vfs_bio.c revision 1.126 1 /* $NetBSD: vfs_bio.c,v 1.126 2004/06/20 18:17:09 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.126 2004/06/20 18:17:09 thorpej Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118
119 /* Macros to clear/set/test flags. */
120 #define SET(t, f) (t) |= (f)
121 #define CLR(t, f) (t) &= ~(f)
122 #define ISSET(t, f) ((t) & (f))
123
124 /*
125 * Definitions for the buffer hash lists.
126 */
127 #define BUFHASH(dvp, lbn) \
128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 u_long bufhash;
131 #ifndef SOFTDEP
132 struct bio_ops bioops; /* I/O operation notification */
133 #endif
134
135 /*
136 * Insq/Remq for the buffer hash lists.
137 */
138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
139 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
140
141 /*
142 * Definitions for the buffer free lists.
143 */
144 #define BQUEUES 3 /* number of free buffer queues */
145
146 #define BQ_LOCKED 0 /* super-blocks &c */
147 #define BQ_LRU 1 /* lru, useful buffers */
148 #define BQ_AGE 2 /* rubbish */
149
150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 int needbuffer;
152
153 /*
154 * Buffer queue lock.
155 * Take this lock first if also taking some buffer's b_interlock.
156 */
157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158
159 /*
160 * Buffer pool for I/O buffers.
161 */
162 struct pool bufpool;
163
164 /* XXX - somewhat gross.. */
165 #if MAXBSIZE == 0x2000
166 #define NMEMPOOLS 4
167 #elif MAXBSIZE == 0x4000
168 #define NMEMPOOLS 5
169 #elif MAXBSIZE == 0x8000
170 #define NMEMPOOLS 6
171 #else
172 #define NMEMPOOLS 7
173 #endif
174
175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 #error update vfs_bio buffer memory parameters
178 #endif
179
180 /* Buffer memory pools */
181 static struct pool bmempools[NMEMPOOLS];
182
183 struct vm_map *buf_map;
184
185 /*
186 * Buffer memory pool allocator.
187 */
188 static void *
189 bufpool_page_alloc(struct pool *pp, int flags)
190 {
191
192 return (void *)uvm_km_kmemalloc1(buf_map,
193 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195 }
196
197 static void
198 bufpool_page_free(struct pool *pp, void *v)
199 {
200 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201 }
202
203 static struct pool_allocator bufmempool_allocator = {
204 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205 };
206
207 /* Buffer memory management variables */
208 u_long bufmem_valimit;
209 u_long bufmem_hiwater;
210 u_long bufmem_lowater;
211 u_long bufmem;
212
213 /*
214 * MD code can call this to set a hard limit on the amount
215 * of virtual memory used by the buffer cache.
216 */
217 int
218 buf_setvalimit(vsize_t sz)
219 {
220
221 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222 if (sz < NMEMPOOLS * MAXBSIZE)
223 return EINVAL;
224
225 bufmem_valimit = sz;
226 return 0;
227 }
228
229 static int buf_trim(void);
230
231 /*
232 * bread()/breadn() helper.
233 */
234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235 struct ucred *, int);
236 int count_lock_queue(void);
237
238 /*
239 * Insq/Remq for the buffer free lists.
240 * Call with buffer queue locked.
241 */
242 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244
245 #ifdef DEBUG
246 int debug_verify_freelist = 0;
247 static int checkfreelist(struct buf *bp, struct bqueues *dp)
248 {
249 struct buf *b;
250 TAILQ_FOREACH(b, dp, b_freelist) {
251 if (b == bp)
252 return 1;
253 }
254 return 0;
255 }
256 #endif
257
258 void
259 bremfree(struct buf *bp)
260 {
261 struct bqueues *dp = NULL;
262
263 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264
265 KDASSERT(!debug_verify_freelist ||
266 checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267 checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268 checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269
270 /*
271 * We only calculate the head of the freelist when removing
272 * the last element of the list as that is the only time that
273 * it is needed (e.g. to reset the tail pointer).
274 *
275 * NB: This makes an assumption about how tailq's are implemented.
276 *
277 * We break the TAILQ abstraction in order to efficiently remove a
278 * buffer from its freelist without having to know exactly which
279 * freelist it is on.
280 */
281 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283 if (dp->tqh_last == &bp->b_freelist.tqe_next)
284 break;
285 if (dp == &bufqueues[BQUEUES])
286 panic("bremfree: lost tail");
287 }
288 TAILQ_REMOVE(dp, bp, b_freelist);
289 }
290
291 u_long
292 buf_memcalc(void)
293 {
294 u_long n;
295
296 /*
297 * Determine the upper bound of memory to use for buffers.
298 *
299 * - If bufpages is specified, use that as the number
300 * pages.
301 *
302 * - Otherwise, use bufcache as the percentage of
303 * physical memory.
304 */
305 if (bufpages != 0) {
306 n = bufpages;
307 } else {
308 if (bufcache < 5) {
309 printf("forcing bufcache %d -> 5", bufcache);
310 bufcache = 5;
311 }
312 if (bufcache > 95) {
313 printf("forcing bufcache %d -> 95", bufcache);
314 bufcache = 95;
315 }
316 n = physmem / 100 * bufcache;
317 }
318
319 n <<= PAGE_SHIFT;
320 if (bufmem_valimit != 0 && n > bufmem_valimit)
321 n = bufmem_valimit;
322
323 return (n);
324 }
325
326 /*
327 * Initialize buffers and hash links for buffers.
328 */
329 void
330 bufinit(void)
331 {
332 struct bqueues *dp;
333 int smallmem;
334 u_int i;
335
336 /*
337 * Initialize buffer cache memory parameters.
338 */
339 bufmem = 0;
340 bufmem_hiwater = buf_memcalc();
341 /* lowater is approx. 2% of memory (with bufcache=15) */
342 bufmem_lowater = (bufmem_hiwater >> 3);
343 if (bufmem_lowater < 64 * 1024)
344 /* Ensure a reasonable minimum value */
345 bufmem_lowater = 64 * 1024;
346
347 if (bufmem_valimit != 0) {
348 vaddr_t minaddr = 0, maxaddr;
349 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350 bufmem_valimit, VM_MAP_PAGEABLE,
351 FALSE, 0);
352 if (buf_map == NULL)
353 panic("bufinit: cannot allocate submap");
354 } else
355 buf_map = kernel_map;
356
357 /*
358 * Initialize the buffer pools.
359 */
360 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361
362 /* On "small" machines use small pool page sizes where possible */
363 smallmem = (physmem < atop(16*1024*1024));
364
365 for (i = 0; i < NMEMPOOLS; i++) {
366 struct pool_allocator *pa;
367 struct pool *pp = &bmempools[i];
368 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369 char *name = malloc(8, M_TEMP, M_WAITOK);
370 snprintf(name, 8, "buf%dk", 1 << i);
371 pa = (size <= PAGE_SIZE && smallmem)
372 ? &pool_allocator_nointr
373 : &bufmempool_allocator;
374 pool_init(pp, size, 0, 0, 0, name, pa);
375 pool_setlowat(pp, 1);
376 pool_sethiwat(pp, 1);
377 }
378
379 /* Initialize the buffer queues */
380 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
381 TAILQ_INIT(dp);
382
383 /*
384 * Estimate hash table size based on the amount of memory we
385 * intend to use for the buffer cache. The average buffer
386 * size is dependent on our clients (i.e. filesystems).
387 *
388 * For now, use an empirical 3K per buffer.
389 */
390 nbuf = (bufmem_hiwater / 1024) / 3;
391 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
392 }
393
394 static int
395 buf_lotsfree(void)
396 {
397 int try, thresh;
398
399 /* Always allocate if less than the low water mark. */
400 if (bufmem < bufmem_lowater)
401 return 1;
402
403 /* Never allocate if greater than the high water mark. */
404 if (bufmem > bufmem_hiwater)
405 return 0;
406
407 /* If there's anything on the AGE list, it should be eaten. */
408 if (TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
409 return 0;
410
411 /*
412 * The probabily of getting a new allocation is inversely
413 * proportional to the current size of the cache, using
414 * a granularity of 16 steps.
415 */
416 try = random() & 0x0000000fL;
417
418 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
419 thresh = bufmem / (bufmem_hiwater / 16);
420
421 if ((try > thresh) && (uvmexp.free > (2 * uvmexp.freetarg))) {
422 return 1;
423 }
424
425 /* Otherwise don't allocate. */
426 return 0;
427 }
428
429 /*
430 * Return estimate of bytes we think need to be
431 * released to help resolve low memory conditions.
432 *
433 * => called at splbio.
434 * => called with bqueue_slock held.
435 */
436 static int
437 buf_canrelease(void)
438 {
439 int pagedemand, ninvalid = 0;
440 struct buf *bp;
441
442 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
443
444 if (bufmem < bufmem_lowater)
445 return 0;
446
447 TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
448 ninvalid += bp->b_bufsize;
449
450 pagedemand = uvmexp.freetarg - uvmexp.free;
451 if (pagedemand < 0)
452 return ninvalid;
453 return MAX(ninvalid, MIN(2 * MAXBSIZE,
454 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
455 }
456
457 /*
458 * Buffer memory allocation helper functions
459 */
460 static __inline u_long
461 buf_mempoolidx(u_long size)
462 {
463 u_int n = 0;
464
465 size -= 1;
466 size >>= MEMPOOL_INDEX_OFFSET;
467 while (size) {
468 size >>= 1;
469 n += 1;
470 }
471 if (n >= NMEMPOOLS)
472 panic("buf mem pool index %d", n);
473 return n;
474 }
475
476 static __inline u_long
477 buf_roundsize(u_long size)
478 {
479 /* Round up to nearest power of 2 */
480 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
481 }
482
483 static __inline caddr_t
484 buf_malloc(size_t size)
485 {
486 u_int n = buf_mempoolidx(size);
487 caddr_t addr;
488 int s;
489
490 while (1) {
491 addr = pool_get(&bmempools[n], PR_NOWAIT);
492 if (addr != NULL)
493 break;
494
495 /* No memory, see if we can free some. If so, try again */
496 if (buf_drain(1) > 0)
497 continue;
498
499 /* Wait for buffers to arrive on the LRU queue */
500 s = splbio();
501 simple_lock(&bqueue_slock);
502 needbuffer = 1;
503 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
504 "buf_malloc", 0, &bqueue_slock);
505 splx(s);
506 }
507
508 return addr;
509 }
510
511 static void
512 buf_mrelease(caddr_t addr, size_t size)
513 {
514
515 pool_put(&bmempools[buf_mempoolidx(size)], addr);
516 }
517
518
519 static __inline struct buf *
520 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
521 int async)
522 {
523 struct buf *bp;
524 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
525 struct proc *p = l->l_proc;
526 struct mount *mp;
527
528 bp = getblk(vp, blkno, size, 0, 0);
529
530 #ifdef DIAGNOSTIC
531 if (bp == NULL) {
532 panic("bio_doread: no such buf");
533 }
534 #endif
535
536 /*
537 * If buffer does not have data valid, start a read.
538 * Note that if buffer is B_INVAL, getblk() won't return it.
539 * Therefore, it's valid if its I/O has completed or been delayed.
540 */
541 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
542 /* Start I/O for the buffer. */
543 SET(bp->b_flags, B_READ | async);
544 if (async)
545 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
546 else
547 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
548 VOP_STRATEGY(vp, bp);
549
550 /* Pay for the read. */
551 p->p_stats->p_ru.ru_inblock++;
552 } else if (async) {
553 brelse(bp);
554 }
555
556 if (vp->v_type == VBLK)
557 mp = vp->v_specmountpoint;
558 else
559 mp = vp->v_mount;
560
561 /*
562 * Collect statistics on synchronous and asynchronous reads.
563 * Reads from block devices are charged to their associated
564 * filesystem (if any).
565 */
566 if (mp != NULL) {
567 if (async == 0)
568 mp->mnt_stat.f_syncreads++;
569 else
570 mp->mnt_stat.f_asyncreads++;
571 }
572
573 return (bp);
574 }
575
576 /*
577 * Read a disk block.
578 * This algorithm described in Bach (p.54).
579 */
580 int
581 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
582 struct buf **bpp)
583 {
584 struct buf *bp;
585
586 /* Get buffer for block. */
587 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
588
589 /* Wait for the read to complete, and return result. */
590 return (biowait(bp));
591 }
592
593 /*
594 * Read-ahead multiple disk blocks. The first is sync, the rest async.
595 * Trivial modification to the breada algorithm presented in Bach (p.55).
596 */
597 int
598 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
599 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
600 {
601 struct buf *bp;
602 int i;
603
604 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
605
606 /*
607 * For each of the read-ahead blocks, start a read, if necessary.
608 */
609 for (i = 0; i < nrablks; i++) {
610 /* If it's in the cache, just go on to next one. */
611 if (incore(vp, rablks[i]))
612 continue;
613
614 /* Get a buffer for the read-ahead block */
615 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
616 }
617
618 /* Otherwise, we had to start a read for it; wait until it's valid. */
619 return (biowait(bp));
620 }
621
622 /*
623 * Read with single-block read-ahead. Defined in Bach (p.55), but
624 * implemented as a call to breadn().
625 * XXX for compatibility with old file systems.
626 */
627 int
628 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
629 int rabsize, struct ucred *cred, struct buf **bpp)
630 {
631
632 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
633 }
634
635 /*
636 * Block write. Described in Bach (p.56)
637 */
638 int
639 bwrite(struct buf *bp)
640 {
641 int rv, sync, wasdelayed, s;
642 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
643 struct proc *p = l->l_proc;
644 struct vnode *vp;
645 struct mount *mp;
646
647 KASSERT(ISSET(bp->b_flags, B_BUSY));
648
649 vp = bp->b_vp;
650 if (vp != NULL) {
651 if (vp->v_type == VBLK)
652 mp = vp->v_specmountpoint;
653 else
654 mp = vp->v_mount;
655 } else {
656 mp = NULL;
657 }
658
659 /*
660 * Remember buffer type, to switch on it later. If the write was
661 * synchronous, but the file system was mounted with MNT_ASYNC,
662 * convert it to a delayed write.
663 * XXX note that this relies on delayed tape writes being converted
664 * to async, not sync writes (which is safe, but ugly).
665 */
666 sync = !ISSET(bp->b_flags, B_ASYNC);
667 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
668 bdwrite(bp);
669 return (0);
670 }
671
672 /*
673 * Collect statistics on synchronous and asynchronous writes.
674 * Writes to block devices are charged to their associated
675 * filesystem (if any).
676 */
677 if (mp != NULL) {
678 if (sync)
679 mp->mnt_stat.f_syncwrites++;
680 else
681 mp->mnt_stat.f_asyncwrites++;
682 }
683
684 s = splbio();
685 simple_lock(&bp->b_interlock);
686
687 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
688
689 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
690
691 /*
692 * Pay for the I/O operation and make sure the buf is on the correct
693 * vnode queue.
694 */
695 if (wasdelayed)
696 reassignbuf(bp, bp->b_vp);
697 else
698 p->p_stats->p_ru.ru_oublock++;
699
700 /* Initiate disk write. Make sure the appropriate party is charged. */
701 V_INCR_NUMOUTPUT(bp->b_vp);
702 simple_unlock(&bp->b_interlock);
703 splx(s);
704
705 if (sync)
706 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
707 else
708 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
709
710 VOP_STRATEGY(vp, bp);
711
712 if (sync) {
713 /* If I/O was synchronous, wait for it to complete. */
714 rv = biowait(bp);
715
716 /* Release the buffer. */
717 brelse(bp);
718
719 return (rv);
720 } else {
721 return (0);
722 }
723 }
724
725 int
726 vn_bwrite(void *v)
727 {
728 struct vop_bwrite_args *ap = v;
729
730 return (bwrite(ap->a_bp));
731 }
732
733 /*
734 * Delayed write.
735 *
736 * The buffer is marked dirty, but is not queued for I/O.
737 * This routine should be used when the buffer is expected
738 * to be modified again soon, typically a small write that
739 * partially fills a buffer.
740 *
741 * NB: magnetic tapes cannot be delayed; they must be
742 * written in the order that the writes are requested.
743 *
744 * Described in Leffler, et al. (pp. 208-213).
745 */
746 void
747 bdwrite(struct buf *bp)
748 {
749 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
750 struct proc *p = l->l_proc;
751 const struct bdevsw *bdev;
752 int s;
753
754 /* If this is a tape block, write the block now. */
755 bdev = bdevsw_lookup(bp->b_dev);
756 if (bdev != NULL && bdev->d_type == D_TAPE) {
757 bawrite(bp);
758 return;
759 }
760
761 /*
762 * If the block hasn't been seen before:
763 * (1) Mark it as having been seen,
764 * (2) Charge for the write,
765 * (3) Make sure it's on its vnode's correct block list.
766 */
767 s = splbio();
768 simple_lock(&bp->b_interlock);
769
770 KASSERT(ISSET(bp->b_flags, B_BUSY));
771
772 if (!ISSET(bp->b_flags, B_DELWRI)) {
773 SET(bp->b_flags, B_DELWRI);
774 p->p_stats->p_ru.ru_oublock++;
775 reassignbuf(bp, bp->b_vp);
776 }
777
778 /* Otherwise, the "write" is done, so mark and release the buffer. */
779 CLR(bp->b_flags, B_DONE);
780 simple_unlock(&bp->b_interlock);
781 splx(s);
782
783 brelse(bp);
784 }
785
786 /*
787 * Asynchronous block write; just an asynchronous bwrite().
788 */
789 void
790 bawrite(struct buf *bp)
791 {
792 int s;
793
794 s = splbio();
795 simple_lock(&bp->b_interlock);
796
797 KASSERT(ISSET(bp->b_flags, B_BUSY));
798
799 SET(bp->b_flags, B_ASYNC);
800 simple_unlock(&bp->b_interlock);
801 splx(s);
802 VOP_BWRITE(bp);
803 }
804
805 /*
806 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
807 * Call at splbio() and with the buffer interlock locked.
808 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
809 */
810 void
811 bdirty(struct buf *bp)
812 {
813 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
814 struct proc *p = l->l_proc;
815
816 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
817 KASSERT(ISSET(bp->b_flags, B_BUSY));
818
819 CLR(bp->b_flags, B_AGE);
820
821 if (!ISSET(bp->b_flags, B_DELWRI)) {
822 SET(bp->b_flags, B_DELWRI);
823 p->p_stats->p_ru.ru_oublock++;
824 reassignbuf(bp, bp->b_vp);
825 }
826 }
827
828 /*
829 * Release a buffer on to the free lists.
830 * Described in Bach (p. 46).
831 */
832 void
833 brelse(struct buf *bp)
834 {
835 struct bqueues *bufq;
836 int s;
837
838 /* Block disk interrupts. */
839 s = splbio();
840 simple_lock(&bqueue_slock);
841 simple_lock(&bp->b_interlock);
842
843 KASSERT(ISSET(bp->b_flags, B_BUSY));
844 KASSERT(!ISSET(bp->b_flags, B_CALL));
845
846 /* Wake up any processes waiting for any buffer to become free. */
847 if (needbuffer) {
848 needbuffer = 0;
849 wakeup(&needbuffer);
850 }
851
852 /* Wake up any proceeses waiting for _this_ buffer to become free. */
853 if (ISSET(bp->b_flags, B_WANTED)) {
854 CLR(bp->b_flags, B_WANTED|B_AGE);
855 wakeup(bp);
856 }
857
858 /*
859 * Determine which queue the buffer should be on, then put it there.
860 */
861
862 /* If it's locked, don't report an error; try again later. */
863 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
864 CLR(bp->b_flags, B_ERROR);
865
866 /* If it's not cacheable, or an error, mark it invalid. */
867 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
868 SET(bp->b_flags, B_INVAL);
869
870 if (ISSET(bp->b_flags, B_VFLUSH)) {
871 /*
872 * This is a delayed write buffer that was just flushed to
873 * disk. It is still on the LRU queue. If it's become
874 * invalid, then we need to move it to a different queue;
875 * otherwise leave it in its current position.
876 */
877 CLR(bp->b_flags, B_VFLUSH);
878 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
879 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
880 goto already_queued;
881 } else {
882 bremfree(bp);
883 }
884 }
885
886 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
887 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
888 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
889
890 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
891 /*
892 * If it's invalid or empty, dissociate it from its vnode
893 * and put on the head of the appropriate queue.
894 */
895 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
896 (*bioops.io_deallocate)(bp);
897 CLR(bp->b_flags, B_DONE|B_DELWRI);
898 if (bp->b_vp) {
899 reassignbuf(bp, bp->b_vp);
900 brelvp(bp);
901 }
902 if (bp->b_bufsize <= 0)
903 /* no data */
904 goto already_queued;
905 else
906 /* invalid data */
907 bufq = &bufqueues[BQ_AGE];
908 binsheadfree(bp, bufq);
909 } else {
910 /*
911 * It has valid data. Put it on the end of the appropriate
912 * queue, so that it'll stick around for as long as possible.
913 * If buf is AGE, but has dependencies, must put it on last
914 * bufqueue to be scanned, ie LRU. This protects against the
915 * livelock where BQ_AGE only has buffers with dependencies,
916 * and we thus never get to the dependent buffers in BQ_LRU.
917 */
918 if (ISSET(bp->b_flags, B_LOCKED))
919 /* locked in core */
920 bufq = &bufqueues[BQ_LOCKED];
921 else if (!ISSET(bp->b_flags, B_AGE))
922 /* valid data */
923 bufq = &bufqueues[BQ_LRU];
924 else {
925 /* stale but valid data */
926 int has_deps;
927
928 if (LIST_FIRST(&bp->b_dep) != NULL &&
929 bioops.io_countdeps)
930 has_deps = (*bioops.io_countdeps)(bp, 0);
931 else
932 has_deps = 0;
933 bufq = has_deps ? &bufqueues[BQ_LRU] :
934 &bufqueues[BQ_AGE];
935 }
936 binstailfree(bp, bufq);
937 }
938
939 already_queued:
940 /* Unlock the buffer. */
941 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
942 SET(bp->b_flags, B_CACHE);
943
944 /* Allow disk interrupts. */
945 simple_unlock(&bp->b_interlock);
946 simple_unlock(&bqueue_slock);
947 if (bp->b_bufsize <= 0) {
948 #ifdef DEBUG
949 memset((char *)bp, 0, sizeof(*bp));
950 #endif
951 pool_put(&bufpool, bp);
952 }
953 splx(s);
954 }
955
956 /*
957 * Determine if a block is in the cache.
958 * Just look on what would be its hash chain. If it's there, return
959 * a pointer to it, unless it's marked invalid. If it's marked invalid,
960 * we normally don't return the buffer, unless the caller explicitly
961 * wants us to.
962 */
963 struct buf *
964 incore(struct vnode *vp, daddr_t blkno)
965 {
966 struct buf *bp;
967
968 /* Search hash chain */
969 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
970 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
971 !ISSET(bp->b_flags, B_INVAL))
972 return (bp);
973 }
974
975 return (NULL);
976 }
977
978 /*
979 * Get a block of requested size that is associated with
980 * a given vnode and block offset. If it is found in the
981 * block cache, mark it as having been found, make it busy
982 * and return it. Otherwise, return an empty block of the
983 * correct size. It is up to the caller to insure that the
984 * cached blocks be of the correct size.
985 */
986 struct buf *
987 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
988 {
989 struct buf *bp;
990 int s, err;
991 int preserve;
992
993 start:
994 s = splbio();
995 simple_lock(&bqueue_slock);
996 bp = incore(vp, blkno);
997 if (bp != NULL) {
998 simple_lock(&bp->b_interlock);
999 if (ISSET(bp->b_flags, B_BUSY)) {
1000 simple_unlock(&bqueue_slock);
1001 if (curproc == uvm.pagedaemon_proc) {
1002 simple_unlock(&bp->b_interlock);
1003 splx(s);
1004 return NULL;
1005 }
1006 SET(bp->b_flags, B_WANTED);
1007 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1008 "getblk", slptimeo, &bp->b_interlock);
1009 splx(s);
1010 if (err)
1011 return (NULL);
1012 goto start;
1013 }
1014 #ifdef DIAGNOSTIC
1015 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1016 bp->b_bcount < size && vp->v_type != VBLK)
1017 panic("getblk: block size invariant failed");
1018 #endif
1019 SET(bp->b_flags, B_BUSY);
1020 bremfree(bp);
1021 preserve = 1;
1022 } else {
1023 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1024 simple_unlock(&bqueue_slock);
1025 splx(s);
1026 goto start;
1027 }
1028
1029 binshash(bp, BUFHASH(vp, blkno));
1030 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1031 bgetvp(vp, bp);
1032 preserve = 0;
1033 }
1034 simple_unlock(&bp->b_interlock);
1035 simple_unlock(&bqueue_slock);
1036 splx(s);
1037 /*
1038 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1039 * if we re-size buffers here.
1040 */
1041 if (ISSET(bp->b_flags, B_LOCKED)) {
1042 KASSERT(bp->b_bufsize >= size);
1043 } else {
1044 allocbuf(bp, size, preserve);
1045 }
1046 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1047 return (bp);
1048 }
1049
1050 /*
1051 * Get an empty, disassociated buffer of given size.
1052 */
1053 struct buf *
1054 geteblk(int size)
1055 {
1056 struct buf *bp;
1057 int s;
1058
1059 s = splbio();
1060 simple_lock(&bqueue_slock);
1061 while ((bp = getnewbuf(0, 0, 0)) == 0)
1062 ;
1063
1064 SET(bp->b_flags, B_INVAL);
1065 binshash(bp, &invalhash);
1066 simple_unlock(&bqueue_slock);
1067 simple_unlock(&bp->b_interlock);
1068 splx(s);
1069 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1070 allocbuf(bp, size, 0);
1071 return (bp);
1072 }
1073
1074 /*
1075 * Expand or contract the actual memory allocated to a buffer.
1076 *
1077 * If the buffer shrinks, data is lost, so it's up to the
1078 * caller to have written it out *first*; this routine will not
1079 * start a write. If the buffer grows, it's the callers
1080 * responsibility to fill out the buffer's additional contents.
1081 */
1082 void
1083 allocbuf(struct buf *bp, int size, int preserve)
1084 {
1085 vsize_t oldsize, desired_size;
1086 caddr_t addr;
1087 int s, delta;
1088
1089 desired_size = buf_roundsize(size);
1090 if (desired_size > MAXBSIZE)
1091 printf("allocbuf: buffer larger than MAXBSIZE requested");
1092
1093 bp->b_bcount = size;
1094
1095 oldsize = bp->b_bufsize;
1096 if (oldsize == desired_size)
1097 return;
1098
1099 /*
1100 * If we want a buffer of a different size, re-allocate the
1101 * buffer's memory; copy old content only if needed.
1102 */
1103 addr = buf_malloc(desired_size);
1104 if (preserve)
1105 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1106 if (bp->b_data != NULL)
1107 buf_mrelease(bp->b_data, oldsize);
1108 bp->b_data = addr;
1109 bp->b_bufsize = desired_size;
1110
1111 /*
1112 * Update overall buffer memory counter (protected by bqueue_slock)
1113 */
1114 delta = (long)desired_size - (long)oldsize;
1115
1116 s = splbio();
1117 simple_lock(&bqueue_slock);
1118 if ((bufmem += delta) > bufmem_hiwater) {
1119 /*
1120 * Need to trim overall memory usage.
1121 */
1122 while (buf_canrelease()) {
1123 if (buf_trim() == 0)
1124 break;
1125 }
1126 }
1127
1128 simple_unlock(&bqueue_slock);
1129 splx(s);
1130 }
1131
1132 /*
1133 * Find a buffer which is available for use.
1134 * Select something from a free list.
1135 * Preference is to AGE list, then LRU list.
1136 *
1137 * Called at splbio and with buffer queues locked.
1138 * Return buffer locked.
1139 */
1140 struct buf *
1141 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1142 {
1143 struct buf *bp;
1144
1145 start:
1146 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1147
1148 /*
1149 * Get a new buffer from the pool; but use NOWAIT because
1150 * we have the buffer queues locked.
1151 */
1152 if (buf_lotsfree() && !from_bufq &&
1153 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1154 memset((char *)bp, 0, sizeof(*bp));
1155 BUF_INIT(bp);
1156 bp->b_dev = NODEV;
1157 bp->b_vnbufs.le_next = NOLIST;
1158 bp->b_flags = B_BUSY;
1159 simple_lock(&bp->b_interlock);
1160 return (bp);
1161 }
1162
1163 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1164 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1165 simple_lock(&bp->b_interlock);
1166 bremfree(bp);
1167 } else {
1168 /* wait for a free buffer of any kind */
1169 needbuffer = 1;
1170 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1171 "getnewbuf", slptimeo, &bqueue_slock);
1172 return (NULL);
1173 }
1174
1175 #ifdef DIAGNOSTIC
1176 if (bp->b_bufsize <= 0)
1177 panic("buffer %p: on queue but empty", bp);
1178 #endif
1179
1180 if (ISSET(bp->b_flags, B_VFLUSH)) {
1181 /*
1182 * This is a delayed write buffer being flushed to disk. Make
1183 * sure it gets aged out of the queue when it's finished, and
1184 * leave it off the LRU queue.
1185 */
1186 CLR(bp->b_flags, B_VFLUSH);
1187 SET(bp->b_flags, B_AGE);
1188 simple_unlock(&bp->b_interlock);
1189 goto start;
1190 }
1191
1192 /* Buffer is no longer on free lists. */
1193 SET(bp->b_flags, B_BUSY);
1194
1195 /*
1196 * If buffer was a delayed write, start it and return NULL
1197 * (since we might sleep while starting the write).
1198 */
1199 if (ISSET(bp->b_flags, B_DELWRI)) {
1200 /*
1201 * This buffer has gone through the LRU, so make sure it gets
1202 * reused ASAP.
1203 */
1204 SET(bp->b_flags, B_AGE);
1205 simple_unlock(&bp->b_interlock);
1206 simple_unlock(&bqueue_slock);
1207 bawrite(bp);
1208 simple_lock(&bqueue_slock);
1209 return (NULL);
1210 }
1211
1212 /* disassociate us from our vnode, if we had one... */
1213 if (bp->b_vp)
1214 brelvp(bp);
1215
1216 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1217 (*bioops.io_deallocate)(bp);
1218
1219 /* clear out various other fields */
1220 bp->b_flags = B_BUSY;
1221 bp->b_dev = NODEV;
1222 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1223 bp->b_iodone = 0;
1224 bp->b_error = 0;
1225 bp->b_resid = 0;
1226 bp->b_bcount = 0;
1227
1228 bremhash(bp);
1229 return (bp);
1230 }
1231
1232 /*
1233 * Attempt to free an aged buffer off the queues.
1234 * Called at splbio and with queue lock held.
1235 * Returns the amount of buffer memory freed.
1236 */
1237 int
1238 buf_trim(void)
1239 {
1240 struct buf *bp;
1241 long size = 0;
1242 int wanted;
1243
1244 /* Instruct getnewbuf() to get buffers off the queues */
1245 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1246 return 0;
1247
1248 wanted = ISSET(bp->b_flags, B_WANTED);
1249 simple_unlock(&bp->b_interlock);
1250 if (wanted) {
1251 printf("buftrim: got WANTED buffer\n");
1252 SET(bp->b_flags, B_INVAL);
1253 binshash(bp, &invalhash);
1254 simple_unlock(&bqueue_slock);
1255 goto out;
1256 }
1257 size = bp->b_bufsize;
1258 bufmem -= size;
1259 simple_unlock(&bqueue_slock);
1260 if (size > 0) {
1261 buf_mrelease(bp->b_data, size);
1262 bp->b_bcount = bp->b_bufsize = 0;
1263 }
1264
1265 out:
1266 /* brelse() will return the buffer to the global buffer pool */
1267 brelse(bp);
1268 simple_lock(&bqueue_slock);
1269 return size;
1270 }
1271
1272 int
1273 buf_drain(int n)
1274 {
1275 int s, size = 0;
1276
1277 s = splbio();
1278 simple_lock(&bqueue_slock);
1279
1280 /* If not asked for a specific amount, make our own estimate */
1281 if (n == 0)
1282 n = buf_canrelease();
1283
1284 while (size < n && bufmem > bufmem_lowater)
1285 size += buf_trim();
1286
1287 simple_unlock(&bqueue_slock);
1288 splx(s);
1289 return size;
1290 }
1291
1292 /*
1293 * Wait for operations on the buffer to complete.
1294 * When they do, extract and return the I/O's error value.
1295 */
1296 int
1297 biowait(struct buf *bp)
1298 {
1299 int s, error;
1300
1301 s = splbio();
1302 simple_lock(&bp->b_interlock);
1303 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1304 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1305
1306 /* check for interruption of I/O (e.g. via NFS), then errors. */
1307 if (ISSET(bp->b_flags, B_EINTR)) {
1308 CLR(bp->b_flags, B_EINTR);
1309 error = EINTR;
1310 } else if (ISSET(bp->b_flags, B_ERROR))
1311 error = bp->b_error ? bp->b_error : EIO;
1312 else
1313 error = 0;
1314
1315 simple_unlock(&bp->b_interlock);
1316 splx(s);
1317 return (error);
1318 }
1319
1320 /*
1321 * Mark I/O complete on a buffer.
1322 *
1323 * If a callback has been requested, e.g. the pageout
1324 * daemon, do so. Otherwise, awaken waiting processes.
1325 *
1326 * [ Leffler, et al., says on p.247:
1327 * "This routine wakes up the blocked process, frees the buffer
1328 * for an asynchronous write, or, for a request by the pagedaemon
1329 * process, invokes a procedure specified in the buffer structure" ]
1330 *
1331 * In real life, the pagedaemon (or other system processes) wants
1332 * to do async stuff to, and doesn't want the buffer brelse()'d.
1333 * (for swap pager, that puts swap buffers on the free lists (!!!),
1334 * for the vn device, that puts malloc'd buffers on the free lists!)
1335 */
1336 void
1337 biodone(struct buf *bp)
1338 {
1339 int s = splbio();
1340
1341 simple_lock(&bp->b_interlock);
1342 if (ISSET(bp->b_flags, B_DONE))
1343 panic("biodone already");
1344 SET(bp->b_flags, B_DONE); /* note that it's done */
1345 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1346
1347 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1348 (*bioops.io_complete)(bp);
1349
1350 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1351 vwakeup(bp);
1352
1353 /*
1354 * If necessary, call out. Unlock the buffer before calling
1355 * iodone() as the buffer isn't valid any more when it return.
1356 */
1357 if (ISSET(bp->b_flags, B_CALL)) {
1358 CLR(bp->b_flags, B_CALL); /* but note callout done */
1359 simple_unlock(&bp->b_interlock);
1360 (*bp->b_iodone)(bp);
1361 } else {
1362 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1363 simple_unlock(&bp->b_interlock);
1364 brelse(bp);
1365 } else { /* or just wakeup the buffer */
1366 CLR(bp->b_flags, B_WANTED);
1367 wakeup(bp);
1368 simple_unlock(&bp->b_interlock);
1369 }
1370 }
1371
1372 splx(s);
1373 }
1374
1375 /*
1376 * Return a count of buffers on the "locked" queue.
1377 */
1378 int
1379 count_lock_queue(void)
1380 {
1381 struct buf *bp;
1382 int n = 0;
1383
1384 simple_lock(&bqueue_slock);
1385 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1386 n++;
1387 simple_unlock(&bqueue_slock);
1388 return (n);
1389 }
1390
1391 /*
1392 * Wait for all buffers to complete I/O
1393 * Return the number of "stuck" buffers.
1394 */
1395 int
1396 buf_syncwait(void)
1397 {
1398 struct buf *bp;
1399 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1400
1401 dcount = 10000;
1402 for (iter = 0; iter < 20;) {
1403 s = splbio();
1404 simple_lock(&bqueue_slock);
1405 nbusy = 0;
1406 for (ihash = 0; ihash < bufhash+1; ihash++) {
1407 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1408 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1409 nbusy++;
1410 /*
1411 * With soft updates, some buffers that are
1412 * written will be remarked as dirty until other
1413 * buffers are written.
1414 */
1415 if (bp->b_vp && bp->b_vp->v_mount
1416 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1417 && (bp->b_flags & B_DELWRI)) {
1418 simple_lock(&bp->b_interlock);
1419 bremfree(bp);
1420 bp->b_flags |= B_BUSY;
1421 nbusy++;
1422 simple_unlock(&bp->b_interlock);
1423 simple_unlock(&bqueue_slock);
1424 bawrite(bp);
1425 if (dcount-- <= 0) {
1426 printf("softdep ");
1427 goto fail;
1428 }
1429 simple_lock(&bqueue_slock);
1430 }
1431 }
1432 }
1433
1434 simple_unlock(&bqueue_slock);
1435 splx(s);
1436
1437 if (nbusy == 0)
1438 break;
1439 if (nbusy_prev == 0)
1440 nbusy_prev = nbusy;
1441 printf("%d ", nbusy);
1442 tsleep(&nbusy, PRIBIO, "bflush",
1443 (iter == 0) ? 1 : hz / 25 * iter);
1444 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1445 iter++;
1446 else
1447 nbusy_prev = nbusy;
1448 }
1449
1450 if (nbusy) {
1451 fail:;
1452 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1453 printf("giving up\nPrinting vnodes for busy buffers\n");
1454 for (ihash = 0; ihash < bufhash+1; ihash++) {
1455 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1456 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1457 vprint(NULL, bp->b_vp);
1458 }
1459 }
1460 #endif
1461 }
1462
1463 return nbusy;
1464 }
1465
1466 static void
1467 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1468 {
1469
1470 o->b_flags = i->b_flags;
1471 o->b_error = i->b_error;
1472 o->b_prio = i->b_prio;
1473 o->b_dev = i->b_dev;
1474 o->b_bufsize = i->b_bufsize;
1475 o->b_bcount = i->b_bcount;
1476 o->b_resid = i->b_resid;
1477 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1478 o->b_blkno = i->b_blkno;
1479 o->b_rawblkno = i->b_rawblkno;
1480 o->b_iodone = PTRTOUINT64(i->b_iodone);
1481 o->b_proc = PTRTOUINT64(i->b_proc);
1482 o->b_vp = PTRTOUINT64(i->b_vp);
1483 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1484 o->b_lblkno = i->b_lblkno;
1485 }
1486
1487 #define KERN_BUFSLOP 20
1488 static int
1489 sysctl_dobuf(SYSCTLFN_ARGS)
1490 {
1491 struct buf *bp;
1492 struct buf_sysctl bs;
1493 char *dp;
1494 u_int i, op, arg;
1495 size_t len, needed, elem_size, out_size;
1496 int error, s, elem_count;
1497
1498 if (namelen == 1 && name[0] == CTL_QUERY)
1499 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1500
1501 if (namelen != 4)
1502 return (EINVAL);
1503
1504 dp = oldp;
1505 len = (oldp != NULL) ? *oldlenp : 0;
1506 op = name[0];
1507 arg = name[1];
1508 elem_size = name[2];
1509 elem_count = name[3];
1510 out_size = MIN(sizeof(bs), elem_size);
1511
1512 /*
1513 * at the moment, these are just "placeholders" to make the
1514 * API for retrieving kern.buf data more extensible in the
1515 * future.
1516 *
1517 * XXX kern.buf currently has "netbsd32" issues. hopefully
1518 * these will be resolved at a later point.
1519 */
1520 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1521 elem_size < 1 || elem_count < 0)
1522 return (EINVAL);
1523
1524 error = 0;
1525 needed = 0;
1526 s = splbio();
1527 simple_lock(&bqueue_slock);
1528 for (i = 0; i < BQUEUES; i++) {
1529 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1530 if (len >= elem_size && elem_count > 0) {
1531 sysctl_fillbuf(bp, &bs);
1532 error = copyout(&bs, dp, out_size);
1533 if (error)
1534 goto cleanup;
1535 dp += elem_size;
1536 len -= elem_size;
1537 }
1538 if (elem_count > 0) {
1539 needed += elem_size;
1540 if (elem_count != INT_MAX)
1541 elem_count--;
1542 }
1543 }
1544 }
1545 cleanup:
1546 simple_unlock(&bqueue_slock);
1547 splx(s);
1548
1549 *oldlenp = needed;
1550 if (oldp == NULL)
1551 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1552
1553 return (error);
1554 }
1555
1556 static int
1557 sysctl_bufvm_update(SYSCTLFN_ARGS)
1558 {
1559 int t, error;
1560 struct sysctlnode node;
1561
1562 node = *rnode;
1563 node.sysctl_data = &t;
1564 t = *(int*)rnode->sysctl_data;
1565 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1566 if (error || newp == NULL)
1567 return (error);
1568
1569 if (rnode->sysctl_data == &bufcache) {
1570 if (t < 0 || t > 100)
1571 return (EINVAL);
1572 bufcache = t;
1573 bufmem_hiwater = buf_memcalc();
1574 bufmem_lowater = (bufmem_hiwater >> 3);
1575 if (bufmem_lowater < 64 * 1024)
1576 /* Ensure a reasonable minimum value */
1577 bufmem_lowater = 64 * 1024;
1578
1579 } else if (rnode->sysctl_data == &bufmem_lowater) {
1580 bufmem_lowater = t;
1581 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1582 bufmem_hiwater = t;
1583 } else
1584 return (EINVAL);
1585
1586 /* Drain until below new high water mark */
1587 while ((t = bufmem - bufmem_hiwater) >= 0) {
1588 if (buf_drain(t / (2*1024)) <= 0)
1589 break;
1590 }
1591
1592 return 0;
1593 }
1594
1595 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1596 {
1597
1598 sysctl_createv(clog, 0, NULL, NULL,
1599 CTLFLAG_PERMANENT,
1600 CTLTYPE_NODE, "kern", NULL,
1601 NULL, 0, NULL, 0,
1602 CTL_KERN, CTL_EOL);
1603 sysctl_createv(clog, 0, NULL, NULL,
1604 CTLFLAG_PERMANENT,
1605 CTLTYPE_NODE, "buf",
1606 SYSCTL_DESCR("Kernel buffer cache information"),
1607 sysctl_dobuf, 0, NULL, 0,
1608 CTL_KERN, KERN_BUF, CTL_EOL);
1609 }
1610
1611 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1612 {
1613
1614 sysctl_createv(clog, 0, NULL, NULL,
1615 CTLFLAG_PERMANENT,
1616 CTLTYPE_NODE, "vm", NULL,
1617 NULL, 0, NULL, 0,
1618 CTL_VM, CTL_EOL);
1619
1620 sysctl_createv(clog, 0, NULL, NULL,
1621 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1622 CTLTYPE_INT, "bufcache",
1623 SYSCTL_DESCR("Percentage of kernel memory to use for "
1624 "buffer cache"),
1625 sysctl_bufvm_update, 0, &bufcache, 0,
1626 CTL_VM, CTL_CREATE, CTL_EOL);
1627 sysctl_createv(clog, 0, NULL, NULL,
1628 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1629 CTLTYPE_INT, "bufmem",
1630 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1631 "cache"),
1632 NULL, 0, &bufmem, 0,
1633 CTL_VM, CTL_CREATE, CTL_EOL);
1634 sysctl_createv(clog, 0, NULL, NULL,
1635 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1636 CTLTYPE_INT, "bufmem_lowater",
1637 SYSCTL_DESCR("Minimum amount of kernel memory to "
1638 "reserve for buffer cache"),
1639 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1640 CTL_VM, CTL_CREATE, CTL_EOL);
1641 sysctl_createv(clog, 0, NULL, NULL,
1642 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1643 CTLTYPE_INT, "bufmem_hiwater",
1644 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1645 "for buffer cache"),
1646 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1647 CTL_VM, CTL_CREATE, CTL_EOL);
1648 }
1649
1650 #ifdef DEBUG
1651 /*
1652 * Print out statistics on the current allocation of the buffer pool.
1653 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1654 * in vfs_syscalls.c using sysctl.
1655 */
1656 void
1657 vfs_bufstats(void)
1658 {
1659 int s, i, j, count;
1660 struct buf *bp;
1661 struct bqueues *dp;
1662 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1663 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1664
1665 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1666 count = 0;
1667 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1668 counts[j] = 0;
1669 s = splbio();
1670 TAILQ_FOREACH(bp, dp, b_freelist) {
1671 counts[bp->b_bufsize/PAGE_SIZE]++;
1672 count++;
1673 }
1674 splx(s);
1675 printf("%s: total-%d", bname[i], count);
1676 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1677 if (counts[j] != 0)
1678 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1679 printf("\n");
1680 }
1681 }
1682 #endif /* DEBUG */
1683