vfs_bio.c revision 1.140 1 /* $NetBSD: vfs_bio.c,v 1.140 2004/12/23 20:11:28 dbj Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.140 2004/12/23 20:11:28 dbj Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118 /* Function prototypes */
119 struct bqueue;
120
121 static void buf_setwm(void);
122 static int buf_trim(void);
123 static void *bufpool_page_alloc(struct pool *, int);
124 static void bufpool_page_free(struct pool *, void *);
125 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126 struct ucred *, int);
127 static int buf_lotsfree(void);
128 static int buf_canrelease(void);
129 static __inline u_long buf_mempoolidx(u_long);
130 static __inline u_long buf_roundsize(u_long);
131 static __inline caddr_t buf_malloc(size_t);
132 static void buf_mrelease(caddr_t, size_t);
133 static __inline void binsheadfree(struct buf *, struct bqueue *);
134 static __inline void binstailfree(struct buf *, struct bqueue *);
135 int count_lock_queue(void); /* XXX */
136 #ifdef DEBUG
137 static int checkfreelist(struct buf *, struct bqueue *);
138 #endif
139
140 /* Macros to clear/set/test flags. */
141 #define SET(t, f) (t) |= (f)
142 #define CLR(t, f) (t) &= ~(f)
143 #define ISSET(t, f) ((t) & (f))
144
145 /*
146 * Definitions for the buffer hash lists.
147 */
148 #define BUFHASH(dvp, lbn) \
149 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151 u_long bufhash;
152 #if !defined(SOFTDEP) || !defined(FFS)
153 struct bio_ops bioops; /* I/O operation notification */
154 #endif
155
156 /*
157 * Insq/Remq for the buffer hash lists.
158 */
159 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
160 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
161
162 /*
163 * Definitions for the buffer free lists.
164 */
165 #define BQUEUES 3 /* number of free buffer queues */
166
167 #define BQ_LOCKED 0 /* super-blocks &c */
168 #define BQ_LRU 1 /* lru, useful buffers */
169 #define BQ_AGE 2 /* rubbish */
170
171 struct bqueue {
172 TAILQ_HEAD(, buf) bq_queue;
173 uint64_t bq_bytes;
174 } bufqueues[BQUEUES];
175 int needbuffer;
176
177 /*
178 * Buffer queue lock.
179 * Take this lock first if also taking some buffer's b_interlock.
180 */
181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182
183 /*
184 * Buffer pool for I/O buffers.
185 */
186 struct pool bufpool;
187
188 /* XXX - somewhat gross.. */
189 #if MAXBSIZE == 0x2000
190 #define NMEMPOOLS 4
191 #elif MAXBSIZE == 0x4000
192 #define NMEMPOOLS 5
193 #elif MAXBSIZE == 0x8000
194 #define NMEMPOOLS 6
195 #else
196 #define NMEMPOOLS 7
197 #endif
198
199 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201 #error update vfs_bio buffer memory parameters
202 #endif
203
204 /* Buffer memory pools */
205 static struct pool bmempools[NMEMPOOLS];
206
207 struct vm_map *buf_map;
208
209 /*
210 * Buffer memory pool allocator.
211 */
212 static void *
213 bufpool_page_alloc(struct pool *pp, int flags)
214 {
215
216 return (void *)uvm_km_kmemalloc1(buf_map,
217 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
218 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
219 }
220
221 static void
222 bufpool_page_free(struct pool *pp, void *v)
223 {
224 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
225 }
226
227 static struct pool_allocator bufmempool_allocator = {
228 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
229 };
230
231 /* Buffer memory management variables */
232 u_long bufmem_valimit;
233 u_long bufmem_hiwater;
234 u_long bufmem_lowater;
235 u_long bufmem;
236
237 /*
238 * MD code can call this to set a hard limit on the amount
239 * of virtual memory used by the buffer cache.
240 */
241 int
242 buf_setvalimit(vsize_t sz)
243 {
244
245 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
246 if (sz < NMEMPOOLS * MAXBSIZE)
247 return EINVAL;
248
249 bufmem_valimit = sz;
250 return 0;
251 }
252
253 static void
254 buf_setwm(void)
255 {
256
257 bufmem_hiwater = buf_memcalc();
258 /* lowater is approx. 2% of memory (with bufcache = 15) */
259 #define BUFMEM_WMSHIFT 3
260 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
261 if (bufmem_hiwater < BUFMEM_HIWMMIN)
262 /* Ensure a reasonable minimum value */
263 bufmem_hiwater = BUFMEM_HIWMMIN;
264 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
265 }
266
267 #ifdef DEBUG
268 int debug_verify_freelist = 0;
269 static int
270 checkfreelist(struct buf *bp, struct bqueue *dp)
271 {
272 struct buf *b;
273
274 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
275 if (b == bp)
276 return 1;
277 }
278 return 0;
279 }
280 #endif
281
282 /*
283 * Insq/Remq for the buffer hash lists.
284 * Call with buffer queue locked.
285 */
286 static __inline void
287 binsheadfree(struct buf *bp, struct bqueue *dp)
288 {
289
290 KASSERT(bp->b_freelistindex == -1);
291 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
292 dp->bq_bytes += bp->b_bufsize;
293 bp->b_freelistindex = dp - bufqueues;
294 }
295
296 static __inline void
297 binstailfree(struct buf *bp, struct bqueue *dp)
298 {
299
300 KASSERT(bp->b_freelistindex == -1);
301 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
302 dp->bq_bytes += bp->b_bufsize;
303 bp->b_freelistindex = dp - bufqueues;
304 }
305
306 void
307 bremfree(struct buf *bp)
308 {
309 struct bqueue *dp;
310 int bqidx = bp->b_freelistindex;
311
312 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
313
314 KASSERT(bqidx != -1);
315 dp = &bufqueues[bqidx];
316 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
317 KASSERT(dp->bq_bytes >= bp->b_bufsize);
318 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
319 dp->bq_bytes -= bp->b_bufsize;
320 #if defined(DIAGNOSTIC)
321 bp->b_freelistindex = -1;
322 #endif /* defined(DIAGNOSTIC) */
323 }
324
325 u_long
326 buf_memcalc(void)
327 {
328 u_long n;
329
330 /*
331 * Determine the upper bound of memory to use for buffers.
332 *
333 * - If bufpages is specified, use that as the number
334 * pages.
335 *
336 * - Otherwise, use bufcache as the percentage of
337 * physical memory.
338 */
339 if (bufpages != 0) {
340 n = bufpages;
341 } else {
342 if (bufcache < 5) {
343 printf("forcing bufcache %d -> 5", bufcache);
344 bufcache = 5;
345 }
346 if (bufcache > 95) {
347 printf("forcing bufcache %d -> 95", bufcache);
348 bufcache = 95;
349 }
350 n = physmem / 100 * bufcache;
351 }
352
353 n <<= PAGE_SHIFT;
354 if (bufmem_valimit != 0 && n > bufmem_valimit)
355 n = bufmem_valimit;
356
357 return (n);
358 }
359
360 /*
361 * Initialize buffers and hash links for buffers.
362 */
363 void
364 bufinit(void)
365 {
366 struct bqueue *dp;
367 int use_std;
368 u_int i;
369
370 /*
371 * Initialize buffer cache memory parameters.
372 */
373 bufmem = 0;
374 buf_setwm();
375
376 if (bufmem_valimit != 0) {
377 vaddr_t minaddr = 0, maxaddr;
378 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
379 bufmem_valimit, VM_MAP_PAGEABLE,
380 FALSE, 0);
381 if (buf_map == NULL)
382 panic("bufinit: cannot allocate submap");
383 } else
384 buf_map = kernel_map;
385
386 /*
387 * Initialize the buffer pools.
388 */
389 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
390
391 /* On "small" machines use small pool page sizes where possible */
392 use_std = (physmem < atop(16*1024*1024));
393
394 /*
395 * Also use them on systems that can map the pool pages using
396 * a direct-mapped segment.
397 */
398 #ifdef PMAP_MAP_POOLPAGE
399 use_std = 1;
400 #endif
401
402 for (i = 0; i < NMEMPOOLS; i++) {
403 struct pool_allocator *pa;
404 struct pool *pp = &bmempools[i];
405 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
406 char *name = malloc(8, M_TEMP, M_WAITOK);
407 snprintf(name, 8, "buf%dk", 1 << i);
408 pa = (size <= PAGE_SIZE && use_std)
409 ? &pool_allocator_nointr
410 : &bufmempool_allocator;
411 pool_init(pp, size, 0, 0, 0, name, pa);
412 pool_setlowat(pp, 1);
413 pool_sethiwat(pp, 1);
414 }
415
416 /* Initialize the buffer queues */
417 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
418 TAILQ_INIT(&dp->bq_queue);
419 dp->bq_bytes = 0;
420 }
421
422 /*
423 * Estimate hash table size based on the amount of memory we
424 * intend to use for the buffer cache. The average buffer
425 * size is dependent on our clients (i.e. filesystems).
426 *
427 * For now, use an empirical 3K per buffer.
428 */
429 nbuf = (bufmem_hiwater / 1024) / 3;
430 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
431 }
432
433 static int
434 buf_lotsfree(void)
435 {
436 int try, thresh;
437 struct lwp *l = curlwp;
438
439 /* Always allocate if doing copy on write */
440 if (l->l_flag & L_COWINPROGRESS)
441 return 1;
442
443 /* Always allocate if less than the low water mark. */
444 if (bufmem < bufmem_lowater)
445 return 1;
446
447 /* Never allocate if greater than the high water mark. */
448 if (bufmem > bufmem_hiwater)
449 return 0;
450
451 /* If there's anything on the AGE list, it should be eaten. */
452 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
453 return 0;
454
455 /*
456 * The probabily of getting a new allocation is inversely
457 * proportional to the current size of the cache, using
458 * a granularity of 16 steps.
459 */
460 try = random() & 0x0000000fL;
461
462 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
463 thresh = (bufmem - bufmem_lowater) /
464 ((bufmem_hiwater - bufmem_lowater) / 16);
465
466 if (try >= thresh)
467 return 1;
468
469 /* Otherwise don't allocate. */
470 return 0;
471 }
472
473 /*
474 * Return estimate of bytes we think need to be
475 * released to help resolve low memory conditions.
476 *
477 * => called at splbio.
478 * => called with bqueue_slock held.
479 */
480 static int
481 buf_canrelease(void)
482 {
483 int pagedemand, ninvalid = 0;
484
485 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
486
487 if (bufmem < bufmem_lowater)
488 return 0;
489
490 ninvalid += bufqueues[BQ_AGE].bq_bytes;
491
492 pagedemand = uvmexp.freetarg - uvmexp.free;
493 if (pagedemand < 0)
494 return ninvalid;
495 return MAX(ninvalid, MIN(2 * MAXBSIZE,
496 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
497 }
498
499 /*
500 * Buffer memory allocation helper functions
501 */
502 static __inline u_long
503 buf_mempoolidx(u_long size)
504 {
505 u_int n = 0;
506
507 size -= 1;
508 size >>= MEMPOOL_INDEX_OFFSET;
509 while (size) {
510 size >>= 1;
511 n += 1;
512 }
513 if (n >= NMEMPOOLS)
514 panic("buf mem pool index %d", n);
515 return n;
516 }
517
518 static __inline u_long
519 buf_roundsize(u_long size)
520 {
521 /* Round up to nearest power of 2 */
522 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
523 }
524
525 static __inline caddr_t
526 buf_malloc(size_t size)
527 {
528 u_int n = buf_mempoolidx(size);
529 caddr_t addr;
530 int s;
531
532 while (1) {
533 addr = pool_get(&bmempools[n], PR_NOWAIT);
534 if (addr != NULL)
535 break;
536
537 /* No memory, see if we can free some. If so, try again */
538 if (buf_drain(1) > 0)
539 continue;
540
541 /* Wait for buffers to arrive on the LRU queue */
542 s = splbio();
543 simple_lock(&bqueue_slock);
544 needbuffer = 1;
545 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
546 "buf_malloc", 0, &bqueue_slock);
547 splx(s);
548 }
549
550 return addr;
551 }
552
553 static void
554 buf_mrelease(caddr_t addr, size_t size)
555 {
556
557 pool_put(&bmempools[buf_mempoolidx(size)], addr);
558 }
559
560 /*
561 * bread()/breadn() helper.
562 */
563 static __inline struct buf *
564 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
565 int async)
566 {
567 struct buf *bp;
568 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
569 struct proc *p = l->l_proc;
570 struct mount *mp;
571
572 bp = getblk(vp, blkno, size, 0, 0);
573
574 #ifdef DIAGNOSTIC
575 if (bp == NULL) {
576 panic("bio_doread: no such buf");
577 }
578 #endif
579
580 /*
581 * If buffer does not have data valid, start a read.
582 * Note that if buffer is B_INVAL, getblk() won't return it.
583 * Therefore, it's valid if its I/O has completed or been delayed.
584 */
585 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
586 /* Start I/O for the buffer. */
587 SET(bp->b_flags, B_READ | async);
588 if (async)
589 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
590 else
591 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
592 VOP_STRATEGY(vp, bp);
593
594 /* Pay for the read. */
595 p->p_stats->p_ru.ru_inblock++;
596 } else if (async) {
597 brelse(bp);
598 }
599
600 if (vp->v_type == VBLK)
601 mp = vp->v_specmountpoint;
602 else
603 mp = vp->v_mount;
604
605 /*
606 * Collect statistics on synchronous and asynchronous reads.
607 * Reads from block devices are charged to their associated
608 * filesystem (if any).
609 */
610 if (mp != NULL) {
611 if (async == 0)
612 mp->mnt_stat.f_syncreads++;
613 else
614 mp->mnt_stat.f_asyncreads++;
615 }
616
617 return (bp);
618 }
619
620 /*
621 * Read a disk block.
622 * This algorithm described in Bach (p.54).
623 */
624 int
625 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
626 struct buf **bpp)
627 {
628 struct buf *bp;
629
630 /* Get buffer for block. */
631 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
632
633 /* Wait for the read to complete, and return result. */
634 return (biowait(bp));
635 }
636
637 /*
638 * Read-ahead multiple disk blocks. The first is sync, the rest async.
639 * Trivial modification to the breada algorithm presented in Bach (p.55).
640 */
641 int
642 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
643 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
644 {
645 struct buf *bp;
646 int i;
647
648 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
649
650 /*
651 * For each of the read-ahead blocks, start a read, if necessary.
652 */
653 for (i = 0; i < nrablks; i++) {
654 /* If it's in the cache, just go on to next one. */
655 if (incore(vp, rablks[i]))
656 continue;
657
658 /* Get a buffer for the read-ahead block */
659 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
660 }
661
662 /* Otherwise, we had to start a read for it; wait until it's valid. */
663 return (biowait(bp));
664 }
665
666 /*
667 * Read with single-block read-ahead. Defined in Bach (p.55), but
668 * implemented as a call to breadn().
669 * XXX for compatibility with old file systems.
670 */
671 int
672 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
673 int rabsize, struct ucred *cred, struct buf **bpp)
674 {
675
676 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
677 }
678
679 /*
680 * Block write. Described in Bach (p.56)
681 */
682 int
683 bwrite(struct buf *bp)
684 {
685 int rv, sync, wasdelayed, s;
686 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
687 struct proc *p = l->l_proc;
688 struct vnode *vp;
689 struct mount *mp;
690
691 KASSERT(ISSET(bp->b_flags, B_BUSY));
692
693 vp = bp->b_vp;
694 if (vp != NULL) {
695 if (vp->v_type == VBLK)
696 mp = vp->v_specmountpoint;
697 else
698 mp = vp->v_mount;
699 } else {
700 mp = NULL;
701 }
702
703 /*
704 * Remember buffer type, to switch on it later. If the write was
705 * synchronous, but the file system was mounted with MNT_ASYNC,
706 * convert it to a delayed write.
707 * XXX note that this relies on delayed tape writes being converted
708 * to async, not sync writes (which is safe, but ugly).
709 */
710 sync = !ISSET(bp->b_flags, B_ASYNC);
711 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
712 bdwrite(bp);
713 return (0);
714 }
715
716 /*
717 * Collect statistics on synchronous and asynchronous writes.
718 * Writes to block devices are charged to their associated
719 * filesystem (if any).
720 */
721 if (mp != NULL) {
722 if (sync)
723 mp->mnt_stat.f_syncwrites++;
724 else
725 mp->mnt_stat.f_asyncwrites++;
726 }
727
728 s = splbio();
729 simple_lock(&bp->b_interlock);
730
731 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
732
733 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
734
735 /*
736 * Pay for the I/O operation and make sure the buf is on the correct
737 * vnode queue.
738 */
739 if (wasdelayed)
740 reassignbuf(bp, bp->b_vp);
741 else
742 p->p_stats->p_ru.ru_oublock++;
743
744 /* Initiate disk write. Make sure the appropriate party is charged. */
745 V_INCR_NUMOUTPUT(bp->b_vp);
746 simple_unlock(&bp->b_interlock);
747 splx(s);
748
749 if (sync)
750 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
751 else
752 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
753
754 VOP_STRATEGY(vp, bp);
755
756 if (sync) {
757 /* If I/O was synchronous, wait for it to complete. */
758 rv = biowait(bp);
759
760 /* Release the buffer. */
761 brelse(bp);
762
763 return (rv);
764 } else {
765 return (0);
766 }
767 }
768
769 int
770 vn_bwrite(void *v)
771 {
772 struct vop_bwrite_args *ap = v;
773
774 return (bwrite(ap->a_bp));
775 }
776
777 /*
778 * Delayed write.
779 *
780 * The buffer is marked dirty, but is not queued for I/O.
781 * This routine should be used when the buffer is expected
782 * to be modified again soon, typically a small write that
783 * partially fills a buffer.
784 *
785 * NB: magnetic tapes cannot be delayed; they must be
786 * written in the order that the writes are requested.
787 *
788 * Described in Leffler, et al. (pp. 208-213).
789 */
790 void
791 bdwrite(struct buf *bp)
792 {
793 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
794 struct proc *p = l->l_proc;
795 const struct bdevsw *bdev;
796 int s;
797
798 /* If this is a tape block, write the block now. */
799 bdev = bdevsw_lookup(bp->b_dev);
800 if (bdev != NULL && bdev->d_type == D_TAPE) {
801 bawrite(bp);
802 return;
803 }
804
805 /*
806 * If the block hasn't been seen before:
807 * (1) Mark it as having been seen,
808 * (2) Charge for the write,
809 * (3) Make sure it's on its vnode's correct block list.
810 */
811 s = splbio();
812 simple_lock(&bp->b_interlock);
813
814 KASSERT(ISSET(bp->b_flags, B_BUSY));
815
816 if (!ISSET(bp->b_flags, B_DELWRI)) {
817 SET(bp->b_flags, B_DELWRI);
818 p->p_stats->p_ru.ru_oublock++;
819 reassignbuf(bp, bp->b_vp);
820 }
821
822 /* Otherwise, the "write" is done, so mark and release the buffer. */
823 CLR(bp->b_flags, B_DONE);
824 simple_unlock(&bp->b_interlock);
825 splx(s);
826
827 brelse(bp);
828 }
829
830 /*
831 * Asynchronous block write; just an asynchronous bwrite().
832 */
833 void
834 bawrite(struct buf *bp)
835 {
836 int s;
837
838 s = splbio();
839 simple_lock(&bp->b_interlock);
840
841 KASSERT(ISSET(bp->b_flags, B_BUSY));
842
843 SET(bp->b_flags, B_ASYNC);
844 simple_unlock(&bp->b_interlock);
845 splx(s);
846 VOP_BWRITE(bp);
847 }
848
849 /*
850 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
851 * Call at splbio() and with the buffer interlock locked.
852 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
853 */
854 void
855 bdirty(struct buf *bp)
856 {
857 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
858 struct proc *p = l->l_proc;
859
860 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
861 KASSERT(ISSET(bp->b_flags, B_BUSY));
862
863 CLR(bp->b_flags, B_AGE);
864
865 if (!ISSET(bp->b_flags, B_DELWRI)) {
866 SET(bp->b_flags, B_DELWRI);
867 p->p_stats->p_ru.ru_oublock++;
868 reassignbuf(bp, bp->b_vp);
869 }
870 }
871
872 /*
873 * Release a buffer on to the free lists.
874 * Described in Bach (p. 46).
875 */
876 void
877 brelse(struct buf *bp)
878 {
879 struct bqueue *bufq;
880 int s;
881
882 /* Block disk interrupts. */
883 s = splbio();
884 simple_lock(&bqueue_slock);
885 simple_lock(&bp->b_interlock);
886
887 KASSERT(ISSET(bp->b_flags, B_BUSY));
888 KASSERT(!ISSET(bp->b_flags, B_CALL));
889
890 /* Wake up any processes waiting for any buffer to become free. */
891 if (needbuffer) {
892 needbuffer = 0;
893 wakeup(&needbuffer);
894 }
895
896 /* Wake up any proceeses waiting for _this_ buffer to become free. */
897 if (ISSET(bp->b_flags, B_WANTED)) {
898 CLR(bp->b_flags, B_WANTED|B_AGE);
899 wakeup(bp);
900 }
901
902 /*
903 * Determine which queue the buffer should be on, then put it there.
904 */
905
906 /* If it's locked, don't report an error; try again later. */
907 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
908 CLR(bp->b_flags, B_ERROR);
909
910 /* If it's not cacheable, or an error, mark it invalid. */
911 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
912 SET(bp->b_flags, B_INVAL);
913
914 if (ISSET(bp->b_flags, B_VFLUSH)) {
915 /*
916 * This is a delayed write buffer that was just flushed to
917 * disk. It is still on the LRU queue. If it's become
918 * invalid, then we need to move it to a different queue;
919 * otherwise leave it in its current position.
920 */
921 CLR(bp->b_flags, B_VFLUSH);
922 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
923 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
924 goto already_queued;
925 } else {
926 bremfree(bp);
927 }
928 }
929
930 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
931 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
932 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
933
934 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
935 /*
936 * If it's invalid or empty, dissociate it from its vnode
937 * and put on the head of the appropriate queue.
938 */
939 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
940 (*bioops.io_deallocate)(bp);
941 CLR(bp->b_flags, B_DONE|B_DELWRI);
942 if (bp->b_vp) {
943 reassignbuf(bp, bp->b_vp);
944 brelvp(bp);
945 }
946 if (bp->b_bufsize <= 0)
947 /* no data */
948 goto already_queued;
949 else
950 /* invalid data */
951 bufq = &bufqueues[BQ_AGE];
952 binsheadfree(bp, bufq);
953 } else {
954 /*
955 * It has valid data. Put it on the end of the appropriate
956 * queue, so that it'll stick around for as long as possible.
957 * If buf is AGE, but has dependencies, must put it on last
958 * bufqueue to be scanned, ie LRU. This protects against the
959 * livelock where BQ_AGE only has buffers with dependencies,
960 * and we thus never get to the dependent buffers in BQ_LRU.
961 */
962 if (ISSET(bp->b_flags, B_LOCKED))
963 /* locked in core */
964 bufq = &bufqueues[BQ_LOCKED];
965 else if (!ISSET(bp->b_flags, B_AGE))
966 /* valid data */
967 bufq = &bufqueues[BQ_LRU];
968 else {
969 /* stale but valid data */
970 int has_deps;
971
972 if (LIST_FIRST(&bp->b_dep) != NULL &&
973 bioops.io_countdeps)
974 has_deps = (*bioops.io_countdeps)(bp, 0);
975 else
976 has_deps = 0;
977 bufq = has_deps ? &bufqueues[BQ_LRU] :
978 &bufqueues[BQ_AGE];
979 }
980 binstailfree(bp, bufq);
981 }
982
983 already_queued:
984 /* Unlock the buffer. */
985 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
986 SET(bp->b_flags, B_CACHE);
987
988 /* Allow disk interrupts. */
989 simple_unlock(&bp->b_interlock);
990 simple_unlock(&bqueue_slock);
991 if (bp->b_bufsize <= 0) {
992 #ifdef DEBUG
993 memset((char *)bp, 0, sizeof(*bp));
994 #endif
995 pool_put(&bufpool, bp);
996 }
997 splx(s);
998 }
999
1000 /*
1001 * Determine if a block is in the cache.
1002 * Just look on what would be its hash chain. If it's there, return
1003 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1004 * we normally don't return the buffer, unless the caller explicitly
1005 * wants us to.
1006 */
1007 struct buf *
1008 incore(struct vnode *vp, daddr_t blkno)
1009 {
1010 struct buf *bp;
1011
1012 /* Search hash chain */
1013 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1014 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1015 !ISSET(bp->b_flags, B_INVAL))
1016 return (bp);
1017 }
1018
1019 return (NULL);
1020 }
1021
1022 /*
1023 * Get a block of requested size that is associated with
1024 * a given vnode and block offset. If it is found in the
1025 * block cache, mark it as having been found, make it busy
1026 * and return it. Otherwise, return an empty block of the
1027 * correct size. It is up to the caller to insure that the
1028 * cached blocks be of the correct size.
1029 */
1030 struct buf *
1031 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1032 {
1033 struct buf *bp;
1034 int s, err;
1035 int preserve;
1036
1037 start:
1038 s = splbio();
1039 simple_lock(&bqueue_slock);
1040 bp = incore(vp, blkno);
1041 if (bp != NULL) {
1042 simple_lock(&bp->b_interlock);
1043 if (ISSET(bp->b_flags, B_BUSY)) {
1044 simple_unlock(&bqueue_slock);
1045 if (curproc == uvm.pagedaemon_proc) {
1046 simple_unlock(&bp->b_interlock);
1047 splx(s);
1048 return NULL;
1049 }
1050 SET(bp->b_flags, B_WANTED);
1051 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1052 "getblk", slptimeo, &bp->b_interlock);
1053 splx(s);
1054 if (err)
1055 return (NULL);
1056 goto start;
1057 }
1058 #ifdef DIAGNOSTIC
1059 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1060 bp->b_bcount < size && vp->v_type != VBLK)
1061 panic("getblk: block size invariant failed");
1062 #endif
1063 SET(bp->b_flags, B_BUSY);
1064 bremfree(bp);
1065 preserve = 1;
1066 } else {
1067 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1068 simple_unlock(&bqueue_slock);
1069 splx(s);
1070 goto start;
1071 }
1072
1073 binshash(bp, BUFHASH(vp, blkno));
1074 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1075 bgetvp(vp, bp);
1076 preserve = 0;
1077 }
1078 simple_unlock(&bp->b_interlock);
1079 simple_unlock(&bqueue_slock);
1080 splx(s);
1081 /*
1082 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1083 * if we re-size buffers here.
1084 */
1085 if (ISSET(bp->b_flags, B_LOCKED)) {
1086 KASSERT(bp->b_bufsize >= size);
1087 } else {
1088 allocbuf(bp, size, preserve);
1089 }
1090 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1091 return (bp);
1092 }
1093
1094 /*
1095 * Get an empty, disassociated buffer of given size.
1096 */
1097 struct buf *
1098 geteblk(int size)
1099 {
1100 struct buf *bp;
1101 int s;
1102
1103 s = splbio();
1104 simple_lock(&bqueue_slock);
1105 while ((bp = getnewbuf(0, 0, 0)) == 0)
1106 ;
1107
1108 SET(bp->b_flags, B_INVAL);
1109 binshash(bp, &invalhash);
1110 simple_unlock(&bqueue_slock);
1111 simple_unlock(&bp->b_interlock);
1112 splx(s);
1113 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1114 allocbuf(bp, size, 0);
1115 return (bp);
1116 }
1117
1118 /*
1119 * Expand or contract the actual memory allocated to a buffer.
1120 *
1121 * If the buffer shrinks, data is lost, so it's up to the
1122 * caller to have written it out *first*; this routine will not
1123 * start a write. If the buffer grows, it's the callers
1124 * responsibility to fill out the buffer's additional contents.
1125 */
1126 void
1127 allocbuf(struct buf *bp, int size, int preserve)
1128 {
1129 vsize_t oldsize, desired_size;
1130 caddr_t addr;
1131 int s, delta;
1132
1133 desired_size = buf_roundsize(size);
1134 if (desired_size > MAXBSIZE)
1135 printf("allocbuf: buffer larger than MAXBSIZE requested");
1136
1137 bp->b_bcount = size;
1138
1139 oldsize = bp->b_bufsize;
1140 if (oldsize == desired_size)
1141 return;
1142
1143 /*
1144 * If we want a buffer of a different size, re-allocate the
1145 * buffer's memory; copy old content only if needed.
1146 */
1147 addr = buf_malloc(desired_size);
1148 if (preserve)
1149 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1150 if (bp->b_data != NULL)
1151 buf_mrelease(bp->b_data, oldsize);
1152 bp->b_data = addr;
1153 bp->b_bufsize = desired_size;
1154
1155 /*
1156 * Update overall buffer memory counter (protected by bqueue_slock)
1157 */
1158 delta = (long)desired_size - (long)oldsize;
1159
1160 s = splbio();
1161 simple_lock(&bqueue_slock);
1162 if ((bufmem += delta) > bufmem_hiwater) {
1163 /*
1164 * Need to trim overall memory usage.
1165 */
1166 while (buf_canrelease()) {
1167 if (buf_trim() == 0)
1168 break;
1169 }
1170 }
1171
1172 simple_unlock(&bqueue_slock);
1173 splx(s);
1174 }
1175
1176 /*
1177 * Find a buffer which is available for use.
1178 * Select something from a free list.
1179 * Preference is to AGE list, then LRU list.
1180 *
1181 * Called at splbio and with buffer queues locked.
1182 * Return buffer locked.
1183 */
1184 struct buf *
1185 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1186 {
1187 struct buf *bp;
1188
1189 start:
1190 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1191
1192 /*
1193 * Get a new buffer from the pool; but use NOWAIT because
1194 * we have the buffer queues locked.
1195 */
1196 if (!from_bufq && buf_lotsfree() &&
1197 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1198 memset((char *)bp, 0, sizeof(*bp));
1199 BUF_INIT(bp);
1200 bp->b_dev = NODEV;
1201 bp->b_vnbufs.le_next = NOLIST;
1202 bp->b_flags = B_BUSY;
1203 simple_lock(&bp->b_interlock);
1204 #if defined(DIAGNOSTIC)
1205 bp->b_freelistindex = -1;
1206 #endif /* defined(DIAGNOSTIC) */
1207 return (bp);
1208 }
1209
1210 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1211 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1212 simple_lock(&bp->b_interlock);
1213 bremfree(bp);
1214 } else {
1215 /*
1216 * XXX: !from_bufq should be removed.
1217 */
1218 if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1219 /* wait for a free buffer of any kind */
1220 needbuffer = 1;
1221 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1222 "getnewbuf", slptimeo, &bqueue_slock);
1223 }
1224 return (NULL);
1225 }
1226
1227 #ifdef DIAGNOSTIC
1228 if (bp->b_bufsize <= 0)
1229 panic("buffer %p: on queue but empty", bp);
1230 #endif
1231
1232 if (ISSET(bp->b_flags, B_VFLUSH)) {
1233 /*
1234 * This is a delayed write buffer being flushed to disk. Make
1235 * sure it gets aged out of the queue when it's finished, and
1236 * leave it off the LRU queue.
1237 */
1238 CLR(bp->b_flags, B_VFLUSH);
1239 SET(bp->b_flags, B_AGE);
1240 simple_unlock(&bp->b_interlock);
1241 goto start;
1242 }
1243
1244 /* Buffer is no longer on free lists. */
1245 SET(bp->b_flags, B_BUSY);
1246
1247 /*
1248 * If buffer was a delayed write, start it and return NULL
1249 * (since we might sleep while starting the write).
1250 */
1251 if (ISSET(bp->b_flags, B_DELWRI)) {
1252 /*
1253 * This buffer has gone through the LRU, so make sure it gets
1254 * reused ASAP.
1255 */
1256 SET(bp->b_flags, B_AGE);
1257 simple_unlock(&bp->b_interlock);
1258 simple_unlock(&bqueue_slock);
1259 bawrite(bp);
1260 simple_lock(&bqueue_slock);
1261 return (NULL);
1262 }
1263
1264 /* disassociate us from our vnode, if we had one... */
1265 if (bp->b_vp)
1266 brelvp(bp);
1267
1268 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1269 (*bioops.io_deallocate)(bp);
1270
1271 /* clear out various other fields */
1272 bp->b_flags = B_BUSY;
1273 bp->b_dev = NODEV;
1274 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1275 bp->b_iodone = 0;
1276 bp->b_error = 0;
1277 bp->b_resid = 0;
1278 bp->b_bcount = 0;
1279
1280 bremhash(bp);
1281 return (bp);
1282 }
1283
1284 /*
1285 * Attempt to free an aged buffer off the queues.
1286 * Called at splbio and with queue lock held.
1287 * Returns the amount of buffer memory freed.
1288 */
1289 static int
1290 buf_trim(void)
1291 {
1292 struct buf *bp;
1293 long size = 0;
1294
1295 /* Instruct getnewbuf() to get buffers off the queues */
1296 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1297 return 0;
1298
1299 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1300 simple_unlock(&bp->b_interlock);
1301 size = bp->b_bufsize;
1302 bufmem -= size;
1303 simple_unlock(&bqueue_slock);
1304 if (size > 0) {
1305 buf_mrelease(bp->b_data, size);
1306 bp->b_bcount = bp->b_bufsize = 0;
1307 }
1308 /* brelse() will return the buffer to the global buffer pool */
1309 brelse(bp);
1310 simple_lock(&bqueue_slock);
1311 return size;
1312 }
1313
1314 int
1315 buf_drain(int n)
1316 {
1317 int s, size = 0, sz;
1318
1319 s = splbio();
1320 simple_lock(&bqueue_slock);
1321
1322 while (size < n && bufmem > bufmem_lowater) {
1323 sz = buf_trim();
1324 if (sz <= 0)
1325 break;
1326 size += sz;
1327 }
1328
1329 simple_unlock(&bqueue_slock);
1330 splx(s);
1331 return size;
1332 }
1333
1334 /*
1335 * Wait for operations on the buffer to complete.
1336 * When they do, extract and return the I/O's error value.
1337 */
1338 int
1339 biowait(struct buf *bp)
1340 {
1341 int s, error;
1342
1343 s = splbio();
1344 simple_lock(&bp->b_interlock);
1345 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1346 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1347
1348 /* check for interruption of I/O (e.g. via NFS), then errors. */
1349 if (ISSET(bp->b_flags, B_EINTR)) {
1350 CLR(bp->b_flags, B_EINTR);
1351 error = EINTR;
1352 } else if (ISSET(bp->b_flags, B_ERROR))
1353 error = bp->b_error ? bp->b_error : EIO;
1354 else
1355 error = 0;
1356
1357 simple_unlock(&bp->b_interlock);
1358 splx(s);
1359 return (error);
1360 }
1361
1362 /*
1363 * Mark I/O complete on a buffer.
1364 *
1365 * If a callback has been requested, e.g. the pageout
1366 * daemon, do so. Otherwise, awaken waiting processes.
1367 *
1368 * [ Leffler, et al., says on p.247:
1369 * "This routine wakes up the blocked process, frees the buffer
1370 * for an asynchronous write, or, for a request by the pagedaemon
1371 * process, invokes a procedure specified in the buffer structure" ]
1372 *
1373 * In real life, the pagedaemon (or other system processes) wants
1374 * to do async stuff to, and doesn't want the buffer brelse()'d.
1375 * (for swap pager, that puts swap buffers on the free lists (!!!),
1376 * for the vn device, that puts malloc'd buffers on the free lists!)
1377 */
1378 void
1379 biodone(struct buf *bp)
1380 {
1381 int s = splbio();
1382
1383 simple_lock(&bp->b_interlock);
1384 if (ISSET(bp->b_flags, B_DONE))
1385 panic("biodone already");
1386 SET(bp->b_flags, B_DONE); /* note that it's done */
1387 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1388
1389 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1390 (*bioops.io_complete)(bp);
1391
1392 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1393 vwakeup(bp);
1394
1395 /*
1396 * If necessary, call out. Unlock the buffer before calling
1397 * iodone() as the buffer isn't valid any more when it return.
1398 */
1399 if (ISSET(bp->b_flags, B_CALL)) {
1400 CLR(bp->b_flags, B_CALL); /* but note callout done */
1401 simple_unlock(&bp->b_interlock);
1402 (*bp->b_iodone)(bp);
1403 } else {
1404 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1405 simple_unlock(&bp->b_interlock);
1406 brelse(bp);
1407 } else { /* or just wakeup the buffer */
1408 CLR(bp->b_flags, B_WANTED);
1409 wakeup(bp);
1410 simple_unlock(&bp->b_interlock);
1411 }
1412 }
1413
1414 splx(s);
1415 }
1416
1417 /*
1418 * Return a count of buffers on the "locked" queue.
1419 */
1420 int
1421 count_lock_queue(void)
1422 {
1423 struct buf *bp;
1424 int n = 0;
1425
1426 simple_lock(&bqueue_slock);
1427 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1428 n++;
1429 simple_unlock(&bqueue_slock);
1430 return (n);
1431 }
1432
1433 /*
1434 * Wait for all buffers to complete I/O
1435 * Return the number of "stuck" buffers.
1436 */
1437 int
1438 buf_syncwait(void)
1439 {
1440 struct buf *bp;
1441 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1442
1443 dcount = 10000;
1444 for (iter = 0; iter < 20;) {
1445 s = splbio();
1446 simple_lock(&bqueue_slock);
1447 nbusy = 0;
1448 for (ihash = 0; ihash < bufhash+1; ihash++) {
1449 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1450 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1451 nbusy++;
1452 /*
1453 * With soft updates, some buffers that are
1454 * written will be remarked as dirty until other
1455 * buffers are written.
1456 */
1457 if (bp->b_vp && bp->b_vp->v_mount
1458 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1459 && (bp->b_flags & B_DELWRI)) {
1460 simple_lock(&bp->b_interlock);
1461 bremfree(bp);
1462 bp->b_flags |= B_BUSY;
1463 nbusy++;
1464 simple_unlock(&bp->b_interlock);
1465 simple_unlock(&bqueue_slock);
1466 bawrite(bp);
1467 if (dcount-- <= 0) {
1468 printf("softdep ");
1469 splx(s);
1470 goto fail;
1471 }
1472 simple_lock(&bqueue_slock);
1473 }
1474 }
1475 }
1476
1477 simple_unlock(&bqueue_slock);
1478 splx(s);
1479
1480 if (nbusy == 0)
1481 break;
1482 if (nbusy_prev == 0)
1483 nbusy_prev = nbusy;
1484 printf("%d ", nbusy);
1485 tsleep(&nbusy, PRIBIO, "bflush",
1486 (iter == 0) ? 1 : hz / 25 * iter);
1487 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1488 iter++;
1489 else
1490 nbusy_prev = nbusy;
1491 }
1492
1493 if (nbusy) {
1494 fail:;
1495 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1496 printf("giving up\nPrinting vnodes for busy buffers\n");
1497 s = splbio();
1498 for (ihash = 0; ihash < bufhash+1; ihash++) {
1499 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1500 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1501 vprint(NULL, bp->b_vp);
1502 }
1503 }
1504 splx(s);
1505 #endif
1506 }
1507
1508 return nbusy;
1509 }
1510
1511 static void
1512 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1513 {
1514
1515 o->b_flags = i->b_flags;
1516 o->b_error = i->b_error;
1517 o->b_prio = i->b_prio;
1518 o->b_dev = i->b_dev;
1519 o->b_bufsize = i->b_bufsize;
1520 o->b_bcount = i->b_bcount;
1521 o->b_resid = i->b_resid;
1522 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1523 o->b_blkno = i->b_blkno;
1524 o->b_rawblkno = i->b_rawblkno;
1525 o->b_iodone = PTRTOUINT64(i->b_iodone);
1526 o->b_proc = PTRTOUINT64(i->b_proc);
1527 o->b_vp = PTRTOUINT64(i->b_vp);
1528 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1529 o->b_lblkno = i->b_lblkno;
1530 }
1531
1532 #define KERN_BUFSLOP 20
1533 static int
1534 sysctl_dobuf(SYSCTLFN_ARGS)
1535 {
1536 struct buf *bp;
1537 struct buf_sysctl bs;
1538 char *dp;
1539 u_int i, op, arg;
1540 size_t len, needed, elem_size, out_size;
1541 int error, s, elem_count;
1542
1543 if (namelen == 1 && name[0] == CTL_QUERY)
1544 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1545
1546 if (namelen != 4)
1547 return (EINVAL);
1548
1549 dp = oldp;
1550 len = (oldp != NULL) ? *oldlenp : 0;
1551 op = name[0];
1552 arg = name[1];
1553 elem_size = name[2];
1554 elem_count = name[3];
1555 out_size = MIN(sizeof(bs), elem_size);
1556
1557 /*
1558 * at the moment, these are just "placeholders" to make the
1559 * API for retrieving kern.buf data more extensible in the
1560 * future.
1561 *
1562 * XXX kern.buf currently has "netbsd32" issues. hopefully
1563 * these will be resolved at a later point.
1564 */
1565 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1566 elem_size < 1 || elem_count < 0)
1567 return (EINVAL);
1568
1569 error = 0;
1570 needed = 0;
1571 s = splbio();
1572 simple_lock(&bqueue_slock);
1573 for (i = 0; i < BQUEUES; i++) {
1574 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1575 if (len >= elem_size && elem_count > 0) {
1576 sysctl_fillbuf(bp, &bs);
1577 error = copyout(&bs, dp, out_size);
1578 if (error)
1579 goto cleanup;
1580 dp += elem_size;
1581 len -= elem_size;
1582 }
1583 if (elem_count > 0) {
1584 needed += elem_size;
1585 if (elem_count != INT_MAX)
1586 elem_count--;
1587 }
1588 }
1589 }
1590 cleanup:
1591 simple_unlock(&bqueue_slock);
1592 splx(s);
1593
1594 *oldlenp = needed;
1595 if (oldp == NULL)
1596 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1597
1598 return (error);
1599 }
1600
1601 static int
1602 sysctl_bufvm_update(SYSCTLFN_ARGS)
1603 {
1604 int t, error;
1605 struct sysctlnode node;
1606
1607 node = *rnode;
1608 node.sysctl_data = &t;
1609 t = *(int*)rnode->sysctl_data;
1610 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1611 if (error || newp == NULL)
1612 return (error);
1613
1614 if (rnode->sysctl_data == &bufcache) {
1615 if (t < 0 || t > 100)
1616 return (EINVAL);
1617 bufcache = t;
1618 buf_setwm();
1619 } else if (rnode->sysctl_data == &bufmem_lowater) {
1620 if (bufmem_hiwater - bufmem_lowater < 16)
1621 return (EINVAL);
1622 bufmem_lowater = t;
1623 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1624 if (bufmem_hiwater - bufmem_lowater < 16)
1625 return (EINVAL);
1626 bufmem_hiwater = t;
1627 } else
1628 return (EINVAL);
1629
1630 /* Drain until below new high water mark */
1631 while ((t = bufmem - bufmem_hiwater) >= 0) {
1632 if (buf_drain(t / (2*1024)) <= 0)
1633 break;
1634 }
1635
1636 return 0;
1637 }
1638
1639 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1640 {
1641
1642 sysctl_createv(clog, 0, NULL, NULL,
1643 CTLFLAG_PERMANENT,
1644 CTLTYPE_NODE, "kern", NULL,
1645 NULL, 0, NULL, 0,
1646 CTL_KERN, CTL_EOL);
1647 sysctl_createv(clog, 0, NULL, NULL,
1648 CTLFLAG_PERMANENT,
1649 CTLTYPE_NODE, "buf",
1650 SYSCTL_DESCR("Kernel buffer cache information"),
1651 sysctl_dobuf, 0, NULL, 0,
1652 CTL_KERN, KERN_BUF, CTL_EOL);
1653 }
1654
1655 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1656 {
1657
1658 sysctl_createv(clog, 0, NULL, NULL,
1659 CTLFLAG_PERMANENT,
1660 CTLTYPE_NODE, "vm", NULL,
1661 NULL, 0, NULL, 0,
1662 CTL_VM, CTL_EOL);
1663
1664 sysctl_createv(clog, 0, NULL, NULL,
1665 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1666 CTLTYPE_INT, "bufcache",
1667 SYSCTL_DESCR("Percentage of physical memory to use for "
1668 "buffer cache"),
1669 sysctl_bufvm_update, 0, &bufcache, 0,
1670 CTL_VM, CTL_CREATE, CTL_EOL);
1671 sysctl_createv(clog, 0, NULL, NULL,
1672 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1673 CTLTYPE_INT, "bufmem",
1674 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1675 "cache"),
1676 NULL, 0, &bufmem, 0,
1677 CTL_VM, CTL_CREATE, CTL_EOL);
1678 sysctl_createv(clog, 0, NULL, NULL,
1679 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1680 CTLTYPE_INT, "bufmem_lowater",
1681 SYSCTL_DESCR("Minimum amount of kernel memory to "
1682 "reserve for buffer cache"),
1683 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1684 CTL_VM, CTL_CREATE, CTL_EOL);
1685 sysctl_createv(clog, 0, NULL, NULL,
1686 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1687 CTLTYPE_INT, "bufmem_hiwater",
1688 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1689 "for buffer cache"),
1690 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1691 CTL_VM, CTL_CREATE, CTL_EOL);
1692 }
1693
1694 #ifdef DEBUG
1695 /*
1696 * Print out statistics on the current allocation of the buffer pool.
1697 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1698 * in vfs_syscalls.c using sysctl.
1699 */
1700 void
1701 vfs_bufstats(void)
1702 {
1703 int s, i, j, count;
1704 struct buf *bp;
1705 struct bqueue *dp;
1706 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1707 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1708
1709 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1710 count = 0;
1711 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1712 counts[j] = 0;
1713 s = splbio();
1714 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1715 counts[bp->b_bufsize/PAGE_SIZE]++;
1716 count++;
1717 }
1718 splx(s);
1719 printf("%s: total-%d", bname[i], count);
1720 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1721 if (counts[j] != 0)
1722 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1723 printf("\n");
1724 }
1725 }
1726 #endif /* DEBUG */
1727