREATE, CTL_EOL);
1610 sysctl_createv(clog, 0, NULL, NULL,
1611 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1612 CTLTYPE_INT, "bufmem_lowater", NULL,
1613 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1614 CTL_VM, CTL_CREATE, CTL_EOL);
1615 sysctl_createv(clog, 0, NULL, NULL,
1616 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1617 CTLTYPE_INT, "bufmem_hiwater", NULL,
1618 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1619 CTL_VM, CTL_CREATE, CTL_EOL);
1620 }
1621
1622 #ifdef DEBUG
1623 /*
1624 * Print out statistics on the current allocation of the buffer pool.
1625 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1626 * in vfs_syscalls.c using sysctl.
1627 */
1628 void
1629 vfs_bufstats(void)
1630 {
1631 int s, i, j, count;
1632 struct buf *bp;
1633 struct bqueues *dp;
1634 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1635 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1636
1637 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1638 count = 0;
1639 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1640 counts[j] = 0;
1641 s = splbio();
1642 TAILQ_FOREACH(bp, dp, b_freelist) {
1643 counts[bp->b_bufsize/PAGE_SIZE]++;
1644 count++;
1645 }
1646 splx(s);
1647 printf("%s: total-%d", bname[i], count);
1648 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1649 if (counts[j] != 0)
1650 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1651 printf("\n");
1652 }
1653 }
1654 #endif /* DEBUG */
1655