vfs_bio.c revision 1.146 1 /* $NetBSD: vfs_bio.c,v 1.146 2005/06/09 02:19:59 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.146 2005/06/09 02:19:59 atatat Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118 /* Function prototypes */
119 struct bqueue;
120
121 static void buf_setwm(void);
122 static int buf_trim(void);
123 static void *bufpool_page_alloc(struct pool *, int);
124 static void bufpool_page_free(struct pool *, void *);
125 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126 struct ucred *, int);
127 static int buf_lotsfree(void);
128 static int buf_canrelease(void);
129 static __inline u_long buf_mempoolidx(u_long);
130 static __inline u_long buf_roundsize(u_long);
131 static __inline caddr_t buf_malloc(size_t);
132 static void buf_mrelease(caddr_t, size_t);
133 static __inline void binsheadfree(struct buf *, struct bqueue *);
134 static __inline void binstailfree(struct buf *, struct bqueue *);
135 int count_lock_queue(void); /* XXX */
136 #ifdef DEBUG
137 static int checkfreelist(struct buf *, struct bqueue *);
138 #endif
139
140 /* Macros to clear/set/test flags. */
141 #define SET(t, f) (t) |= (f)
142 #define CLR(t, f) (t) &= ~(f)
143 #define ISSET(t, f) ((t) & (f))
144
145 /*
146 * Definitions for the buffer hash lists.
147 */
148 #define BUFHASH(dvp, lbn) \
149 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151 u_long bufhash;
152 #if !defined(SOFTDEP) || !defined(FFS)
153 struct bio_ops bioops; /* I/O operation notification */
154 #endif
155
156 /*
157 * Insq/Remq for the buffer hash lists.
158 */
159 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
160 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
161
162 /*
163 * Definitions for the buffer free lists.
164 */
165 #define BQUEUES 3 /* number of free buffer queues */
166
167 #define BQ_LOCKED 0 /* super-blocks &c */
168 #define BQ_LRU 1 /* lru, useful buffers */
169 #define BQ_AGE 2 /* rubbish */
170
171 struct bqueue {
172 TAILQ_HEAD(, buf) bq_queue;
173 uint64_t bq_bytes;
174 } bufqueues[BQUEUES];
175 int needbuffer;
176
177 /*
178 * Buffer queue lock.
179 * Take this lock first if also taking some buffer's b_interlock.
180 */
181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182
183 /*
184 * Buffer pool for I/O buffers.
185 */
186 struct pool bufpool;
187
188 /* XXX - somewhat gross.. */
189 #if MAXBSIZE == 0x2000
190 #define NMEMPOOLS 4
191 #elif MAXBSIZE == 0x4000
192 #define NMEMPOOLS 5
193 #elif MAXBSIZE == 0x8000
194 #define NMEMPOOLS 6
195 #else
196 #define NMEMPOOLS 7
197 #endif
198
199 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201 #error update vfs_bio buffer memory parameters
202 #endif
203
204 /* Buffer memory pools */
205 static struct pool bmempools[NMEMPOOLS];
206
207 struct vm_map *buf_map;
208
209 /*
210 * Buffer memory pool allocator.
211 */
212 static void *
213 bufpool_page_alloc(struct pool *pp, int flags)
214 {
215
216 return (void *)uvm_km_alloc(buf_map,
217 MAXBSIZE, MAXBSIZE,
218 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
219 | UVM_KMF_WIRED);
220 }
221
222 static void
223 bufpool_page_free(struct pool *pp, void *v)
224 {
225
226 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
227 }
228
229 static struct pool_allocator bufmempool_allocator = {
230 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
231 };
232
233 /* Buffer memory management variables */
234 u_long bufmem_valimit;
235 u_long bufmem_hiwater;
236 u_long bufmem_lowater;
237 u_long bufmem;
238
239 /*
240 * MD code can call this to set a hard limit on the amount
241 * of virtual memory used by the buffer cache.
242 */
243 int
244 buf_setvalimit(vsize_t sz)
245 {
246
247 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
248 if (sz < NMEMPOOLS * MAXBSIZE)
249 return EINVAL;
250
251 bufmem_valimit = sz;
252 return 0;
253 }
254
255 static void
256 buf_setwm(void)
257 {
258
259 bufmem_hiwater = buf_memcalc();
260 /* lowater is approx. 2% of memory (with bufcache = 15) */
261 #define BUFMEM_WMSHIFT 3
262 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
263 if (bufmem_hiwater < BUFMEM_HIWMMIN)
264 /* Ensure a reasonable minimum value */
265 bufmem_hiwater = BUFMEM_HIWMMIN;
266 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
267 }
268
269 #ifdef DEBUG
270 int debug_verify_freelist = 0;
271 static int
272 checkfreelist(struct buf *bp, struct bqueue *dp)
273 {
274 struct buf *b;
275
276 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
277 if (b == bp)
278 return 1;
279 }
280 return 0;
281 }
282 #endif
283
284 /*
285 * Insq/Remq for the buffer hash lists.
286 * Call with buffer queue locked.
287 */
288 static __inline void
289 binsheadfree(struct buf *bp, struct bqueue *dp)
290 {
291
292 KASSERT(bp->b_freelistindex == -1);
293 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
294 dp->bq_bytes += bp->b_bufsize;
295 bp->b_freelistindex = dp - bufqueues;
296 }
297
298 static __inline void
299 binstailfree(struct buf *bp, struct bqueue *dp)
300 {
301
302 KASSERT(bp->b_freelistindex == -1);
303 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
304 dp->bq_bytes += bp->b_bufsize;
305 bp->b_freelistindex = dp - bufqueues;
306 }
307
308 void
309 bremfree(struct buf *bp)
310 {
311 struct bqueue *dp;
312 int bqidx = bp->b_freelistindex;
313
314 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
315
316 KASSERT(bqidx != -1);
317 dp = &bufqueues[bqidx];
318 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
319 KASSERT(dp->bq_bytes >= bp->b_bufsize);
320 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
321 dp->bq_bytes -= bp->b_bufsize;
322 #if defined(DIAGNOSTIC)
323 bp->b_freelistindex = -1;
324 #endif /* defined(DIAGNOSTIC) */
325 }
326
327 u_long
328 buf_memcalc(void)
329 {
330 u_long n;
331
332 /*
333 * Determine the upper bound of memory to use for buffers.
334 *
335 * - If bufpages is specified, use that as the number
336 * pages.
337 *
338 * - Otherwise, use bufcache as the percentage of
339 * physical memory.
340 */
341 if (bufpages != 0) {
342 n = bufpages;
343 } else {
344 if (bufcache < 5) {
345 printf("forcing bufcache %d -> 5", bufcache);
346 bufcache = 5;
347 }
348 if (bufcache > 95) {
349 printf("forcing bufcache %d -> 95", bufcache);
350 bufcache = 95;
351 }
352 n = physmem / 100 * bufcache;
353 }
354
355 n <<= PAGE_SHIFT;
356 if (bufmem_valimit != 0 && n > bufmem_valimit)
357 n = bufmem_valimit;
358
359 return (n);
360 }
361
362 /*
363 * Initialize buffers and hash links for buffers.
364 */
365 void
366 bufinit(void)
367 {
368 struct bqueue *dp;
369 int use_std;
370 u_int i;
371
372 /*
373 * Initialize buffer cache memory parameters.
374 */
375 bufmem = 0;
376 buf_setwm();
377
378 if (bufmem_valimit != 0) {
379 vaddr_t minaddr = 0, maxaddr;
380 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
381 bufmem_valimit, VM_MAP_PAGEABLE,
382 FALSE, 0);
383 if (buf_map == NULL)
384 panic("bufinit: cannot allocate submap");
385 } else
386 buf_map = kernel_map;
387
388 /*
389 * Initialize the buffer pools.
390 */
391 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
392
393 /* On "small" machines use small pool page sizes where possible */
394 use_std = (physmem < atop(16*1024*1024));
395
396 /*
397 * Also use them on systems that can map the pool pages using
398 * a direct-mapped segment.
399 */
400 #ifdef PMAP_MAP_POOLPAGE
401 use_std = 1;
402 #endif
403
404 for (i = 0; i < NMEMPOOLS; i++) {
405 struct pool_allocator *pa;
406 struct pool *pp = &bmempools[i];
407 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
408 char *name = malloc(8, M_TEMP, M_WAITOK);
409 snprintf(name, 8, "buf%dk", 1 << i);
410 pa = (size <= PAGE_SIZE && use_std)
411 ? &pool_allocator_nointr
412 : &bufmempool_allocator;
413 pool_init(pp, size, 0, 0, 0, name, pa);
414 pool_setlowat(pp, 1);
415 pool_sethiwat(pp, 1);
416 }
417
418 /* Initialize the buffer queues */
419 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
420 TAILQ_INIT(&dp->bq_queue);
421 dp->bq_bytes = 0;
422 }
423
424 /*
425 * Estimate hash table size based on the amount of memory we
426 * intend to use for the buffer cache. The average buffer
427 * size is dependent on our clients (i.e. filesystems).
428 *
429 * For now, use an empirical 3K per buffer.
430 */
431 nbuf = (bufmem_hiwater / 1024) / 3;
432 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
433 }
434
435 static int
436 buf_lotsfree(void)
437 {
438 int try, thresh;
439 struct lwp *l = curlwp;
440
441 /* Always allocate if doing copy on write */
442 if (l->l_flag & L_COWINPROGRESS)
443 return 1;
444
445 /* Always allocate if less than the low water mark. */
446 if (bufmem < bufmem_lowater)
447 return 1;
448
449 /* Never allocate if greater than the high water mark. */
450 if (bufmem > bufmem_hiwater)
451 return 0;
452
453 /* If there's anything on the AGE list, it should be eaten. */
454 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
455 return 0;
456
457 /*
458 * The probabily of getting a new allocation is inversely
459 * proportional to the current size of the cache, using
460 * a granularity of 16 steps.
461 */
462 try = random() & 0x0000000fL;
463
464 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
465 thresh = (bufmem - bufmem_lowater) /
466 ((bufmem_hiwater - bufmem_lowater) / 16);
467
468 if (try >= thresh)
469 return 1;
470
471 /* Otherwise don't allocate. */
472 return 0;
473 }
474
475 /*
476 * Return estimate of bytes we think need to be
477 * released to help resolve low memory conditions.
478 *
479 * => called at splbio.
480 * => called with bqueue_slock held.
481 */
482 static int
483 buf_canrelease(void)
484 {
485 int pagedemand, ninvalid = 0;
486
487 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
488
489 if (bufmem < bufmem_lowater)
490 return 0;
491
492 if (bufmem > bufmem_hiwater)
493 return bufmem - bufmem_hiwater;
494
495 ninvalid += bufqueues[BQ_AGE].bq_bytes;
496
497 pagedemand = uvmexp.freetarg - uvmexp.free;
498 if (pagedemand < 0)
499 return ninvalid;
500 return MAX(ninvalid, MIN(2 * MAXBSIZE,
501 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
502 }
503
504 /*
505 * Buffer memory allocation helper functions
506 */
507 static __inline u_long
508 buf_mempoolidx(u_long size)
509 {
510 u_int n = 0;
511
512 size -= 1;
513 size >>= MEMPOOL_INDEX_OFFSET;
514 while (size) {
515 size >>= 1;
516 n += 1;
517 }
518 if (n >= NMEMPOOLS)
519 panic("buf mem pool index %d", n);
520 return n;
521 }
522
523 static __inline u_long
524 buf_roundsize(u_long size)
525 {
526 /* Round up to nearest power of 2 */
527 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
528 }
529
530 static __inline caddr_t
531 buf_malloc(size_t size)
532 {
533 u_int n = buf_mempoolidx(size);
534 caddr_t addr;
535 int s;
536
537 while (1) {
538 addr = pool_get(&bmempools[n], PR_NOWAIT);
539 if (addr != NULL)
540 break;
541
542 /* No memory, see if we can free some. If so, try again */
543 if (buf_drain(1) > 0)
544 continue;
545
546 /* Wait for buffers to arrive on the LRU queue */
547 s = splbio();
548 simple_lock(&bqueue_slock);
549 needbuffer = 1;
550 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
551 "buf_malloc", 0, &bqueue_slock);
552 splx(s);
553 }
554
555 return addr;
556 }
557
558 static void
559 buf_mrelease(caddr_t addr, size_t size)
560 {
561
562 pool_put(&bmempools[buf_mempoolidx(size)], addr);
563 }
564
565 /*
566 * bread()/breadn() helper.
567 */
568 static __inline struct buf *
569 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
570 int async)
571 {
572 struct buf *bp;
573 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
574 struct proc *p = l->l_proc;
575 struct mount *mp;
576
577 bp = getblk(vp, blkno, size, 0, 0);
578
579 #ifdef DIAGNOSTIC
580 if (bp == NULL) {
581 panic("bio_doread: no such buf");
582 }
583 #endif
584
585 /*
586 * If buffer does not have data valid, start a read.
587 * Note that if buffer is B_INVAL, getblk() won't return it.
588 * Therefore, it's valid if its I/O has completed or been delayed.
589 */
590 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
591 /* Start I/O for the buffer. */
592 SET(bp->b_flags, B_READ | async);
593 if (async)
594 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
595 else
596 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
597 VOP_STRATEGY(vp, bp);
598
599 /* Pay for the read. */
600 p->p_stats->p_ru.ru_inblock++;
601 } else if (async) {
602 brelse(bp);
603 }
604
605 if (vp->v_type == VBLK)
606 mp = vp->v_specmountpoint;
607 else
608 mp = vp->v_mount;
609
610 /*
611 * Collect statistics on synchronous and asynchronous reads.
612 * Reads from block devices are charged to their associated
613 * filesystem (if any).
614 */
615 if (mp != NULL) {
616 if (async == 0)
617 mp->mnt_stat.f_syncreads++;
618 else
619 mp->mnt_stat.f_asyncreads++;
620 }
621
622 return (bp);
623 }
624
625 /*
626 * Read a disk block.
627 * This algorithm described in Bach (p.54).
628 */
629 int
630 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
631 struct buf **bpp)
632 {
633 struct buf *bp;
634
635 /* Get buffer for block. */
636 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
637
638 /* Wait for the read to complete, and return result. */
639 return (biowait(bp));
640 }
641
642 /*
643 * Read-ahead multiple disk blocks. The first is sync, the rest async.
644 * Trivial modification to the breada algorithm presented in Bach (p.55).
645 */
646 int
647 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
648 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
649 {
650 struct buf *bp;
651 int i;
652
653 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
654
655 /*
656 * For each of the read-ahead blocks, start a read, if necessary.
657 */
658 for (i = 0; i < nrablks; i++) {
659 /* If it's in the cache, just go on to next one. */
660 if (incore(vp, rablks[i]))
661 continue;
662
663 /* Get a buffer for the read-ahead block */
664 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
665 }
666
667 /* Otherwise, we had to start a read for it; wait until it's valid. */
668 return (biowait(bp));
669 }
670
671 /*
672 * Read with single-block read-ahead. Defined in Bach (p.55), but
673 * implemented as a call to breadn().
674 * XXX for compatibility with old file systems.
675 */
676 int
677 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
678 int rabsize, struct ucred *cred, struct buf **bpp)
679 {
680
681 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
682 }
683
684 /*
685 * Block write. Described in Bach (p.56)
686 */
687 int
688 bwrite(struct buf *bp)
689 {
690 int rv, sync, wasdelayed, s;
691 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
692 struct proc *p = l->l_proc;
693 struct vnode *vp;
694 struct mount *mp;
695
696 KASSERT(ISSET(bp->b_flags, B_BUSY));
697
698 vp = bp->b_vp;
699 if (vp != NULL) {
700 if (vp->v_type == VBLK)
701 mp = vp->v_specmountpoint;
702 else
703 mp = vp->v_mount;
704 } else {
705 mp = NULL;
706 }
707
708 /*
709 * Remember buffer type, to switch on it later. If the write was
710 * synchronous, but the file system was mounted with MNT_ASYNC,
711 * convert it to a delayed write.
712 * XXX note that this relies on delayed tape writes being converted
713 * to async, not sync writes (which is safe, but ugly).
714 */
715 sync = !ISSET(bp->b_flags, B_ASYNC);
716 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
717 bdwrite(bp);
718 return (0);
719 }
720
721 /*
722 * Collect statistics on synchronous and asynchronous writes.
723 * Writes to block devices are charged to their associated
724 * filesystem (if any).
725 */
726 if (mp != NULL) {
727 if (sync)
728 mp->mnt_stat.f_syncwrites++;
729 else
730 mp->mnt_stat.f_asyncwrites++;
731 }
732
733 s = splbio();
734 simple_lock(&bp->b_interlock);
735
736 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
737
738 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
739
740 /*
741 * Pay for the I/O operation and make sure the buf is on the correct
742 * vnode queue.
743 */
744 if (wasdelayed)
745 reassignbuf(bp, bp->b_vp);
746 else
747 p->p_stats->p_ru.ru_oublock++;
748
749 /* Initiate disk write. Make sure the appropriate party is charged. */
750 V_INCR_NUMOUTPUT(bp->b_vp);
751 simple_unlock(&bp->b_interlock);
752 splx(s);
753
754 if (sync)
755 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
756 else
757 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
758
759 VOP_STRATEGY(vp, bp);
760
761 if (sync) {
762 /* If I/O was synchronous, wait for it to complete. */
763 rv = biowait(bp);
764
765 /* Release the buffer. */
766 brelse(bp);
767
768 return (rv);
769 } else {
770 return (0);
771 }
772 }
773
774 int
775 vn_bwrite(void *v)
776 {
777 struct vop_bwrite_args *ap = v;
778
779 return (bwrite(ap->a_bp));
780 }
781
782 /*
783 * Delayed write.
784 *
785 * The buffer is marked dirty, but is not queued for I/O.
786 * This routine should be used when the buffer is expected
787 * to be modified again soon, typically a small write that
788 * partially fills a buffer.
789 *
790 * NB: magnetic tapes cannot be delayed; they must be
791 * written in the order that the writes are requested.
792 *
793 * Described in Leffler, et al. (pp. 208-213).
794 */
795 void
796 bdwrite(struct buf *bp)
797 {
798 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
799 struct proc *p = l->l_proc;
800 const struct bdevsw *bdev;
801 int s;
802
803 /* If this is a tape block, write the block now. */
804 bdev = bdevsw_lookup(bp->b_dev);
805 if (bdev != NULL && bdev->d_type == D_TAPE) {
806 bawrite(bp);
807 return;
808 }
809
810 /*
811 * If the block hasn't been seen before:
812 * (1) Mark it as having been seen,
813 * (2) Charge for the write,
814 * (3) Make sure it's on its vnode's correct block list.
815 */
816 s = splbio();
817 simple_lock(&bp->b_interlock);
818
819 KASSERT(ISSET(bp->b_flags, B_BUSY));
820
821 if (!ISSET(bp->b_flags, B_DELWRI)) {
822 SET(bp->b_flags, B_DELWRI);
823 p->p_stats->p_ru.ru_oublock++;
824 reassignbuf(bp, bp->b_vp);
825 }
826
827 /* Otherwise, the "write" is done, so mark and release the buffer. */
828 CLR(bp->b_flags, B_DONE);
829 simple_unlock(&bp->b_interlock);
830 splx(s);
831
832 brelse(bp);
833 }
834
835 /*
836 * Asynchronous block write; just an asynchronous bwrite().
837 */
838 void
839 bawrite(struct buf *bp)
840 {
841 int s;
842
843 s = splbio();
844 simple_lock(&bp->b_interlock);
845
846 KASSERT(ISSET(bp->b_flags, B_BUSY));
847
848 SET(bp->b_flags, B_ASYNC);
849 simple_unlock(&bp->b_interlock);
850 splx(s);
851 VOP_BWRITE(bp);
852 }
853
854 /*
855 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
856 * Call at splbio() and with the buffer interlock locked.
857 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
858 */
859 void
860 bdirty(struct buf *bp)
861 {
862 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
863 struct proc *p = l->l_proc;
864
865 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
866 KASSERT(ISSET(bp->b_flags, B_BUSY));
867
868 CLR(bp->b_flags, B_AGE);
869
870 if (!ISSET(bp->b_flags, B_DELWRI)) {
871 SET(bp->b_flags, B_DELWRI);
872 p->p_stats->p_ru.ru_oublock++;
873 reassignbuf(bp, bp->b_vp);
874 }
875 }
876
877 /*
878 * Release a buffer on to the free lists.
879 * Described in Bach (p. 46).
880 */
881 void
882 brelse(struct buf *bp)
883 {
884 struct bqueue *bufq;
885 int s;
886
887 /* Block disk interrupts. */
888 s = splbio();
889 simple_lock(&bqueue_slock);
890 simple_lock(&bp->b_interlock);
891
892 KASSERT(ISSET(bp->b_flags, B_BUSY));
893 KASSERT(!ISSET(bp->b_flags, B_CALL));
894
895 /* Wake up any processes waiting for any buffer to become free. */
896 if (needbuffer) {
897 needbuffer = 0;
898 wakeup(&needbuffer);
899 }
900
901 /* Wake up any proceeses waiting for _this_ buffer to become free. */
902 if (ISSET(bp->b_flags, B_WANTED)) {
903 CLR(bp->b_flags, B_WANTED|B_AGE);
904 wakeup(bp);
905 }
906
907 /*
908 * Determine which queue the buffer should be on, then put it there.
909 */
910
911 /* If it's locked, don't report an error; try again later. */
912 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
913 CLR(bp->b_flags, B_ERROR);
914
915 /* If it's not cacheable, or an error, mark it invalid. */
916 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
917 SET(bp->b_flags, B_INVAL);
918
919 if (ISSET(bp->b_flags, B_VFLUSH)) {
920 /*
921 * This is a delayed write buffer that was just flushed to
922 * disk. It is still on the LRU queue. If it's become
923 * invalid, then we need to move it to a different queue;
924 * otherwise leave it in its current position.
925 */
926 CLR(bp->b_flags, B_VFLUSH);
927 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
928 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
929 goto already_queued;
930 } else {
931 bremfree(bp);
932 }
933 }
934
935 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
936 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
937 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
938
939 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
940 /*
941 * If it's invalid or empty, dissociate it from its vnode
942 * and put on the head of the appropriate queue.
943 */
944 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
945 (*bioops.io_deallocate)(bp);
946 CLR(bp->b_flags, B_DONE|B_DELWRI);
947 if (bp->b_vp) {
948 reassignbuf(bp, bp->b_vp);
949 brelvp(bp);
950 }
951 if (bp->b_bufsize <= 0)
952 /* no data */
953 goto already_queued;
954 else
955 /* invalid data */
956 bufq = &bufqueues[BQ_AGE];
957 binsheadfree(bp, bufq);
958 } else {
959 /*
960 * It has valid data. Put it on the end of the appropriate
961 * queue, so that it'll stick around for as long as possible.
962 * If buf is AGE, but has dependencies, must put it on last
963 * bufqueue to be scanned, ie LRU. This protects against the
964 * livelock where BQ_AGE only has buffers with dependencies,
965 * and we thus never get to the dependent buffers in BQ_LRU.
966 */
967 if (ISSET(bp->b_flags, B_LOCKED))
968 /* locked in core */
969 bufq = &bufqueues[BQ_LOCKED];
970 else if (!ISSET(bp->b_flags, B_AGE))
971 /* valid data */
972 bufq = &bufqueues[BQ_LRU];
973 else {
974 /* stale but valid data */
975 int has_deps;
976
977 if (LIST_FIRST(&bp->b_dep) != NULL &&
978 bioops.io_countdeps)
979 has_deps = (*bioops.io_countdeps)(bp, 0);
980 else
981 has_deps = 0;
982 bufq = has_deps ? &bufqueues[BQ_LRU] :
983 &bufqueues[BQ_AGE];
984 }
985 binstailfree(bp, bufq);
986 }
987
988 already_queued:
989 /* Unlock the buffer. */
990 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
991 SET(bp->b_flags, B_CACHE);
992
993 /* Allow disk interrupts. */
994 simple_unlock(&bp->b_interlock);
995 simple_unlock(&bqueue_slock);
996 if (bp->b_bufsize <= 0) {
997 #ifdef DEBUG
998 memset((char *)bp, 0, sizeof(*bp));
999 #endif
1000 pool_put(&bufpool, bp);
1001 }
1002 splx(s);
1003 }
1004
1005 /*
1006 * Determine if a block is in the cache.
1007 * Just look on what would be its hash chain. If it's there, return
1008 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1009 * we normally don't return the buffer, unless the caller explicitly
1010 * wants us to.
1011 */
1012 struct buf *
1013 incore(struct vnode *vp, daddr_t blkno)
1014 {
1015 struct buf *bp;
1016
1017 /* Search hash chain */
1018 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1019 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1020 !ISSET(bp->b_flags, B_INVAL))
1021 return (bp);
1022 }
1023
1024 return (NULL);
1025 }
1026
1027 /*
1028 * Get a block of requested size that is associated with
1029 * a given vnode and block offset. If it is found in the
1030 * block cache, mark it as having been found, make it busy
1031 * and return it. Otherwise, return an empty block of the
1032 * correct size. It is up to the caller to insure that the
1033 * cached blocks be of the correct size.
1034 */
1035 struct buf *
1036 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1037 {
1038 struct buf *bp;
1039 int s, err;
1040 int preserve;
1041
1042 start:
1043 s = splbio();
1044 simple_lock(&bqueue_slock);
1045 bp = incore(vp, blkno);
1046 if (bp != NULL) {
1047 simple_lock(&bp->b_interlock);
1048 if (ISSET(bp->b_flags, B_BUSY)) {
1049 simple_unlock(&bqueue_slock);
1050 if (curproc == uvm.pagedaemon_proc) {
1051 simple_unlock(&bp->b_interlock);
1052 splx(s);
1053 return NULL;
1054 }
1055 SET(bp->b_flags, B_WANTED);
1056 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1057 "getblk", slptimeo, &bp->b_interlock);
1058 splx(s);
1059 if (err)
1060 return (NULL);
1061 goto start;
1062 }
1063 #ifdef DIAGNOSTIC
1064 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1065 bp->b_bcount < size && vp->v_type != VBLK)
1066 panic("getblk: block size invariant failed");
1067 #endif
1068 SET(bp->b_flags, B_BUSY);
1069 bremfree(bp);
1070 preserve = 1;
1071 } else {
1072 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1073 simple_unlock(&bqueue_slock);
1074 splx(s);
1075 goto start;
1076 }
1077
1078 binshash(bp, BUFHASH(vp, blkno));
1079 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1080 bgetvp(vp, bp);
1081 preserve = 0;
1082 }
1083 simple_unlock(&bp->b_interlock);
1084 simple_unlock(&bqueue_slock);
1085 splx(s);
1086 /*
1087 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1088 * if we re-size buffers here.
1089 */
1090 if (ISSET(bp->b_flags, B_LOCKED)) {
1091 KASSERT(bp->b_bufsize >= size);
1092 } else {
1093 allocbuf(bp, size, preserve);
1094 }
1095 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1096 return (bp);
1097 }
1098
1099 /*
1100 * Get an empty, disassociated buffer of given size.
1101 */
1102 struct buf *
1103 geteblk(int size)
1104 {
1105 struct buf *bp;
1106 int s;
1107
1108 s = splbio();
1109 simple_lock(&bqueue_slock);
1110 while ((bp = getnewbuf(0, 0, 0)) == 0)
1111 ;
1112
1113 SET(bp->b_flags, B_INVAL);
1114 binshash(bp, &invalhash);
1115 simple_unlock(&bqueue_slock);
1116 simple_unlock(&bp->b_interlock);
1117 splx(s);
1118 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1119 allocbuf(bp, size, 0);
1120 return (bp);
1121 }
1122
1123 /*
1124 * Expand or contract the actual memory allocated to a buffer.
1125 *
1126 * If the buffer shrinks, data is lost, so it's up to the
1127 * caller to have written it out *first*; this routine will not
1128 * start a write. If the buffer grows, it's the callers
1129 * responsibility to fill out the buffer's additional contents.
1130 */
1131 void
1132 allocbuf(struct buf *bp, int size, int preserve)
1133 {
1134 vsize_t oldsize, desired_size;
1135 caddr_t addr;
1136 int s, delta;
1137
1138 desired_size = buf_roundsize(size);
1139 if (desired_size > MAXBSIZE)
1140 printf("allocbuf: buffer larger than MAXBSIZE requested");
1141
1142 bp->b_bcount = size;
1143
1144 oldsize = bp->b_bufsize;
1145 if (oldsize == desired_size)
1146 return;
1147
1148 /*
1149 * If we want a buffer of a different size, re-allocate the
1150 * buffer's memory; copy old content only if needed.
1151 */
1152 addr = buf_malloc(desired_size);
1153 if (preserve)
1154 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1155 if (bp->b_data != NULL)
1156 buf_mrelease(bp->b_data, oldsize);
1157 bp->b_data = addr;
1158 bp->b_bufsize = desired_size;
1159
1160 /*
1161 * Update overall buffer memory counter (protected by bqueue_slock)
1162 */
1163 delta = (long)desired_size - (long)oldsize;
1164
1165 s = splbio();
1166 simple_lock(&bqueue_slock);
1167 if ((bufmem += delta) > bufmem_hiwater) {
1168 /*
1169 * Need to trim overall memory usage.
1170 */
1171 while (buf_canrelease()) {
1172 if (buf_trim() == 0)
1173 break;
1174 }
1175 }
1176
1177 simple_unlock(&bqueue_slock);
1178 splx(s);
1179 }
1180
1181 /*
1182 * Find a buffer which is available for use.
1183 * Select something from a free list.
1184 * Preference is to AGE list, then LRU list.
1185 *
1186 * Called at splbio and with buffer queues locked.
1187 * Return buffer locked.
1188 */
1189 struct buf *
1190 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1191 {
1192 struct buf *bp;
1193
1194 start:
1195 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1196
1197 /*
1198 * Get a new buffer from the pool; but use NOWAIT because
1199 * we have the buffer queues locked.
1200 */
1201 if (!from_bufq && buf_lotsfree() &&
1202 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1203 memset((char *)bp, 0, sizeof(*bp));
1204 BUF_INIT(bp);
1205 bp->b_dev = NODEV;
1206 bp->b_vnbufs.le_next = NOLIST;
1207 bp->b_flags = B_BUSY;
1208 simple_lock(&bp->b_interlock);
1209 #if defined(DIAGNOSTIC)
1210 bp->b_freelistindex = -1;
1211 #endif /* defined(DIAGNOSTIC) */
1212 return (bp);
1213 }
1214
1215 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1216 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1217 simple_lock(&bp->b_interlock);
1218 bremfree(bp);
1219 } else {
1220 /*
1221 * XXX: !from_bufq should be removed.
1222 */
1223 if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1224 /* wait for a free buffer of any kind */
1225 needbuffer = 1;
1226 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1227 "getnewbuf", slptimeo, &bqueue_slock);
1228 }
1229 return (NULL);
1230 }
1231
1232 #ifdef DIAGNOSTIC
1233 if (bp->b_bufsize <= 0)
1234 panic("buffer %p: on queue but empty", bp);
1235 #endif
1236
1237 if (ISSET(bp->b_flags, B_VFLUSH)) {
1238 /*
1239 * This is a delayed write buffer being flushed to disk. Make
1240 * sure it gets aged out of the queue when it's finished, and
1241 * leave it off the LRU queue.
1242 */
1243 CLR(bp->b_flags, B_VFLUSH);
1244 SET(bp->b_flags, B_AGE);
1245 simple_unlock(&bp->b_interlock);
1246 goto start;
1247 }
1248
1249 /* Buffer is no longer on free lists. */
1250 SET(bp->b_flags, B_BUSY);
1251
1252 /*
1253 * If buffer was a delayed write, start it and return NULL
1254 * (since we might sleep while starting the write).
1255 */
1256 if (ISSET(bp->b_flags, B_DELWRI)) {
1257 /*
1258 * This buffer has gone through the LRU, so make sure it gets
1259 * reused ASAP.
1260 */
1261 SET(bp->b_flags, B_AGE);
1262 simple_unlock(&bp->b_interlock);
1263 simple_unlock(&bqueue_slock);
1264 bawrite(bp);
1265 simple_lock(&bqueue_slock);
1266 return (NULL);
1267 }
1268
1269 /* disassociate us from our vnode, if we had one... */
1270 if (bp->b_vp)
1271 brelvp(bp);
1272
1273 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1274 (*bioops.io_deallocate)(bp);
1275
1276 /* clear out various other fields */
1277 bp->b_flags = B_BUSY;
1278 bp->b_dev = NODEV;
1279 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1280 bp->b_iodone = 0;
1281 bp->b_error = 0;
1282 bp->b_resid = 0;
1283 bp->b_bcount = 0;
1284
1285 bremhash(bp);
1286 return (bp);
1287 }
1288
1289 /*
1290 * Attempt to free an aged buffer off the queues.
1291 * Called at splbio and with queue lock held.
1292 * Returns the amount of buffer memory freed.
1293 */
1294 static int
1295 buf_trim(void)
1296 {
1297 struct buf *bp;
1298 long size = 0;
1299
1300 /* Instruct getnewbuf() to get buffers off the queues */
1301 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1302 return 0;
1303
1304 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1305 simple_unlock(&bp->b_interlock);
1306 size = bp->b_bufsize;
1307 bufmem -= size;
1308 simple_unlock(&bqueue_slock);
1309 if (size > 0) {
1310 buf_mrelease(bp->b_data, size);
1311 bp->b_bcount = bp->b_bufsize = 0;
1312 }
1313 /* brelse() will return the buffer to the global buffer pool */
1314 brelse(bp);
1315 simple_lock(&bqueue_slock);
1316 return size;
1317 }
1318
1319 int
1320 buf_drain(int n)
1321 {
1322 int s, size = 0, sz;
1323
1324 s = splbio();
1325 simple_lock(&bqueue_slock);
1326
1327 while (size < n && bufmem > bufmem_lowater) {
1328 sz = buf_trim();
1329 if (sz <= 0)
1330 break;
1331 size += sz;
1332 }
1333
1334 simple_unlock(&bqueue_slock);
1335 splx(s);
1336 return size;
1337 }
1338
1339 /*
1340 * Wait for operations on the buffer to complete.
1341 * When they do, extract and return the I/O's error value.
1342 */
1343 int
1344 biowait(struct buf *bp)
1345 {
1346 int s, error;
1347
1348 s = splbio();
1349 simple_lock(&bp->b_interlock);
1350 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1351 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1352
1353 /* check for interruption of I/O (e.g. via NFS), then errors. */
1354 if (ISSET(bp->b_flags, B_EINTR)) {
1355 CLR(bp->b_flags, B_EINTR);
1356 error = EINTR;
1357 } else if (ISSET(bp->b_flags, B_ERROR))
1358 error = bp->b_error ? bp->b_error : EIO;
1359 else
1360 error = 0;
1361
1362 simple_unlock(&bp->b_interlock);
1363 splx(s);
1364 return (error);
1365 }
1366
1367 /*
1368 * Mark I/O complete on a buffer.
1369 *
1370 * If a callback has been requested, e.g. the pageout
1371 * daemon, do so. Otherwise, awaken waiting processes.
1372 *
1373 * [ Leffler, et al., says on p.247:
1374 * "This routine wakes up the blocked process, frees the buffer
1375 * for an asynchronous write, or, for a request by the pagedaemon
1376 * process, invokes a procedure specified in the buffer structure" ]
1377 *
1378 * In real life, the pagedaemon (or other system processes) wants
1379 * to do async stuff to, and doesn't want the buffer brelse()'d.
1380 * (for swap pager, that puts swap buffers on the free lists (!!!),
1381 * for the vn device, that puts malloc'd buffers on the free lists!)
1382 */
1383 void
1384 biodone(struct buf *bp)
1385 {
1386 int s = splbio();
1387
1388 simple_lock(&bp->b_interlock);
1389 if (ISSET(bp->b_flags, B_DONE))
1390 panic("biodone already");
1391 SET(bp->b_flags, B_DONE); /* note that it's done */
1392 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1393
1394 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1395 (*bioops.io_complete)(bp);
1396
1397 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1398 vwakeup(bp);
1399
1400 /*
1401 * If necessary, call out. Unlock the buffer before calling
1402 * iodone() as the buffer isn't valid any more when it return.
1403 */
1404 if (ISSET(bp->b_flags, B_CALL)) {
1405 CLR(bp->b_flags, B_CALL); /* but note callout done */
1406 simple_unlock(&bp->b_interlock);
1407 (*bp->b_iodone)(bp);
1408 } else {
1409 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1410 simple_unlock(&bp->b_interlock);
1411 brelse(bp);
1412 } else { /* or just wakeup the buffer */
1413 CLR(bp->b_flags, B_WANTED);
1414 wakeup(bp);
1415 simple_unlock(&bp->b_interlock);
1416 }
1417 }
1418
1419 splx(s);
1420 }
1421
1422 /*
1423 * Return a count of buffers on the "locked" queue.
1424 */
1425 int
1426 count_lock_queue(void)
1427 {
1428 struct buf *bp;
1429 int n = 0;
1430
1431 simple_lock(&bqueue_slock);
1432 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1433 n++;
1434 simple_unlock(&bqueue_slock);
1435 return (n);
1436 }
1437
1438 /*
1439 * Wait for all buffers to complete I/O
1440 * Return the number of "stuck" buffers.
1441 */
1442 int
1443 buf_syncwait(void)
1444 {
1445 struct buf *bp;
1446 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1447
1448 dcount = 10000;
1449 for (iter = 0; iter < 20;) {
1450 s = splbio();
1451 simple_lock(&bqueue_slock);
1452 nbusy = 0;
1453 for (ihash = 0; ihash < bufhash+1; ihash++) {
1454 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1455 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1456 nbusy++;
1457 /*
1458 * With soft updates, some buffers that are
1459 * written will be remarked as dirty until other
1460 * buffers are written.
1461 */
1462 if (bp->b_vp && bp->b_vp->v_mount
1463 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1464 && (bp->b_flags & B_DELWRI)) {
1465 simple_lock(&bp->b_interlock);
1466 bremfree(bp);
1467 bp->b_flags |= B_BUSY;
1468 nbusy++;
1469 simple_unlock(&bp->b_interlock);
1470 simple_unlock(&bqueue_slock);
1471 bawrite(bp);
1472 if (dcount-- <= 0) {
1473 printf("softdep ");
1474 splx(s);
1475 goto fail;
1476 }
1477 simple_lock(&bqueue_slock);
1478 }
1479 }
1480 }
1481
1482 simple_unlock(&bqueue_slock);
1483 splx(s);
1484
1485 if (nbusy == 0)
1486 break;
1487 if (nbusy_prev == 0)
1488 nbusy_prev = nbusy;
1489 printf("%d ", nbusy);
1490 tsleep(&nbusy, PRIBIO, "bflush",
1491 (iter == 0) ? 1 : hz / 25 * iter);
1492 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1493 iter++;
1494 else
1495 nbusy_prev = nbusy;
1496 }
1497
1498 if (nbusy) {
1499 fail:;
1500 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1501 printf("giving up\nPrinting vnodes for busy buffers\n");
1502 s = splbio();
1503 for (ihash = 0; ihash < bufhash+1; ihash++) {
1504 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1505 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1506 vprint(NULL, bp->b_vp);
1507 }
1508 }
1509 splx(s);
1510 #endif
1511 }
1512
1513 return nbusy;
1514 }
1515
1516 static void
1517 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1518 {
1519
1520 o->b_flags = i->b_flags;
1521 o->b_error = i->b_error;
1522 o->b_prio = i->b_prio;
1523 o->b_dev = i->b_dev;
1524 o->b_bufsize = i->b_bufsize;
1525 o->b_bcount = i->b_bcount;
1526 o->b_resid = i->b_resid;
1527 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1528 o->b_blkno = i->b_blkno;
1529 o->b_rawblkno = i->b_rawblkno;
1530 o->b_iodone = PTRTOUINT64(i->b_iodone);
1531 o->b_proc = PTRTOUINT64(i->b_proc);
1532 o->b_vp = PTRTOUINT64(i->b_vp);
1533 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1534 o->b_lblkno = i->b_lblkno;
1535 }
1536
1537 #define KERN_BUFSLOP 20
1538 static int
1539 sysctl_dobuf(SYSCTLFN_ARGS)
1540 {
1541 struct buf *bp;
1542 struct buf_sysctl bs;
1543 char *dp;
1544 u_int i, op, arg;
1545 size_t len, needed, elem_size, out_size;
1546 int error, s, elem_count;
1547
1548 if (namelen == 1 && name[0] == CTL_QUERY)
1549 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1550
1551 if (namelen != 4)
1552 return (EINVAL);
1553
1554 dp = oldp;
1555 len = (oldp != NULL) ? *oldlenp : 0;
1556 op = name[0];
1557 arg = name[1];
1558 elem_size = name[2];
1559 elem_count = name[3];
1560 out_size = MIN(sizeof(bs), elem_size);
1561
1562 /*
1563 * at the moment, these are just "placeholders" to make the
1564 * API for retrieving kern.buf data more extensible in the
1565 * future.
1566 *
1567 * XXX kern.buf currently has "netbsd32" issues. hopefully
1568 * these will be resolved at a later point.
1569 */
1570 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1571 elem_size < 1 || elem_count < 0)
1572 return (EINVAL);
1573
1574 error = 0;
1575 needed = 0;
1576 s = splbio();
1577 simple_lock(&bqueue_slock);
1578 for (i = 0; i < BQUEUES; i++) {
1579 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1580 if (len >= elem_size && elem_count > 0) {
1581 sysctl_fillbuf(bp, &bs);
1582 error = copyout(&bs, dp, out_size);
1583 if (error)
1584 goto cleanup;
1585 dp += elem_size;
1586 len -= elem_size;
1587 }
1588 if (elem_count > 0) {
1589 needed += elem_size;
1590 if (elem_count != INT_MAX)
1591 elem_count--;
1592 }
1593 }
1594 }
1595 cleanup:
1596 simple_unlock(&bqueue_slock);
1597 splx(s);
1598
1599 *oldlenp = needed;
1600 if (oldp == NULL)
1601 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1602
1603 return (error);
1604 }
1605
1606 static int
1607 sysctl_bufvm_update(SYSCTLFN_ARGS)
1608 {
1609 int t, error;
1610 struct sysctlnode node;
1611
1612 node = *rnode;
1613 node.sysctl_data = &t;
1614 t = *(int *)rnode->sysctl_data;
1615 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1616 if (error || newp == NULL)
1617 return (error);
1618
1619 if (t < 0)
1620 return EINVAL;
1621 if (rnode->sysctl_data == &bufcache) {
1622 if (t > 100)
1623 return (EINVAL);
1624 bufcache = t;
1625 buf_setwm();
1626 } else if (rnode->sysctl_data == &bufmem_lowater) {
1627 if (bufmem_hiwater - t < 16)
1628 return (EINVAL);
1629 bufmem_lowater = t;
1630 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1631 if (t - bufmem_lowater < 16)
1632 return (EINVAL);
1633 bufmem_hiwater = t;
1634 } else
1635 return (EINVAL);
1636
1637 /* Drain until below new high water mark */
1638 while ((t = bufmem - bufmem_hiwater) >= 0) {
1639 if (buf_drain(t / (2 * 1024)) <= 0)
1640 break;
1641 }
1642
1643 return 0;
1644 }
1645
1646 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1647 {
1648
1649 sysctl_createv(clog, 0, NULL, NULL,
1650 CTLFLAG_PERMANENT,
1651 CTLTYPE_NODE, "kern", NULL,
1652 NULL, 0, NULL, 0,
1653 CTL_KERN, CTL_EOL);
1654 sysctl_createv(clog, 0, NULL, NULL,
1655 CTLFLAG_PERMANENT,
1656 CTLTYPE_NODE, "buf",
1657 SYSCTL_DESCR("Kernel buffer cache information"),
1658 sysctl_dobuf, 0, NULL, 0,
1659 CTL_KERN, KERN_BUF, CTL_EOL);
1660 }
1661
1662 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1663 {
1664
1665 sysctl_createv(clog, 0, NULL, NULL,
1666 CTLFLAG_PERMANENT,
1667 CTLTYPE_NODE, "vm", NULL,
1668 NULL, 0, NULL, 0,
1669 CTL_VM, CTL_EOL);
1670
1671 sysctl_createv(clog, 0, NULL, NULL,
1672 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1673 CTLTYPE_INT, "bufcache",
1674 SYSCTL_DESCR("Percentage of physical memory to use for "
1675 "buffer cache"),
1676 sysctl_bufvm_update, 0, &bufcache, 0,
1677 CTL_VM, CTL_CREATE, CTL_EOL);
1678 sysctl_createv(clog, 0, NULL, NULL,
1679 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1680 CTLTYPE_INT, "bufmem",
1681 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1682 "cache"),
1683 NULL, 0, &bufmem, 0,
1684 CTL_VM, CTL_CREATE, CTL_EOL);
1685 sysctl_createv(clog, 0, NULL, NULL,
1686 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1687 CTLTYPE_INT, "bufmem_lowater",
1688 SYSCTL_DESCR("Minimum amount of kernel memory to "
1689 "reserve for buffer cache"),
1690 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1691 CTL_VM, CTL_CREATE, CTL_EOL);
1692 sysctl_createv(clog, 0, NULL, NULL,
1693 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1694 CTLTYPE_INT, "bufmem_hiwater",
1695 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1696 "for buffer cache"),
1697 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1698 CTL_VM, CTL_CREATE, CTL_EOL);
1699 }
1700
1701 #ifdef DEBUG
1702 /*
1703 * Print out statistics on the current allocation of the buffer pool.
1704 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1705 * in vfs_syscalls.c using sysctl.
1706 */
1707 void
1708 vfs_bufstats(void)
1709 {
1710 int s, i, j, count;
1711 struct buf *bp;
1712 struct bqueue *dp;
1713 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1714 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1715
1716 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1717 count = 0;
1718 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1719 counts[j] = 0;
1720 s = splbio();
1721 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1722 counts[bp->b_bufsize/PAGE_SIZE]++;
1723 count++;
1724 }
1725 splx(s);
1726 printf("%s: total-%d", bname[i], count);
1727 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1728 if (counts[j] != 0)
1729 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1730 printf("\n");
1731 }
1732 }
1733 #endif /* DEBUG */
1734