Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.134
      1 /*	$NetBSD: vfs_bio.c,v 1.134 2004/10/03 08:47:48 enami Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include "opt_bufcache.h"
     81 #include "opt_softdep.h"
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.134 2004/10/03 08:47:48 enami Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 #include <sys/vnode.h>
     92 #include <sys/mount.h>
     93 #include <sys/malloc.h>
     94 #include <sys/resourcevar.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/conf.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 
    102 #ifndef	BUFPAGES
    103 # define BUFPAGES 0
    104 #endif
    105 
    106 #ifdef BUFCACHE
    107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    108 #  error BUFCACHE is not between 5 and 95
    109 # endif
    110 #else
    111 # define BUFCACHE 15
    112 #endif
    113 
    114 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    115 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    116 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    117 
    118 /* Function prototypes */
    119 struct bqueue;
    120 
    121 static int buf_trim(void);
    122 static void *bufpool_page_alloc(struct pool *, int);
    123 static void bufpool_page_free(struct pool *, void *);
    124 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    125     struct ucred *, int);
    126 static int buf_lotsfree(void);
    127 static int buf_canrelease(void);
    128 static __inline u_long buf_mempoolidx(u_long);
    129 static __inline u_long buf_roundsize(u_long);
    130 static __inline caddr_t buf_malloc(size_t);
    131 static void buf_mrelease(caddr_t, size_t);
    132 static __inline void binsheadfree(struct buf *, struct bqueue *);
    133 static __inline void binstailfree(struct buf *, struct bqueue *);
    134 int count_lock_queue(void); /* XXX */
    135 #ifdef DEBUG
    136 static int checkfreelist(struct buf *, struct bqueue *);
    137 #endif
    138 
    139 /* Macros to clear/set/test flags. */
    140 #define	SET(t, f)	(t) |= (f)
    141 #define	CLR(t, f)	(t) &= ~(f)
    142 #define	ISSET(t, f)	((t) & (f))
    143 
    144 /*
    145  * Definitions for the buffer hash lists.
    146  */
    147 #define	BUFHASH(dvp, lbn)	\
    148 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    149 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    150 u_long	bufhash;
    151 #ifndef SOFTDEP
    152 struct bio_ops bioops;	/* I/O operation notification */
    153 #endif
    154 
    155 /*
    156  * Insq/Remq for the buffer hash lists.
    157  */
    158 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    159 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    160 
    161 /*
    162  * Definitions for the buffer free lists.
    163  */
    164 #define	BQUEUES		3		/* number of free buffer queues */
    165 
    166 #define	BQ_LOCKED	0		/* super-blocks &c */
    167 #define	BQ_LRU		1		/* lru, useful buffers */
    168 #define	BQ_AGE		2		/* rubbish */
    169 
    170 struct bqueue {
    171 	TAILQ_HEAD(, buf) bq_queue;
    172 	uint64_t bq_bytes;
    173 } bufqueues[BQUEUES];
    174 int needbuffer;
    175 
    176 /*
    177  * Buffer queue lock.
    178  * Take this lock first if also taking some buffer's b_interlock.
    179  */
    180 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    181 
    182 /*
    183  * Buffer pool for I/O buffers.
    184  */
    185 struct pool bufpool;
    186 
    187 /* XXX - somewhat gross.. */
    188 #if MAXBSIZE == 0x2000
    189 #define NMEMPOOLS 4
    190 #elif MAXBSIZE == 0x4000
    191 #define NMEMPOOLS 5
    192 #elif MAXBSIZE == 0x8000
    193 #define NMEMPOOLS 6
    194 #else
    195 #define NMEMPOOLS 7
    196 #endif
    197 
    198 #define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
    199 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    200 #error update vfs_bio buffer memory parameters
    201 #endif
    202 
    203 /* Buffer memory pools */
    204 static struct pool bmempools[NMEMPOOLS];
    205 
    206 struct vm_map *buf_map;
    207 
    208 /*
    209  * Buffer memory pool allocator.
    210  */
    211 static void *
    212 bufpool_page_alloc(struct pool *pp, int flags)
    213 {
    214 
    215 	return (void *)uvm_km_kmemalloc1(buf_map,
    216 	    uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
    217 	    (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    218 }
    219 
    220 static void
    221 bufpool_page_free(struct pool *pp, void *v)
    222 {
    223 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
    224 }
    225 
    226 static struct pool_allocator bufmempool_allocator = {
    227 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
    228 };
    229 
    230 /* Buffer memory management variables */
    231 u_long bufmem_valimit;
    232 u_long bufmem_hiwater;
    233 u_long bufmem_lowater;
    234 u_long bufmem;
    235 
    236 /*
    237  * MD code can call this to set a hard limit on the amount
    238  * of virtual memory used by the buffer cache.
    239  */
    240 int
    241 buf_setvalimit(vsize_t sz)
    242 {
    243 
    244 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    245 	if (sz < NMEMPOOLS * MAXBSIZE)
    246 		return EINVAL;
    247 
    248 	bufmem_valimit = sz;
    249 	return 0;
    250 }
    251 
    252 #ifdef DEBUG
    253 int debug_verify_freelist = 0;
    254 static int
    255 checkfreelist(struct buf *bp, struct bqueue *dp)
    256 {
    257 	struct buf *b;
    258 
    259 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    260 		if (b == bp)
    261 			return 1;
    262 	}
    263 	return 0;
    264 }
    265 #endif
    266 
    267 /*
    268  * Insq/Remq for the buffer hash lists.
    269  * Call with buffer queue locked.
    270  */
    271 static __inline void
    272 binsheadfree(struct buf *bp, struct bqueue *dp)
    273 {
    274 
    275 	KASSERT(bp->b_freelistindex == -1);
    276 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    277 	dp->bq_bytes += bp->b_bufsize;
    278 	bp->b_freelistindex = dp - bufqueues;
    279 }
    280 
    281 static __inline void
    282 binstailfree(struct buf *bp, struct bqueue *dp)
    283 {
    284 
    285 	KASSERT(bp->b_freelistindex == -1);
    286 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    287 	dp->bq_bytes += bp->b_bufsize;
    288 	bp->b_freelistindex = dp - bufqueues;
    289 }
    290 
    291 void
    292 bremfree(struct buf *bp)
    293 {
    294 	struct bqueue *dp;
    295 	int bqidx = bp->b_freelistindex;
    296 
    297 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    298 
    299 	KASSERT(bqidx != -1);
    300 	dp = &bufqueues[bqidx];
    301 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    302 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    303 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    304 	dp->bq_bytes -= bp->b_bufsize;
    305 #if defined(DIAGNOSTIC)
    306 	bp->b_freelistindex = -1;
    307 #endif /* defined(DIAGNOSTIC) */
    308 }
    309 
    310 u_long
    311 buf_memcalc(void)
    312 {
    313 	u_long n;
    314 
    315 	/*
    316 	 * Determine the upper bound of memory to use for buffers.
    317 	 *
    318 	 *	- If bufpages is specified, use that as the number
    319 	 *	  pages.
    320 	 *
    321 	 *	- Otherwise, use bufcache as the percentage of
    322 	 *	  physical memory.
    323 	 */
    324 	if (bufpages != 0) {
    325 		n = bufpages;
    326 	} else {
    327 		if (bufcache < 5) {
    328 			printf("forcing bufcache %d -> 5", bufcache);
    329 			bufcache = 5;
    330 		}
    331 		if (bufcache > 95) {
    332 			printf("forcing bufcache %d -> 95", bufcache);
    333 			bufcache = 95;
    334 		}
    335 		n = physmem / 100 * bufcache;
    336 	}
    337 
    338 	n <<= PAGE_SHIFT;
    339 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    340 		n = bufmem_valimit;
    341 
    342 	return (n);
    343 }
    344 
    345 /*
    346  * Initialize buffers and hash links for buffers.
    347  */
    348 void
    349 bufinit(void)
    350 {
    351 	struct bqueue *dp;
    352 	int use_std;
    353 	u_int i;
    354 
    355 	/*
    356 	 * Initialize buffer cache memory parameters.
    357 	 */
    358 	bufmem = 0;
    359 	bufmem_hiwater = buf_memcalc();
    360 	/* lowater is approx. 2% of memory (with bufcache=15) */
    361 	bufmem_lowater = (bufmem_hiwater >> 3);
    362 	if (bufmem_lowater < 64 * 1024)
    363 		/* Ensure a reasonable minimum value */
    364 		bufmem_lowater = 64 * 1024;
    365 
    366 	if (bufmem_valimit != 0) {
    367 		vaddr_t minaddr = 0, maxaddr;
    368 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    369 					  bufmem_valimit, VM_MAP_PAGEABLE,
    370 					  FALSE, 0);
    371 		if (buf_map == NULL)
    372 			panic("bufinit: cannot allocate submap");
    373 	} else
    374 		buf_map = kernel_map;
    375 
    376 	/*
    377 	 * Initialize the buffer pools.
    378 	 */
    379 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
    380 
    381 	/* On "small" machines use small pool page sizes where possible */
    382 	use_std = (physmem < atop(16*1024*1024));
    383 
    384 	/*
    385 	 * Also use them on systems that can map the pool pages using
    386 	 * a direct-mapped segment.
    387 	 */
    388 #ifdef PMAP_MAP_POOLPAGE
    389 	use_std = 1;
    390 #endif
    391 
    392 	for (i = 0; i < NMEMPOOLS; i++) {
    393 		struct pool_allocator *pa;
    394 		struct pool *pp = &bmempools[i];
    395 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    396 		char *name = malloc(8, M_TEMP, M_WAITOK);
    397 		snprintf(name, 8, "buf%dk", 1 << i);
    398 		pa = (size <= PAGE_SIZE && use_std)
    399 			? &pool_allocator_nointr
    400 			: &bufmempool_allocator;
    401 		pool_init(pp, size, 0, 0, 0, name, pa);
    402 		pool_setlowat(pp, 1);
    403 		pool_sethiwat(pp, 1);
    404 	}
    405 
    406 	/* Initialize the buffer queues */
    407 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    408 		TAILQ_INIT(&dp->bq_queue);
    409 		dp->bq_bytes = 0;
    410 	}
    411 
    412 	/*
    413 	 * Estimate hash table size based on the amount of memory we
    414 	 * intend to use for the buffer cache. The average buffer
    415 	 * size is dependent on our clients (i.e. filesystems).
    416 	 *
    417 	 * For now, use an empirical 3K per buffer.
    418 	 */
    419 	nbuf = (bufmem_hiwater / 1024) / 3;
    420 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    421 }
    422 
    423 static int
    424 buf_lotsfree(void)
    425 {
    426 	int try, thresh;
    427 	struct lwp *l = curlwp;
    428 
    429 	/* Always allocate if doing copy on write */
    430 	if (l->l_flag & L_COWINPROGRESS)
    431 		return 1;
    432 
    433 	/* Always allocate if less than the low water mark. */
    434 	if (bufmem < bufmem_lowater)
    435 		return 1;
    436 
    437 	/* Never allocate if greater than the high water mark. */
    438 	if (bufmem > bufmem_hiwater)
    439 		return 0;
    440 
    441 	/* If there's anything on the AGE list, it should be eaten. */
    442 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    443 		return 0;
    444 
    445 	/*
    446 	 * The probabily of getting a new allocation is inversely
    447 	 * proportional to the current size of the cache, using
    448 	 * a granularity of 16 steps.
    449 	 */
    450 	try = random() & 0x0000000fL;
    451 
    452 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    453 	thresh = bufmem / (bufmem_hiwater / 16);
    454 
    455 	if (try >= thresh && uvmexp.free > (2 * uvmexp.freetarg))
    456 		return 1;
    457 
    458 	/* Otherwise don't allocate. */
    459 	return 0;
    460 }
    461 
    462 /*
    463  * Return estimate of bytes we think need to be
    464  * released to help resolve low memory conditions.
    465  *
    466  * => called at splbio.
    467  * => called with bqueue_slock held.
    468  */
    469 static int
    470 buf_canrelease(void)
    471 {
    472 	int pagedemand, ninvalid = 0;
    473 
    474 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    475 
    476 	if (bufmem < bufmem_lowater)
    477 		return 0;
    478 
    479 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    480 
    481 	pagedemand = uvmexp.freetarg - uvmexp.free;
    482 	if (pagedemand < 0)
    483 		return ninvalid;
    484 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    485 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    486 }
    487 
    488 /*
    489  * Buffer memory allocation helper functions
    490  */
    491 static __inline u_long
    492 buf_mempoolidx(u_long size)
    493 {
    494 	u_int n = 0;
    495 
    496 	size -= 1;
    497 	size >>= MEMPOOL_INDEX_OFFSET;
    498 	while (size) {
    499 		size >>= 1;
    500 		n += 1;
    501 	}
    502 	if (n >= NMEMPOOLS)
    503 		panic("buf mem pool index %d", n);
    504 	return n;
    505 }
    506 
    507 static __inline u_long
    508 buf_roundsize(u_long size)
    509 {
    510 	/* Round up to nearest power of 2 */
    511 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    512 }
    513 
    514 static __inline caddr_t
    515 buf_malloc(size_t size)
    516 {
    517 	u_int n = buf_mempoolidx(size);
    518 	caddr_t addr;
    519 	int s;
    520 
    521 	while (1) {
    522 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    523 		if (addr != NULL)
    524 			break;
    525 
    526 		/* No memory, see if we can free some. If so, try again */
    527 		if (buf_drain(1) > 0)
    528 			continue;
    529 
    530 		/* Wait for buffers to arrive on the LRU queue */
    531 		s = splbio();
    532 		simple_lock(&bqueue_slock);
    533 		needbuffer = 1;
    534 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    535 			"buf_malloc", 0, &bqueue_slock);
    536 		splx(s);
    537 	}
    538 
    539 	return addr;
    540 }
    541 
    542 static void
    543 buf_mrelease(caddr_t addr, size_t size)
    544 {
    545 
    546 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    547 }
    548 
    549 /*
    550  * bread()/breadn() helper.
    551  */
    552 static __inline struct buf *
    553 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    554     int async)
    555 {
    556 	struct buf *bp;
    557 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    558 	struct proc *p = l->l_proc;
    559 	struct mount *mp;
    560 
    561 	bp = getblk(vp, blkno, size, 0, 0);
    562 
    563 #ifdef DIAGNOSTIC
    564 	if (bp == NULL) {
    565 		panic("bio_doread: no such buf");
    566 	}
    567 #endif
    568 
    569 	/*
    570 	 * If buffer does not have data valid, start a read.
    571 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    572 	 * Therefore, it's valid if its I/O has completed or been delayed.
    573 	 */
    574 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    575 		/* Start I/O for the buffer. */
    576 		SET(bp->b_flags, B_READ | async);
    577 		if (async)
    578 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    579 		else
    580 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    581 		VOP_STRATEGY(vp, bp);
    582 
    583 		/* Pay for the read. */
    584 		p->p_stats->p_ru.ru_inblock++;
    585 	} else if (async) {
    586 		brelse(bp);
    587 	}
    588 
    589 	if (vp->v_type == VBLK)
    590 		mp = vp->v_specmountpoint;
    591 	else
    592 		mp = vp->v_mount;
    593 
    594 	/*
    595 	 * Collect statistics on synchronous and asynchronous reads.
    596 	 * Reads from block devices are charged to their associated
    597 	 * filesystem (if any).
    598 	 */
    599 	if (mp != NULL) {
    600 		if (async == 0)
    601 			mp->mnt_stat.f_syncreads++;
    602 		else
    603 			mp->mnt_stat.f_asyncreads++;
    604 	}
    605 
    606 	return (bp);
    607 }
    608 
    609 /*
    610  * Read a disk block.
    611  * This algorithm described in Bach (p.54).
    612  */
    613 int
    614 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    615     struct buf **bpp)
    616 {
    617 	struct buf *bp;
    618 
    619 	/* Get buffer for block. */
    620 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    621 
    622 	/* Wait for the read to complete, and return result. */
    623 	return (biowait(bp));
    624 }
    625 
    626 /*
    627  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    628  * Trivial modification to the breada algorithm presented in Bach (p.55).
    629  */
    630 int
    631 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    632     int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
    633 {
    634 	struct buf *bp;
    635 	int i;
    636 
    637 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    638 
    639 	/*
    640 	 * For each of the read-ahead blocks, start a read, if necessary.
    641 	 */
    642 	for (i = 0; i < nrablks; i++) {
    643 		/* If it's in the cache, just go on to next one. */
    644 		if (incore(vp, rablks[i]))
    645 			continue;
    646 
    647 		/* Get a buffer for the read-ahead block */
    648 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    649 	}
    650 
    651 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    652 	return (biowait(bp));
    653 }
    654 
    655 /*
    656  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    657  * implemented as a call to breadn().
    658  * XXX for compatibility with old file systems.
    659  */
    660 int
    661 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    662     int rabsize, struct ucred *cred, struct buf **bpp)
    663 {
    664 
    665 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    666 }
    667 
    668 /*
    669  * Block write.  Described in Bach (p.56)
    670  */
    671 int
    672 bwrite(struct buf *bp)
    673 {
    674 	int rv, sync, wasdelayed, s;
    675 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    676 	struct proc *p = l->l_proc;
    677 	struct vnode *vp;
    678 	struct mount *mp;
    679 
    680 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    681 
    682 	vp = bp->b_vp;
    683 	if (vp != NULL) {
    684 		if (vp->v_type == VBLK)
    685 			mp = vp->v_specmountpoint;
    686 		else
    687 			mp = vp->v_mount;
    688 	} else {
    689 		mp = NULL;
    690 	}
    691 
    692 	/*
    693 	 * Remember buffer type, to switch on it later.  If the write was
    694 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    695 	 * convert it to a delayed write.
    696 	 * XXX note that this relies on delayed tape writes being converted
    697 	 * to async, not sync writes (which is safe, but ugly).
    698 	 */
    699 	sync = !ISSET(bp->b_flags, B_ASYNC);
    700 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    701 		bdwrite(bp);
    702 		return (0);
    703 	}
    704 
    705 	/*
    706 	 * Collect statistics on synchronous and asynchronous writes.
    707 	 * Writes to block devices are charged to their associated
    708 	 * filesystem (if any).
    709 	 */
    710 	if (mp != NULL) {
    711 		if (sync)
    712 			mp->mnt_stat.f_syncwrites++;
    713 		else
    714 			mp->mnt_stat.f_asyncwrites++;
    715 	}
    716 
    717 	s = splbio();
    718 	simple_lock(&bp->b_interlock);
    719 
    720 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    721 
    722 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
    723 
    724 	/*
    725 	 * Pay for the I/O operation and make sure the buf is on the correct
    726 	 * vnode queue.
    727 	 */
    728 	if (wasdelayed)
    729 		reassignbuf(bp, bp->b_vp);
    730 	else
    731 		p->p_stats->p_ru.ru_oublock++;
    732 
    733 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    734 	V_INCR_NUMOUTPUT(bp->b_vp);
    735 	simple_unlock(&bp->b_interlock);
    736 	splx(s);
    737 
    738 	if (sync)
    739 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    740 	else
    741 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    742 
    743 	VOP_STRATEGY(vp, bp);
    744 
    745 	if (sync) {
    746 		/* If I/O was synchronous, wait for it to complete. */
    747 		rv = biowait(bp);
    748 
    749 		/* Release the buffer. */
    750 		brelse(bp);
    751 
    752 		return (rv);
    753 	} else {
    754 		return (0);
    755 	}
    756 }
    757 
    758 int
    759 vn_bwrite(void *v)
    760 {
    761 	struct vop_bwrite_args *ap = v;
    762 
    763 	return (bwrite(ap->a_bp));
    764 }
    765 
    766 /*
    767  * Delayed write.
    768  *
    769  * The buffer is marked dirty, but is not queued for I/O.
    770  * This routine should be used when the buffer is expected
    771  * to be modified again soon, typically a small write that
    772  * partially fills a buffer.
    773  *
    774  * NB: magnetic tapes cannot be delayed; they must be
    775  * written in the order that the writes are requested.
    776  *
    777  * Described in Leffler, et al. (pp. 208-213).
    778  */
    779 void
    780 bdwrite(struct buf *bp)
    781 {
    782 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    783 	struct proc *p = l->l_proc;
    784 	const struct bdevsw *bdev;
    785 	int s;
    786 
    787 	/* If this is a tape block, write the block now. */
    788 	bdev = bdevsw_lookup(bp->b_dev);
    789 	if (bdev != NULL && bdev->d_type == D_TAPE) {
    790 		bawrite(bp);
    791 		return;
    792 	}
    793 
    794 	/*
    795 	 * If the block hasn't been seen before:
    796 	 *	(1) Mark it as having been seen,
    797 	 *	(2) Charge for the write,
    798 	 *	(3) Make sure it's on its vnode's correct block list.
    799 	 */
    800 	s = splbio();
    801 	simple_lock(&bp->b_interlock);
    802 
    803 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    804 
    805 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    806 		SET(bp->b_flags, B_DELWRI);
    807 		p->p_stats->p_ru.ru_oublock++;
    808 		reassignbuf(bp, bp->b_vp);
    809 	}
    810 
    811 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    812 	CLR(bp->b_flags, B_DONE);
    813 	simple_unlock(&bp->b_interlock);
    814 	splx(s);
    815 
    816 	brelse(bp);
    817 }
    818 
    819 /*
    820  * Asynchronous block write; just an asynchronous bwrite().
    821  */
    822 void
    823 bawrite(struct buf *bp)
    824 {
    825 	int s;
    826 
    827 	s = splbio();
    828 	simple_lock(&bp->b_interlock);
    829 
    830 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    831 
    832 	SET(bp->b_flags, B_ASYNC);
    833 	simple_unlock(&bp->b_interlock);
    834 	splx(s);
    835 	VOP_BWRITE(bp);
    836 }
    837 
    838 /*
    839  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    840  * Call at splbio() and with the buffer interlock locked.
    841  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
    842  */
    843 void
    844 bdirty(struct buf *bp)
    845 {
    846 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    847 	struct proc *p = l->l_proc;
    848 
    849 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    850 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    851 
    852 	CLR(bp->b_flags, B_AGE);
    853 
    854 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    855 		SET(bp->b_flags, B_DELWRI);
    856 		p->p_stats->p_ru.ru_oublock++;
    857 		reassignbuf(bp, bp->b_vp);
    858 	}
    859 }
    860 
    861 /*
    862  * Release a buffer on to the free lists.
    863  * Described in Bach (p. 46).
    864  */
    865 void
    866 brelse(struct buf *bp)
    867 {
    868 	struct bqueue *bufq;
    869 	int s;
    870 
    871 	/* Block disk interrupts. */
    872 	s = splbio();
    873 	simple_lock(&bqueue_slock);
    874 	simple_lock(&bp->b_interlock);
    875 
    876 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    877 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    878 
    879 	/* Wake up any processes waiting for any buffer to become free. */
    880 	if (needbuffer) {
    881 		needbuffer = 0;
    882 		wakeup(&needbuffer);
    883 	}
    884 
    885 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    886 	if (ISSET(bp->b_flags, B_WANTED)) {
    887 		CLR(bp->b_flags, B_WANTED|B_AGE);
    888 		wakeup(bp);
    889 	}
    890 
    891 	/*
    892 	 * Determine which queue the buffer should be on, then put it there.
    893 	 */
    894 
    895 	/* If it's locked, don't report an error; try again later. */
    896 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
    897 		CLR(bp->b_flags, B_ERROR);
    898 
    899 	/* If it's not cacheable, or an error, mark it invalid. */
    900 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
    901 		SET(bp->b_flags, B_INVAL);
    902 
    903 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    904 		/*
    905 		 * This is a delayed write buffer that was just flushed to
    906 		 * disk.  It is still on the LRU queue.  If it's become
    907 		 * invalid, then we need to move it to a different queue;
    908 		 * otherwise leave it in its current position.
    909 		 */
    910 		CLR(bp->b_flags, B_VFLUSH);
    911 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
    912 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    913 			goto already_queued;
    914 		} else {
    915 			bremfree(bp);
    916 		}
    917 	}
    918 
    919   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    920   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    921   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    922 
    923 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    924 		/*
    925 		 * If it's invalid or empty, dissociate it from its vnode
    926 		 * and put on the head of the appropriate queue.
    927 		 */
    928 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    929 			(*bioops.io_deallocate)(bp);
    930 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    931 		if (bp->b_vp) {
    932 			reassignbuf(bp, bp->b_vp);
    933 			brelvp(bp);
    934 		}
    935 		if (bp->b_bufsize <= 0)
    936 			/* no data */
    937 			goto already_queued;
    938 		else
    939 			/* invalid data */
    940 			bufq = &bufqueues[BQ_AGE];
    941 		binsheadfree(bp, bufq);
    942 	} else {
    943 		/*
    944 		 * It has valid data.  Put it on the end of the appropriate
    945 		 * queue, so that it'll stick around for as long as possible.
    946 		 * If buf is AGE, but has dependencies, must put it on last
    947 		 * bufqueue to be scanned, ie LRU. This protects against the
    948 		 * livelock where BQ_AGE only has buffers with dependencies,
    949 		 * and we thus never get to the dependent buffers in BQ_LRU.
    950 		 */
    951 		if (ISSET(bp->b_flags, B_LOCKED))
    952 			/* locked in core */
    953 			bufq = &bufqueues[BQ_LOCKED];
    954 		else if (!ISSET(bp->b_flags, B_AGE))
    955 			/* valid data */
    956 			bufq = &bufqueues[BQ_LRU];
    957 		else {
    958 			/* stale but valid data */
    959 			int has_deps;
    960 
    961 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    962 			    bioops.io_countdeps)
    963 				has_deps = (*bioops.io_countdeps)(bp, 0);
    964 			else
    965 				has_deps = 0;
    966 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    967 			    &bufqueues[BQ_AGE];
    968 		}
    969 		binstailfree(bp, bufq);
    970 	}
    971 
    972 already_queued:
    973 	/* Unlock the buffer. */
    974 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    975 	SET(bp->b_flags, B_CACHE);
    976 
    977 	/* Allow disk interrupts. */
    978 	simple_unlock(&bp->b_interlock);
    979 	simple_unlock(&bqueue_slock);
    980 	if (bp->b_bufsize <= 0) {
    981 #ifdef DEBUG
    982 		memset((char *)bp, 0, sizeof(*bp));
    983 #endif
    984 		pool_put(&bufpool, bp);
    985 	}
    986 	splx(s);
    987 }
    988 
    989 /*
    990  * Determine if a block is in the cache.
    991  * Just look on what would be its hash chain.  If it's there, return
    992  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
    993  * we normally don't return the buffer, unless the caller explicitly
    994  * wants us to.
    995  */
    996 struct buf *
    997 incore(struct vnode *vp, daddr_t blkno)
    998 {
    999 	struct buf *bp;
   1000 
   1001 	/* Search hash chain */
   1002 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1003 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1004 		    !ISSET(bp->b_flags, B_INVAL))
   1005 		return (bp);
   1006 	}
   1007 
   1008 	return (NULL);
   1009 }
   1010 
   1011 /*
   1012  * Get a block of requested size that is associated with
   1013  * a given vnode and block offset. If it is found in the
   1014  * block cache, mark it as having been found, make it busy
   1015  * and return it. Otherwise, return an empty block of the
   1016  * correct size. It is up to the caller to insure that the
   1017  * cached blocks be of the correct size.
   1018  */
   1019 struct buf *
   1020 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1021 {
   1022 	struct buf *bp;
   1023 	int s, err;
   1024 	int preserve;
   1025 
   1026 start:
   1027 	s = splbio();
   1028 	simple_lock(&bqueue_slock);
   1029 	bp = incore(vp, blkno);
   1030 	if (bp != NULL) {
   1031 		simple_lock(&bp->b_interlock);
   1032 		if (ISSET(bp->b_flags, B_BUSY)) {
   1033 			simple_unlock(&bqueue_slock);
   1034 			if (curproc == uvm.pagedaemon_proc) {
   1035 				simple_unlock(&bp->b_interlock);
   1036 				splx(s);
   1037 				return NULL;
   1038 			}
   1039 			SET(bp->b_flags, B_WANTED);
   1040 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1041 					"getblk", slptimeo, &bp->b_interlock);
   1042 			splx(s);
   1043 			if (err)
   1044 				return (NULL);
   1045 			goto start;
   1046 		}
   1047 #ifdef DIAGNOSTIC
   1048 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1049 		    bp->b_bcount < size && vp->v_type != VBLK)
   1050 			panic("getblk: block size invariant failed");
   1051 #endif
   1052 		SET(bp->b_flags, B_BUSY);
   1053 		bremfree(bp);
   1054 		preserve = 1;
   1055 	} else {
   1056 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1057 			simple_unlock(&bqueue_slock);
   1058 			splx(s);
   1059 			goto start;
   1060 		}
   1061 
   1062 		binshash(bp, BUFHASH(vp, blkno));
   1063 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1064 		bgetvp(vp, bp);
   1065 		preserve = 0;
   1066 	}
   1067 	simple_unlock(&bp->b_interlock);
   1068 	simple_unlock(&bqueue_slock);
   1069 	splx(s);
   1070 	/*
   1071 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1072 	 * if we re-size buffers here.
   1073 	 */
   1074 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1075 		KASSERT(bp->b_bufsize >= size);
   1076 	} else {
   1077 		allocbuf(bp, size, preserve);
   1078 	}
   1079 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1080 	return (bp);
   1081 }
   1082 
   1083 /*
   1084  * Get an empty, disassociated buffer of given size.
   1085  */
   1086 struct buf *
   1087 geteblk(int size)
   1088 {
   1089 	struct buf *bp;
   1090 	int s;
   1091 
   1092 	s = splbio();
   1093 	simple_lock(&bqueue_slock);
   1094 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1095 		;
   1096 
   1097 	SET(bp->b_flags, B_INVAL);
   1098 	binshash(bp, &invalhash);
   1099 	simple_unlock(&bqueue_slock);
   1100 	simple_unlock(&bp->b_interlock);
   1101 	splx(s);
   1102 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1103 	allocbuf(bp, size, 0);
   1104 	return (bp);
   1105 }
   1106 
   1107 /*
   1108  * Expand or contract the actual memory allocated to a buffer.
   1109  *
   1110  * If the buffer shrinks, data is lost, so it's up to the
   1111  * caller to have written it out *first*; this routine will not
   1112  * start a write.  If the buffer grows, it's the callers
   1113  * responsibility to fill out the buffer's additional contents.
   1114  */
   1115 void
   1116 allocbuf(struct buf *bp, int size, int preserve)
   1117 {
   1118 	vsize_t oldsize, desired_size;
   1119 	caddr_t addr;
   1120 	int s, delta;
   1121 
   1122 	desired_size = buf_roundsize(size);
   1123 	if (desired_size > MAXBSIZE)
   1124 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1125 
   1126 	bp->b_bcount = size;
   1127 
   1128 	oldsize = bp->b_bufsize;
   1129 	if (oldsize == desired_size)
   1130 		return;
   1131 
   1132 	/*
   1133 	 * If we want a buffer of a different size, re-allocate the
   1134 	 * buffer's memory; copy old content only if needed.
   1135 	 */
   1136 	addr = buf_malloc(desired_size);
   1137 	if (preserve)
   1138 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1139 	if (bp->b_data != NULL)
   1140 		buf_mrelease(bp->b_data, oldsize);
   1141 	bp->b_data = addr;
   1142 	bp->b_bufsize = desired_size;
   1143 
   1144 	/*
   1145 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1146 	 */
   1147 	delta = (long)desired_size - (long)oldsize;
   1148 
   1149 	s = splbio();
   1150 	simple_lock(&bqueue_slock);
   1151 	if ((bufmem += delta) > bufmem_hiwater) {
   1152 		/*
   1153 		 * Need to trim overall memory usage.
   1154 		 */
   1155 		while (buf_canrelease()) {
   1156 			if (buf_trim() == 0)
   1157 				break;
   1158 		}
   1159 	}
   1160 
   1161 	simple_unlock(&bqueue_slock);
   1162 	splx(s);
   1163 }
   1164 
   1165 /*
   1166  * Find a buffer which is available for use.
   1167  * Select something from a free list.
   1168  * Preference is to AGE list, then LRU list.
   1169  *
   1170  * Called at splbio and with buffer queues locked.
   1171  * Return buffer locked.
   1172  */
   1173 struct buf *
   1174 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1175 {
   1176 	struct buf *bp;
   1177 
   1178 start:
   1179 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1180 
   1181 	/*
   1182 	 * Get a new buffer from the pool; but use NOWAIT because
   1183 	 * we have the buffer queues locked.
   1184 	 */
   1185 	if (!from_bufq && buf_lotsfree() &&
   1186 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1187 		memset((char *)bp, 0, sizeof(*bp));
   1188 		BUF_INIT(bp);
   1189 		bp->b_dev = NODEV;
   1190 		bp->b_vnbufs.le_next = NOLIST;
   1191 		bp->b_flags = B_BUSY;
   1192 		simple_lock(&bp->b_interlock);
   1193 #if defined(DIAGNOSTIC)
   1194 		bp->b_freelistindex = -1;
   1195 #endif /* defined(DIAGNOSTIC) */
   1196 		return (bp);
   1197 	}
   1198 
   1199 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1200 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1201 		simple_lock(&bp->b_interlock);
   1202 		bremfree(bp);
   1203 	} else {
   1204 		/*
   1205 		 * XXX: !from_bufq should be removed.
   1206 		 */
   1207 		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
   1208 			/* wait for a free buffer of any kind */
   1209 			needbuffer = 1;
   1210 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1211 			    "getnewbuf", slptimeo, &bqueue_slock);
   1212 		}
   1213 		return (NULL);
   1214 	}
   1215 
   1216 #ifdef DIAGNOSTIC
   1217 	if (bp->b_bufsize <= 0)
   1218 		panic("buffer %p: on queue but empty", bp);
   1219 #endif
   1220 
   1221 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1222 		/*
   1223 		 * This is a delayed write buffer being flushed to disk.  Make
   1224 		 * sure it gets aged out of the queue when it's finished, and
   1225 		 * leave it off the LRU queue.
   1226 		 */
   1227 		CLR(bp->b_flags, B_VFLUSH);
   1228 		SET(bp->b_flags, B_AGE);
   1229 		simple_unlock(&bp->b_interlock);
   1230 		goto start;
   1231 	}
   1232 
   1233 	/* Buffer is no longer on free lists. */
   1234 	SET(bp->b_flags, B_BUSY);
   1235 
   1236 	/*
   1237 	 * If buffer was a delayed write, start it and return NULL
   1238 	 * (since we might sleep while starting the write).
   1239 	 */
   1240 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1241 		/*
   1242 		 * This buffer has gone through the LRU, so make sure it gets
   1243 		 * reused ASAP.
   1244 		 */
   1245 		SET(bp->b_flags, B_AGE);
   1246 		simple_unlock(&bp->b_interlock);
   1247 		simple_unlock(&bqueue_slock);
   1248 		bawrite(bp);
   1249 		simple_lock(&bqueue_slock);
   1250 		return (NULL);
   1251 	}
   1252 
   1253 	/* disassociate us from our vnode, if we had one... */
   1254 	if (bp->b_vp)
   1255 		brelvp(bp);
   1256 
   1257 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
   1258 		(*bioops.io_deallocate)(bp);
   1259 
   1260 	/* clear out various other fields */
   1261 	bp->b_flags = B_BUSY;
   1262 	bp->b_dev = NODEV;
   1263 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1264 	bp->b_iodone = 0;
   1265 	bp->b_error = 0;
   1266 	bp->b_resid = 0;
   1267 	bp->b_bcount = 0;
   1268 
   1269 	bremhash(bp);
   1270 	return (bp);
   1271 }
   1272 
   1273 /*
   1274  * Attempt to free an aged buffer off the queues.
   1275  * Called at splbio and with queue lock held.
   1276  * Returns the amount of buffer memory freed.
   1277  */
   1278 static int
   1279 buf_trim(void)
   1280 {
   1281 	struct buf *bp;
   1282 	long size = 0;
   1283 
   1284 	/* Instruct getnewbuf() to get buffers off the queues */
   1285 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1286 		return 0;
   1287 
   1288 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1289 	simple_unlock(&bp->b_interlock);
   1290 	size = bp->b_bufsize;
   1291 	bufmem -= size;
   1292 	simple_unlock(&bqueue_slock);
   1293 	if (size > 0) {
   1294 		buf_mrelease(bp->b_data, size);
   1295 		bp->b_bcount = bp->b_bufsize = 0;
   1296 	}
   1297 	/* brelse() will return the buffer to the global buffer pool */
   1298 	brelse(bp);
   1299 	simple_lock(&bqueue_slock);
   1300 	return size;
   1301 }
   1302 
   1303 int
   1304 buf_drain(int n)
   1305 {
   1306 	int s, size = 0, sz;
   1307 
   1308 	s = splbio();
   1309 	simple_lock(&bqueue_slock);
   1310 
   1311 	while (size < n && bufmem > bufmem_lowater) {
   1312 		sz = buf_trim();
   1313 		if (sz <= 0)
   1314 			break;
   1315 		size += sz;
   1316 	}
   1317 
   1318 	simple_unlock(&bqueue_slock);
   1319 	splx(s);
   1320 	return size;
   1321 }
   1322 
   1323 /*
   1324  * Wait for operations on the buffer to complete.
   1325  * When they do, extract and return the I/O's error value.
   1326  */
   1327 int
   1328 biowait(struct buf *bp)
   1329 {
   1330 	int s, error;
   1331 
   1332 	s = splbio();
   1333 	simple_lock(&bp->b_interlock);
   1334 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1335 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1336 
   1337 	/* check for interruption of I/O (e.g. via NFS), then errors. */
   1338 	if (ISSET(bp->b_flags, B_EINTR)) {
   1339 		CLR(bp->b_flags, B_EINTR);
   1340 		error = EINTR;
   1341 	} else if (ISSET(bp->b_flags, B_ERROR))
   1342 		error = bp->b_error ? bp->b_error : EIO;
   1343 	else
   1344 		error = 0;
   1345 
   1346 	simple_unlock(&bp->b_interlock);
   1347 	splx(s);
   1348 	return (error);
   1349 }
   1350 
   1351 /*
   1352  * Mark I/O complete on a buffer.
   1353  *
   1354  * If a callback has been requested, e.g. the pageout
   1355  * daemon, do so. Otherwise, awaken waiting processes.
   1356  *
   1357  * [ Leffler, et al., says on p.247:
   1358  *	"This routine wakes up the blocked process, frees the buffer
   1359  *	for an asynchronous write, or, for a request by the pagedaemon
   1360  *	process, invokes a procedure specified in the buffer structure" ]
   1361  *
   1362  * In real life, the pagedaemon (or other system processes) wants
   1363  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1364  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1365  * for the vn device, that puts malloc'd buffers on the free lists!)
   1366  */
   1367 void
   1368 biodone(struct buf *bp)
   1369 {
   1370 	int s = splbio();
   1371 
   1372 	simple_lock(&bp->b_interlock);
   1373 	if (ISSET(bp->b_flags, B_DONE))
   1374 		panic("biodone already");
   1375 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1376 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1377 
   1378 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
   1379 		(*bioops.io_complete)(bp);
   1380 
   1381 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1382 		vwakeup(bp);
   1383 
   1384 	/*
   1385 	 * If necessary, call out.  Unlock the buffer before calling
   1386 	 * iodone() as the buffer isn't valid any more when it return.
   1387 	 */
   1388 	if (ISSET(bp->b_flags, B_CALL)) {
   1389 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1390 		simple_unlock(&bp->b_interlock);
   1391 		(*bp->b_iodone)(bp);
   1392 	} else {
   1393 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1394 			simple_unlock(&bp->b_interlock);
   1395 			brelse(bp);
   1396 		} else {			/* or just wakeup the buffer */
   1397 			CLR(bp->b_flags, B_WANTED);
   1398 			wakeup(bp);
   1399 			simple_unlock(&bp->b_interlock);
   1400 		}
   1401 	}
   1402 
   1403 	splx(s);
   1404 }
   1405 
   1406 /*
   1407  * Return a count of buffers on the "locked" queue.
   1408  */
   1409 int
   1410 count_lock_queue(void)
   1411 {
   1412 	struct buf *bp;
   1413 	int n = 0;
   1414 
   1415 	simple_lock(&bqueue_slock);
   1416 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1417 		n++;
   1418 	simple_unlock(&bqueue_slock);
   1419 	return (n);
   1420 }
   1421 
   1422 /*
   1423  * Wait for all buffers to complete I/O
   1424  * Return the number of "stuck" buffers.
   1425  */
   1426 int
   1427 buf_syncwait(void)
   1428 {
   1429 	struct buf *bp;
   1430 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1431 
   1432 	dcount = 10000;
   1433 	for (iter = 0; iter < 20;) {
   1434 		s = splbio();
   1435 		simple_lock(&bqueue_slock);
   1436 		nbusy = 0;
   1437 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1438 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1439 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1440 				nbusy++;
   1441 			/*
   1442 			 * With soft updates, some buffers that are
   1443 			 * written will be remarked as dirty until other
   1444 			 * buffers are written.
   1445 			 */
   1446 			if (bp->b_vp && bp->b_vp->v_mount
   1447 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1448 			    && (bp->b_flags & B_DELWRI)) {
   1449 				simple_lock(&bp->b_interlock);
   1450 				bremfree(bp);
   1451 				bp->b_flags |= B_BUSY;
   1452 				nbusy++;
   1453 				simple_unlock(&bp->b_interlock);
   1454 				simple_unlock(&bqueue_slock);
   1455 				bawrite(bp);
   1456 				if (dcount-- <= 0) {
   1457 					printf("softdep ");
   1458 					goto fail;
   1459 				}
   1460 				simple_lock(&bqueue_slock);
   1461 			}
   1462 		    }
   1463 		}
   1464 
   1465 		simple_unlock(&bqueue_slock);
   1466 		splx(s);
   1467 
   1468 		if (nbusy == 0)
   1469 			break;
   1470 		if (nbusy_prev == 0)
   1471 			nbusy_prev = nbusy;
   1472 		printf("%d ", nbusy);
   1473 		tsleep(&nbusy, PRIBIO, "bflush",
   1474 		    (iter == 0) ? 1 : hz / 25 * iter);
   1475 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1476 			iter++;
   1477 		else
   1478 			nbusy_prev = nbusy;
   1479 	}
   1480 
   1481 	if (nbusy) {
   1482 fail:;
   1483 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1484 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1485 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1486 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1487 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1488 				vprint(NULL, bp->b_vp);
   1489 		    }
   1490 		}
   1491 #endif
   1492 	}
   1493 
   1494 	return nbusy;
   1495 }
   1496 
   1497 static void
   1498 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1499 {
   1500 
   1501 	o->b_flags = i->b_flags;
   1502 	o->b_error = i->b_error;
   1503 	o->b_prio = i->b_prio;
   1504 	o->b_dev = i->b_dev;
   1505 	o->b_bufsize = i->b_bufsize;
   1506 	o->b_bcount = i->b_bcount;
   1507 	o->b_resid = i->b_resid;
   1508 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
   1509 	o->b_blkno = i->b_blkno;
   1510 	o->b_rawblkno = i->b_rawblkno;
   1511 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1512 	o->b_proc = PTRTOUINT64(i->b_proc);
   1513 	o->b_vp = PTRTOUINT64(i->b_vp);
   1514 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1515 	o->b_lblkno = i->b_lblkno;
   1516 }
   1517 
   1518 #define KERN_BUFSLOP 20
   1519 static int
   1520 sysctl_dobuf(SYSCTLFN_ARGS)
   1521 {
   1522 	struct buf *bp;
   1523 	struct buf_sysctl bs;
   1524 	char *dp;
   1525 	u_int i, op, arg;
   1526 	size_t len, needed, elem_size, out_size;
   1527 	int error, s, elem_count;
   1528 
   1529 	if (namelen == 1 && name[0] == CTL_QUERY)
   1530 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1531 
   1532 	if (namelen != 4)
   1533 		return (EINVAL);
   1534 
   1535 	dp = oldp;
   1536 	len = (oldp != NULL) ? *oldlenp : 0;
   1537 	op = name[0];
   1538 	arg = name[1];
   1539 	elem_size = name[2];
   1540 	elem_count = name[3];
   1541 	out_size = MIN(sizeof(bs), elem_size);
   1542 
   1543 	/*
   1544 	 * at the moment, these are just "placeholders" to make the
   1545 	 * API for retrieving kern.buf data more extensible in the
   1546 	 * future.
   1547 	 *
   1548 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1549 	 * these will be resolved at a later point.
   1550 	 */
   1551 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1552 	    elem_size < 1 || elem_count < 0)
   1553 		return (EINVAL);
   1554 
   1555 	error = 0;
   1556 	needed = 0;
   1557 	s = splbio();
   1558 	simple_lock(&bqueue_slock);
   1559 	for (i = 0; i < BQUEUES; i++) {
   1560 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1561 			if (len >= elem_size && elem_count > 0) {
   1562 				sysctl_fillbuf(bp, &bs);
   1563 				error = copyout(&bs, dp, out_size);
   1564 				if (error)
   1565 					goto cleanup;
   1566 				dp += elem_size;
   1567 				len -= elem_size;
   1568 			}
   1569 			if (elem_count > 0) {
   1570 				needed += elem_size;
   1571 				if (elem_count != INT_MAX)
   1572 					elem_count--;
   1573 			}
   1574 		}
   1575 	}
   1576 cleanup:
   1577 	simple_unlock(&bqueue_slock);
   1578 	splx(s);
   1579 
   1580 	*oldlenp = needed;
   1581 	if (oldp == NULL)
   1582 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1583 
   1584 	return (error);
   1585 }
   1586 
   1587 static int
   1588 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1589 {
   1590 	int t, error;
   1591 	struct sysctlnode node;
   1592 
   1593 	node = *rnode;
   1594 	node.sysctl_data = &t;
   1595 	t = *(int*)rnode->sysctl_data;
   1596 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1597 	if (error || newp == NULL)
   1598 		return (error);
   1599 
   1600 	if (rnode->sysctl_data == &bufcache) {
   1601 		if (t < 0 || t > 100)
   1602 			return (EINVAL);
   1603 		bufcache = t;
   1604 		bufmem_hiwater = buf_memcalc();
   1605 		bufmem_lowater = (bufmem_hiwater >> 3);
   1606 		if (bufmem_lowater < 64 * 1024)
   1607 			/* Ensure a reasonable minimum value */
   1608 			bufmem_lowater = 64 * 1024;
   1609 
   1610 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1611 		bufmem_lowater = t;
   1612 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1613 		bufmem_hiwater = t;
   1614 	} else
   1615 		return (EINVAL);
   1616 
   1617 	/* Drain until below new high water mark */
   1618 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1619 		if (buf_drain(t / (2*1024)) <= 0)
   1620 			break;
   1621 	}
   1622 
   1623 	return 0;
   1624 }
   1625 
   1626 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1627 {
   1628 
   1629 	sysctl_createv(clog, 0, NULL, NULL,
   1630 		       CTLFLAG_PERMANENT,
   1631 		       CTLTYPE_NODE, "kern", NULL,
   1632 		       NULL, 0, NULL, 0,
   1633 		       CTL_KERN, CTL_EOL);
   1634 	sysctl_createv(clog, 0, NULL, NULL,
   1635 		       CTLFLAG_PERMANENT,
   1636 		       CTLTYPE_NODE, "buf",
   1637 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1638 		       sysctl_dobuf, 0, NULL, 0,
   1639 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1640 }
   1641 
   1642 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1643 {
   1644 
   1645 	sysctl_createv(clog, 0, NULL, NULL,
   1646 		       CTLFLAG_PERMANENT,
   1647 		       CTLTYPE_NODE, "vm", NULL,
   1648 		       NULL, 0, NULL, 0,
   1649 		       CTL_VM, CTL_EOL);
   1650 
   1651 	sysctl_createv(clog, 0, NULL, NULL,
   1652 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1653 		       CTLTYPE_INT, "bufcache",
   1654 		       SYSCTL_DESCR("Percentage of kernel memory to use for "
   1655 				    "buffer cache"),
   1656 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1657 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1658 	sysctl_createv(clog, 0, NULL, NULL,
   1659 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1660 		       CTLTYPE_INT, "bufmem",
   1661 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1662 				    "cache"),
   1663 		       NULL, 0, &bufmem, 0,
   1664 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1665 	sysctl_createv(clog, 0, NULL, NULL,
   1666 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1667 		       CTLTYPE_INT, "bufmem_lowater",
   1668 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1669 				    "reserve for buffer cache"),
   1670 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1671 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1672 	sysctl_createv(clog, 0, NULL, NULL,
   1673 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1674 		       CTLTYPE_INT, "bufmem_hiwater",
   1675 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1676 				    "for buffer cache"),
   1677 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1678 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1679 }
   1680 
   1681 #ifdef DEBUG
   1682 /*
   1683  * Print out statistics on the current allocation of the buffer pool.
   1684  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1685  * in vfs_syscalls.c using sysctl.
   1686  */
   1687 void
   1688 vfs_bufstats(void)
   1689 {
   1690 	int s, i, j, count;
   1691 	struct buf *bp;
   1692 	struct bqueue *dp;
   1693 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1694 	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1695 
   1696 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1697 		count = 0;
   1698 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1699 			counts[j] = 0;
   1700 		s = splbio();
   1701 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1702 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1703 			count++;
   1704 		}
   1705 		splx(s);
   1706 		printf("%s: total-%d", bname[i], count);
   1707 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1708 			if (counts[j] != 0)
   1709 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1710 		printf("\n");
   1711 	}
   1712 }
   1713 #endif /* DEBUG */
   1714