Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.146
      1 /*	$NetBSD: vfs_bio.c,v 1.146 2005/06/09 02:19:59 atatat Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include "opt_bufcache.h"
     81 #include "opt_softdep.h"
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.146 2005/06/09 02:19:59 atatat Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 #include <sys/vnode.h>
     92 #include <sys/mount.h>
     93 #include <sys/malloc.h>
     94 #include <sys/resourcevar.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/conf.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 
    102 #ifndef	BUFPAGES
    103 # define BUFPAGES 0
    104 #endif
    105 
    106 #ifdef BUFCACHE
    107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    108 #  error BUFCACHE is not between 5 and 95
    109 # endif
    110 #else
    111 # define BUFCACHE 15
    112 #endif
    113 
    114 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    115 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    116 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    117 
    118 /* Function prototypes */
    119 struct bqueue;
    120 
    121 static void buf_setwm(void);
    122 static int buf_trim(void);
    123 static void *bufpool_page_alloc(struct pool *, int);
    124 static void bufpool_page_free(struct pool *, void *);
    125 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    126     struct ucred *, int);
    127 static int buf_lotsfree(void);
    128 static int buf_canrelease(void);
    129 static __inline u_long buf_mempoolidx(u_long);
    130 static __inline u_long buf_roundsize(u_long);
    131 static __inline caddr_t buf_malloc(size_t);
    132 static void buf_mrelease(caddr_t, size_t);
    133 static __inline void binsheadfree(struct buf *, struct bqueue *);
    134 static __inline void binstailfree(struct buf *, struct bqueue *);
    135 int count_lock_queue(void); /* XXX */
    136 #ifdef DEBUG
    137 static int checkfreelist(struct buf *, struct bqueue *);
    138 #endif
    139 
    140 /* Macros to clear/set/test flags. */
    141 #define	SET(t, f)	(t) |= (f)
    142 #define	CLR(t, f)	(t) &= ~(f)
    143 #define	ISSET(t, f)	((t) & (f))
    144 
    145 /*
    146  * Definitions for the buffer hash lists.
    147  */
    148 #define	BUFHASH(dvp, lbn)	\
    149 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    151 u_long	bufhash;
    152 #if !defined(SOFTDEP) || !defined(FFS)
    153 struct bio_ops bioops;	/* I/O operation notification */
    154 #endif
    155 
    156 /*
    157  * Insq/Remq for the buffer hash lists.
    158  */
    159 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    160 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    161 
    162 /*
    163  * Definitions for the buffer free lists.
    164  */
    165 #define	BQUEUES		3		/* number of free buffer queues */
    166 
    167 #define	BQ_LOCKED	0		/* super-blocks &c */
    168 #define	BQ_LRU		1		/* lru, useful buffers */
    169 #define	BQ_AGE		2		/* rubbish */
    170 
    171 struct bqueue {
    172 	TAILQ_HEAD(, buf) bq_queue;
    173 	uint64_t bq_bytes;
    174 } bufqueues[BQUEUES];
    175 int needbuffer;
    176 
    177 /*
    178  * Buffer queue lock.
    179  * Take this lock first if also taking some buffer's b_interlock.
    180  */
    181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    182 
    183 /*
    184  * Buffer pool for I/O buffers.
    185  */
    186 struct pool bufpool;
    187 
    188 /* XXX - somewhat gross.. */
    189 #if MAXBSIZE == 0x2000
    190 #define NMEMPOOLS 4
    191 #elif MAXBSIZE == 0x4000
    192 #define NMEMPOOLS 5
    193 #elif MAXBSIZE == 0x8000
    194 #define NMEMPOOLS 6
    195 #else
    196 #define NMEMPOOLS 7
    197 #endif
    198 
    199 #define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
    200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    201 #error update vfs_bio buffer memory parameters
    202 #endif
    203 
    204 /* Buffer memory pools */
    205 static struct pool bmempools[NMEMPOOLS];
    206 
    207 struct vm_map *buf_map;
    208 
    209 /*
    210  * Buffer memory pool allocator.
    211  */
    212 static void *
    213 bufpool_page_alloc(struct pool *pp, int flags)
    214 {
    215 
    216 	return (void *)uvm_km_alloc(buf_map,
    217 	    MAXBSIZE, MAXBSIZE,
    218 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    219 	    | UVM_KMF_WIRED);
    220 }
    221 
    222 static void
    223 bufpool_page_free(struct pool *pp, void *v)
    224 {
    225 
    226 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    227 }
    228 
    229 static struct pool_allocator bufmempool_allocator = {
    230 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
    231 };
    232 
    233 /* Buffer memory management variables */
    234 u_long bufmem_valimit;
    235 u_long bufmem_hiwater;
    236 u_long bufmem_lowater;
    237 u_long bufmem;
    238 
    239 /*
    240  * MD code can call this to set a hard limit on the amount
    241  * of virtual memory used by the buffer cache.
    242  */
    243 int
    244 buf_setvalimit(vsize_t sz)
    245 {
    246 
    247 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    248 	if (sz < NMEMPOOLS * MAXBSIZE)
    249 		return EINVAL;
    250 
    251 	bufmem_valimit = sz;
    252 	return 0;
    253 }
    254 
    255 static void
    256 buf_setwm(void)
    257 {
    258 
    259 	bufmem_hiwater = buf_memcalc();
    260 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    261 #define	BUFMEM_WMSHIFT	3
    262 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    263 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    264 		/* Ensure a reasonable minimum value */
    265 		bufmem_hiwater = BUFMEM_HIWMMIN;
    266 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    267 }
    268 
    269 #ifdef DEBUG
    270 int debug_verify_freelist = 0;
    271 static int
    272 checkfreelist(struct buf *bp, struct bqueue *dp)
    273 {
    274 	struct buf *b;
    275 
    276 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    277 		if (b == bp)
    278 			return 1;
    279 	}
    280 	return 0;
    281 }
    282 #endif
    283 
    284 /*
    285  * Insq/Remq for the buffer hash lists.
    286  * Call with buffer queue locked.
    287  */
    288 static __inline void
    289 binsheadfree(struct buf *bp, struct bqueue *dp)
    290 {
    291 
    292 	KASSERT(bp->b_freelistindex == -1);
    293 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    294 	dp->bq_bytes += bp->b_bufsize;
    295 	bp->b_freelistindex = dp - bufqueues;
    296 }
    297 
    298 static __inline void
    299 binstailfree(struct buf *bp, struct bqueue *dp)
    300 {
    301 
    302 	KASSERT(bp->b_freelistindex == -1);
    303 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    304 	dp->bq_bytes += bp->b_bufsize;
    305 	bp->b_freelistindex = dp - bufqueues;
    306 }
    307 
    308 void
    309 bremfree(struct buf *bp)
    310 {
    311 	struct bqueue *dp;
    312 	int bqidx = bp->b_freelistindex;
    313 
    314 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    315 
    316 	KASSERT(bqidx != -1);
    317 	dp = &bufqueues[bqidx];
    318 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    319 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    320 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    321 	dp->bq_bytes -= bp->b_bufsize;
    322 #if defined(DIAGNOSTIC)
    323 	bp->b_freelistindex = -1;
    324 #endif /* defined(DIAGNOSTIC) */
    325 }
    326 
    327 u_long
    328 buf_memcalc(void)
    329 {
    330 	u_long n;
    331 
    332 	/*
    333 	 * Determine the upper bound of memory to use for buffers.
    334 	 *
    335 	 *	- If bufpages is specified, use that as the number
    336 	 *	  pages.
    337 	 *
    338 	 *	- Otherwise, use bufcache as the percentage of
    339 	 *	  physical memory.
    340 	 */
    341 	if (bufpages != 0) {
    342 		n = bufpages;
    343 	} else {
    344 		if (bufcache < 5) {
    345 			printf("forcing bufcache %d -> 5", bufcache);
    346 			bufcache = 5;
    347 		}
    348 		if (bufcache > 95) {
    349 			printf("forcing bufcache %d -> 95", bufcache);
    350 			bufcache = 95;
    351 		}
    352 		n = physmem / 100 * bufcache;
    353 	}
    354 
    355 	n <<= PAGE_SHIFT;
    356 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    357 		n = bufmem_valimit;
    358 
    359 	return (n);
    360 }
    361 
    362 /*
    363  * Initialize buffers and hash links for buffers.
    364  */
    365 void
    366 bufinit(void)
    367 {
    368 	struct bqueue *dp;
    369 	int use_std;
    370 	u_int i;
    371 
    372 	/*
    373 	 * Initialize buffer cache memory parameters.
    374 	 */
    375 	bufmem = 0;
    376 	buf_setwm();
    377 
    378 	if (bufmem_valimit != 0) {
    379 		vaddr_t minaddr = 0, maxaddr;
    380 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    381 					  bufmem_valimit, VM_MAP_PAGEABLE,
    382 					  FALSE, 0);
    383 		if (buf_map == NULL)
    384 			panic("bufinit: cannot allocate submap");
    385 	} else
    386 		buf_map = kernel_map;
    387 
    388 	/*
    389 	 * Initialize the buffer pools.
    390 	 */
    391 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
    392 
    393 	/* On "small" machines use small pool page sizes where possible */
    394 	use_std = (physmem < atop(16*1024*1024));
    395 
    396 	/*
    397 	 * Also use them on systems that can map the pool pages using
    398 	 * a direct-mapped segment.
    399 	 */
    400 #ifdef PMAP_MAP_POOLPAGE
    401 	use_std = 1;
    402 #endif
    403 
    404 	for (i = 0; i < NMEMPOOLS; i++) {
    405 		struct pool_allocator *pa;
    406 		struct pool *pp = &bmempools[i];
    407 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    408 		char *name = malloc(8, M_TEMP, M_WAITOK);
    409 		snprintf(name, 8, "buf%dk", 1 << i);
    410 		pa = (size <= PAGE_SIZE && use_std)
    411 			? &pool_allocator_nointr
    412 			: &bufmempool_allocator;
    413 		pool_init(pp, size, 0, 0, 0, name, pa);
    414 		pool_setlowat(pp, 1);
    415 		pool_sethiwat(pp, 1);
    416 	}
    417 
    418 	/* Initialize the buffer queues */
    419 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    420 		TAILQ_INIT(&dp->bq_queue);
    421 		dp->bq_bytes = 0;
    422 	}
    423 
    424 	/*
    425 	 * Estimate hash table size based on the amount of memory we
    426 	 * intend to use for the buffer cache. The average buffer
    427 	 * size is dependent on our clients (i.e. filesystems).
    428 	 *
    429 	 * For now, use an empirical 3K per buffer.
    430 	 */
    431 	nbuf = (bufmem_hiwater / 1024) / 3;
    432 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    433 }
    434 
    435 static int
    436 buf_lotsfree(void)
    437 {
    438 	int try, thresh;
    439 	struct lwp *l = curlwp;
    440 
    441 	/* Always allocate if doing copy on write */
    442 	if (l->l_flag & L_COWINPROGRESS)
    443 		return 1;
    444 
    445 	/* Always allocate if less than the low water mark. */
    446 	if (bufmem < bufmem_lowater)
    447 		return 1;
    448 
    449 	/* Never allocate if greater than the high water mark. */
    450 	if (bufmem > bufmem_hiwater)
    451 		return 0;
    452 
    453 	/* If there's anything on the AGE list, it should be eaten. */
    454 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    455 		return 0;
    456 
    457 	/*
    458 	 * The probabily of getting a new allocation is inversely
    459 	 * proportional to the current size of the cache, using
    460 	 * a granularity of 16 steps.
    461 	 */
    462 	try = random() & 0x0000000fL;
    463 
    464 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    465 	thresh = (bufmem - bufmem_lowater) /
    466 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    467 
    468 	if (try >= thresh)
    469 		return 1;
    470 
    471 	/* Otherwise don't allocate. */
    472 	return 0;
    473 }
    474 
    475 /*
    476  * Return estimate of bytes we think need to be
    477  * released to help resolve low memory conditions.
    478  *
    479  * => called at splbio.
    480  * => called with bqueue_slock held.
    481  */
    482 static int
    483 buf_canrelease(void)
    484 {
    485 	int pagedemand, ninvalid = 0;
    486 
    487 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    488 
    489 	if (bufmem < bufmem_lowater)
    490 		return 0;
    491 
    492 	if (bufmem > bufmem_hiwater)
    493 		return bufmem - bufmem_hiwater;
    494 
    495 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    496 
    497 	pagedemand = uvmexp.freetarg - uvmexp.free;
    498 	if (pagedemand < 0)
    499 		return ninvalid;
    500 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    501 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    502 }
    503 
    504 /*
    505  * Buffer memory allocation helper functions
    506  */
    507 static __inline u_long
    508 buf_mempoolidx(u_long size)
    509 {
    510 	u_int n = 0;
    511 
    512 	size -= 1;
    513 	size >>= MEMPOOL_INDEX_OFFSET;
    514 	while (size) {
    515 		size >>= 1;
    516 		n += 1;
    517 	}
    518 	if (n >= NMEMPOOLS)
    519 		panic("buf mem pool index %d", n);
    520 	return n;
    521 }
    522 
    523 static __inline u_long
    524 buf_roundsize(u_long size)
    525 {
    526 	/* Round up to nearest power of 2 */
    527 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    528 }
    529 
    530 static __inline caddr_t
    531 buf_malloc(size_t size)
    532 {
    533 	u_int n = buf_mempoolidx(size);
    534 	caddr_t addr;
    535 	int s;
    536 
    537 	while (1) {
    538 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    539 		if (addr != NULL)
    540 			break;
    541 
    542 		/* No memory, see if we can free some. If so, try again */
    543 		if (buf_drain(1) > 0)
    544 			continue;
    545 
    546 		/* Wait for buffers to arrive on the LRU queue */
    547 		s = splbio();
    548 		simple_lock(&bqueue_slock);
    549 		needbuffer = 1;
    550 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    551 			"buf_malloc", 0, &bqueue_slock);
    552 		splx(s);
    553 	}
    554 
    555 	return addr;
    556 }
    557 
    558 static void
    559 buf_mrelease(caddr_t addr, size_t size)
    560 {
    561 
    562 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    563 }
    564 
    565 /*
    566  * bread()/breadn() helper.
    567  */
    568 static __inline struct buf *
    569 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    570     int async)
    571 {
    572 	struct buf *bp;
    573 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    574 	struct proc *p = l->l_proc;
    575 	struct mount *mp;
    576 
    577 	bp = getblk(vp, blkno, size, 0, 0);
    578 
    579 #ifdef DIAGNOSTIC
    580 	if (bp == NULL) {
    581 		panic("bio_doread: no such buf");
    582 	}
    583 #endif
    584 
    585 	/*
    586 	 * If buffer does not have data valid, start a read.
    587 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    588 	 * Therefore, it's valid if its I/O has completed or been delayed.
    589 	 */
    590 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    591 		/* Start I/O for the buffer. */
    592 		SET(bp->b_flags, B_READ | async);
    593 		if (async)
    594 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    595 		else
    596 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    597 		VOP_STRATEGY(vp, bp);
    598 
    599 		/* Pay for the read. */
    600 		p->p_stats->p_ru.ru_inblock++;
    601 	} else if (async) {
    602 		brelse(bp);
    603 	}
    604 
    605 	if (vp->v_type == VBLK)
    606 		mp = vp->v_specmountpoint;
    607 	else
    608 		mp = vp->v_mount;
    609 
    610 	/*
    611 	 * Collect statistics on synchronous and asynchronous reads.
    612 	 * Reads from block devices are charged to their associated
    613 	 * filesystem (if any).
    614 	 */
    615 	if (mp != NULL) {
    616 		if (async == 0)
    617 			mp->mnt_stat.f_syncreads++;
    618 		else
    619 			mp->mnt_stat.f_asyncreads++;
    620 	}
    621 
    622 	return (bp);
    623 }
    624 
    625 /*
    626  * Read a disk block.
    627  * This algorithm described in Bach (p.54).
    628  */
    629 int
    630 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    631     struct buf **bpp)
    632 {
    633 	struct buf *bp;
    634 
    635 	/* Get buffer for block. */
    636 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    637 
    638 	/* Wait for the read to complete, and return result. */
    639 	return (biowait(bp));
    640 }
    641 
    642 /*
    643  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    644  * Trivial modification to the breada algorithm presented in Bach (p.55).
    645  */
    646 int
    647 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    648     int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
    649 {
    650 	struct buf *bp;
    651 	int i;
    652 
    653 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    654 
    655 	/*
    656 	 * For each of the read-ahead blocks, start a read, if necessary.
    657 	 */
    658 	for (i = 0; i < nrablks; i++) {
    659 		/* If it's in the cache, just go on to next one. */
    660 		if (incore(vp, rablks[i]))
    661 			continue;
    662 
    663 		/* Get a buffer for the read-ahead block */
    664 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    665 	}
    666 
    667 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    668 	return (biowait(bp));
    669 }
    670 
    671 /*
    672  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    673  * implemented as a call to breadn().
    674  * XXX for compatibility with old file systems.
    675  */
    676 int
    677 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    678     int rabsize, struct ucred *cred, struct buf **bpp)
    679 {
    680 
    681 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    682 }
    683 
    684 /*
    685  * Block write.  Described in Bach (p.56)
    686  */
    687 int
    688 bwrite(struct buf *bp)
    689 {
    690 	int rv, sync, wasdelayed, s;
    691 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    692 	struct proc *p = l->l_proc;
    693 	struct vnode *vp;
    694 	struct mount *mp;
    695 
    696 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    697 
    698 	vp = bp->b_vp;
    699 	if (vp != NULL) {
    700 		if (vp->v_type == VBLK)
    701 			mp = vp->v_specmountpoint;
    702 		else
    703 			mp = vp->v_mount;
    704 	} else {
    705 		mp = NULL;
    706 	}
    707 
    708 	/*
    709 	 * Remember buffer type, to switch on it later.  If the write was
    710 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    711 	 * convert it to a delayed write.
    712 	 * XXX note that this relies on delayed tape writes being converted
    713 	 * to async, not sync writes (which is safe, but ugly).
    714 	 */
    715 	sync = !ISSET(bp->b_flags, B_ASYNC);
    716 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    717 		bdwrite(bp);
    718 		return (0);
    719 	}
    720 
    721 	/*
    722 	 * Collect statistics on synchronous and asynchronous writes.
    723 	 * Writes to block devices are charged to their associated
    724 	 * filesystem (if any).
    725 	 */
    726 	if (mp != NULL) {
    727 		if (sync)
    728 			mp->mnt_stat.f_syncwrites++;
    729 		else
    730 			mp->mnt_stat.f_asyncwrites++;
    731 	}
    732 
    733 	s = splbio();
    734 	simple_lock(&bp->b_interlock);
    735 
    736 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    737 
    738 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
    739 
    740 	/*
    741 	 * Pay for the I/O operation and make sure the buf is on the correct
    742 	 * vnode queue.
    743 	 */
    744 	if (wasdelayed)
    745 		reassignbuf(bp, bp->b_vp);
    746 	else
    747 		p->p_stats->p_ru.ru_oublock++;
    748 
    749 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    750 	V_INCR_NUMOUTPUT(bp->b_vp);
    751 	simple_unlock(&bp->b_interlock);
    752 	splx(s);
    753 
    754 	if (sync)
    755 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    756 	else
    757 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    758 
    759 	VOP_STRATEGY(vp, bp);
    760 
    761 	if (sync) {
    762 		/* If I/O was synchronous, wait for it to complete. */
    763 		rv = biowait(bp);
    764 
    765 		/* Release the buffer. */
    766 		brelse(bp);
    767 
    768 		return (rv);
    769 	} else {
    770 		return (0);
    771 	}
    772 }
    773 
    774 int
    775 vn_bwrite(void *v)
    776 {
    777 	struct vop_bwrite_args *ap = v;
    778 
    779 	return (bwrite(ap->a_bp));
    780 }
    781 
    782 /*
    783  * Delayed write.
    784  *
    785  * The buffer is marked dirty, but is not queued for I/O.
    786  * This routine should be used when the buffer is expected
    787  * to be modified again soon, typically a small write that
    788  * partially fills a buffer.
    789  *
    790  * NB: magnetic tapes cannot be delayed; they must be
    791  * written in the order that the writes are requested.
    792  *
    793  * Described in Leffler, et al. (pp. 208-213).
    794  */
    795 void
    796 bdwrite(struct buf *bp)
    797 {
    798 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    799 	struct proc *p = l->l_proc;
    800 	const struct bdevsw *bdev;
    801 	int s;
    802 
    803 	/* If this is a tape block, write the block now. */
    804 	bdev = bdevsw_lookup(bp->b_dev);
    805 	if (bdev != NULL && bdev->d_type == D_TAPE) {
    806 		bawrite(bp);
    807 		return;
    808 	}
    809 
    810 	/*
    811 	 * If the block hasn't been seen before:
    812 	 *	(1) Mark it as having been seen,
    813 	 *	(2) Charge for the write,
    814 	 *	(3) Make sure it's on its vnode's correct block list.
    815 	 */
    816 	s = splbio();
    817 	simple_lock(&bp->b_interlock);
    818 
    819 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    820 
    821 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    822 		SET(bp->b_flags, B_DELWRI);
    823 		p->p_stats->p_ru.ru_oublock++;
    824 		reassignbuf(bp, bp->b_vp);
    825 	}
    826 
    827 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    828 	CLR(bp->b_flags, B_DONE);
    829 	simple_unlock(&bp->b_interlock);
    830 	splx(s);
    831 
    832 	brelse(bp);
    833 }
    834 
    835 /*
    836  * Asynchronous block write; just an asynchronous bwrite().
    837  */
    838 void
    839 bawrite(struct buf *bp)
    840 {
    841 	int s;
    842 
    843 	s = splbio();
    844 	simple_lock(&bp->b_interlock);
    845 
    846 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    847 
    848 	SET(bp->b_flags, B_ASYNC);
    849 	simple_unlock(&bp->b_interlock);
    850 	splx(s);
    851 	VOP_BWRITE(bp);
    852 }
    853 
    854 /*
    855  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    856  * Call at splbio() and with the buffer interlock locked.
    857  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
    858  */
    859 void
    860 bdirty(struct buf *bp)
    861 {
    862 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    863 	struct proc *p = l->l_proc;
    864 
    865 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    866 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    867 
    868 	CLR(bp->b_flags, B_AGE);
    869 
    870 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    871 		SET(bp->b_flags, B_DELWRI);
    872 		p->p_stats->p_ru.ru_oublock++;
    873 		reassignbuf(bp, bp->b_vp);
    874 	}
    875 }
    876 
    877 /*
    878  * Release a buffer on to the free lists.
    879  * Described in Bach (p. 46).
    880  */
    881 void
    882 brelse(struct buf *bp)
    883 {
    884 	struct bqueue *bufq;
    885 	int s;
    886 
    887 	/* Block disk interrupts. */
    888 	s = splbio();
    889 	simple_lock(&bqueue_slock);
    890 	simple_lock(&bp->b_interlock);
    891 
    892 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    893 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    894 
    895 	/* Wake up any processes waiting for any buffer to become free. */
    896 	if (needbuffer) {
    897 		needbuffer = 0;
    898 		wakeup(&needbuffer);
    899 	}
    900 
    901 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    902 	if (ISSET(bp->b_flags, B_WANTED)) {
    903 		CLR(bp->b_flags, B_WANTED|B_AGE);
    904 		wakeup(bp);
    905 	}
    906 
    907 	/*
    908 	 * Determine which queue the buffer should be on, then put it there.
    909 	 */
    910 
    911 	/* If it's locked, don't report an error; try again later. */
    912 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
    913 		CLR(bp->b_flags, B_ERROR);
    914 
    915 	/* If it's not cacheable, or an error, mark it invalid. */
    916 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
    917 		SET(bp->b_flags, B_INVAL);
    918 
    919 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    920 		/*
    921 		 * This is a delayed write buffer that was just flushed to
    922 		 * disk.  It is still on the LRU queue.  If it's become
    923 		 * invalid, then we need to move it to a different queue;
    924 		 * otherwise leave it in its current position.
    925 		 */
    926 		CLR(bp->b_flags, B_VFLUSH);
    927 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
    928 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    929 			goto already_queued;
    930 		} else {
    931 			bremfree(bp);
    932 		}
    933 	}
    934 
    935   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    936   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    937   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    938 
    939 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    940 		/*
    941 		 * If it's invalid or empty, dissociate it from its vnode
    942 		 * and put on the head of the appropriate queue.
    943 		 */
    944 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    945 			(*bioops.io_deallocate)(bp);
    946 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    947 		if (bp->b_vp) {
    948 			reassignbuf(bp, bp->b_vp);
    949 			brelvp(bp);
    950 		}
    951 		if (bp->b_bufsize <= 0)
    952 			/* no data */
    953 			goto already_queued;
    954 		else
    955 			/* invalid data */
    956 			bufq = &bufqueues[BQ_AGE];
    957 		binsheadfree(bp, bufq);
    958 	} else {
    959 		/*
    960 		 * It has valid data.  Put it on the end of the appropriate
    961 		 * queue, so that it'll stick around for as long as possible.
    962 		 * If buf is AGE, but has dependencies, must put it on last
    963 		 * bufqueue to be scanned, ie LRU. This protects against the
    964 		 * livelock where BQ_AGE only has buffers with dependencies,
    965 		 * and we thus never get to the dependent buffers in BQ_LRU.
    966 		 */
    967 		if (ISSET(bp->b_flags, B_LOCKED))
    968 			/* locked in core */
    969 			bufq = &bufqueues[BQ_LOCKED];
    970 		else if (!ISSET(bp->b_flags, B_AGE))
    971 			/* valid data */
    972 			bufq = &bufqueues[BQ_LRU];
    973 		else {
    974 			/* stale but valid data */
    975 			int has_deps;
    976 
    977 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    978 			    bioops.io_countdeps)
    979 				has_deps = (*bioops.io_countdeps)(bp, 0);
    980 			else
    981 				has_deps = 0;
    982 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    983 			    &bufqueues[BQ_AGE];
    984 		}
    985 		binstailfree(bp, bufq);
    986 	}
    987 
    988 already_queued:
    989 	/* Unlock the buffer. */
    990 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    991 	SET(bp->b_flags, B_CACHE);
    992 
    993 	/* Allow disk interrupts. */
    994 	simple_unlock(&bp->b_interlock);
    995 	simple_unlock(&bqueue_slock);
    996 	if (bp->b_bufsize <= 0) {
    997 #ifdef DEBUG
    998 		memset((char *)bp, 0, sizeof(*bp));
    999 #endif
   1000 		pool_put(&bufpool, bp);
   1001 	}
   1002 	splx(s);
   1003 }
   1004 
   1005 /*
   1006  * Determine if a block is in the cache.
   1007  * Just look on what would be its hash chain.  If it's there, return
   1008  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1009  * we normally don't return the buffer, unless the caller explicitly
   1010  * wants us to.
   1011  */
   1012 struct buf *
   1013 incore(struct vnode *vp, daddr_t blkno)
   1014 {
   1015 	struct buf *bp;
   1016 
   1017 	/* Search hash chain */
   1018 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1019 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1020 		    !ISSET(bp->b_flags, B_INVAL))
   1021 		return (bp);
   1022 	}
   1023 
   1024 	return (NULL);
   1025 }
   1026 
   1027 /*
   1028  * Get a block of requested size that is associated with
   1029  * a given vnode and block offset. If it is found in the
   1030  * block cache, mark it as having been found, make it busy
   1031  * and return it. Otherwise, return an empty block of the
   1032  * correct size. It is up to the caller to insure that the
   1033  * cached blocks be of the correct size.
   1034  */
   1035 struct buf *
   1036 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1037 {
   1038 	struct buf *bp;
   1039 	int s, err;
   1040 	int preserve;
   1041 
   1042 start:
   1043 	s = splbio();
   1044 	simple_lock(&bqueue_slock);
   1045 	bp = incore(vp, blkno);
   1046 	if (bp != NULL) {
   1047 		simple_lock(&bp->b_interlock);
   1048 		if (ISSET(bp->b_flags, B_BUSY)) {
   1049 			simple_unlock(&bqueue_slock);
   1050 			if (curproc == uvm.pagedaemon_proc) {
   1051 				simple_unlock(&bp->b_interlock);
   1052 				splx(s);
   1053 				return NULL;
   1054 			}
   1055 			SET(bp->b_flags, B_WANTED);
   1056 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1057 					"getblk", slptimeo, &bp->b_interlock);
   1058 			splx(s);
   1059 			if (err)
   1060 				return (NULL);
   1061 			goto start;
   1062 		}
   1063 #ifdef DIAGNOSTIC
   1064 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1065 		    bp->b_bcount < size && vp->v_type != VBLK)
   1066 			panic("getblk: block size invariant failed");
   1067 #endif
   1068 		SET(bp->b_flags, B_BUSY);
   1069 		bremfree(bp);
   1070 		preserve = 1;
   1071 	} else {
   1072 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1073 			simple_unlock(&bqueue_slock);
   1074 			splx(s);
   1075 			goto start;
   1076 		}
   1077 
   1078 		binshash(bp, BUFHASH(vp, blkno));
   1079 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1080 		bgetvp(vp, bp);
   1081 		preserve = 0;
   1082 	}
   1083 	simple_unlock(&bp->b_interlock);
   1084 	simple_unlock(&bqueue_slock);
   1085 	splx(s);
   1086 	/*
   1087 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1088 	 * if we re-size buffers here.
   1089 	 */
   1090 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1091 		KASSERT(bp->b_bufsize >= size);
   1092 	} else {
   1093 		allocbuf(bp, size, preserve);
   1094 	}
   1095 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1096 	return (bp);
   1097 }
   1098 
   1099 /*
   1100  * Get an empty, disassociated buffer of given size.
   1101  */
   1102 struct buf *
   1103 geteblk(int size)
   1104 {
   1105 	struct buf *bp;
   1106 	int s;
   1107 
   1108 	s = splbio();
   1109 	simple_lock(&bqueue_slock);
   1110 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1111 		;
   1112 
   1113 	SET(bp->b_flags, B_INVAL);
   1114 	binshash(bp, &invalhash);
   1115 	simple_unlock(&bqueue_slock);
   1116 	simple_unlock(&bp->b_interlock);
   1117 	splx(s);
   1118 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1119 	allocbuf(bp, size, 0);
   1120 	return (bp);
   1121 }
   1122 
   1123 /*
   1124  * Expand or contract the actual memory allocated to a buffer.
   1125  *
   1126  * If the buffer shrinks, data is lost, so it's up to the
   1127  * caller to have written it out *first*; this routine will not
   1128  * start a write.  If the buffer grows, it's the callers
   1129  * responsibility to fill out the buffer's additional contents.
   1130  */
   1131 void
   1132 allocbuf(struct buf *bp, int size, int preserve)
   1133 {
   1134 	vsize_t oldsize, desired_size;
   1135 	caddr_t addr;
   1136 	int s, delta;
   1137 
   1138 	desired_size = buf_roundsize(size);
   1139 	if (desired_size > MAXBSIZE)
   1140 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1141 
   1142 	bp->b_bcount = size;
   1143 
   1144 	oldsize = bp->b_bufsize;
   1145 	if (oldsize == desired_size)
   1146 		return;
   1147 
   1148 	/*
   1149 	 * If we want a buffer of a different size, re-allocate the
   1150 	 * buffer's memory; copy old content only if needed.
   1151 	 */
   1152 	addr = buf_malloc(desired_size);
   1153 	if (preserve)
   1154 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1155 	if (bp->b_data != NULL)
   1156 		buf_mrelease(bp->b_data, oldsize);
   1157 	bp->b_data = addr;
   1158 	bp->b_bufsize = desired_size;
   1159 
   1160 	/*
   1161 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1162 	 */
   1163 	delta = (long)desired_size - (long)oldsize;
   1164 
   1165 	s = splbio();
   1166 	simple_lock(&bqueue_slock);
   1167 	if ((bufmem += delta) > bufmem_hiwater) {
   1168 		/*
   1169 		 * Need to trim overall memory usage.
   1170 		 */
   1171 		while (buf_canrelease()) {
   1172 			if (buf_trim() == 0)
   1173 				break;
   1174 		}
   1175 	}
   1176 
   1177 	simple_unlock(&bqueue_slock);
   1178 	splx(s);
   1179 }
   1180 
   1181 /*
   1182  * Find a buffer which is available for use.
   1183  * Select something from a free list.
   1184  * Preference is to AGE list, then LRU list.
   1185  *
   1186  * Called at splbio and with buffer queues locked.
   1187  * Return buffer locked.
   1188  */
   1189 struct buf *
   1190 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1191 {
   1192 	struct buf *bp;
   1193 
   1194 start:
   1195 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1196 
   1197 	/*
   1198 	 * Get a new buffer from the pool; but use NOWAIT because
   1199 	 * we have the buffer queues locked.
   1200 	 */
   1201 	if (!from_bufq && buf_lotsfree() &&
   1202 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1203 		memset((char *)bp, 0, sizeof(*bp));
   1204 		BUF_INIT(bp);
   1205 		bp->b_dev = NODEV;
   1206 		bp->b_vnbufs.le_next = NOLIST;
   1207 		bp->b_flags = B_BUSY;
   1208 		simple_lock(&bp->b_interlock);
   1209 #if defined(DIAGNOSTIC)
   1210 		bp->b_freelistindex = -1;
   1211 #endif /* defined(DIAGNOSTIC) */
   1212 		return (bp);
   1213 	}
   1214 
   1215 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1216 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1217 		simple_lock(&bp->b_interlock);
   1218 		bremfree(bp);
   1219 	} else {
   1220 		/*
   1221 		 * XXX: !from_bufq should be removed.
   1222 		 */
   1223 		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
   1224 			/* wait for a free buffer of any kind */
   1225 			needbuffer = 1;
   1226 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1227 			    "getnewbuf", slptimeo, &bqueue_slock);
   1228 		}
   1229 		return (NULL);
   1230 	}
   1231 
   1232 #ifdef DIAGNOSTIC
   1233 	if (bp->b_bufsize <= 0)
   1234 		panic("buffer %p: on queue but empty", bp);
   1235 #endif
   1236 
   1237 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1238 		/*
   1239 		 * This is a delayed write buffer being flushed to disk.  Make
   1240 		 * sure it gets aged out of the queue when it's finished, and
   1241 		 * leave it off the LRU queue.
   1242 		 */
   1243 		CLR(bp->b_flags, B_VFLUSH);
   1244 		SET(bp->b_flags, B_AGE);
   1245 		simple_unlock(&bp->b_interlock);
   1246 		goto start;
   1247 	}
   1248 
   1249 	/* Buffer is no longer on free lists. */
   1250 	SET(bp->b_flags, B_BUSY);
   1251 
   1252 	/*
   1253 	 * If buffer was a delayed write, start it and return NULL
   1254 	 * (since we might sleep while starting the write).
   1255 	 */
   1256 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1257 		/*
   1258 		 * This buffer has gone through the LRU, so make sure it gets
   1259 		 * reused ASAP.
   1260 		 */
   1261 		SET(bp->b_flags, B_AGE);
   1262 		simple_unlock(&bp->b_interlock);
   1263 		simple_unlock(&bqueue_slock);
   1264 		bawrite(bp);
   1265 		simple_lock(&bqueue_slock);
   1266 		return (NULL);
   1267 	}
   1268 
   1269 	/* disassociate us from our vnode, if we had one... */
   1270 	if (bp->b_vp)
   1271 		brelvp(bp);
   1272 
   1273 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
   1274 		(*bioops.io_deallocate)(bp);
   1275 
   1276 	/* clear out various other fields */
   1277 	bp->b_flags = B_BUSY;
   1278 	bp->b_dev = NODEV;
   1279 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1280 	bp->b_iodone = 0;
   1281 	bp->b_error = 0;
   1282 	bp->b_resid = 0;
   1283 	bp->b_bcount = 0;
   1284 
   1285 	bremhash(bp);
   1286 	return (bp);
   1287 }
   1288 
   1289 /*
   1290  * Attempt to free an aged buffer off the queues.
   1291  * Called at splbio and with queue lock held.
   1292  * Returns the amount of buffer memory freed.
   1293  */
   1294 static int
   1295 buf_trim(void)
   1296 {
   1297 	struct buf *bp;
   1298 	long size = 0;
   1299 
   1300 	/* Instruct getnewbuf() to get buffers off the queues */
   1301 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1302 		return 0;
   1303 
   1304 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1305 	simple_unlock(&bp->b_interlock);
   1306 	size = bp->b_bufsize;
   1307 	bufmem -= size;
   1308 	simple_unlock(&bqueue_slock);
   1309 	if (size > 0) {
   1310 		buf_mrelease(bp->b_data, size);
   1311 		bp->b_bcount = bp->b_bufsize = 0;
   1312 	}
   1313 	/* brelse() will return the buffer to the global buffer pool */
   1314 	brelse(bp);
   1315 	simple_lock(&bqueue_slock);
   1316 	return size;
   1317 }
   1318 
   1319 int
   1320 buf_drain(int n)
   1321 {
   1322 	int s, size = 0, sz;
   1323 
   1324 	s = splbio();
   1325 	simple_lock(&bqueue_slock);
   1326 
   1327 	while (size < n && bufmem > bufmem_lowater) {
   1328 		sz = buf_trim();
   1329 		if (sz <= 0)
   1330 			break;
   1331 		size += sz;
   1332 	}
   1333 
   1334 	simple_unlock(&bqueue_slock);
   1335 	splx(s);
   1336 	return size;
   1337 }
   1338 
   1339 /*
   1340  * Wait for operations on the buffer to complete.
   1341  * When they do, extract and return the I/O's error value.
   1342  */
   1343 int
   1344 biowait(struct buf *bp)
   1345 {
   1346 	int s, error;
   1347 
   1348 	s = splbio();
   1349 	simple_lock(&bp->b_interlock);
   1350 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1351 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1352 
   1353 	/* check for interruption of I/O (e.g. via NFS), then errors. */
   1354 	if (ISSET(bp->b_flags, B_EINTR)) {
   1355 		CLR(bp->b_flags, B_EINTR);
   1356 		error = EINTR;
   1357 	} else if (ISSET(bp->b_flags, B_ERROR))
   1358 		error = bp->b_error ? bp->b_error : EIO;
   1359 	else
   1360 		error = 0;
   1361 
   1362 	simple_unlock(&bp->b_interlock);
   1363 	splx(s);
   1364 	return (error);
   1365 }
   1366 
   1367 /*
   1368  * Mark I/O complete on a buffer.
   1369  *
   1370  * If a callback has been requested, e.g. the pageout
   1371  * daemon, do so. Otherwise, awaken waiting processes.
   1372  *
   1373  * [ Leffler, et al., says on p.247:
   1374  *	"This routine wakes up the blocked process, frees the buffer
   1375  *	for an asynchronous write, or, for a request by the pagedaemon
   1376  *	process, invokes a procedure specified in the buffer structure" ]
   1377  *
   1378  * In real life, the pagedaemon (or other system processes) wants
   1379  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1380  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1381  * for the vn device, that puts malloc'd buffers on the free lists!)
   1382  */
   1383 void
   1384 biodone(struct buf *bp)
   1385 {
   1386 	int s = splbio();
   1387 
   1388 	simple_lock(&bp->b_interlock);
   1389 	if (ISSET(bp->b_flags, B_DONE))
   1390 		panic("biodone already");
   1391 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1392 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1393 
   1394 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
   1395 		(*bioops.io_complete)(bp);
   1396 
   1397 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1398 		vwakeup(bp);
   1399 
   1400 	/*
   1401 	 * If necessary, call out.  Unlock the buffer before calling
   1402 	 * iodone() as the buffer isn't valid any more when it return.
   1403 	 */
   1404 	if (ISSET(bp->b_flags, B_CALL)) {
   1405 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1406 		simple_unlock(&bp->b_interlock);
   1407 		(*bp->b_iodone)(bp);
   1408 	} else {
   1409 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1410 			simple_unlock(&bp->b_interlock);
   1411 			brelse(bp);
   1412 		} else {			/* or just wakeup the buffer */
   1413 			CLR(bp->b_flags, B_WANTED);
   1414 			wakeup(bp);
   1415 			simple_unlock(&bp->b_interlock);
   1416 		}
   1417 	}
   1418 
   1419 	splx(s);
   1420 }
   1421 
   1422 /*
   1423  * Return a count of buffers on the "locked" queue.
   1424  */
   1425 int
   1426 count_lock_queue(void)
   1427 {
   1428 	struct buf *bp;
   1429 	int n = 0;
   1430 
   1431 	simple_lock(&bqueue_slock);
   1432 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1433 		n++;
   1434 	simple_unlock(&bqueue_slock);
   1435 	return (n);
   1436 }
   1437 
   1438 /*
   1439  * Wait for all buffers to complete I/O
   1440  * Return the number of "stuck" buffers.
   1441  */
   1442 int
   1443 buf_syncwait(void)
   1444 {
   1445 	struct buf *bp;
   1446 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1447 
   1448 	dcount = 10000;
   1449 	for (iter = 0; iter < 20;) {
   1450 		s = splbio();
   1451 		simple_lock(&bqueue_slock);
   1452 		nbusy = 0;
   1453 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1454 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1455 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1456 				nbusy++;
   1457 			/*
   1458 			 * With soft updates, some buffers that are
   1459 			 * written will be remarked as dirty until other
   1460 			 * buffers are written.
   1461 			 */
   1462 			if (bp->b_vp && bp->b_vp->v_mount
   1463 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1464 			    && (bp->b_flags & B_DELWRI)) {
   1465 				simple_lock(&bp->b_interlock);
   1466 				bremfree(bp);
   1467 				bp->b_flags |= B_BUSY;
   1468 				nbusy++;
   1469 				simple_unlock(&bp->b_interlock);
   1470 				simple_unlock(&bqueue_slock);
   1471 				bawrite(bp);
   1472 				if (dcount-- <= 0) {
   1473 					printf("softdep ");
   1474 					splx(s);
   1475 					goto fail;
   1476 				}
   1477 				simple_lock(&bqueue_slock);
   1478 			}
   1479 		    }
   1480 		}
   1481 
   1482 		simple_unlock(&bqueue_slock);
   1483 		splx(s);
   1484 
   1485 		if (nbusy == 0)
   1486 			break;
   1487 		if (nbusy_prev == 0)
   1488 			nbusy_prev = nbusy;
   1489 		printf("%d ", nbusy);
   1490 		tsleep(&nbusy, PRIBIO, "bflush",
   1491 		    (iter == 0) ? 1 : hz / 25 * iter);
   1492 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1493 			iter++;
   1494 		else
   1495 			nbusy_prev = nbusy;
   1496 	}
   1497 
   1498 	if (nbusy) {
   1499 fail:;
   1500 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1501 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1502 		s = splbio();
   1503 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1504 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1505 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1506 				vprint(NULL, bp->b_vp);
   1507 		    }
   1508 		}
   1509 		splx(s);
   1510 #endif
   1511 	}
   1512 
   1513 	return nbusy;
   1514 }
   1515 
   1516 static void
   1517 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1518 {
   1519 
   1520 	o->b_flags = i->b_flags;
   1521 	o->b_error = i->b_error;
   1522 	o->b_prio = i->b_prio;
   1523 	o->b_dev = i->b_dev;
   1524 	o->b_bufsize = i->b_bufsize;
   1525 	o->b_bcount = i->b_bcount;
   1526 	o->b_resid = i->b_resid;
   1527 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
   1528 	o->b_blkno = i->b_blkno;
   1529 	o->b_rawblkno = i->b_rawblkno;
   1530 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1531 	o->b_proc = PTRTOUINT64(i->b_proc);
   1532 	o->b_vp = PTRTOUINT64(i->b_vp);
   1533 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1534 	o->b_lblkno = i->b_lblkno;
   1535 }
   1536 
   1537 #define KERN_BUFSLOP 20
   1538 static int
   1539 sysctl_dobuf(SYSCTLFN_ARGS)
   1540 {
   1541 	struct buf *bp;
   1542 	struct buf_sysctl bs;
   1543 	char *dp;
   1544 	u_int i, op, arg;
   1545 	size_t len, needed, elem_size, out_size;
   1546 	int error, s, elem_count;
   1547 
   1548 	if (namelen == 1 && name[0] == CTL_QUERY)
   1549 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1550 
   1551 	if (namelen != 4)
   1552 		return (EINVAL);
   1553 
   1554 	dp = oldp;
   1555 	len = (oldp != NULL) ? *oldlenp : 0;
   1556 	op = name[0];
   1557 	arg = name[1];
   1558 	elem_size = name[2];
   1559 	elem_count = name[3];
   1560 	out_size = MIN(sizeof(bs), elem_size);
   1561 
   1562 	/*
   1563 	 * at the moment, these are just "placeholders" to make the
   1564 	 * API for retrieving kern.buf data more extensible in the
   1565 	 * future.
   1566 	 *
   1567 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1568 	 * these will be resolved at a later point.
   1569 	 */
   1570 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1571 	    elem_size < 1 || elem_count < 0)
   1572 		return (EINVAL);
   1573 
   1574 	error = 0;
   1575 	needed = 0;
   1576 	s = splbio();
   1577 	simple_lock(&bqueue_slock);
   1578 	for (i = 0; i < BQUEUES; i++) {
   1579 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1580 			if (len >= elem_size && elem_count > 0) {
   1581 				sysctl_fillbuf(bp, &bs);
   1582 				error = copyout(&bs, dp, out_size);
   1583 				if (error)
   1584 					goto cleanup;
   1585 				dp += elem_size;
   1586 				len -= elem_size;
   1587 			}
   1588 			if (elem_count > 0) {
   1589 				needed += elem_size;
   1590 				if (elem_count != INT_MAX)
   1591 					elem_count--;
   1592 			}
   1593 		}
   1594 	}
   1595 cleanup:
   1596 	simple_unlock(&bqueue_slock);
   1597 	splx(s);
   1598 
   1599 	*oldlenp = needed;
   1600 	if (oldp == NULL)
   1601 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1602 
   1603 	return (error);
   1604 }
   1605 
   1606 static int
   1607 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1608 {
   1609 	int t, error;
   1610 	struct sysctlnode node;
   1611 
   1612 	node = *rnode;
   1613 	node.sysctl_data = &t;
   1614 	t = *(int *)rnode->sysctl_data;
   1615 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1616 	if (error || newp == NULL)
   1617 		return (error);
   1618 
   1619 	if (t < 0)
   1620 		return EINVAL;
   1621 	if (rnode->sysctl_data == &bufcache) {
   1622 		if (t > 100)
   1623 			return (EINVAL);
   1624 		bufcache = t;
   1625 		buf_setwm();
   1626 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1627 		if (bufmem_hiwater - t < 16)
   1628 			return (EINVAL);
   1629 		bufmem_lowater = t;
   1630 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1631 		if (t - bufmem_lowater < 16)
   1632 			return (EINVAL);
   1633 		bufmem_hiwater = t;
   1634 	} else
   1635 		return (EINVAL);
   1636 
   1637 	/* Drain until below new high water mark */
   1638 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1639 		if (buf_drain(t / (2 * 1024)) <= 0)
   1640 			break;
   1641 	}
   1642 
   1643 	return 0;
   1644 }
   1645 
   1646 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1647 {
   1648 
   1649 	sysctl_createv(clog, 0, NULL, NULL,
   1650 		       CTLFLAG_PERMANENT,
   1651 		       CTLTYPE_NODE, "kern", NULL,
   1652 		       NULL, 0, NULL, 0,
   1653 		       CTL_KERN, CTL_EOL);
   1654 	sysctl_createv(clog, 0, NULL, NULL,
   1655 		       CTLFLAG_PERMANENT,
   1656 		       CTLTYPE_NODE, "buf",
   1657 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1658 		       sysctl_dobuf, 0, NULL, 0,
   1659 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1660 }
   1661 
   1662 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1663 {
   1664 
   1665 	sysctl_createv(clog, 0, NULL, NULL,
   1666 		       CTLFLAG_PERMANENT,
   1667 		       CTLTYPE_NODE, "vm", NULL,
   1668 		       NULL, 0, NULL, 0,
   1669 		       CTL_VM, CTL_EOL);
   1670 
   1671 	sysctl_createv(clog, 0, NULL, NULL,
   1672 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1673 		       CTLTYPE_INT, "bufcache",
   1674 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1675 				    "buffer cache"),
   1676 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1677 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1678 	sysctl_createv(clog, 0, NULL, NULL,
   1679 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1680 		       CTLTYPE_INT, "bufmem",
   1681 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1682 				    "cache"),
   1683 		       NULL, 0, &bufmem, 0,
   1684 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1685 	sysctl_createv(clog, 0, NULL, NULL,
   1686 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1687 		       CTLTYPE_INT, "bufmem_lowater",
   1688 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1689 				    "reserve for buffer cache"),
   1690 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1691 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1692 	sysctl_createv(clog, 0, NULL, NULL,
   1693 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1694 		       CTLTYPE_INT, "bufmem_hiwater",
   1695 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1696 				    "for buffer cache"),
   1697 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1698 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1699 }
   1700 
   1701 #ifdef DEBUG
   1702 /*
   1703  * Print out statistics on the current allocation of the buffer pool.
   1704  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1705  * in vfs_syscalls.c using sysctl.
   1706  */
   1707 void
   1708 vfs_bufstats(void)
   1709 {
   1710 	int s, i, j, count;
   1711 	struct buf *bp;
   1712 	struct bqueue *dp;
   1713 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1714 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1715 
   1716 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1717 		count = 0;
   1718 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1719 			counts[j] = 0;
   1720 		s = splbio();
   1721 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1722 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1723 			count++;
   1724 		}
   1725 		splx(s);
   1726 		printf("%s: total-%d", bname[i], count);
   1727 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1728 			if (counts[j] != 0)
   1729 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1730 		printf("\n");
   1731 	}
   1732 }
   1733 #endif /* DEBUG */
   1734