Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.150
      1 /*	$NetBSD: vfs_bio.c,v 1.150 2006/01/05 10:18:20 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include "opt_bufcache.h"
     81 #include "opt_softdep.h"
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.150 2006/01/05 10:18:20 yamt Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 #include <sys/vnode.h>
     92 #include <sys/mount.h>
     93 #include <sys/malloc.h>
     94 #include <sys/resourcevar.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/conf.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 
    102 #ifndef	BUFPAGES
    103 # define BUFPAGES 0
    104 #endif
    105 
    106 #ifdef BUFCACHE
    107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    108 #  error BUFCACHE is not between 5 and 95
    109 # endif
    110 #else
    111 # define BUFCACHE 15
    112 #endif
    113 
    114 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    115 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    116 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    117 
    118 /* Function prototypes */
    119 struct bqueue;
    120 
    121 static void buf_setwm(void);
    122 static int buf_trim(void);
    123 static void *bufpool_page_alloc(struct pool *, int);
    124 static void bufpool_page_free(struct pool *, void *);
    125 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    126     struct ucred *, int);
    127 static int buf_lotsfree(void);
    128 static int buf_canrelease(void);
    129 static inline u_long buf_mempoolidx(u_long);
    130 static inline u_long buf_roundsize(u_long);
    131 static inline caddr_t buf_malloc(size_t);
    132 static void buf_mrelease(caddr_t, size_t);
    133 static inline void binsheadfree(struct buf *, struct bqueue *);
    134 static inline void binstailfree(struct buf *, struct bqueue *);
    135 int count_lock_queue(void); /* XXX */
    136 #ifdef DEBUG
    137 static int checkfreelist(struct buf *, struct bqueue *);
    138 #endif
    139 
    140 /* Macros to clear/set/test flags. */
    141 #define	SET(t, f)	(t) |= (f)
    142 #define	CLR(t, f)	(t) &= ~(f)
    143 #define	ISSET(t, f)	((t) & (f))
    144 
    145 /*
    146  * Definitions for the buffer hash lists.
    147  */
    148 #define	BUFHASH(dvp, lbn)	\
    149 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    151 u_long	bufhash;
    152 #if !defined(SOFTDEP) || !defined(FFS)
    153 struct bio_ops bioops;	/* I/O operation notification */
    154 #endif
    155 
    156 /*
    157  * Insq/Remq for the buffer hash lists.
    158  */
    159 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    160 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    161 
    162 /*
    163  * Definitions for the buffer free lists.
    164  */
    165 #define	BQUEUES		3		/* number of free buffer queues */
    166 
    167 #define	BQ_LOCKED	0		/* super-blocks &c */
    168 #define	BQ_LRU		1		/* lru, useful buffers */
    169 #define	BQ_AGE		2		/* rubbish */
    170 
    171 struct bqueue {
    172 	TAILQ_HEAD(, buf) bq_queue;
    173 	uint64_t bq_bytes;
    174 } bufqueues[BQUEUES];
    175 int needbuffer;
    176 
    177 /*
    178  * Buffer queue lock.
    179  * Take this lock first if also taking some buffer's b_interlock.
    180  */
    181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    182 
    183 /*
    184  * Buffer pool for I/O buffers.
    185  * Access to this pool must be protected with splbio().
    186  */
    187 static struct pool bufpool;
    188 
    189 /* XXX - somewhat gross.. */
    190 #if MAXBSIZE == 0x2000
    191 #define NMEMPOOLS 4
    192 #elif MAXBSIZE == 0x4000
    193 #define NMEMPOOLS 5
    194 #elif MAXBSIZE == 0x8000
    195 #define NMEMPOOLS 6
    196 #else
    197 #define NMEMPOOLS 7
    198 #endif
    199 
    200 #define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
    201 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    202 #error update vfs_bio buffer memory parameters
    203 #endif
    204 
    205 /* Buffer memory pools */
    206 static struct pool bmempools[NMEMPOOLS];
    207 
    208 struct vm_map *buf_map;
    209 
    210 /*
    211  * Buffer memory pool allocator.
    212  */
    213 static void *
    214 bufpool_page_alloc(struct pool *pp, int flags)
    215 {
    216 
    217 	return (void *)uvm_km_alloc(buf_map,
    218 	    MAXBSIZE, MAXBSIZE,
    219 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    220 	    | UVM_KMF_WIRED);
    221 }
    222 
    223 static void
    224 bufpool_page_free(struct pool *pp, void *v)
    225 {
    226 
    227 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    228 }
    229 
    230 static struct pool_allocator bufmempool_allocator = {
    231 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
    232 };
    233 
    234 /* Buffer memory management variables */
    235 u_long bufmem_valimit;
    236 u_long bufmem_hiwater;
    237 u_long bufmem_lowater;
    238 u_long bufmem;
    239 
    240 /*
    241  * MD code can call this to set a hard limit on the amount
    242  * of virtual memory used by the buffer cache.
    243  */
    244 int
    245 buf_setvalimit(vsize_t sz)
    246 {
    247 
    248 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    249 	if (sz < NMEMPOOLS * MAXBSIZE)
    250 		return EINVAL;
    251 
    252 	bufmem_valimit = sz;
    253 	return 0;
    254 }
    255 
    256 static void
    257 buf_setwm(void)
    258 {
    259 
    260 	bufmem_hiwater = buf_memcalc();
    261 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    262 #define	BUFMEM_WMSHIFT	3
    263 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    264 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    265 		/* Ensure a reasonable minimum value */
    266 		bufmem_hiwater = BUFMEM_HIWMMIN;
    267 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    268 }
    269 
    270 #ifdef DEBUG
    271 int debug_verify_freelist = 0;
    272 static int
    273 checkfreelist(struct buf *bp, struct bqueue *dp)
    274 {
    275 	struct buf *b;
    276 
    277 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    278 		if (b == bp)
    279 			return 1;
    280 	}
    281 	return 0;
    282 }
    283 #endif
    284 
    285 /*
    286  * Insq/Remq for the buffer hash lists.
    287  * Call with buffer queue locked.
    288  */
    289 static inline void
    290 binsheadfree(struct buf *bp, struct bqueue *dp)
    291 {
    292 
    293 	KASSERT(bp->b_freelistindex == -1);
    294 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    295 	dp->bq_bytes += bp->b_bufsize;
    296 	bp->b_freelistindex = dp - bufqueues;
    297 }
    298 
    299 static inline void
    300 binstailfree(struct buf *bp, struct bqueue *dp)
    301 {
    302 
    303 	KASSERT(bp->b_freelistindex == -1);
    304 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    305 	dp->bq_bytes += bp->b_bufsize;
    306 	bp->b_freelistindex = dp - bufqueues;
    307 }
    308 
    309 void
    310 bremfree(struct buf *bp)
    311 {
    312 	struct bqueue *dp;
    313 	int bqidx = bp->b_freelistindex;
    314 
    315 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    316 
    317 	KASSERT(bqidx != -1);
    318 	dp = &bufqueues[bqidx];
    319 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    320 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    321 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    322 	dp->bq_bytes -= bp->b_bufsize;
    323 #if defined(DIAGNOSTIC)
    324 	bp->b_freelistindex = -1;
    325 #endif /* defined(DIAGNOSTIC) */
    326 }
    327 
    328 u_long
    329 buf_memcalc(void)
    330 {
    331 	u_long n;
    332 
    333 	/*
    334 	 * Determine the upper bound of memory to use for buffers.
    335 	 *
    336 	 *	- If bufpages is specified, use that as the number
    337 	 *	  pages.
    338 	 *
    339 	 *	- Otherwise, use bufcache as the percentage of
    340 	 *	  physical memory.
    341 	 */
    342 	if (bufpages != 0) {
    343 		n = bufpages;
    344 	} else {
    345 		if (bufcache < 5) {
    346 			printf("forcing bufcache %d -> 5", bufcache);
    347 			bufcache = 5;
    348 		}
    349 		if (bufcache > 95) {
    350 			printf("forcing bufcache %d -> 95", bufcache);
    351 			bufcache = 95;
    352 		}
    353 		n = physmem / 100 * bufcache;
    354 	}
    355 
    356 	n <<= PAGE_SHIFT;
    357 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    358 		n = bufmem_valimit;
    359 
    360 	return (n);
    361 }
    362 
    363 /*
    364  * Initialize buffers and hash links for buffers.
    365  */
    366 void
    367 bufinit(void)
    368 {
    369 	struct bqueue *dp;
    370 	int use_std;
    371 	u_int i;
    372 
    373 	/*
    374 	 * Initialize buffer cache memory parameters.
    375 	 */
    376 	bufmem = 0;
    377 	buf_setwm();
    378 
    379 	if (bufmem_valimit != 0) {
    380 		vaddr_t minaddr = 0, maxaddr;
    381 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    382 					  bufmem_valimit, VM_MAP_PAGEABLE,
    383 					  FALSE, 0);
    384 		if (buf_map == NULL)
    385 			panic("bufinit: cannot allocate submap");
    386 	} else
    387 		buf_map = kernel_map;
    388 
    389 	/*
    390 	 * Initialize the buffer pools.
    391 	 */
    392 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
    393 
    394 	/* On "small" machines use small pool page sizes where possible */
    395 	use_std = (physmem < atop(16*1024*1024));
    396 
    397 	/*
    398 	 * Also use them on systems that can map the pool pages using
    399 	 * a direct-mapped segment.
    400 	 */
    401 #ifdef PMAP_MAP_POOLPAGE
    402 	use_std = 1;
    403 #endif
    404 
    405 	for (i = 0; i < NMEMPOOLS; i++) {
    406 		struct pool_allocator *pa;
    407 		struct pool *pp = &bmempools[i];
    408 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    409 		char *name = malloc(8, M_TEMP, M_WAITOK);
    410 		snprintf(name, 8, "buf%dk", 1 << i);
    411 		pa = (size <= PAGE_SIZE && use_std)
    412 			? &pool_allocator_nointr
    413 			: &bufmempool_allocator;
    414 		pool_init(pp, size, 0, 0, 0, name, pa);
    415 		pool_setlowat(pp, 1);
    416 		pool_sethiwat(pp, 1);
    417 	}
    418 
    419 	/* Initialize the buffer queues */
    420 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    421 		TAILQ_INIT(&dp->bq_queue);
    422 		dp->bq_bytes = 0;
    423 	}
    424 
    425 	/*
    426 	 * Estimate hash table size based on the amount of memory we
    427 	 * intend to use for the buffer cache. The average buffer
    428 	 * size is dependent on our clients (i.e. filesystems).
    429 	 *
    430 	 * For now, use an empirical 3K per buffer.
    431 	 */
    432 	nbuf = (bufmem_hiwater / 1024) / 3;
    433 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    434 }
    435 
    436 static int
    437 buf_lotsfree(void)
    438 {
    439 	int try, thresh;
    440 	struct lwp *l = curlwp;
    441 
    442 	/* Always allocate if doing copy on write */
    443 	if (l->l_flag & L_COWINPROGRESS)
    444 		return 1;
    445 
    446 	/* Always allocate if less than the low water mark. */
    447 	if (bufmem < bufmem_lowater)
    448 		return 1;
    449 
    450 	/* Never allocate if greater than the high water mark. */
    451 	if (bufmem > bufmem_hiwater)
    452 		return 0;
    453 
    454 	/* If there's anything on the AGE list, it should be eaten. */
    455 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    456 		return 0;
    457 
    458 	/*
    459 	 * The probabily of getting a new allocation is inversely
    460 	 * proportional to the current size of the cache, using
    461 	 * a granularity of 16 steps.
    462 	 */
    463 	try = random() & 0x0000000fL;
    464 
    465 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    466 	thresh = (bufmem - bufmem_lowater) /
    467 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    468 
    469 	if (try >= thresh)
    470 		return 1;
    471 
    472 	/* Otherwise don't allocate. */
    473 	return 0;
    474 }
    475 
    476 /*
    477  * Return estimate of bytes we think need to be
    478  * released to help resolve low memory conditions.
    479  *
    480  * => called at splbio.
    481  * => called with bqueue_slock held.
    482  */
    483 static int
    484 buf_canrelease(void)
    485 {
    486 	int pagedemand, ninvalid = 0;
    487 
    488 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    489 
    490 	if (bufmem < bufmem_lowater)
    491 		return 0;
    492 
    493 	if (bufmem > bufmem_hiwater)
    494 		return bufmem - bufmem_hiwater;
    495 
    496 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    497 
    498 	pagedemand = uvmexp.freetarg - uvmexp.free;
    499 	if (pagedemand < 0)
    500 		return ninvalid;
    501 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    502 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    503 }
    504 
    505 /*
    506  * Buffer memory allocation helper functions
    507  */
    508 static inline u_long
    509 buf_mempoolidx(u_long size)
    510 {
    511 	u_int n = 0;
    512 
    513 	size -= 1;
    514 	size >>= MEMPOOL_INDEX_OFFSET;
    515 	while (size) {
    516 		size >>= 1;
    517 		n += 1;
    518 	}
    519 	if (n >= NMEMPOOLS)
    520 		panic("buf mem pool index %d", n);
    521 	return n;
    522 }
    523 
    524 static inline u_long
    525 buf_roundsize(u_long size)
    526 {
    527 	/* Round up to nearest power of 2 */
    528 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    529 }
    530 
    531 static inline caddr_t
    532 buf_malloc(size_t size)
    533 {
    534 	u_int n = buf_mempoolidx(size);
    535 	caddr_t addr;
    536 	int s;
    537 
    538 	while (1) {
    539 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    540 		if (addr != NULL)
    541 			break;
    542 
    543 		/* No memory, see if we can free some. If so, try again */
    544 		if (buf_drain(1) > 0)
    545 			continue;
    546 
    547 		/* Wait for buffers to arrive on the LRU queue */
    548 		s = splbio();
    549 		simple_lock(&bqueue_slock);
    550 		needbuffer = 1;
    551 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    552 			"buf_malloc", 0, &bqueue_slock);
    553 		splx(s);
    554 	}
    555 
    556 	return addr;
    557 }
    558 
    559 static void
    560 buf_mrelease(caddr_t addr, size_t size)
    561 {
    562 
    563 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    564 }
    565 
    566 /*
    567  * bread()/breadn() helper.
    568  */
    569 static inline struct buf *
    570 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    571     int async)
    572 {
    573 	struct buf *bp;
    574 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    575 	struct proc *p = l->l_proc;
    576 	struct mount *mp;
    577 
    578 	bp = getblk(vp, blkno, size, 0, 0);
    579 
    580 #ifdef DIAGNOSTIC
    581 	if (bp == NULL) {
    582 		panic("bio_doread: no such buf");
    583 	}
    584 #endif
    585 
    586 	/*
    587 	 * If buffer does not have data valid, start a read.
    588 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    589 	 * Therefore, it's valid if its I/O has completed or been delayed.
    590 	 */
    591 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    592 		/* Start I/O for the buffer. */
    593 		SET(bp->b_flags, B_READ | async);
    594 		if (async)
    595 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    596 		else
    597 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    598 		VOP_STRATEGY(vp, bp);
    599 
    600 		/* Pay for the read. */
    601 		p->p_stats->p_ru.ru_inblock++;
    602 	} else if (async) {
    603 		brelse(bp);
    604 	}
    605 
    606 	if (vp->v_type == VBLK)
    607 		mp = vp->v_specmountpoint;
    608 	else
    609 		mp = vp->v_mount;
    610 
    611 	/*
    612 	 * Collect statistics on synchronous and asynchronous reads.
    613 	 * Reads from block devices are charged to their associated
    614 	 * filesystem (if any).
    615 	 */
    616 	if (mp != NULL) {
    617 		if (async == 0)
    618 			mp->mnt_stat.f_syncreads++;
    619 		else
    620 			mp->mnt_stat.f_asyncreads++;
    621 	}
    622 
    623 	return (bp);
    624 }
    625 
    626 /*
    627  * Read a disk block.
    628  * This algorithm described in Bach (p.54).
    629  */
    630 int
    631 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    632     struct buf **bpp)
    633 {
    634 	struct buf *bp;
    635 
    636 	/* Get buffer for block. */
    637 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    638 
    639 	/* Wait for the read to complete, and return result. */
    640 	return (biowait(bp));
    641 }
    642 
    643 /*
    644  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    645  * Trivial modification to the breada algorithm presented in Bach (p.55).
    646  */
    647 int
    648 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    649     int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
    650 {
    651 	struct buf *bp;
    652 	int i;
    653 
    654 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    655 
    656 	/*
    657 	 * For each of the read-ahead blocks, start a read, if necessary.
    658 	 */
    659 	for (i = 0; i < nrablks; i++) {
    660 		/* If it's in the cache, just go on to next one. */
    661 		if (incore(vp, rablks[i]))
    662 			continue;
    663 
    664 		/* Get a buffer for the read-ahead block */
    665 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    666 	}
    667 
    668 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    669 	return (biowait(bp));
    670 }
    671 
    672 /*
    673  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    674  * implemented as a call to breadn().
    675  * XXX for compatibility with old file systems.
    676  */
    677 int
    678 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    679     int rabsize, struct ucred *cred, struct buf **bpp)
    680 {
    681 
    682 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    683 }
    684 
    685 /*
    686  * Block write.  Described in Bach (p.56)
    687  */
    688 int
    689 bwrite(struct buf *bp)
    690 {
    691 	int rv, sync, wasdelayed, s;
    692 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    693 	struct proc *p = l->l_proc;
    694 	struct vnode *vp;
    695 	struct mount *mp;
    696 
    697 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    698 
    699 	vp = bp->b_vp;
    700 	if (vp != NULL) {
    701 		if (vp->v_type == VBLK)
    702 			mp = vp->v_specmountpoint;
    703 		else
    704 			mp = vp->v_mount;
    705 	} else {
    706 		mp = NULL;
    707 	}
    708 
    709 	/*
    710 	 * Remember buffer type, to switch on it later.  If the write was
    711 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    712 	 * convert it to a delayed write.
    713 	 * XXX note that this relies on delayed tape writes being converted
    714 	 * to async, not sync writes (which is safe, but ugly).
    715 	 */
    716 	sync = !ISSET(bp->b_flags, B_ASYNC);
    717 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    718 		bdwrite(bp);
    719 		return (0);
    720 	}
    721 
    722 	/*
    723 	 * Collect statistics on synchronous and asynchronous writes.
    724 	 * Writes to block devices are charged to their associated
    725 	 * filesystem (if any).
    726 	 */
    727 	if (mp != NULL) {
    728 		if (sync)
    729 			mp->mnt_stat.f_syncwrites++;
    730 		else
    731 			mp->mnt_stat.f_asyncwrites++;
    732 	}
    733 
    734 	s = splbio();
    735 	simple_lock(&bp->b_interlock);
    736 
    737 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    738 
    739 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
    740 
    741 	/*
    742 	 * Pay for the I/O operation and make sure the buf is on the correct
    743 	 * vnode queue.
    744 	 */
    745 	if (wasdelayed)
    746 		reassignbuf(bp, bp->b_vp);
    747 	else
    748 		p->p_stats->p_ru.ru_oublock++;
    749 
    750 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    751 	V_INCR_NUMOUTPUT(bp->b_vp);
    752 	simple_unlock(&bp->b_interlock);
    753 	splx(s);
    754 
    755 	if (sync)
    756 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    757 	else
    758 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    759 
    760 	VOP_STRATEGY(vp, bp);
    761 
    762 	if (sync) {
    763 		/* If I/O was synchronous, wait for it to complete. */
    764 		rv = biowait(bp);
    765 
    766 		/* Release the buffer. */
    767 		brelse(bp);
    768 
    769 		return (rv);
    770 	} else {
    771 		return (0);
    772 	}
    773 }
    774 
    775 int
    776 vn_bwrite(void *v)
    777 {
    778 	struct vop_bwrite_args *ap = v;
    779 
    780 	return (bwrite(ap->a_bp));
    781 }
    782 
    783 /*
    784  * Delayed write.
    785  *
    786  * The buffer is marked dirty, but is not queued for I/O.
    787  * This routine should be used when the buffer is expected
    788  * to be modified again soon, typically a small write that
    789  * partially fills a buffer.
    790  *
    791  * NB: magnetic tapes cannot be delayed; they must be
    792  * written in the order that the writes are requested.
    793  *
    794  * Described in Leffler, et al. (pp. 208-213).
    795  */
    796 void
    797 bdwrite(struct buf *bp)
    798 {
    799 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    800 	struct proc *p = l->l_proc;
    801 	const struct bdevsw *bdev;
    802 	int s;
    803 
    804 	/* If this is a tape block, write the block now. */
    805 	bdev = bdevsw_lookup(bp->b_dev);
    806 	if (bdev != NULL && bdev->d_type == D_TAPE) {
    807 		bawrite(bp);
    808 		return;
    809 	}
    810 
    811 	/*
    812 	 * If the block hasn't been seen before:
    813 	 *	(1) Mark it as having been seen,
    814 	 *	(2) Charge for the write,
    815 	 *	(3) Make sure it's on its vnode's correct block list.
    816 	 */
    817 	s = splbio();
    818 	simple_lock(&bp->b_interlock);
    819 
    820 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    821 
    822 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    823 		SET(bp->b_flags, B_DELWRI);
    824 		p->p_stats->p_ru.ru_oublock++;
    825 		reassignbuf(bp, bp->b_vp);
    826 	}
    827 
    828 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    829 	CLR(bp->b_flags, B_DONE);
    830 	simple_unlock(&bp->b_interlock);
    831 	splx(s);
    832 
    833 	brelse(bp);
    834 }
    835 
    836 /*
    837  * Asynchronous block write; just an asynchronous bwrite().
    838  */
    839 void
    840 bawrite(struct buf *bp)
    841 {
    842 	int s;
    843 
    844 	s = splbio();
    845 	simple_lock(&bp->b_interlock);
    846 
    847 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    848 
    849 	SET(bp->b_flags, B_ASYNC);
    850 	simple_unlock(&bp->b_interlock);
    851 	splx(s);
    852 	VOP_BWRITE(bp);
    853 }
    854 
    855 /*
    856  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    857  * Call at splbio() and with the buffer interlock locked.
    858  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
    859  */
    860 void
    861 bdirty(struct buf *bp)
    862 {
    863 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    864 	struct proc *p = l->l_proc;
    865 
    866 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    867 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    868 
    869 	CLR(bp->b_flags, B_AGE);
    870 
    871 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    872 		SET(bp->b_flags, B_DELWRI);
    873 		p->p_stats->p_ru.ru_oublock++;
    874 		reassignbuf(bp, bp->b_vp);
    875 	}
    876 }
    877 
    878 /*
    879  * Release a buffer on to the free lists.
    880  * Described in Bach (p. 46).
    881  */
    882 void
    883 brelse(struct buf *bp)
    884 {
    885 	struct bqueue *bufq;
    886 	int s;
    887 
    888 	/* Block disk interrupts. */
    889 	s = splbio();
    890 	simple_lock(&bqueue_slock);
    891 	simple_lock(&bp->b_interlock);
    892 
    893 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    894 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    895 
    896 	/* Wake up any processes waiting for any buffer to become free. */
    897 	if (needbuffer) {
    898 		needbuffer = 0;
    899 		wakeup(&needbuffer);
    900 	}
    901 
    902 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    903 	if (ISSET(bp->b_flags, B_WANTED)) {
    904 		CLR(bp->b_flags, B_WANTED|B_AGE);
    905 		wakeup(bp);
    906 	}
    907 
    908 	/*
    909 	 * Determine which queue the buffer should be on, then put it there.
    910 	 */
    911 
    912 	/* If it's locked, don't report an error; try again later. */
    913 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
    914 		CLR(bp->b_flags, B_ERROR);
    915 
    916 	/* If it's not cacheable, or an error, mark it invalid. */
    917 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
    918 		SET(bp->b_flags, B_INVAL);
    919 
    920 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    921 		/*
    922 		 * This is a delayed write buffer that was just flushed to
    923 		 * disk.  It is still on the LRU queue.  If it's become
    924 		 * invalid, then we need to move it to a different queue;
    925 		 * otherwise leave it in its current position.
    926 		 */
    927 		CLR(bp->b_flags, B_VFLUSH);
    928 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
    929 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    930 			goto already_queued;
    931 		} else {
    932 			bremfree(bp);
    933 		}
    934 	}
    935 
    936   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    937   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    938   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    939 
    940 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    941 		/*
    942 		 * If it's invalid or empty, dissociate it from its vnode
    943 		 * and put on the head of the appropriate queue.
    944 		 */
    945 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    946 			(*bioops.io_deallocate)(bp);
    947 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    948 		if (bp->b_vp) {
    949 			reassignbuf(bp, bp->b_vp);
    950 			brelvp(bp);
    951 		}
    952 		if (bp->b_bufsize <= 0)
    953 			/* no data */
    954 			goto already_queued;
    955 		else
    956 			/* invalid data */
    957 			bufq = &bufqueues[BQ_AGE];
    958 		binsheadfree(bp, bufq);
    959 	} else {
    960 		/*
    961 		 * It has valid data.  Put it on the end of the appropriate
    962 		 * queue, so that it'll stick around for as long as possible.
    963 		 * If buf is AGE, but has dependencies, must put it on last
    964 		 * bufqueue to be scanned, ie LRU. This protects against the
    965 		 * livelock where BQ_AGE only has buffers with dependencies,
    966 		 * and we thus never get to the dependent buffers in BQ_LRU.
    967 		 */
    968 		if (ISSET(bp->b_flags, B_LOCKED))
    969 			/* locked in core */
    970 			bufq = &bufqueues[BQ_LOCKED];
    971 		else if (!ISSET(bp->b_flags, B_AGE))
    972 			/* valid data */
    973 			bufq = &bufqueues[BQ_LRU];
    974 		else {
    975 			/* stale but valid data */
    976 			int has_deps;
    977 
    978 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    979 			    bioops.io_countdeps)
    980 				has_deps = (*bioops.io_countdeps)(bp, 0);
    981 			else
    982 				has_deps = 0;
    983 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    984 			    &bufqueues[BQ_AGE];
    985 		}
    986 		binstailfree(bp, bufq);
    987 	}
    988 
    989 already_queued:
    990 	/* Unlock the buffer. */
    991 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    992 	SET(bp->b_flags, B_CACHE);
    993 
    994 	/* Allow disk interrupts. */
    995 	simple_unlock(&bp->b_interlock);
    996 	simple_unlock(&bqueue_slock);
    997 	if (bp->b_bufsize <= 0) {
    998 #ifdef DEBUG
    999 		memset((char *)bp, 0, sizeof(*bp));
   1000 #endif
   1001 		pool_put(&bufpool, bp);
   1002 	}
   1003 	splx(s);
   1004 }
   1005 
   1006 /*
   1007  * Determine if a block is in the cache.
   1008  * Just look on what would be its hash chain.  If it's there, return
   1009  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1010  * we normally don't return the buffer, unless the caller explicitly
   1011  * wants us to.
   1012  */
   1013 struct buf *
   1014 incore(struct vnode *vp, daddr_t blkno)
   1015 {
   1016 	struct buf *bp;
   1017 
   1018 	/* Search hash chain */
   1019 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1020 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1021 		    !ISSET(bp->b_flags, B_INVAL))
   1022 		return (bp);
   1023 	}
   1024 
   1025 	return (NULL);
   1026 }
   1027 
   1028 /*
   1029  * Get a block of requested size that is associated with
   1030  * a given vnode and block offset. If it is found in the
   1031  * block cache, mark it as having been found, make it busy
   1032  * and return it. Otherwise, return an empty block of the
   1033  * correct size. It is up to the caller to insure that the
   1034  * cached blocks be of the correct size.
   1035  */
   1036 struct buf *
   1037 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1038 {
   1039 	struct buf *bp;
   1040 	int s, err;
   1041 	int preserve;
   1042 
   1043 start:
   1044 	s = splbio();
   1045 	simple_lock(&bqueue_slock);
   1046 	bp = incore(vp, blkno);
   1047 	if (bp != NULL) {
   1048 		simple_lock(&bp->b_interlock);
   1049 		if (ISSET(bp->b_flags, B_BUSY)) {
   1050 			simple_unlock(&bqueue_slock);
   1051 			if (curproc == uvm.pagedaemon_proc) {
   1052 				simple_unlock(&bp->b_interlock);
   1053 				splx(s);
   1054 				return NULL;
   1055 			}
   1056 			SET(bp->b_flags, B_WANTED);
   1057 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1058 					"getblk", slptimeo, &bp->b_interlock);
   1059 			splx(s);
   1060 			if (err)
   1061 				return (NULL);
   1062 			goto start;
   1063 		}
   1064 #ifdef DIAGNOSTIC
   1065 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1066 		    bp->b_bcount < size && vp->v_type != VBLK)
   1067 			panic("getblk: block size invariant failed");
   1068 #endif
   1069 		SET(bp->b_flags, B_BUSY);
   1070 		bremfree(bp);
   1071 		preserve = 1;
   1072 	} else {
   1073 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1074 			simple_unlock(&bqueue_slock);
   1075 			splx(s);
   1076 			goto start;
   1077 		}
   1078 
   1079 		binshash(bp, BUFHASH(vp, blkno));
   1080 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1081 		bgetvp(vp, bp);
   1082 		preserve = 0;
   1083 	}
   1084 	simple_unlock(&bp->b_interlock);
   1085 	simple_unlock(&bqueue_slock);
   1086 	splx(s);
   1087 	/*
   1088 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1089 	 * if we re-size buffers here.
   1090 	 */
   1091 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1092 		KASSERT(bp->b_bufsize >= size);
   1093 	} else {
   1094 		allocbuf(bp, size, preserve);
   1095 	}
   1096 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1097 	return (bp);
   1098 }
   1099 
   1100 /*
   1101  * Get an empty, disassociated buffer of given size.
   1102  */
   1103 struct buf *
   1104 geteblk(int size)
   1105 {
   1106 	struct buf *bp;
   1107 	int s;
   1108 
   1109 	s = splbio();
   1110 	simple_lock(&bqueue_slock);
   1111 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1112 		;
   1113 
   1114 	SET(bp->b_flags, B_INVAL);
   1115 	binshash(bp, &invalhash);
   1116 	simple_unlock(&bqueue_slock);
   1117 	simple_unlock(&bp->b_interlock);
   1118 	splx(s);
   1119 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1120 	allocbuf(bp, size, 0);
   1121 	return (bp);
   1122 }
   1123 
   1124 /*
   1125  * Expand or contract the actual memory allocated to a buffer.
   1126  *
   1127  * If the buffer shrinks, data is lost, so it's up to the
   1128  * caller to have written it out *first*; this routine will not
   1129  * start a write.  If the buffer grows, it's the callers
   1130  * responsibility to fill out the buffer's additional contents.
   1131  */
   1132 void
   1133 allocbuf(struct buf *bp, int size, int preserve)
   1134 {
   1135 	vsize_t oldsize, desired_size;
   1136 	caddr_t addr;
   1137 	int s, delta;
   1138 
   1139 	desired_size = buf_roundsize(size);
   1140 	if (desired_size > MAXBSIZE)
   1141 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1142 
   1143 	bp->b_bcount = size;
   1144 
   1145 	oldsize = bp->b_bufsize;
   1146 	if (oldsize == desired_size)
   1147 		return;
   1148 
   1149 	/*
   1150 	 * If we want a buffer of a different size, re-allocate the
   1151 	 * buffer's memory; copy old content only if needed.
   1152 	 */
   1153 	addr = buf_malloc(desired_size);
   1154 	if (preserve)
   1155 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1156 	if (bp->b_data != NULL)
   1157 		buf_mrelease(bp->b_data, oldsize);
   1158 	bp->b_data = addr;
   1159 	bp->b_bufsize = desired_size;
   1160 
   1161 	/*
   1162 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1163 	 */
   1164 	delta = (long)desired_size - (long)oldsize;
   1165 
   1166 	s = splbio();
   1167 	simple_lock(&bqueue_slock);
   1168 	if ((bufmem += delta) > bufmem_hiwater) {
   1169 		/*
   1170 		 * Need to trim overall memory usage.
   1171 		 */
   1172 		while (buf_canrelease()) {
   1173 			if (buf_trim() == 0)
   1174 				break;
   1175 		}
   1176 	}
   1177 
   1178 	simple_unlock(&bqueue_slock);
   1179 	splx(s);
   1180 }
   1181 
   1182 /*
   1183  * Find a buffer which is available for use.
   1184  * Select something from a free list.
   1185  * Preference is to AGE list, then LRU list.
   1186  *
   1187  * Called at splbio and with buffer queues locked.
   1188  * Return buffer locked.
   1189  */
   1190 struct buf *
   1191 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1192 {
   1193 	struct buf *bp;
   1194 
   1195 start:
   1196 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1197 
   1198 	/*
   1199 	 * Get a new buffer from the pool; but use NOWAIT because
   1200 	 * we have the buffer queues locked.
   1201 	 */
   1202 	if (!from_bufq && buf_lotsfree() &&
   1203 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1204 		memset((char *)bp, 0, sizeof(*bp));
   1205 		BUF_INIT(bp);
   1206 		bp->b_dev = NODEV;
   1207 		bp->b_vnbufs.le_next = NOLIST;
   1208 		bp->b_flags = B_BUSY;
   1209 		simple_lock(&bp->b_interlock);
   1210 #if defined(DIAGNOSTIC)
   1211 		bp->b_freelistindex = -1;
   1212 #endif /* defined(DIAGNOSTIC) */
   1213 		return (bp);
   1214 	}
   1215 
   1216 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1217 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1218 		simple_lock(&bp->b_interlock);
   1219 		bremfree(bp);
   1220 	} else {
   1221 		/*
   1222 		 * XXX: !from_bufq should be removed.
   1223 		 */
   1224 		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
   1225 			/* wait for a free buffer of any kind */
   1226 			needbuffer = 1;
   1227 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1228 			    "getnewbuf", slptimeo, &bqueue_slock);
   1229 		}
   1230 		return (NULL);
   1231 	}
   1232 
   1233 #ifdef DIAGNOSTIC
   1234 	if (bp->b_bufsize <= 0)
   1235 		panic("buffer %p: on queue but empty", bp);
   1236 #endif
   1237 
   1238 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1239 		/*
   1240 		 * This is a delayed write buffer being flushed to disk.  Make
   1241 		 * sure it gets aged out of the queue when it's finished, and
   1242 		 * leave it off the LRU queue.
   1243 		 */
   1244 		CLR(bp->b_flags, B_VFLUSH);
   1245 		SET(bp->b_flags, B_AGE);
   1246 		simple_unlock(&bp->b_interlock);
   1247 		goto start;
   1248 	}
   1249 
   1250 	/* Buffer is no longer on free lists. */
   1251 	SET(bp->b_flags, B_BUSY);
   1252 
   1253 	/*
   1254 	 * If buffer was a delayed write, start it and return NULL
   1255 	 * (since we might sleep while starting the write).
   1256 	 */
   1257 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1258 		/*
   1259 		 * This buffer has gone through the LRU, so make sure it gets
   1260 		 * reused ASAP.
   1261 		 */
   1262 		SET(bp->b_flags, B_AGE);
   1263 		simple_unlock(&bp->b_interlock);
   1264 		simple_unlock(&bqueue_slock);
   1265 		bawrite(bp);
   1266 		simple_lock(&bqueue_slock);
   1267 		return (NULL);
   1268 	}
   1269 
   1270 	/* disassociate us from our vnode, if we had one... */
   1271 	if (bp->b_vp)
   1272 		brelvp(bp);
   1273 
   1274 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
   1275 		(*bioops.io_deallocate)(bp);
   1276 
   1277 	/* clear out various other fields */
   1278 	bp->b_flags = B_BUSY;
   1279 	bp->b_dev = NODEV;
   1280 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1281 	bp->b_iodone = 0;
   1282 	bp->b_error = 0;
   1283 	bp->b_resid = 0;
   1284 	bp->b_bcount = 0;
   1285 
   1286 	bremhash(bp);
   1287 	return (bp);
   1288 }
   1289 
   1290 /*
   1291  * Attempt to free an aged buffer off the queues.
   1292  * Called at splbio and with queue lock held.
   1293  * Returns the amount of buffer memory freed.
   1294  */
   1295 static int
   1296 buf_trim(void)
   1297 {
   1298 	struct buf *bp;
   1299 	long size = 0;
   1300 
   1301 	/* Instruct getnewbuf() to get buffers off the queues */
   1302 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1303 		return 0;
   1304 
   1305 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1306 	simple_unlock(&bp->b_interlock);
   1307 	size = bp->b_bufsize;
   1308 	bufmem -= size;
   1309 	simple_unlock(&bqueue_slock);
   1310 	if (size > 0) {
   1311 		buf_mrelease(bp->b_data, size);
   1312 		bp->b_bcount = bp->b_bufsize = 0;
   1313 	}
   1314 	/* brelse() will return the buffer to the global buffer pool */
   1315 	brelse(bp);
   1316 	simple_lock(&bqueue_slock);
   1317 	return size;
   1318 }
   1319 
   1320 int
   1321 buf_drain(int n)
   1322 {
   1323 	int s, size = 0, sz;
   1324 
   1325 	s = splbio();
   1326 	simple_lock(&bqueue_slock);
   1327 
   1328 	while (size < n && bufmem > bufmem_lowater) {
   1329 		sz = buf_trim();
   1330 		if (sz <= 0)
   1331 			break;
   1332 		size += sz;
   1333 	}
   1334 
   1335 	simple_unlock(&bqueue_slock);
   1336 	splx(s);
   1337 	return size;
   1338 }
   1339 
   1340 /*
   1341  * Wait for operations on the buffer to complete.
   1342  * When they do, extract and return the I/O's error value.
   1343  */
   1344 int
   1345 biowait(struct buf *bp)
   1346 {
   1347 	int s, error;
   1348 
   1349 	s = splbio();
   1350 	simple_lock(&bp->b_interlock);
   1351 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1352 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1353 
   1354 	/* check for interruption of I/O (e.g. via NFS), then errors. */
   1355 	if (ISSET(bp->b_flags, B_EINTR)) {
   1356 		CLR(bp->b_flags, B_EINTR);
   1357 		error = EINTR;
   1358 	} else if (ISSET(bp->b_flags, B_ERROR))
   1359 		error = bp->b_error ? bp->b_error : EIO;
   1360 	else
   1361 		error = 0;
   1362 
   1363 	simple_unlock(&bp->b_interlock);
   1364 	splx(s);
   1365 	return (error);
   1366 }
   1367 
   1368 /*
   1369  * Mark I/O complete on a buffer.
   1370  *
   1371  * If a callback has been requested, e.g. the pageout
   1372  * daemon, do so. Otherwise, awaken waiting processes.
   1373  *
   1374  * [ Leffler, et al., says on p.247:
   1375  *	"This routine wakes up the blocked process, frees the buffer
   1376  *	for an asynchronous write, or, for a request by the pagedaemon
   1377  *	process, invokes a procedure specified in the buffer structure" ]
   1378  *
   1379  * In real life, the pagedaemon (or other system processes) wants
   1380  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1381  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1382  * for the vn device, that puts malloc'd buffers on the free lists!)
   1383  */
   1384 void
   1385 biodone(struct buf *bp)
   1386 {
   1387 	int s = splbio();
   1388 
   1389 	simple_lock(&bp->b_interlock);
   1390 	if (ISSET(bp->b_flags, B_DONE))
   1391 		panic("biodone already");
   1392 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1393 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1394 
   1395 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
   1396 		(*bioops.io_complete)(bp);
   1397 
   1398 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1399 		vwakeup(bp);
   1400 
   1401 	/*
   1402 	 * If necessary, call out.  Unlock the buffer before calling
   1403 	 * iodone() as the buffer isn't valid any more when it return.
   1404 	 */
   1405 	if (ISSET(bp->b_flags, B_CALL)) {
   1406 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1407 		simple_unlock(&bp->b_interlock);
   1408 		(*bp->b_iodone)(bp);
   1409 	} else {
   1410 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1411 			simple_unlock(&bp->b_interlock);
   1412 			brelse(bp);
   1413 		} else {			/* or just wakeup the buffer */
   1414 			CLR(bp->b_flags, B_WANTED);
   1415 			wakeup(bp);
   1416 			simple_unlock(&bp->b_interlock);
   1417 		}
   1418 	}
   1419 
   1420 	splx(s);
   1421 }
   1422 
   1423 /*
   1424  * Return a count of buffers on the "locked" queue.
   1425  */
   1426 int
   1427 count_lock_queue(void)
   1428 {
   1429 	struct buf *bp;
   1430 	int n = 0;
   1431 
   1432 	simple_lock(&bqueue_slock);
   1433 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1434 		n++;
   1435 	simple_unlock(&bqueue_slock);
   1436 	return (n);
   1437 }
   1438 
   1439 /*
   1440  * Wait for all buffers to complete I/O
   1441  * Return the number of "stuck" buffers.
   1442  */
   1443 int
   1444 buf_syncwait(void)
   1445 {
   1446 	struct buf *bp;
   1447 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1448 
   1449 	dcount = 10000;
   1450 	for (iter = 0; iter < 20;) {
   1451 		s = splbio();
   1452 		simple_lock(&bqueue_slock);
   1453 		nbusy = 0;
   1454 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1455 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1456 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1457 				nbusy++;
   1458 			/*
   1459 			 * With soft updates, some buffers that are
   1460 			 * written will be remarked as dirty until other
   1461 			 * buffers are written.
   1462 			 */
   1463 			if (bp->b_vp && bp->b_vp->v_mount
   1464 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1465 			    && (bp->b_flags & B_DELWRI)) {
   1466 				simple_lock(&bp->b_interlock);
   1467 				bremfree(bp);
   1468 				bp->b_flags |= B_BUSY;
   1469 				nbusy++;
   1470 				simple_unlock(&bp->b_interlock);
   1471 				simple_unlock(&bqueue_slock);
   1472 				bawrite(bp);
   1473 				if (dcount-- <= 0) {
   1474 					printf("softdep ");
   1475 					splx(s);
   1476 					goto fail;
   1477 				}
   1478 				simple_lock(&bqueue_slock);
   1479 			}
   1480 		    }
   1481 		}
   1482 
   1483 		simple_unlock(&bqueue_slock);
   1484 		splx(s);
   1485 
   1486 		if (nbusy == 0)
   1487 			break;
   1488 		if (nbusy_prev == 0)
   1489 			nbusy_prev = nbusy;
   1490 		printf("%d ", nbusy);
   1491 		tsleep(&nbusy, PRIBIO, "bflush",
   1492 		    (iter == 0) ? 1 : hz / 25 * iter);
   1493 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1494 			iter++;
   1495 		else
   1496 			nbusy_prev = nbusy;
   1497 	}
   1498 
   1499 	if (nbusy) {
   1500 fail:;
   1501 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1502 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1503 		s = splbio();
   1504 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1505 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1506 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1507 				vprint(NULL, bp->b_vp);
   1508 		    }
   1509 		}
   1510 		splx(s);
   1511 #endif
   1512 	}
   1513 
   1514 	return nbusy;
   1515 }
   1516 
   1517 static void
   1518 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1519 {
   1520 
   1521 	o->b_flags = i->b_flags;
   1522 	o->b_error = i->b_error;
   1523 	o->b_prio = i->b_prio;
   1524 	o->b_dev = i->b_dev;
   1525 	o->b_bufsize = i->b_bufsize;
   1526 	o->b_bcount = i->b_bcount;
   1527 	o->b_resid = i->b_resid;
   1528 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
   1529 	o->b_blkno = i->b_blkno;
   1530 	o->b_rawblkno = i->b_rawblkno;
   1531 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1532 	o->b_proc = PTRTOUINT64(i->b_proc);
   1533 	o->b_vp = PTRTOUINT64(i->b_vp);
   1534 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1535 	o->b_lblkno = i->b_lblkno;
   1536 }
   1537 
   1538 #define KERN_BUFSLOP 20
   1539 static int
   1540 sysctl_dobuf(SYSCTLFN_ARGS)
   1541 {
   1542 	struct buf *bp;
   1543 	struct buf_sysctl bs;
   1544 	char *dp;
   1545 	u_int i, op, arg;
   1546 	size_t len, needed, elem_size, out_size;
   1547 	int error, s, elem_count;
   1548 
   1549 	if (namelen == 1 && name[0] == CTL_QUERY)
   1550 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1551 
   1552 	if (namelen != 4)
   1553 		return (EINVAL);
   1554 
   1555 	dp = oldp;
   1556 	len = (oldp != NULL) ? *oldlenp : 0;
   1557 	op = name[0];
   1558 	arg = name[1];
   1559 	elem_size = name[2];
   1560 	elem_count = name[3];
   1561 	out_size = MIN(sizeof(bs), elem_size);
   1562 
   1563 	/*
   1564 	 * at the moment, these are just "placeholders" to make the
   1565 	 * API for retrieving kern.buf data more extensible in the
   1566 	 * future.
   1567 	 *
   1568 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1569 	 * these will be resolved at a later point.
   1570 	 */
   1571 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1572 	    elem_size < 1 || elem_count < 0)
   1573 		return (EINVAL);
   1574 
   1575 	error = 0;
   1576 	needed = 0;
   1577 	s = splbio();
   1578 	simple_lock(&bqueue_slock);
   1579 	for (i = 0; i < BQUEUES; i++) {
   1580 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1581 			if (len >= elem_size && elem_count > 0) {
   1582 				sysctl_fillbuf(bp, &bs);
   1583 				error = copyout(&bs, dp, out_size);
   1584 				if (error)
   1585 					goto cleanup;
   1586 				dp += elem_size;
   1587 				len -= elem_size;
   1588 			}
   1589 			if (elem_count > 0) {
   1590 				needed += elem_size;
   1591 				if (elem_count != INT_MAX)
   1592 					elem_count--;
   1593 			}
   1594 		}
   1595 	}
   1596 cleanup:
   1597 	simple_unlock(&bqueue_slock);
   1598 	splx(s);
   1599 
   1600 	*oldlenp = needed;
   1601 	if (oldp == NULL)
   1602 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1603 
   1604 	return (error);
   1605 }
   1606 
   1607 static int
   1608 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1609 {
   1610 	int t, error;
   1611 	struct sysctlnode node;
   1612 
   1613 	node = *rnode;
   1614 	node.sysctl_data = &t;
   1615 	t = *(int *)rnode->sysctl_data;
   1616 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1617 	if (error || newp == NULL)
   1618 		return (error);
   1619 
   1620 	if (t < 0)
   1621 		return EINVAL;
   1622 	if (rnode->sysctl_data == &bufcache) {
   1623 		if (t > 100)
   1624 			return (EINVAL);
   1625 		bufcache = t;
   1626 		buf_setwm();
   1627 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1628 		if (bufmem_hiwater - t < 16)
   1629 			return (EINVAL);
   1630 		bufmem_lowater = t;
   1631 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1632 		if (t - bufmem_lowater < 16)
   1633 			return (EINVAL);
   1634 		bufmem_hiwater = t;
   1635 	} else
   1636 		return (EINVAL);
   1637 
   1638 	/* Drain until below new high water mark */
   1639 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1640 		if (buf_drain(t / (2 * 1024)) <= 0)
   1641 			break;
   1642 	}
   1643 
   1644 	return 0;
   1645 }
   1646 
   1647 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1648 {
   1649 
   1650 	sysctl_createv(clog, 0, NULL, NULL,
   1651 		       CTLFLAG_PERMANENT,
   1652 		       CTLTYPE_NODE, "kern", NULL,
   1653 		       NULL, 0, NULL, 0,
   1654 		       CTL_KERN, CTL_EOL);
   1655 	sysctl_createv(clog, 0, NULL, NULL,
   1656 		       CTLFLAG_PERMANENT,
   1657 		       CTLTYPE_NODE, "buf",
   1658 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1659 		       sysctl_dobuf, 0, NULL, 0,
   1660 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1661 }
   1662 
   1663 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1664 {
   1665 
   1666 	sysctl_createv(clog, 0, NULL, NULL,
   1667 		       CTLFLAG_PERMANENT,
   1668 		       CTLTYPE_NODE, "vm", NULL,
   1669 		       NULL, 0, NULL, 0,
   1670 		       CTL_VM, CTL_EOL);
   1671 
   1672 	sysctl_createv(clog, 0, NULL, NULL,
   1673 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1674 		       CTLTYPE_INT, "bufcache",
   1675 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1676 				    "buffer cache"),
   1677 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1678 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1679 	sysctl_createv(clog, 0, NULL, NULL,
   1680 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1681 		       CTLTYPE_INT, "bufmem",
   1682 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1683 				    "cache"),
   1684 		       NULL, 0, &bufmem, 0,
   1685 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1686 	sysctl_createv(clog, 0, NULL, NULL,
   1687 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1688 		       CTLTYPE_INT, "bufmem_lowater",
   1689 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1690 				    "reserve for buffer cache"),
   1691 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1692 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1693 	sysctl_createv(clog, 0, NULL, NULL,
   1694 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1695 		       CTLTYPE_INT, "bufmem_hiwater",
   1696 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1697 				    "for buffer cache"),
   1698 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1699 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1700 }
   1701 
   1702 #ifdef DEBUG
   1703 /*
   1704  * Print out statistics on the current allocation of the buffer pool.
   1705  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1706  * in vfs_syscalls.c using sysctl.
   1707  */
   1708 void
   1709 vfs_bufstats(void)
   1710 {
   1711 	int s, i, j, count;
   1712 	struct buf *bp;
   1713 	struct bqueue *dp;
   1714 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1715 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1716 
   1717 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1718 		count = 0;
   1719 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1720 			counts[j] = 0;
   1721 		s = splbio();
   1722 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1723 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1724 			count++;
   1725 		}
   1726 		splx(s);
   1727 		printf("%s: total-%d", bname[i], count);
   1728 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1729 			if (counts[j] != 0)
   1730 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1731 		printf("\n");
   1732 	}
   1733 }
   1734 #endif /* DEBUG */
   1735 
   1736 /* ------------------------------ */
   1737 
   1738 POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
   1739 
   1740 static struct buf *
   1741 getiobuf1(int prflags)
   1742 {
   1743 	struct buf *bp;
   1744 	int s;
   1745 
   1746 	s = splbio();
   1747 	bp = pool_get(&bufiopool, prflags);
   1748 	splx(s);
   1749 	if (bp != NULL) {
   1750 		BUF_INIT(bp);
   1751 	}
   1752 	return bp;
   1753 }
   1754 
   1755 struct buf *
   1756 getiobuf(void)
   1757 {
   1758 
   1759 	return getiobuf1(PR_WAITOK);
   1760 }
   1761 
   1762 struct buf *
   1763 getiobuf_nowait(void)
   1764 {
   1765 
   1766 	return getiobuf1(PR_NOWAIT);
   1767 }
   1768 
   1769 void
   1770 putiobuf(struct buf *bp)
   1771 {
   1772 	int s;
   1773 
   1774 	s = splbio();
   1775 	pool_put(&bufiopool, bp);
   1776 	splx(s);
   1777 }
   1778