vfs_bio.c revision 1.123 1 /* $NetBSD: vfs_bio.c,v 1.123 2004/04/21 01:05:38 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.123 2004/04/21 01:05:38 christos Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118
119 /* Macros to clear/set/test flags. */
120 #define SET(t, f) (t) |= (f)
121 #define CLR(t, f) (t) &= ~(f)
122 #define ISSET(t, f) ((t) & (f))
123
124 /*
125 * Definitions for the buffer hash lists.
126 */
127 #define BUFHASH(dvp, lbn) \
128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 u_long bufhash;
131 #ifndef SOFTDEP
132 struct bio_ops bioops; /* I/O operation notification */
133 #endif
134
135 /*
136 * Insq/Remq for the buffer hash lists.
137 */
138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
139 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
140
141 /*
142 * Definitions for the buffer free lists.
143 */
144 #define BQUEUES 3 /* number of free buffer queues */
145
146 #define BQ_LOCKED 0 /* super-blocks &c */
147 #define BQ_LRU 1 /* lru, useful buffers */
148 #define BQ_AGE 2 /* rubbish */
149
150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 int needbuffer;
152
153 /*
154 * Buffer queue lock.
155 * Take this lock first if also taking some buffer's b_interlock.
156 */
157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158
159 /*
160 * Buffer pool for I/O buffers.
161 */
162 struct pool bufpool;
163
164 /* XXX - somewhat gross.. */
165 #if MAXBSIZE == 0x2000
166 #define NMEMPOOLS 4
167 #elif MAXBSIZE == 0x4000
168 #define NMEMPOOLS 5
169 #elif MAXBSIZE == 0x8000
170 #define NMEMPOOLS 6
171 #else
172 #define NMEMPOOLS 7
173 #endif
174
175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 #error update vfs_bio buffer memory parameters
178 #endif
179
180 /* Buffer memory pools */
181 static struct pool bmempools[NMEMPOOLS];
182
183 struct vm_map *buf_map;
184
185 /*
186 * Buffer memory pool allocator.
187 */
188 static void *
189 bufpool_page_alloc(struct pool *pp, int flags)
190 {
191
192 return (void *)uvm_km_kmemalloc1(buf_map,
193 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195 }
196
197 static void
198 bufpool_page_free(struct pool *pp, void *v)
199 {
200 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201 }
202
203 static struct pool_allocator bufmempool_allocator = {
204 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205 };
206
207 /* Buffer memory management variables */
208 u_long bufmem_valimit;
209 u_long bufmem_hiwater;
210 u_long bufmem_lowater;
211 u_long bufmem;
212
213 /*
214 * MD code can call this to set a hard limit on the amount
215 * of virtual memory used by the buffer cache.
216 */
217 int
218 buf_setvalimit(vsize_t sz)
219 {
220
221 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222 if (sz < NMEMPOOLS * MAXBSIZE)
223 return EINVAL;
224
225 bufmem_valimit = sz;
226 return 0;
227 }
228
229 static int buf_trim(void);
230
231 /*
232 * bread()/breadn() helper.
233 */
234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235 struct ucred *, int);
236 int count_lock_queue(void);
237
238 /*
239 * Insq/Remq for the buffer free lists.
240 * Call with buffer queue locked.
241 */
242 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244
245 #ifdef DEBUG
246 int debug_verify_freelist = 0;
247 static int checkfreelist(struct buf *bp, struct bqueues *dp)
248 {
249 struct buf *b;
250 TAILQ_FOREACH(b, dp, b_freelist) {
251 if (b == bp)
252 return 1;
253 }
254 return 0;
255 }
256 #endif
257
258 void
259 bremfree(struct buf *bp)
260 {
261 struct bqueues *dp = NULL;
262
263 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264
265 KDASSERT(!debug_verify_freelist ||
266 checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267 checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268 checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269
270 /*
271 * We only calculate the head of the freelist when removing
272 * the last element of the list as that is the only time that
273 * it is needed (e.g. to reset the tail pointer).
274 *
275 * NB: This makes an assumption about how tailq's are implemented.
276 *
277 * We break the TAILQ abstraction in order to efficiently remove a
278 * buffer from its freelist without having to know exactly which
279 * freelist it is on.
280 */
281 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283 if (dp->tqh_last == &bp->b_freelist.tqe_next)
284 break;
285 if (dp == &bufqueues[BQUEUES])
286 panic("bremfree: lost tail");
287 }
288 TAILQ_REMOVE(dp, bp, b_freelist);
289 }
290
291 u_long
292 buf_memcalc(void)
293 {
294 u_long n;
295
296 /*
297 * Determine the upper bound of memory to use for buffers.
298 *
299 * - If bufpages is specified, use that as the number
300 * pages.
301 *
302 * - Otherwise, use bufcache as the percentage of
303 * physical memory.
304 */
305 if (bufpages != 0) {
306 n = bufpages;
307 } else {
308 if (bufcache < 5) {
309 printf("forcing bufcache %d -> 5", bufcache);
310 bufcache = 5;
311 }
312 if (bufcache > 95) {
313 printf("forcing bufcache %d -> 95", bufcache);
314 bufcache = 95;
315 }
316 n = physmem / 100 * bufcache;
317 }
318
319 n <<= PAGE_SHIFT;
320 if (bufmem_valimit != 0 && n > bufmem_valimit)
321 n = bufmem_valimit;
322
323 return (n);
324 }
325
326 /*
327 * Initialize buffers and hash links for buffers.
328 */
329 void
330 bufinit(void)
331 {
332 struct bqueues *dp;
333 int smallmem;
334 u_int i;
335
336 /*
337 * Initialize buffer cache memory parameters.
338 */
339 bufmem = 0;
340 bufmem_hiwater = buf_memcalc();
341 /* lowater is approx. 2% of memory (with bufcache=15) */
342 bufmem_lowater = (bufmem_hiwater >> 3);
343 if (bufmem_lowater < 64 * 1024)
344 /* Ensure a reasonable minimum value */
345 bufmem_lowater = 64 * 1024;
346
347 if (bufmem_valimit != 0) {
348 vaddr_t minaddr = 0, maxaddr;
349 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350 bufmem_valimit, VM_MAP_PAGEABLE,
351 FALSE, 0);
352 if (buf_map == NULL)
353 panic("bufinit: cannot allocate submap");
354 } else
355 buf_map = kernel_map;
356
357 /*
358 * Initialize the buffer pools.
359 */
360 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361
362 /* On "small" machines use small pool page sizes where possible */
363 smallmem = (physmem < atop(16*1024*1024));
364
365 for (i = 0; i < NMEMPOOLS; i++) {
366 struct pool_allocator *pa;
367 struct pool *pp = &bmempools[i];
368 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369 char *name = malloc(8, M_TEMP, M_WAITOK);
370 snprintf(name, 8, "buf%dk", 1 << i);
371 pa = (size <= PAGE_SIZE && smallmem)
372 ? &pool_allocator_nointr
373 : &bufmempool_allocator;
374 pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa);
375 pool_setlowat(pp, 1);
376 }
377
378 /* Initialize the buffer queues */
379 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
380 TAILQ_INIT(dp);
381
382 /*
383 * Estimate hash table size based on the amount of memory we
384 * intend to use for the buffer cache. The average buffer
385 * size is dependent on our clients (i.e. filesystems).
386 *
387 * For now, use an empirical 3K per buffer.
388 */
389 nbuf = (bufmem_hiwater / 1024) / 3;
390 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
391 }
392
393 static int
394 buf_lotsfree(void)
395 {
396 int try, thresh;
397
398 /* Always allocate if less than the low water mark. */
399 if (bufmem < bufmem_lowater)
400 return 1;
401
402 /* Never allocate if greater than the high water mark. */
403 if (bufmem > bufmem_hiwater)
404 return 0;
405
406 /* If there's anything on the AGE list, it should be eaten. */
407 if (TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
408 return 0;
409
410 /*
411 * The probabily of getting a new allocation is inversely
412 * proportional to the current size of the cache, using
413 * a granularity of 16 steps.
414 */
415 try = random() & 0x0000000fL;
416
417 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
418 thresh = bufmem / (bufmem_hiwater / 16);
419
420 if ((try > thresh) && (uvmexp.free > (2 * uvmexp.freetarg))) {
421 return 1;
422 }
423
424 /* Otherwise don't allocate. */
425 return 0;
426 }
427
428 /*
429 * Return estimate of bytes we think need to be
430 * released to help resolve low memory conditions.
431 *
432 * => called at splbio.
433 * => called with bqueue_slock held.
434 */
435 static int
436 buf_canrelease(void)
437 {
438 int pagedemand, ninvalid = 0;
439 struct buf *bp;
440
441 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
442
443 if (bufmem < bufmem_lowater)
444 return 0;
445
446 TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
447 ninvalid += bp->b_bufsize;
448
449 pagedemand = uvmexp.freetarg - uvmexp.free;
450 if (pagedemand < 0)
451 return ninvalid;
452 return MAX(ninvalid, MIN(2 * MAXBSIZE,
453 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
454 }
455
456 /*
457 * Buffer memory allocation helper functions
458 */
459 static __inline u_long
460 buf_mempoolidx(u_long size)
461 {
462 u_int n = 0;
463
464 size -= 1;
465 size >>= MEMPOOL_INDEX_OFFSET;
466 while (size) {
467 size >>= 1;
468 n += 1;
469 }
470 if (n >= NMEMPOOLS)
471 panic("buf mem pool index %d", n);
472 return n;
473 }
474
475 static __inline u_long
476 buf_roundsize(u_long size)
477 {
478 /* Round up to nearest power of 2 */
479 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
480 }
481
482 static __inline caddr_t
483 buf_malloc(size_t size)
484 {
485 u_int n = buf_mempoolidx(size);
486 caddr_t addr;
487 int s;
488
489 while (1) {
490 addr = pool_get(&bmempools[n], PR_NOWAIT);
491 if (addr != NULL)
492 break;
493
494 /* No memory, see if we can free some. If so, try again */
495 if (buf_drain(1) > 0)
496 continue;
497
498 /* Wait for buffers to arrive on the LRU queue */
499 s = splbio();
500 simple_lock(&bqueue_slock);
501 needbuffer = 1;
502 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
503 "buf_malloc", 0, &bqueue_slock);
504 splx(s);
505 }
506
507 return addr;
508 }
509
510 static void
511 buf_mrelease(caddr_t addr, size_t size)
512 {
513
514 pool_put(&bmempools[buf_mempoolidx(size)], addr);
515 }
516
517
518 static __inline struct buf *
519 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
520 int async)
521 {
522 struct buf *bp;
523 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
524 struct proc *p = l->l_proc;
525 struct mount *mp;
526
527 bp = getblk(vp, blkno, size, 0, 0);
528
529 #ifdef DIAGNOSTIC
530 if (bp == NULL) {
531 panic("bio_doread: no such buf");
532 }
533 #endif
534
535 /*
536 * If buffer does not have data valid, start a read.
537 * Note that if buffer is B_INVAL, getblk() won't return it.
538 * Therefore, it's valid if its I/O has completed or been delayed.
539 */
540 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
541 /* Start I/O for the buffer. */
542 SET(bp->b_flags, B_READ | async);
543 if (async)
544 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
545 else
546 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
547 VOP_STRATEGY(vp, bp);
548
549 /* Pay for the read. */
550 p->p_stats->p_ru.ru_inblock++;
551 } else if (async) {
552 brelse(bp);
553 }
554
555 if (vp != NULL) {
556 if (vp->v_type == VBLK)
557 mp = vp->v_specmountpoint;
558 else
559 mp = vp->v_mount;
560 } else {
561 mp = NULL;
562 }
563
564 /*
565 * Collect statistics on synchronous and asynchronous reads.
566 * Reads from block devices are charged to their associated
567 * filesystem (if any).
568 */
569 if (mp != NULL) {
570 if (async == 0)
571 mp->mnt_stat.f_syncreads++;
572 else
573 mp->mnt_stat.f_asyncreads++;
574 }
575
576 return (bp);
577 }
578
579 /*
580 * Read a disk block.
581 * This algorithm described in Bach (p.54).
582 */
583 int
584 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
585 struct buf **bpp)
586 {
587 struct buf *bp;
588
589 /* Get buffer for block. */
590 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
591
592 /* Wait for the read to complete, and return result. */
593 return (biowait(bp));
594 }
595
596 /*
597 * Read-ahead multiple disk blocks. The first is sync, the rest async.
598 * Trivial modification to the breada algorithm presented in Bach (p.55).
599 */
600 int
601 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
602 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
603 {
604 struct buf *bp;
605 int i;
606
607 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
608
609 /*
610 * For each of the read-ahead blocks, start a read, if necessary.
611 */
612 for (i = 0; i < nrablks; i++) {
613 /* If it's in the cache, just go on to next one. */
614 if (incore(vp, rablks[i]))
615 continue;
616
617 /* Get a buffer for the read-ahead block */
618 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
619 }
620
621 /* Otherwise, we had to start a read for it; wait until it's valid. */
622 return (biowait(bp));
623 }
624
625 /*
626 * Read with single-block read-ahead. Defined in Bach (p.55), but
627 * implemented as a call to breadn().
628 * XXX for compatibility with old file systems.
629 */
630 int
631 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
632 int rabsize, struct ucred *cred, struct buf **bpp)
633 {
634
635 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
636 }
637
638 /*
639 * Block write. Described in Bach (p.56)
640 */
641 int
642 bwrite(struct buf *bp)
643 {
644 int rv, sync, wasdelayed, s;
645 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
646 struct proc *p = l->l_proc;
647 struct vnode *vp;
648 struct mount *mp;
649
650 KASSERT(ISSET(bp->b_flags, B_BUSY));
651
652 vp = bp->b_vp;
653 if (vp != NULL) {
654 if (vp->v_type == VBLK)
655 mp = vp->v_specmountpoint;
656 else
657 mp = vp->v_mount;
658 } else {
659 mp = NULL;
660 }
661
662 /*
663 * Remember buffer type, to switch on it later. If the write was
664 * synchronous, but the file system was mounted with MNT_ASYNC,
665 * convert it to a delayed write.
666 * XXX note that this relies on delayed tape writes being converted
667 * to async, not sync writes (which is safe, but ugly).
668 */
669 sync = !ISSET(bp->b_flags, B_ASYNC);
670 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
671 bdwrite(bp);
672 return (0);
673 }
674
675 /*
676 * Collect statistics on synchronous and asynchronous writes.
677 * Writes to block devices are charged to their associated
678 * filesystem (if any).
679 */
680 if (mp != NULL) {
681 if (sync)
682 mp->mnt_stat.f_syncwrites++;
683 else
684 mp->mnt_stat.f_asyncwrites++;
685 }
686
687 s = splbio();
688 simple_lock(&bp->b_interlock);
689
690 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
691
692 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
693
694 /*
695 * Pay for the I/O operation and make sure the buf is on the correct
696 * vnode queue.
697 */
698 if (wasdelayed)
699 reassignbuf(bp, bp->b_vp);
700 else
701 p->p_stats->p_ru.ru_oublock++;
702
703 /* Initiate disk write. Make sure the appropriate party is charged. */
704 V_INCR_NUMOUTPUT(bp->b_vp);
705 simple_unlock(&bp->b_interlock);
706 splx(s);
707
708 if (sync)
709 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
710 else
711 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
712
713 VOP_STRATEGY(vp, bp);
714
715 if (sync) {
716 /* If I/O was synchronous, wait for it to complete. */
717 rv = biowait(bp);
718
719 /* Release the buffer. */
720 brelse(bp);
721
722 return (rv);
723 } else {
724 return (0);
725 }
726 }
727
728 int
729 vn_bwrite(void *v)
730 {
731 struct vop_bwrite_args *ap = v;
732
733 return (bwrite(ap->a_bp));
734 }
735
736 /*
737 * Delayed write.
738 *
739 * The buffer is marked dirty, but is not queued for I/O.
740 * This routine should be used when the buffer is expected
741 * to be modified again soon, typically a small write that
742 * partially fills a buffer.
743 *
744 * NB: magnetic tapes cannot be delayed; they must be
745 * written in the order that the writes are requested.
746 *
747 * Described in Leffler, et al. (pp. 208-213).
748 */
749 void
750 bdwrite(struct buf *bp)
751 {
752 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
753 struct proc *p = l->l_proc;
754 const struct bdevsw *bdev;
755 int s;
756
757 /* If this is a tape block, write the block now. */
758 bdev = bdevsw_lookup(bp->b_dev);
759 if (bdev != NULL && bdev->d_type == D_TAPE) {
760 bawrite(bp);
761 return;
762 }
763
764 /*
765 * If the block hasn't been seen before:
766 * (1) Mark it as having been seen,
767 * (2) Charge for the write,
768 * (3) Make sure it's on its vnode's correct block list.
769 */
770 s = splbio();
771 simple_lock(&bp->b_interlock);
772
773 KASSERT(ISSET(bp->b_flags, B_BUSY));
774
775 if (!ISSET(bp->b_flags, B_DELWRI)) {
776 SET(bp->b_flags, B_DELWRI);
777 p->p_stats->p_ru.ru_oublock++;
778 reassignbuf(bp, bp->b_vp);
779 }
780
781 /* Otherwise, the "write" is done, so mark and release the buffer. */
782 CLR(bp->b_flags, B_DONE);
783 simple_unlock(&bp->b_interlock);
784 splx(s);
785
786 brelse(bp);
787 }
788
789 /*
790 * Asynchronous block write; just an asynchronous bwrite().
791 */
792 void
793 bawrite(struct buf *bp)
794 {
795 int s;
796
797 s = splbio();
798 simple_lock(&bp->b_interlock);
799
800 KASSERT(ISSET(bp->b_flags, B_BUSY));
801
802 SET(bp->b_flags, B_ASYNC);
803 simple_unlock(&bp->b_interlock);
804 splx(s);
805 VOP_BWRITE(bp);
806 }
807
808 /*
809 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
810 * Call at splbio() and with the buffer interlock locked.
811 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
812 */
813 void
814 bdirty(struct buf *bp)
815 {
816 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
817 struct proc *p = l->l_proc;
818
819 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
820 KASSERT(ISSET(bp->b_flags, B_BUSY));
821
822 CLR(bp->b_flags, B_AGE);
823
824 if (!ISSET(bp->b_flags, B_DELWRI)) {
825 SET(bp->b_flags, B_DELWRI);
826 p->p_stats->p_ru.ru_oublock++;
827 reassignbuf(bp, bp->b_vp);
828 }
829 }
830
831 /*
832 * Release a buffer on to the free lists.
833 * Described in Bach (p. 46).
834 */
835 void
836 brelse(struct buf *bp)
837 {
838 struct bqueues *bufq;
839 int s;
840
841 /* Block disk interrupts. */
842 s = splbio();
843 simple_lock(&bqueue_slock);
844 simple_lock(&bp->b_interlock);
845
846 KASSERT(ISSET(bp->b_flags, B_BUSY));
847 KASSERT(!ISSET(bp->b_flags, B_CALL));
848
849 /* Wake up any processes waiting for any buffer to become free. */
850 if (needbuffer) {
851 needbuffer = 0;
852 wakeup(&needbuffer);
853 }
854
855 /* Wake up any proceeses waiting for _this_ buffer to become free. */
856 if (ISSET(bp->b_flags, B_WANTED)) {
857 CLR(bp->b_flags, B_WANTED|B_AGE);
858 wakeup(bp);
859 }
860
861 /*
862 * Determine which queue the buffer should be on, then put it there.
863 */
864
865 /* If it's locked, don't report an error; try again later. */
866 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
867 CLR(bp->b_flags, B_ERROR);
868
869 /* If it's not cacheable, or an error, mark it invalid. */
870 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
871 SET(bp->b_flags, B_INVAL);
872
873 if (ISSET(bp->b_flags, B_VFLUSH)) {
874 /*
875 * This is a delayed write buffer that was just flushed to
876 * disk. It is still on the LRU queue. If it's become
877 * invalid, then we need to move it to a different queue;
878 * otherwise leave it in its current position.
879 */
880 CLR(bp->b_flags, B_VFLUSH);
881 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
882 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
883 goto already_queued;
884 } else {
885 bremfree(bp);
886 }
887 }
888
889 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
890 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
891 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
892
893 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
894 /*
895 * If it's invalid or empty, dissociate it from its vnode
896 * and put on the head of the appropriate queue.
897 */
898 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
899 (*bioops.io_deallocate)(bp);
900 CLR(bp->b_flags, B_DONE|B_DELWRI);
901 if (bp->b_vp) {
902 reassignbuf(bp, bp->b_vp);
903 brelvp(bp);
904 }
905 if (bp->b_bufsize <= 0)
906 /* no data */
907 goto already_queued;
908 else
909 /* invalid data */
910 bufq = &bufqueues[BQ_AGE];
911 binsheadfree(bp, bufq);
912 } else {
913 /*
914 * It has valid data. Put it on the end of the appropriate
915 * queue, so that it'll stick around for as long as possible.
916 * If buf is AGE, but has dependencies, must put it on last
917 * bufqueue to be scanned, ie LRU. This protects against the
918 * livelock where BQ_AGE only has buffers with dependencies,
919 * and we thus never get to the dependent buffers in BQ_LRU.
920 */
921 if (ISSET(bp->b_flags, B_LOCKED))
922 /* locked in core */
923 bufq = &bufqueues[BQ_LOCKED];
924 else if (!ISSET(bp->b_flags, B_AGE))
925 /* valid data */
926 bufq = &bufqueues[BQ_LRU];
927 else {
928 /* stale but valid data */
929 int has_deps;
930
931 if (LIST_FIRST(&bp->b_dep) != NULL &&
932 bioops.io_countdeps)
933 has_deps = (*bioops.io_countdeps)(bp, 0);
934 else
935 has_deps = 0;
936 bufq = has_deps ? &bufqueues[BQ_LRU] :
937 &bufqueues[BQ_AGE];
938 }
939 binstailfree(bp, bufq);
940 }
941
942 already_queued:
943 /* Unlock the buffer. */
944 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
945 SET(bp->b_flags, B_CACHE);
946
947 /* Allow disk interrupts. */
948 simple_unlock(&bp->b_interlock);
949 simple_unlock(&bqueue_slock);
950 if (bp->b_bufsize <= 0) {
951 #ifdef DEBUG
952 memset((char *)bp, 0, sizeof(*bp));
953 #endif
954 pool_put(&bufpool, bp);
955 }
956 splx(s);
957 }
958
959 /*
960 * Determine if a block is in the cache.
961 * Just look on what would be its hash chain. If it's there, return
962 * a pointer to it, unless it's marked invalid. If it's marked invalid,
963 * we normally don't return the buffer, unless the caller explicitly
964 * wants us to.
965 */
966 struct buf *
967 incore(struct vnode *vp, daddr_t blkno)
968 {
969 struct buf *bp;
970
971 /* Search hash chain */
972 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
973 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
974 !ISSET(bp->b_flags, B_INVAL))
975 return (bp);
976 }
977
978 return (NULL);
979 }
980
981 /*
982 * Get a block of requested size that is associated with
983 * a given vnode and block offset. If it is found in the
984 * block cache, mark it as having been found, make it busy
985 * and return it. Otherwise, return an empty block of the
986 * correct size. It is up to the caller to insure that the
987 * cached blocks be of the correct size.
988 */
989 struct buf *
990 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
991 {
992 struct buf *bp;
993 int s, err;
994 int preserve;
995
996 start:
997 s = splbio();
998 simple_lock(&bqueue_slock);
999 bp = incore(vp, blkno);
1000 if (bp != NULL) {
1001 simple_lock(&bp->b_interlock);
1002 if (ISSET(bp->b_flags, B_BUSY)) {
1003 simple_unlock(&bqueue_slock);
1004 if (curproc == uvm.pagedaemon_proc) {
1005 simple_unlock(&bp->b_interlock);
1006 splx(s);
1007 return NULL;
1008 }
1009 SET(bp->b_flags, B_WANTED);
1010 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1011 "getblk", slptimeo, &bp->b_interlock);
1012 splx(s);
1013 if (err)
1014 return (NULL);
1015 goto start;
1016 }
1017 #ifdef DIAGNOSTIC
1018 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1019 bp->b_bcount < size && vp->v_type != VBLK)
1020 panic("getblk: block size invariant failed");
1021 #endif
1022 SET(bp->b_flags, B_BUSY);
1023 bremfree(bp);
1024 preserve = 1;
1025 } else {
1026 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1027 simple_unlock(&bqueue_slock);
1028 splx(s);
1029 goto start;
1030 }
1031
1032 binshash(bp, BUFHASH(vp, blkno));
1033 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1034 bgetvp(vp, bp);
1035 preserve = 0;
1036 }
1037 simple_unlock(&bp->b_interlock);
1038 simple_unlock(&bqueue_slock);
1039 splx(s);
1040 /*
1041 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1042 * if we re-size buffers here.
1043 */
1044 if (ISSET(bp->b_flags, B_LOCKED)) {
1045 KASSERT(bp->b_bufsize >= size);
1046 } else {
1047 allocbuf(bp, size, preserve);
1048 }
1049 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1050 return (bp);
1051 }
1052
1053 /*
1054 * Get an empty, disassociated buffer of given size.
1055 */
1056 struct buf *
1057 geteblk(int size)
1058 {
1059 struct buf *bp;
1060 int s;
1061
1062 s = splbio();
1063 simple_lock(&bqueue_slock);
1064 while ((bp = getnewbuf(0, 0, 0)) == 0)
1065 ;
1066
1067 SET(bp->b_flags, B_INVAL);
1068 binshash(bp, &invalhash);
1069 simple_unlock(&bqueue_slock);
1070 simple_unlock(&bp->b_interlock);
1071 splx(s);
1072 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1073 allocbuf(bp, size, 0);
1074 return (bp);
1075 }
1076
1077 /*
1078 * Expand or contract the actual memory allocated to a buffer.
1079 *
1080 * If the buffer shrinks, data is lost, so it's up to the
1081 * caller to have written it out *first*; this routine will not
1082 * start a write. If the buffer grows, it's the callers
1083 * responsibility to fill out the buffer's additional contents.
1084 */
1085 void
1086 allocbuf(struct buf *bp, int size, int preserve)
1087 {
1088 vsize_t oldsize, desired_size;
1089 caddr_t addr;
1090 int s, delta;
1091
1092 desired_size = buf_roundsize(size);
1093 if (desired_size > MAXBSIZE)
1094 printf("allocbuf: buffer larger than MAXBSIZE requested");
1095
1096 bp->b_bcount = size;
1097
1098 oldsize = bp->b_bufsize;
1099 if (oldsize == desired_size)
1100 return;
1101
1102 /*
1103 * If we want a buffer of a different size, re-allocate the
1104 * buffer's memory; copy old content only if needed.
1105 */
1106 addr = buf_malloc(desired_size);
1107 if (preserve)
1108 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1109 if (bp->b_data != NULL)
1110 buf_mrelease(bp->b_data, oldsize);
1111 bp->b_data = addr;
1112 bp->b_bufsize = desired_size;
1113
1114 /*
1115 * Update overall buffer memory counter (protected by bqueue_slock)
1116 */
1117 delta = (long)desired_size - (long)oldsize;
1118
1119 s = splbio();
1120 simple_lock(&bqueue_slock);
1121 if ((bufmem += delta) > bufmem_hiwater) {
1122 /*
1123 * Need to trim overall memory usage.
1124 */
1125 while (buf_canrelease()) {
1126 if (buf_trim() == 0)
1127 break;
1128 }
1129 }
1130
1131 simple_unlock(&bqueue_slock);
1132 splx(s);
1133 }
1134
1135 /*
1136 * Find a buffer which is available for use.
1137 * Select something from a free list.
1138 * Preference is to AGE list, then LRU list.
1139 *
1140 * Called at splbio and with buffer queues locked.
1141 * Return buffer locked.
1142 */
1143 struct buf *
1144 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1145 {
1146 struct buf *bp;
1147
1148 start:
1149 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1150
1151 /*
1152 * Get a new buffer from the pool; but use NOWAIT because
1153 * we have the buffer queues locked.
1154 */
1155 if (buf_lotsfree() && !from_bufq &&
1156 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1157 memset((char *)bp, 0, sizeof(*bp));
1158 BUF_INIT(bp);
1159 bp->b_dev = NODEV;
1160 bp->b_vnbufs.le_next = NOLIST;
1161 bp->b_flags = B_BUSY;
1162 simple_lock(&bp->b_interlock);
1163 return (bp);
1164 }
1165
1166 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1167 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1168 simple_lock(&bp->b_interlock);
1169 bremfree(bp);
1170 } else {
1171 /* wait for a free buffer of any kind */
1172 needbuffer = 1;
1173 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1174 "getnewbuf", slptimeo, &bqueue_slock);
1175 return (NULL);
1176 }
1177
1178 #ifdef DIAGNOSTIC
1179 if (bp->b_bufsize <= 0)
1180 panic("buffer %p: on queue but empty", bp);
1181 #endif
1182
1183 if (ISSET(bp->b_flags, B_VFLUSH)) {
1184 /*
1185 * This is a delayed write buffer being flushed to disk. Make
1186 * sure it gets aged out of the queue when it's finished, and
1187 * leave it off the LRU queue.
1188 */
1189 CLR(bp->b_flags, B_VFLUSH);
1190 SET(bp->b_flags, B_AGE);
1191 simple_unlock(&bp->b_interlock);
1192 goto start;
1193 }
1194
1195 /* Buffer is no longer on free lists. */
1196 SET(bp->b_flags, B_BUSY);
1197
1198 /*
1199 * If buffer was a delayed write, start it and return NULL
1200 * (since we might sleep while starting the write).
1201 */
1202 if (ISSET(bp->b_flags, B_DELWRI)) {
1203 /*
1204 * This buffer has gone through the LRU, so make sure it gets
1205 * reused ASAP.
1206 */
1207 SET(bp->b_flags, B_AGE);
1208 simple_unlock(&bp->b_interlock);
1209 simple_unlock(&bqueue_slock);
1210 bawrite(bp);
1211 simple_lock(&bqueue_slock);
1212 return (NULL);
1213 }
1214
1215 /* disassociate us from our vnode, if we had one... */
1216 if (bp->b_vp)
1217 brelvp(bp);
1218
1219 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1220 (*bioops.io_deallocate)(bp);
1221
1222 /* clear out various other fields */
1223 bp->b_flags = B_BUSY;
1224 bp->b_dev = NODEV;
1225 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1226 bp->b_iodone = 0;
1227 bp->b_error = 0;
1228 bp->b_resid = 0;
1229 bp->b_bcount = 0;
1230
1231 bremhash(bp);
1232 return (bp);
1233 }
1234
1235 /*
1236 * Attempt to free an aged buffer off the queues.
1237 * Called at splbio and with queue lock held.
1238 * Returns the amount of buffer memory freed.
1239 */
1240 int
1241 buf_trim(void)
1242 {
1243 struct buf *bp;
1244 long size = 0;
1245 int wanted;
1246
1247 /* Instruct getnewbuf() to get buffers off the queues */
1248 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1249 return 0;
1250
1251 wanted = ISSET(bp->b_flags, B_WANTED);
1252 simple_unlock(&bp->b_interlock);
1253 if (wanted) {
1254 printf("buftrim: got WANTED buffer\n");
1255 SET(bp->b_flags, B_INVAL);
1256 binshash(bp, &invalhash);
1257 simple_unlock(&bqueue_slock);
1258 goto out;
1259 }
1260 size = bp->b_bufsize;
1261 bufmem -= size;
1262 simple_unlock(&bqueue_slock);
1263 if (size > 0) {
1264 buf_mrelease(bp->b_data, size);
1265 bp->b_bcount = bp->b_bufsize = 0;
1266 }
1267
1268 out:
1269 /* brelse() will return the buffer to the global buffer pool */
1270 brelse(bp);
1271 simple_lock(&bqueue_slock);
1272 return size;
1273 }
1274
1275 int
1276 buf_drain(int n)
1277 {
1278 int s, size = 0;
1279
1280 s = splbio();
1281 simple_lock(&bqueue_slock);
1282
1283 /* If not asked for a specific amount, make our own estimate */
1284 if (n == 0)
1285 n = buf_canrelease();
1286
1287 while (size < n && bufmem > bufmem_lowater)
1288 size += buf_trim();
1289
1290 simple_unlock(&bqueue_slock);
1291 splx(s);
1292 return size;
1293 }
1294
1295 /*
1296 * Wait for operations on the buffer to complete.
1297 * When they do, extract and return the I/O's error value.
1298 */
1299 int
1300 biowait(struct buf *bp)
1301 {
1302 int s, error;
1303
1304 s = splbio();
1305 simple_lock(&bp->b_interlock);
1306 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1307 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1308
1309 /* check for interruption of I/O (e.g. via NFS), then errors. */
1310 if (ISSET(bp->b_flags, B_EINTR)) {
1311 CLR(bp->b_flags, B_EINTR);
1312 error = EINTR;
1313 } else if (ISSET(bp->b_flags, B_ERROR))
1314 error = bp->b_error ? bp->b_error : EIO;
1315 else
1316 error = 0;
1317
1318 simple_unlock(&bp->b_interlock);
1319 splx(s);
1320 return (error);
1321 }
1322
1323 /*
1324 * Mark I/O complete on a buffer.
1325 *
1326 * If a callback has been requested, e.g. the pageout
1327 * daemon, do so. Otherwise, awaken waiting processes.
1328 *
1329 * [ Leffler, et al., says on p.247:
1330 * "This routine wakes up the blocked process, frees the buffer
1331 * for an asynchronous write, or, for a request by the pagedaemon
1332 * process, invokes a procedure specified in the buffer structure" ]
1333 *
1334 * In real life, the pagedaemon (or other system processes) wants
1335 * to do async stuff to, and doesn't want the buffer brelse()'d.
1336 * (for swap pager, that puts swap buffers on the free lists (!!!),
1337 * for the vn device, that puts malloc'd buffers on the free lists!)
1338 */
1339 void
1340 biodone(struct buf *bp)
1341 {
1342 int s = splbio();
1343
1344 simple_lock(&bp->b_interlock);
1345 if (ISSET(bp->b_flags, B_DONE))
1346 panic("biodone already");
1347 SET(bp->b_flags, B_DONE); /* note that it's done */
1348 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1349
1350 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1351 (*bioops.io_complete)(bp);
1352
1353 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1354 vwakeup(bp);
1355
1356 /*
1357 * If necessary, call out. Unlock the buffer before calling
1358 * iodone() as the buffer isn't valid any more when it return.
1359 */
1360 if (ISSET(bp->b_flags, B_CALL)) {
1361 CLR(bp->b_flags, B_CALL); /* but note callout done */
1362 simple_unlock(&bp->b_interlock);
1363 (*bp->b_iodone)(bp);
1364 } else {
1365 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1366 simple_unlock(&bp->b_interlock);
1367 brelse(bp);
1368 } else { /* or just wakeup the buffer */
1369 CLR(bp->b_flags, B_WANTED);
1370 wakeup(bp);
1371 simple_unlock(&bp->b_interlock);
1372 }
1373 }
1374
1375 splx(s);
1376 }
1377
1378 /*
1379 * Return a count of buffers on the "locked" queue.
1380 */
1381 int
1382 count_lock_queue(void)
1383 {
1384 struct buf *bp;
1385 int n = 0;
1386
1387 simple_lock(&bqueue_slock);
1388 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1389 n++;
1390 simple_unlock(&bqueue_slock);
1391 return (n);
1392 }
1393
1394 /*
1395 * Wait for all buffers to complete I/O
1396 * Return the number of "stuck" buffers.
1397 */
1398 int
1399 buf_syncwait(void)
1400 {
1401 struct buf *bp;
1402 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1403
1404 dcount = 10000;
1405 for (iter = 0; iter < 20;) {
1406 s = splbio();
1407 simple_lock(&bqueue_slock);
1408 nbusy = 0;
1409 for (ihash = 0; ihash < bufhash+1; ihash++) {
1410 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1411 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1412 nbusy++;
1413 /*
1414 * With soft updates, some buffers that are
1415 * written will be remarked as dirty until other
1416 * buffers are written.
1417 */
1418 if (bp->b_vp && bp->b_vp->v_mount
1419 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1420 && (bp->b_flags & B_DELWRI)) {
1421 simple_lock(&bp->b_interlock);
1422 bremfree(bp);
1423 bp->b_flags |= B_BUSY;
1424 nbusy++;
1425 simple_unlock(&bp->b_interlock);
1426 simple_unlock(&bqueue_slock);
1427 bawrite(bp);
1428 if (dcount-- <= 0) {
1429 printf("softdep ");
1430 goto fail;
1431 }
1432 simple_lock(&bqueue_slock);
1433 }
1434 }
1435 }
1436
1437 simple_unlock(&bqueue_slock);
1438 splx(s);
1439
1440 if (nbusy == 0)
1441 break;
1442 if (nbusy_prev == 0)
1443 nbusy_prev = nbusy;
1444 printf("%d ", nbusy);
1445 tsleep(&nbusy, PRIBIO, "bflush",
1446 (iter == 0) ? 1 : hz / 25 * iter);
1447 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1448 iter++;
1449 else
1450 nbusy_prev = nbusy;
1451 }
1452
1453 if (nbusy) {
1454 fail:;
1455 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1456 printf("giving up\nPrinting vnodes for busy buffers\n");
1457 for (ihash = 0; ihash < bufhash+1; ihash++) {
1458 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1459 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1460 vprint(NULL, bp->b_vp);
1461 }
1462 }
1463 #endif
1464 }
1465
1466 return nbusy;
1467 }
1468
1469 static void
1470 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1471 {
1472
1473 o->b_flags = i->b_flags;
1474 o->b_error = i->b_error;
1475 o->b_prio = i->b_prio;
1476 o->b_dev = i->b_dev;
1477 o->b_bufsize = i->b_bufsize;
1478 o->b_bcount = i->b_bcount;
1479 o->b_resid = i->b_resid;
1480 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1481 o->b_blkno = i->b_blkno;
1482 o->b_rawblkno = i->b_rawblkno;
1483 o->b_iodone = PTRTOUINT64(i->b_iodone);
1484 o->b_proc = PTRTOUINT64(i->b_proc);
1485 o->b_vp = PTRTOUINT64(i->b_vp);
1486 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1487 o->b_lblkno = i->b_lblkno;
1488 }
1489
1490 #define KERN_BUFSLOP 20
1491 static int
1492 sysctl_dobuf(SYSCTLFN_ARGS)
1493 {
1494 struct buf *bp;
1495 struct buf_sysctl bs;
1496 char *dp;
1497 u_int i, op, arg;
1498 size_t len, needed, elem_size, out_size;
1499 int error, s, elem_count;
1500
1501 if (namelen == 1 && name[0] == CTL_QUERY)
1502 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1503
1504 if (namelen != 4)
1505 return (EINVAL);
1506
1507 dp = oldp;
1508 len = (oldp != NULL) ? *oldlenp : 0;
1509 op = name[0];
1510 arg = name[1];
1511 elem_size = name[2];
1512 elem_count = name[3];
1513 out_size = MIN(sizeof(bs), elem_size);
1514
1515 /*
1516 * at the moment, these are just "placeholders" to make the
1517 * API for retrieving kern.buf data more extensible in the
1518 * future.
1519 *
1520 * XXX kern.buf currently has "netbsd32" issues. hopefully
1521 * these will be resolved at a later point.
1522 */
1523 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1524 elem_size < 1 || elem_count < 0)
1525 return (EINVAL);
1526
1527 error = 0;
1528 needed = 0;
1529 s = splbio();
1530 simple_lock(&bqueue_slock);
1531 for (i = 0; i < BQUEUES; i++) {
1532 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1533 if (len >= elem_size && elem_count > 0) {
1534 sysctl_fillbuf(bp, &bs);
1535 error = copyout(&bs, dp, out_size);
1536 if (error)
1537 goto cleanup;
1538 dp += elem_size;
1539 len -= elem_size;
1540 }
1541 if (elem_count > 0) {
1542 needed += elem_size;
1543 if (elem_count != INT_MAX)
1544 elem_count--;
1545 }
1546 }
1547 }
1548 cleanup:
1549 simple_unlock(&bqueue_slock);
1550 splx(s);
1551
1552 *oldlenp = needed;
1553 if (oldp == NULL)
1554 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1555
1556 return (error);
1557 }
1558
1559 static int
1560 sysctl_bufvm_update(SYSCTLFN_ARGS)
1561 {
1562 int t, error;
1563 struct sysctlnode node;
1564
1565 node = *rnode;
1566 node.sysctl_data = &t;
1567 t = *(int*)rnode->sysctl_data;
1568 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1569 if (error || newp == NULL)
1570 return (error);
1571
1572 if (rnode->sysctl_data == &bufcache) {
1573 if (t < 0 || t > 100)
1574 return (EINVAL);
1575 bufcache = t;
1576 bufmem_hiwater = buf_memcalc();
1577 bufmem_lowater = (bufmem_hiwater >> 3);
1578 if (bufmem_lowater < 64 * 1024)
1579 /* Ensure a reasonable minimum value */
1580 bufmem_lowater = 64 * 1024;
1581
1582 } else if (rnode->sysctl_data == &bufmem_lowater) {
1583 bufmem_lowater = t;
1584 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1585 bufmem_hiwater = t;
1586 } else
1587 return (EINVAL);
1588
1589 /* Drain until below new high water mark */
1590 while ((t = bufmem - bufmem_hiwater) >= 0) {
1591 if (buf_drain(t / (2*1024)) <= 0)
1592 break;
1593 }
1594
1595 return 0;
1596 }
1597
1598 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1599 {
1600
1601 sysctl_createv(clog, 0, NULL, NULL,
1602 CTLFLAG_PERMANENT,
1603 CTLTYPE_NODE, "kern", NULL,
1604 NULL, 0, NULL, 0,
1605 CTL_KERN, CTL_EOL);
1606 sysctl_createv(clog, 0, NULL, NULL,
1607 CTLFLAG_PERMANENT,
1608 CTLTYPE_NODE, "buf", NULL,
1609 sysctl_dobuf, 0, NULL, 0,
1610 CTL_KERN, KERN_BUF, CTL_EOL);
1611 }
1612
1613 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1614 {
1615
1616 sysctl_createv(clog, 0, NULL, NULL,
1617 CTLFLAG_PERMANENT,
1618 CTLTYPE_NODE, "vm", NULL,
1619 NULL, 0, NULL, 0,
1620 CTL_VM, CTL_EOL);
1621
1622 sysctl_createv(clog, 0, NULL, NULL,
1623 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1624 CTLTYPE_INT, "bufcache", NULL,
1625 sysctl_bufvm_update, 0, &bufcache, 0,
1626 CTL_VM, CTL_CREATE, CTL_EOL);
1627 sysctl_createv(clog, 0, NULL, NULL,
1628 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1629 CTLTYPE_INT, "bufmem", NULL,
1630 NULL, 0, &bufmem, 0,
1631 CTL_VM, CTL_CREATE, CTL_EOL);
1632 sysctl_createv(clog, 0, NULL, NULL,
1633 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1634 CTLTYPE_INT, "bufmem_lowater", NULL,
1635 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1636 CTL_VM, CTL_CREATE, CTL_EOL);
1637 sysctl_createv(clog, 0, NULL, NULL,
1638 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1639 CTLTYPE_INT, "bufmem_hiwater", NULL,
1640 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1641 CTL_VM, CTL_CREATE, CTL_EOL);
1642 }
1643
1644 #ifdef DEBUG
1645 /*
1646 * Print out statistics on the current allocation of the buffer pool.
1647 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1648 * in vfs_syscalls.c using sysctl.
1649 */
1650 void
1651 vfs_bufstats(void)
1652 {
1653 int s, i, j, count;
1654 struct buf *bp;
1655 struct bqueues *dp;
1656 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1657 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1658
1659 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1660 count = 0;
1661 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1662 counts[j] = 0;
1663 s = splbio();
1664 TAILQ_FOREACH(bp, dp, b_freelist) {
1665 counts[bp->b_bufsize/PAGE_SIZE]++;
1666 count++;
1667 }
1668 splx(s);
1669 printf("%s: total-%d", bname[i], count);
1670 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1671 if (counts[j] != 0)
1672 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1673 printf("\n");
1674 }
1675 }
1676 #endif /* DEBUG */
1677