vfs_bio.c revision 1.150 1 /* $NetBSD: vfs_bio.c,v 1.150 2006/01/05 10:18:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.150 2006/01/05 10:18:20 yamt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118 /* Function prototypes */
119 struct bqueue;
120
121 static void buf_setwm(void);
122 static int buf_trim(void);
123 static void *bufpool_page_alloc(struct pool *, int);
124 static void bufpool_page_free(struct pool *, void *);
125 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126 struct ucred *, int);
127 static int buf_lotsfree(void);
128 static int buf_canrelease(void);
129 static inline u_long buf_mempoolidx(u_long);
130 static inline u_long buf_roundsize(u_long);
131 static inline caddr_t buf_malloc(size_t);
132 static void buf_mrelease(caddr_t, size_t);
133 static inline void binsheadfree(struct buf *, struct bqueue *);
134 static inline void binstailfree(struct buf *, struct bqueue *);
135 int count_lock_queue(void); /* XXX */
136 #ifdef DEBUG
137 static int checkfreelist(struct buf *, struct bqueue *);
138 #endif
139
140 /* Macros to clear/set/test flags. */
141 #define SET(t, f) (t) |= (f)
142 #define CLR(t, f) (t) &= ~(f)
143 #define ISSET(t, f) ((t) & (f))
144
145 /*
146 * Definitions for the buffer hash lists.
147 */
148 #define BUFHASH(dvp, lbn) \
149 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151 u_long bufhash;
152 #if !defined(SOFTDEP) || !defined(FFS)
153 struct bio_ops bioops; /* I/O operation notification */
154 #endif
155
156 /*
157 * Insq/Remq for the buffer hash lists.
158 */
159 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
160 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
161
162 /*
163 * Definitions for the buffer free lists.
164 */
165 #define BQUEUES 3 /* number of free buffer queues */
166
167 #define BQ_LOCKED 0 /* super-blocks &c */
168 #define BQ_LRU 1 /* lru, useful buffers */
169 #define BQ_AGE 2 /* rubbish */
170
171 struct bqueue {
172 TAILQ_HEAD(, buf) bq_queue;
173 uint64_t bq_bytes;
174 } bufqueues[BQUEUES];
175 int needbuffer;
176
177 /*
178 * Buffer queue lock.
179 * Take this lock first if also taking some buffer's b_interlock.
180 */
181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182
183 /*
184 * Buffer pool for I/O buffers.
185 * Access to this pool must be protected with splbio().
186 */
187 static struct pool bufpool;
188
189 /* XXX - somewhat gross.. */
190 #if MAXBSIZE == 0x2000
191 #define NMEMPOOLS 4
192 #elif MAXBSIZE == 0x4000
193 #define NMEMPOOLS 5
194 #elif MAXBSIZE == 0x8000
195 #define NMEMPOOLS 6
196 #else
197 #define NMEMPOOLS 7
198 #endif
199
200 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
201 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
202 #error update vfs_bio buffer memory parameters
203 #endif
204
205 /* Buffer memory pools */
206 static struct pool bmempools[NMEMPOOLS];
207
208 struct vm_map *buf_map;
209
210 /*
211 * Buffer memory pool allocator.
212 */
213 static void *
214 bufpool_page_alloc(struct pool *pp, int flags)
215 {
216
217 return (void *)uvm_km_alloc(buf_map,
218 MAXBSIZE, MAXBSIZE,
219 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
220 | UVM_KMF_WIRED);
221 }
222
223 static void
224 bufpool_page_free(struct pool *pp, void *v)
225 {
226
227 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
228 }
229
230 static struct pool_allocator bufmempool_allocator = {
231 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
232 };
233
234 /* Buffer memory management variables */
235 u_long bufmem_valimit;
236 u_long bufmem_hiwater;
237 u_long bufmem_lowater;
238 u_long bufmem;
239
240 /*
241 * MD code can call this to set a hard limit on the amount
242 * of virtual memory used by the buffer cache.
243 */
244 int
245 buf_setvalimit(vsize_t sz)
246 {
247
248 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
249 if (sz < NMEMPOOLS * MAXBSIZE)
250 return EINVAL;
251
252 bufmem_valimit = sz;
253 return 0;
254 }
255
256 static void
257 buf_setwm(void)
258 {
259
260 bufmem_hiwater = buf_memcalc();
261 /* lowater is approx. 2% of memory (with bufcache = 15) */
262 #define BUFMEM_WMSHIFT 3
263 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
264 if (bufmem_hiwater < BUFMEM_HIWMMIN)
265 /* Ensure a reasonable minimum value */
266 bufmem_hiwater = BUFMEM_HIWMMIN;
267 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
268 }
269
270 #ifdef DEBUG
271 int debug_verify_freelist = 0;
272 static int
273 checkfreelist(struct buf *bp, struct bqueue *dp)
274 {
275 struct buf *b;
276
277 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
278 if (b == bp)
279 return 1;
280 }
281 return 0;
282 }
283 #endif
284
285 /*
286 * Insq/Remq for the buffer hash lists.
287 * Call with buffer queue locked.
288 */
289 static inline void
290 binsheadfree(struct buf *bp, struct bqueue *dp)
291 {
292
293 KASSERT(bp->b_freelistindex == -1);
294 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
295 dp->bq_bytes += bp->b_bufsize;
296 bp->b_freelistindex = dp - bufqueues;
297 }
298
299 static inline void
300 binstailfree(struct buf *bp, struct bqueue *dp)
301 {
302
303 KASSERT(bp->b_freelistindex == -1);
304 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
305 dp->bq_bytes += bp->b_bufsize;
306 bp->b_freelistindex = dp - bufqueues;
307 }
308
309 void
310 bremfree(struct buf *bp)
311 {
312 struct bqueue *dp;
313 int bqidx = bp->b_freelistindex;
314
315 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
316
317 KASSERT(bqidx != -1);
318 dp = &bufqueues[bqidx];
319 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
320 KASSERT(dp->bq_bytes >= bp->b_bufsize);
321 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
322 dp->bq_bytes -= bp->b_bufsize;
323 #if defined(DIAGNOSTIC)
324 bp->b_freelistindex = -1;
325 #endif /* defined(DIAGNOSTIC) */
326 }
327
328 u_long
329 buf_memcalc(void)
330 {
331 u_long n;
332
333 /*
334 * Determine the upper bound of memory to use for buffers.
335 *
336 * - If bufpages is specified, use that as the number
337 * pages.
338 *
339 * - Otherwise, use bufcache as the percentage of
340 * physical memory.
341 */
342 if (bufpages != 0) {
343 n = bufpages;
344 } else {
345 if (bufcache < 5) {
346 printf("forcing bufcache %d -> 5", bufcache);
347 bufcache = 5;
348 }
349 if (bufcache > 95) {
350 printf("forcing bufcache %d -> 95", bufcache);
351 bufcache = 95;
352 }
353 n = physmem / 100 * bufcache;
354 }
355
356 n <<= PAGE_SHIFT;
357 if (bufmem_valimit != 0 && n > bufmem_valimit)
358 n = bufmem_valimit;
359
360 return (n);
361 }
362
363 /*
364 * Initialize buffers and hash links for buffers.
365 */
366 void
367 bufinit(void)
368 {
369 struct bqueue *dp;
370 int use_std;
371 u_int i;
372
373 /*
374 * Initialize buffer cache memory parameters.
375 */
376 bufmem = 0;
377 buf_setwm();
378
379 if (bufmem_valimit != 0) {
380 vaddr_t minaddr = 0, maxaddr;
381 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
382 bufmem_valimit, VM_MAP_PAGEABLE,
383 FALSE, 0);
384 if (buf_map == NULL)
385 panic("bufinit: cannot allocate submap");
386 } else
387 buf_map = kernel_map;
388
389 /*
390 * Initialize the buffer pools.
391 */
392 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
393
394 /* On "small" machines use small pool page sizes where possible */
395 use_std = (physmem < atop(16*1024*1024));
396
397 /*
398 * Also use them on systems that can map the pool pages using
399 * a direct-mapped segment.
400 */
401 #ifdef PMAP_MAP_POOLPAGE
402 use_std = 1;
403 #endif
404
405 for (i = 0; i < NMEMPOOLS; i++) {
406 struct pool_allocator *pa;
407 struct pool *pp = &bmempools[i];
408 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
409 char *name = malloc(8, M_TEMP, M_WAITOK);
410 snprintf(name, 8, "buf%dk", 1 << i);
411 pa = (size <= PAGE_SIZE && use_std)
412 ? &pool_allocator_nointr
413 : &bufmempool_allocator;
414 pool_init(pp, size, 0, 0, 0, name, pa);
415 pool_setlowat(pp, 1);
416 pool_sethiwat(pp, 1);
417 }
418
419 /* Initialize the buffer queues */
420 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
421 TAILQ_INIT(&dp->bq_queue);
422 dp->bq_bytes = 0;
423 }
424
425 /*
426 * Estimate hash table size based on the amount of memory we
427 * intend to use for the buffer cache. The average buffer
428 * size is dependent on our clients (i.e. filesystems).
429 *
430 * For now, use an empirical 3K per buffer.
431 */
432 nbuf = (bufmem_hiwater / 1024) / 3;
433 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
434 }
435
436 static int
437 buf_lotsfree(void)
438 {
439 int try, thresh;
440 struct lwp *l = curlwp;
441
442 /* Always allocate if doing copy on write */
443 if (l->l_flag & L_COWINPROGRESS)
444 return 1;
445
446 /* Always allocate if less than the low water mark. */
447 if (bufmem < bufmem_lowater)
448 return 1;
449
450 /* Never allocate if greater than the high water mark. */
451 if (bufmem > bufmem_hiwater)
452 return 0;
453
454 /* If there's anything on the AGE list, it should be eaten. */
455 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
456 return 0;
457
458 /*
459 * The probabily of getting a new allocation is inversely
460 * proportional to the current size of the cache, using
461 * a granularity of 16 steps.
462 */
463 try = random() & 0x0000000fL;
464
465 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
466 thresh = (bufmem - bufmem_lowater) /
467 ((bufmem_hiwater - bufmem_lowater) / 16);
468
469 if (try >= thresh)
470 return 1;
471
472 /* Otherwise don't allocate. */
473 return 0;
474 }
475
476 /*
477 * Return estimate of bytes we think need to be
478 * released to help resolve low memory conditions.
479 *
480 * => called at splbio.
481 * => called with bqueue_slock held.
482 */
483 static int
484 buf_canrelease(void)
485 {
486 int pagedemand, ninvalid = 0;
487
488 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
489
490 if (bufmem < bufmem_lowater)
491 return 0;
492
493 if (bufmem > bufmem_hiwater)
494 return bufmem - bufmem_hiwater;
495
496 ninvalid += bufqueues[BQ_AGE].bq_bytes;
497
498 pagedemand = uvmexp.freetarg - uvmexp.free;
499 if (pagedemand < 0)
500 return ninvalid;
501 return MAX(ninvalid, MIN(2 * MAXBSIZE,
502 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
503 }
504
505 /*
506 * Buffer memory allocation helper functions
507 */
508 static inline u_long
509 buf_mempoolidx(u_long size)
510 {
511 u_int n = 0;
512
513 size -= 1;
514 size >>= MEMPOOL_INDEX_OFFSET;
515 while (size) {
516 size >>= 1;
517 n += 1;
518 }
519 if (n >= NMEMPOOLS)
520 panic("buf mem pool index %d", n);
521 return n;
522 }
523
524 static inline u_long
525 buf_roundsize(u_long size)
526 {
527 /* Round up to nearest power of 2 */
528 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
529 }
530
531 static inline caddr_t
532 buf_malloc(size_t size)
533 {
534 u_int n = buf_mempoolidx(size);
535 caddr_t addr;
536 int s;
537
538 while (1) {
539 addr = pool_get(&bmempools[n], PR_NOWAIT);
540 if (addr != NULL)
541 break;
542
543 /* No memory, see if we can free some. If so, try again */
544 if (buf_drain(1) > 0)
545 continue;
546
547 /* Wait for buffers to arrive on the LRU queue */
548 s = splbio();
549 simple_lock(&bqueue_slock);
550 needbuffer = 1;
551 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
552 "buf_malloc", 0, &bqueue_slock);
553 splx(s);
554 }
555
556 return addr;
557 }
558
559 static void
560 buf_mrelease(caddr_t addr, size_t size)
561 {
562
563 pool_put(&bmempools[buf_mempoolidx(size)], addr);
564 }
565
566 /*
567 * bread()/breadn() helper.
568 */
569 static inline struct buf *
570 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
571 int async)
572 {
573 struct buf *bp;
574 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
575 struct proc *p = l->l_proc;
576 struct mount *mp;
577
578 bp = getblk(vp, blkno, size, 0, 0);
579
580 #ifdef DIAGNOSTIC
581 if (bp == NULL) {
582 panic("bio_doread: no such buf");
583 }
584 #endif
585
586 /*
587 * If buffer does not have data valid, start a read.
588 * Note that if buffer is B_INVAL, getblk() won't return it.
589 * Therefore, it's valid if its I/O has completed or been delayed.
590 */
591 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
592 /* Start I/O for the buffer. */
593 SET(bp->b_flags, B_READ | async);
594 if (async)
595 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
596 else
597 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
598 VOP_STRATEGY(vp, bp);
599
600 /* Pay for the read. */
601 p->p_stats->p_ru.ru_inblock++;
602 } else if (async) {
603 brelse(bp);
604 }
605
606 if (vp->v_type == VBLK)
607 mp = vp->v_specmountpoint;
608 else
609 mp = vp->v_mount;
610
611 /*
612 * Collect statistics on synchronous and asynchronous reads.
613 * Reads from block devices are charged to their associated
614 * filesystem (if any).
615 */
616 if (mp != NULL) {
617 if (async == 0)
618 mp->mnt_stat.f_syncreads++;
619 else
620 mp->mnt_stat.f_asyncreads++;
621 }
622
623 return (bp);
624 }
625
626 /*
627 * Read a disk block.
628 * This algorithm described in Bach (p.54).
629 */
630 int
631 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
632 struct buf **bpp)
633 {
634 struct buf *bp;
635
636 /* Get buffer for block. */
637 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
638
639 /* Wait for the read to complete, and return result. */
640 return (biowait(bp));
641 }
642
643 /*
644 * Read-ahead multiple disk blocks. The first is sync, the rest async.
645 * Trivial modification to the breada algorithm presented in Bach (p.55).
646 */
647 int
648 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
649 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
650 {
651 struct buf *bp;
652 int i;
653
654 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
655
656 /*
657 * For each of the read-ahead blocks, start a read, if necessary.
658 */
659 for (i = 0; i < nrablks; i++) {
660 /* If it's in the cache, just go on to next one. */
661 if (incore(vp, rablks[i]))
662 continue;
663
664 /* Get a buffer for the read-ahead block */
665 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
666 }
667
668 /* Otherwise, we had to start a read for it; wait until it's valid. */
669 return (biowait(bp));
670 }
671
672 /*
673 * Read with single-block read-ahead. Defined in Bach (p.55), but
674 * implemented as a call to breadn().
675 * XXX for compatibility with old file systems.
676 */
677 int
678 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
679 int rabsize, struct ucred *cred, struct buf **bpp)
680 {
681
682 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
683 }
684
685 /*
686 * Block write. Described in Bach (p.56)
687 */
688 int
689 bwrite(struct buf *bp)
690 {
691 int rv, sync, wasdelayed, s;
692 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
693 struct proc *p = l->l_proc;
694 struct vnode *vp;
695 struct mount *mp;
696
697 KASSERT(ISSET(bp->b_flags, B_BUSY));
698
699 vp = bp->b_vp;
700 if (vp != NULL) {
701 if (vp->v_type == VBLK)
702 mp = vp->v_specmountpoint;
703 else
704 mp = vp->v_mount;
705 } else {
706 mp = NULL;
707 }
708
709 /*
710 * Remember buffer type, to switch on it later. If the write was
711 * synchronous, but the file system was mounted with MNT_ASYNC,
712 * convert it to a delayed write.
713 * XXX note that this relies on delayed tape writes being converted
714 * to async, not sync writes (which is safe, but ugly).
715 */
716 sync = !ISSET(bp->b_flags, B_ASYNC);
717 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
718 bdwrite(bp);
719 return (0);
720 }
721
722 /*
723 * Collect statistics on synchronous and asynchronous writes.
724 * Writes to block devices are charged to their associated
725 * filesystem (if any).
726 */
727 if (mp != NULL) {
728 if (sync)
729 mp->mnt_stat.f_syncwrites++;
730 else
731 mp->mnt_stat.f_asyncwrites++;
732 }
733
734 s = splbio();
735 simple_lock(&bp->b_interlock);
736
737 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
738
739 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
740
741 /*
742 * Pay for the I/O operation and make sure the buf is on the correct
743 * vnode queue.
744 */
745 if (wasdelayed)
746 reassignbuf(bp, bp->b_vp);
747 else
748 p->p_stats->p_ru.ru_oublock++;
749
750 /* Initiate disk write. Make sure the appropriate party is charged. */
751 V_INCR_NUMOUTPUT(bp->b_vp);
752 simple_unlock(&bp->b_interlock);
753 splx(s);
754
755 if (sync)
756 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
757 else
758 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
759
760 VOP_STRATEGY(vp, bp);
761
762 if (sync) {
763 /* If I/O was synchronous, wait for it to complete. */
764 rv = biowait(bp);
765
766 /* Release the buffer. */
767 brelse(bp);
768
769 return (rv);
770 } else {
771 return (0);
772 }
773 }
774
775 int
776 vn_bwrite(void *v)
777 {
778 struct vop_bwrite_args *ap = v;
779
780 return (bwrite(ap->a_bp));
781 }
782
783 /*
784 * Delayed write.
785 *
786 * The buffer is marked dirty, but is not queued for I/O.
787 * This routine should be used when the buffer is expected
788 * to be modified again soon, typically a small write that
789 * partially fills a buffer.
790 *
791 * NB: magnetic tapes cannot be delayed; they must be
792 * written in the order that the writes are requested.
793 *
794 * Described in Leffler, et al. (pp. 208-213).
795 */
796 void
797 bdwrite(struct buf *bp)
798 {
799 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
800 struct proc *p = l->l_proc;
801 const struct bdevsw *bdev;
802 int s;
803
804 /* If this is a tape block, write the block now. */
805 bdev = bdevsw_lookup(bp->b_dev);
806 if (bdev != NULL && bdev->d_type == D_TAPE) {
807 bawrite(bp);
808 return;
809 }
810
811 /*
812 * If the block hasn't been seen before:
813 * (1) Mark it as having been seen,
814 * (2) Charge for the write,
815 * (3) Make sure it's on its vnode's correct block list.
816 */
817 s = splbio();
818 simple_lock(&bp->b_interlock);
819
820 KASSERT(ISSET(bp->b_flags, B_BUSY));
821
822 if (!ISSET(bp->b_flags, B_DELWRI)) {
823 SET(bp->b_flags, B_DELWRI);
824 p->p_stats->p_ru.ru_oublock++;
825 reassignbuf(bp, bp->b_vp);
826 }
827
828 /* Otherwise, the "write" is done, so mark and release the buffer. */
829 CLR(bp->b_flags, B_DONE);
830 simple_unlock(&bp->b_interlock);
831 splx(s);
832
833 brelse(bp);
834 }
835
836 /*
837 * Asynchronous block write; just an asynchronous bwrite().
838 */
839 void
840 bawrite(struct buf *bp)
841 {
842 int s;
843
844 s = splbio();
845 simple_lock(&bp->b_interlock);
846
847 KASSERT(ISSET(bp->b_flags, B_BUSY));
848
849 SET(bp->b_flags, B_ASYNC);
850 simple_unlock(&bp->b_interlock);
851 splx(s);
852 VOP_BWRITE(bp);
853 }
854
855 /*
856 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
857 * Call at splbio() and with the buffer interlock locked.
858 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
859 */
860 void
861 bdirty(struct buf *bp)
862 {
863 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
864 struct proc *p = l->l_proc;
865
866 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
867 KASSERT(ISSET(bp->b_flags, B_BUSY));
868
869 CLR(bp->b_flags, B_AGE);
870
871 if (!ISSET(bp->b_flags, B_DELWRI)) {
872 SET(bp->b_flags, B_DELWRI);
873 p->p_stats->p_ru.ru_oublock++;
874 reassignbuf(bp, bp->b_vp);
875 }
876 }
877
878 /*
879 * Release a buffer on to the free lists.
880 * Described in Bach (p. 46).
881 */
882 void
883 brelse(struct buf *bp)
884 {
885 struct bqueue *bufq;
886 int s;
887
888 /* Block disk interrupts. */
889 s = splbio();
890 simple_lock(&bqueue_slock);
891 simple_lock(&bp->b_interlock);
892
893 KASSERT(ISSET(bp->b_flags, B_BUSY));
894 KASSERT(!ISSET(bp->b_flags, B_CALL));
895
896 /* Wake up any processes waiting for any buffer to become free. */
897 if (needbuffer) {
898 needbuffer = 0;
899 wakeup(&needbuffer);
900 }
901
902 /* Wake up any proceeses waiting for _this_ buffer to become free. */
903 if (ISSET(bp->b_flags, B_WANTED)) {
904 CLR(bp->b_flags, B_WANTED|B_AGE);
905 wakeup(bp);
906 }
907
908 /*
909 * Determine which queue the buffer should be on, then put it there.
910 */
911
912 /* If it's locked, don't report an error; try again later. */
913 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
914 CLR(bp->b_flags, B_ERROR);
915
916 /* If it's not cacheable, or an error, mark it invalid. */
917 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
918 SET(bp->b_flags, B_INVAL);
919
920 if (ISSET(bp->b_flags, B_VFLUSH)) {
921 /*
922 * This is a delayed write buffer that was just flushed to
923 * disk. It is still on the LRU queue. If it's become
924 * invalid, then we need to move it to a different queue;
925 * otherwise leave it in its current position.
926 */
927 CLR(bp->b_flags, B_VFLUSH);
928 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
929 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
930 goto already_queued;
931 } else {
932 bremfree(bp);
933 }
934 }
935
936 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
937 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
938 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
939
940 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
941 /*
942 * If it's invalid or empty, dissociate it from its vnode
943 * and put on the head of the appropriate queue.
944 */
945 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
946 (*bioops.io_deallocate)(bp);
947 CLR(bp->b_flags, B_DONE|B_DELWRI);
948 if (bp->b_vp) {
949 reassignbuf(bp, bp->b_vp);
950 brelvp(bp);
951 }
952 if (bp->b_bufsize <= 0)
953 /* no data */
954 goto already_queued;
955 else
956 /* invalid data */
957 bufq = &bufqueues[BQ_AGE];
958 binsheadfree(bp, bufq);
959 } else {
960 /*
961 * It has valid data. Put it on the end of the appropriate
962 * queue, so that it'll stick around for as long as possible.
963 * If buf is AGE, but has dependencies, must put it on last
964 * bufqueue to be scanned, ie LRU. This protects against the
965 * livelock where BQ_AGE only has buffers with dependencies,
966 * and we thus never get to the dependent buffers in BQ_LRU.
967 */
968 if (ISSET(bp->b_flags, B_LOCKED))
969 /* locked in core */
970 bufq = &bufqueues[BQ_LOCKED];
971 else if (!ISSET(bp->b_flags, B_AGE))
972 /* valid data */
973 bufq = &bufqueues[BQ_LRU];
974 else {
975 /* stale but valid data */
976 int has_deps;
977
978 if (LIST_FIRST(&bp->b_dep) != NULL &&
979 bioops.io_countdeps)
980 has_deps = (*bioops.io_countdeps)(bp, 0);
981 else
982 has_deps = 0;
983 bufq = has_deps ? &bufqueues[BQ_LRU] :
984 &bufqueues[BQ_AGE];
985 }
986 binstailfree(bp, bufq);
987 }
988
989 already_queued:
990 /* Unlock the buffer. */
991 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
992 SET(bp->b_flags, B_CACHE);
993
994 /* Allow disk interrupts. */
995 simple_unlock(&bp->b_interlock);
996 simple_unlock(&bqueue_slock);
997 if (bp->b_bufsize <= 0) {
998 #ifdef DEBUG
999 memset((char *)bp, 0, sizeof(*bp));
1000 #endif
1001 pool_put(&bufpool, bp);
1002 }
1003 splx(s);
1004 }
1005
1006 /*
1007 * Determine if a block is in the cache.
1008 * Just look on what would be its hash chain. If it's there, return
1009 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1010 * we normally don't return the buffer, unless the caller explicitly
1011 * wants us to.
1012 */
1013 struct buf *
1014 incore(struct vnode *vp, daddr_t blkno)
1015 {
1016 struct buf *bp;
1017
1018 /* Search hash chain */
1019 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1020 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1021 !ISSET(bp->b_flags, B_INVAL))
1022 return (bp);
1023 }
1024
1025 return (NULL);
1026 }
1027
1028 /*
1029 * Get a block of requested size that is associated with
1030 * a given vnode and block offset. If it is found in the
1031 * block cache, mark it as having been found, make it busy
1032 * and return it. Otherwise, return an empty block of the
1033 * correct size. It is up to the caller to insure that the
1034 * cached blocks be of the correct size.
1035 */
1036 struct buf *
1037 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1038 {
1039 struct buf *bp;
1040 int s, err;
1041 int preserve;
1042
1043 start:
1044 s = splbio();
1045 simple_lock(&bqueue_slock);
1046 bp = incore(vp, blkno);
1047 if (bp != NULL) {
1048 simple_lock(&bp->b_interlock);
1049 if (ISSET(bp->b_flags, B_BUSY)) {
1050 simple_unlock(&bqueue_slock);
1051 if (curproc == uvm.pagedaemon_proc) {
1052 simple_unlock(&bp->b_interlock);
1053 splx(s);
1054 return NULL;
1055 }
1056 SET(bp->b_flags, B_WANTED);
1057 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1058 "getblk", slptimeo, &bp->b_interlock);
1059 splx(s);
1060 if (err)
1061 return (NULL);
1062 goto start;
1063 }
1064 #ifdef DIAGNOSTIC
1065 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1066 bp->b_bcount < size && vp->v_type != VBLK)
1067 panic("getblk: block size invariant failed");
1068 #endif
1069 SET(bp->b_flags, B_BUSY);
1070 bremfree(bp);
1071 preserve = 1;
1072 } else {
1073 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1074 simple_unlock(&bqueue_slock);
1075 splx(s);
1076 goto start;
1077 }
1078
1079 binshash(bp, BUFHASH(vp, blkno));
1080 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1081 bgetvp(vp, bp);
1082 preserve = 0;
1083 }
1084 simple_unlock(&bp->b_interlock);
1085 simple_unlock(&bqueue_slock);
1086 splx(s);
1087 /*
1088 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1089 * if we re-size buffers here.
1090 */
1091 if (ISSET(bp->b_flags, B_LOCKED)) {
1092 KASSERT(bp->b_bufsize >= size);
1093 } else {
1094 allocbuf(bp, size, preserve);
1095 }
1096 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1097 return (bp);
1098 }
1099
1100 /*
1101 * Get an empty, disassociated buffer of given size.
1102 */
1103 struct buf *
1104 geteblk(int size)
1105 {
1106 struct buf *bp;
1107 int s;
1108
1109 s = splbio();
1110 simple_lock(&bqueue_slock);
1111 while ((bp = getnewbuf(0, 0, 0)) == 0)
1112 ;
1113
1114 SET(bp->b_flags, B_INVAL);
1115 binshash(bp, &invalhash);
1116 simple_unlock(&bqueue_slock);
1117 simple_unlock(&bp->b_interlock);
1118 splx(s);
1119 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1120 allocbuf(bp, size, 0);
1121 return (bp);
1122 }
1123
1124 /*
1125 * Expand or contract the actual memory allocated to a buffer.
1126 *
1127 * If the buffer shrinks, data is lost, so it's up to the
1128 * caller to have written it out *first*; this routine will not
1129 * start a write. If the buffer grows, it's the callers
1130 * responsibility to fill out the buffer's additional contents.
1131 */
1132 void
1133 allocbuf(struct buf *bp, int size, int preserve)
1134 {
1135 vsize_t oldsize, desired_size;
1136 caddr_t addr;
1137 int s, delta;
1138
1139 desired_size = buf_roundsize(size);
1140 if (desired_size > MAXBSIZE)
1141 printf("allocbuf: buffer larger than MAXBSIZE requested");
1142
1143 bp->b_bcount = size;
1144
1145 oldsize = bp->b_bufsize;
1146 if (oldsize == desired_size)
1147 return;
1148
1149 /*
1150 * If we want a buffer of a different size, re-allocate the
1151 * buffer's memory; copy old content only if needed.
1152 */
1153 addr = buf_malloc(desired_size);
1154 if (preserve)
1155 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1156 if (bp->b_data != NULL)
1157 buf_mrelease(bp->b_data, oldsize);
1158 bp->b_data = addr;
1159 bp->b_bufsize = desired_size;
1160
1161 /*
1162 * Update overall buffer memory counter (protected by bqueue_slock)
1163 */
1164 delta = (long)desired_size - (long)oldsize;
1165
1166 s = splbio();
1167 simple_lock(&bqueue_slock);
1168 if ((bufmem += delta) > bufmem_hiwater) {
1169 /*
1170 * Need to trim overall memory usage.
1171 */
1172 while (buf_canrelease()) {
1173 if (buf_trim() == 0)
1174 break;
1175 }
1176 }
1177
1178 simple_unlock(&bqueue_slock);
1179 splx(s);
1180 }
1181
1182 /*
1183 * Find a buffer which is available for use.
1184 * Select something from a free list.
1185 * Preference is to AGE list, then LRU list.
1186 *
1187 * Called at splbio and with buffer queues locked.
1188 * Return buffer locked.
1189 */
1190 struct buf *
1191 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1192 {
1193 struct buf *bp;
1194
1195 start:
1196 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1197
1198 /*
1199 * Get a new buffer from the pool; but use NOWAIT because
1200 * we have the buffer queues locked.
1201 */
1202 if (!from_bufq && buf_lotsfree() &&
1203 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1204 memset((char *)bp, 0, sizeof(*bp));
1205 BUF_INIT(bp);
1206 bp->b_dev = NODEV;
1207 bp->b_vnbufs.le_next = NOLIST;
1208 bp->b_flags = B_BUSY;
1209 simple_lock(&bp->b_interlock);
1210 #if defined(DIAGNOSTIC)
1211 bp->b_freelistindex = -1;
1212 #endif /* defined(DIAGNOSTIC) */
1213 return (bp);
1214 }
1215
1216 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1217 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1218 simple_lock(&bp->b_interlock);
1219 bremfree(bp);
1220 } else {
1221 /*
1222 * XXX: !from_bufq should be removed.
1223 */
1224 if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1225 /* wait for a free buffer of any kind */
1226 needbuffer = 1;
1227 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1228 "getnewbuf", slptimeo, &bqueue_slock);
1229 }
1230 return (NULL);
1231 }
1232
1233 #ifdef DIAGNOSTIC
1234 if (bp->b_bufsize <= 0)
1235 panic("buffer %p: on queue but empty", bp);
1236 #endif
1237
1238 if (ISSET(bp->b_flags, B_VFLUSH)) {
1239 /*
1240 * This is a delayed write buffer being flushed to disk. Make
1241 * sure it gets aged out of the queue when it's finished, and
1242 * leave it off the LRU queue.
1243 */
1244 CLR(bp->b_flags, B_VFLUSH);
1245 SET(bp->b_flags, B_AGE);
1246 simple_unlock(&bp->b_interlock);
1247 goto start;
1248 }
1249
1250 /* Buffer is no longer on free lists. */
1251 SET(bp->b_flags, B_BUSY);
1252
1253 /*
1254 * If buffer was a delayed write, start it and return NULL
1255 * (since we might sleep while starting the write).
1256 */
1257 if (ISSET(bp->b_flags, B_DELWRI)) {
1258 /*
1259 * This buffer has gone through the LRU, so make sure it gets
1260 * reused ASAP.
1261 */
1262 SET(bp->b_flags, B_AGE);
1263 simple_unlock(&bp->b_interlock);
1264 simple_unlock(&bqueue_slock);
1265 bawrite(bp);
1266 simple_lock(&bqueue_slock);
1267 return (NULL);
1268 }
1269
1270 /* disassociate us from our vnode, if we had one... */
1271 if (bp->b_vp)
1272 brelvp(bp);
1273
1274 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1275 (*bioops.io_deallocate)(bp);
1276
1277 /* clear out various other fields */
1278 bp->b_flags = B_BUSY;
1279 bp->b_dev = NODEV;
1280 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1281 bp->b_iodone = 0;
1282 bp->b_error = 0;
1283 bp->b_resid = 0;
1284 bp->b_bcount = 0;
1285
1286 bremhash(bp);
1287 return (bp);
1288 }
1289
1290 /*
1291 * Attempt to free an aged buffer off the queues.
1292 * Called at splbio and with queue lock held.
1293 * Returns the amount of buffer memory freed.
1294 */
1295 static int
1296 buf_trim(void)
1297 {
1298 struct buf *bp;
1299 long size = 0;
1300
1301 /* Instruct getnewbuf() to get buffers off the queues */
1302 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1303 return 0;
1304
1305 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1306 simple_unlock(&bp->b_interlock);
1307 size = bp->b_bufsize;
1308 bufmem -= size;
1309 simple_unlock(&bqueue_slock);
1310 if (size > 0) {
1311 buf_mrelease(bp->b_data, size);
1312 bp->b_bcount = bp->b_bufsize = 0;
1313 }
1314 /* brelse() will return the buffer to the global buffer pool */
1315 brelse(bp);
1316 simple_lock(&bqueue_slock);
1317 return size;
1318 }
1319
1320 int
1321 buf_drain(int n)
1322 {
1323 int s, size = 0, sz;
1324
1325 s = splbio();
1326 simple_lock(&bqueue_slock);
1327
1328 while (size < n && bufmem > bufmem_lowater) {
1329 sz = buf_trim();
1330 if (sz <= 0)
1331 break;
1332 size += sz;
1333 }
1334
1335 simple_unlock(&bqueue_slock);
1336 splx(s);
1337 return size;
1338 }
1339
1340 /*
1341 * Wait for operations on the buffer to complete.
1342 * When they do, extract and return the I/O's error value.
1343 */
1344 int
1345 biowait(struct buf *bp)
1346 {
1347 int s, error;
1348
1349 s = splbio();
1350 simple_lock(&bp->b_interlock);
1351 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1352 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1353
1354 /* check for interruption of I/O (e.g. via NFS), then errors. */
1355 if (ISSET(bp->b_flags, B_EINTR)) {
1356 CLR(bp->b_flags, B_EINTR);
1357 error = EINTR;
1358 } else if (ISSET(bp->b_flags, B_ERROR))
1359 error = bp->b_error ? bp->b_error : EIO;
1360 else
1361 error = 0;
1362
1363 simple_unlock(&bp->b_interlock);
1364 splx(s);
1365 return (error);
1366 }
1367
1368 /*
1369 * Mark I/O complete on a buffer.
1370 *
1371 * If a callback has been requested, e.g. the pageout
1372 * daemon, do so. Otherwise, awaken waiting processes.
1373 *
1374 * [ Leffler, et al., says on p.247:
1375 * "This routine wakes up the blocked process, frees the buffer
1376 * for an asynchronous write, or, for a request by the pagedaemon
1377 * process, invokes a procedure specified in the buffer structure" ]
1378 *
1379 * In real life, the pagedaemon (or other system processes) wants
1380 * to do async stuff to, and doesn't want the buffer brelse()'d.
1381 * (for swap pager, that puts swap buffers on the free lists (!!!),
1382 * for the vn device, that puts malloc'd buffers on the free lists!)
1383 */
1384 void
1385 biodone(struct buf *bp)
1386 {
1387 int s = splbio();
1388
1389 simple_lock(&bp->b_interlock);
1390 if (ISSET(bp->b_flags, B_DONE))
1391 panic("biodone already");
1392 SET(bp->b_flags, B_DONE); /* note that it's done */
1393 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1394
1395 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1396 (*bioops.io_complete)(bp);
1397
1398 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1399 vwakeup(bp);
1400
1401 /*
1402 * If necessary, call out. Unlock the buffer before calling
1403 * iodone() as the buffer isn't valid any more when it return.
1404 */
1405 if (ISSET(bp->b_flags, B_CALL)) {
1406 CLR(bp->b_flags, B_CALL); /* but note callout done */
1407 simple_unlock(&bp->b_interlock);
1408 (*bp->b_iodone)(bp);
1409 } else {
1410 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1411 simple_unlock(&bp->b_interlock);
1412 brelse(bp);
1413 } else { /* or just wakeup the buffer */
1414 CLR(bp->b_flags, B_WANTED);
1415 wakeup(bp);
1416 simple_unlock(&bp->b_interlock);
1417 }
1418 }
1419
1420 splx(s);
1421 }
1422
1423 /*
1424 * Return a count of buffers on the "locked" queue.
1425 */
1426 int
1427 count_lock_queue(void)
1428 {
1429 struct buf *bp;
1430 int n = 0;
1431
1432 simple_lock(&bqueue_slock);
1433 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1434 n++;
1435 simple_unlock(&bqueue_slock);
1436 return (n);
1437 }
1438
1439 /*
1440 * Wait for all buffers to complete I/O
1441 * Return the number of "stuck" buffers.
1442 */
1443 int
1444 buf_syncwait(void)
1445 {
1446 struct buf *bp;
1447 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1448
1449 dcount = 10000;
1450 for (iter = 0; iter < 20;) {
1451 s = splbio();
1452 simple_lock(&bqueue_slock);
1453 nbusy = 0;
1454 for (ihash = 0; ihash < bufhash+1; ihash++) {
1455 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1456 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1457 nbusy++;
1458 /*
1459 * With soft updates, some buffers that are
1460 * written will be remarked as dirty until other
1461 * buffers are written.
1462 */
1463 if (bp->b_vp && bp->b_vp->v_mount
1464 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1465 && (bp->b_flags & B_DELWRI)) {
1466 simple_lock(&bp->b_interlock);
1467 bremfree(bp);
1468 bp->b_flags |= B_BUSY;
1469 nbusy++;
1470 simple_unlock(&bp->b_interlock);
1471 simple_unlock(&bqueue_slock);
1472 bawrite(bp);
1473 if (dcount-- <= 0) {
1474 printf("softdep ");
1475 splx(s);
1476 goto fail;
1477 }
1478 simple_lock(&bqueue_slock);
1479 }
1480 }
1481 }
1482
1483 simple_unlock(&bqueue_slock);
1484 splx(s);
1485
1486 if (nbusy == 0)
1487 break;
1488 if (nbusy_prev == 0)
1489 nbusy_prev = nbusy;
1490 printf("%d ", nbusy);
1491 tsleep(&nbusy, PRIBIO, "bflush",
1492 (iter == 0) ? 1 : hz / 25 * iter);
1493 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1494 iter++;
1495 else
1496 nbusy_prev = nbusy;
1497 }
1498
1499 if (nbusy) {
1500 fail:;
1501 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1502 printf("giving up\nPrinting vnodes for busy buffers\n");
1503 s = splbio();
1504 for (ihash = 0; ihash < bufhash+1; ihash++) {
1505 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1506 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1507 vprint(NULL, bp->b_vp);
1508 }
1509 }
1510 splx(s);
1511 #endif
1512 }
1513
1514 return nbusy;
1515 }
1516
1517 static void
1518 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1519 {
1520
1521 o->b_flags = i->b_flags;
1522 o->b_error = i->b_error;
1523 o->b_prio = i->b_prio;
1524 o->b_dev = i->b_dev;
1525 o->b_bufsize = i->b_bufsize;
1526 o->b_bcount = i->b_bcount;
1527 o->b_resid = i->b_resid;
1528 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1529 o->b_blkno = i->b_blkno;
1530 o->b_rawblkno = i->b_rawblkno;
1531 o->b_iodone = PTRTOUINT64(i->b_iodone);
1532 o->b_proc = PTRTOUINT64(i->b_proc);
1533 o->b_vp = PTRTOUINT64(i->b_vp);
1534 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1535 o->b_lblkno = i->b_lblkno;
1536 }
1537
1538 #define KERN_BUFSLOP 20
1539 static int
1540 sysctl_dobuf(SYSCTLFN_ARGS)
1541 {
1542 struct buf *bp;
1543 struct buf_sysctl bs;
1544 char *dp;
1545 u_int i, op, arg;
1546 size_t len, needed, elem_size, out_size;
1547 int error, s, elem_count;
1548
1549 if (namelen == 1 && name[0] == CTL_QUERY)
1550 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1551
1552 if (namelen != 4)
1553 return (EINVAL);
1554
1555 dp = oldp;
1556 len = (oldp != NULL) ? *oldlenp : 0;
1557 op = name[0];
1558 arg = name[1];
1559 elem_size = name[2];
1560 elem_count = name[3];
1561 out_size = MIN(sizeof(bs), elem_size);
1562
1563 /*
1564 * at the moment, these are just "placeholders" to make the
1565 * API for retrieving kern.buf data more extensible in the
1566 * future.
1567 *
1568 * XXX kern.buf currently has "netbsd32" issues. hopefully
1569 * these will be resolved at a later point.
1570 */
1571 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1572 elem_size < 1 || elem_count < 0)
1573 return (EINVAL);
1574
1575 error = 0;
1576 needed = 0;
1577 s = splbio();
1578 simple_lock(&bqueue_slock);
1579 for (i = 0; i < BQUEUES; i++) {
1580 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1581 if (len >= elem_size && elem_count > 0) {
1582 sysctl_fillbuf(bp, &bs);
1583 error = copyout(&bs, dp, out_size);
1584 if (error)
1585 goto cleanup;
1586 dp += elem_size;
1587 len -= elem_size;
1588 }
1589 if (elem_count > 0) {
1590 needed += elem_size;
1591 if (elem_count != INT_MAX)
1592 elem_count--;
1593 }
1594 }
1595 }
1596 cleanup:
1597 simple_unlock(&bqueue_slock);
1598 splx(s);
1599
1600 *oldlenp = needed;
1601 if (oldp == NULL)
1602 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1603
1604 return (error);
1605 }
1606
1607 static int
1608 sysctl_bufvm_update(SYSCTLFN_ARGS)
1609 {
1610 int t, error;
1611 struct sysctlnode node;
1612
1613 node = *rnode;
1614 node.sysctl_data = &t;
1615 t = *(int *)rnode->sysctl_data;
1616 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1617 if (error || newp == NULL)
1618 return (error);
1619
1620 if (t < 0)
1621 return EINVAL;
1622 if (rnode->sysctl_data == &bufcache) {
1623 if (t > 100)
1624 return (EINVAL);
1625 bufcache = t;
1626 buf_setwm();
1627 } else if (rnode->sysctl_data == &bufmem_lowater) {
1628 if (bufmem_hiwater - t < 16)
1629 return (EINVAL);
1630 bufmem_lowater = t;
1631 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1632 if (t - bufmem_lowater < 16)
1633 return (EINVAL);
1634 bufmem_hiwater = t;
1635 } else
1636 return (EINVAL);
1637
1638 /* Drain until below new high water mark */
1639 while ((t = bufmem - bufmem_hiwater) >= 0) {
1640 if (buf_drain(t / (2 * 1024)) <= 0)
1641 break;
1642 }
1643
1644 return 0;
1645 }
1646
1647 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1648 {
1649
1650 sysctl_createv(clog, 0, NULL, NULL,
1651 CTLFLAG_PERMANENT,
1652 CTLTYPE_NODE, "kern", NULL,
1653 NULL, 0, NULL, 0,
1654 CTL_KERN, CTL_EOL);
1655 sysctl_createv(clog, 0, NULL, NULL,
1656 CTLFLAG_PERMANENT,
1657 CTLTYPE_NODE, "buf",
1658 SYSCTL_DESCR("Kernel buffer cache information"),
1659 sysctl_dobuf, 0, NULL, 0,
1660 CTL_KERN, KERN_BUF, CTL_EOL);
1661 }
1662
1663 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1664 {
1665
1666 sysctl_createv(clog, 0, NULL, NULL,
1667 CTLFLAG_PERMANENT,
1668 CTLTYPE_NODE, "vm", NULL,
1669 NULL, 0, NULL, 0,
1670 CTL_VM, CTL_EOL);
1671
1672 sysctl_createv(clog, 0, NULL, NULL,
1673 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1674 CTLTYPE_INT, "bufcache",
1675 SYSCTL_DESCR("Percentage of physical memory to use for "
1676 "buffer cache"),
1677 sysctl_bufvm_update, 0, &bufcache, 0,
1678 CTL_VM, CTL_CREATE, CTL_EOL);
1679 sysctl_createv(clog, 0, NULL, NULL,
1680 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1681 CTLTYPE_INT, "bufmem",
1682 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1683 "cache"),
1684 NULL, 0, &bufmem, 0,
1685 CTL_VM, CTL_CREATE, CTL_EOL);
1686 sysctl_createv(clog, 0, NULL, NULL,
1687 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1688 CTLTYPE_INT, "bufmem_lowater",
1689 SYSCTL_DESCR("Minimum amount of kernel memory to "
1690 "reserve for buffer cache"),
1691 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1692 CTL_VM, CTL_CREATE, CTL_EOL);
1693 sysctl_createv(clog, 0, NULL, NULL,
1694 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1695 CTLTYPE_INT, "bufmem_hiwater",
1696 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1697 "for buffer cache"),
1698 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1699 CTL_VM, CTL_CREATE, CTL_EOL);
1700 }
1701
1702 #ifdef DEBUG
1703 /*
1704 * Print out statistics on the current allocation of the buffer pool.
1705 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1706 * in vfs_syscalls.c using sysctl.
1707 */
1708 void
1709 vfs_bufstats(void)
1710 {
1711 int s, i, j, count;
1712 struct buf *bp;
1713 struct bqueue *dp;
1714 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1715 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1716
1717 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1718 count = 0;
1719 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1720 counts[j] = 0;
1721 s = splbio();
1722 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1723 counts[bp->b_bufsize/PAGE_SIZE]++;
1724 count++;
1725 }
1726 splx(s);
1727 printf("%s: total-%d", bname[i], count);
1728 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1729 if (counts[j] != 0)
1730 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1731 printf("\n");
1732 }
1733 }
1734 #endif /* DEBUG */
1735
1736 /* ------------------------------ */
1737
1738 POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
1739
1740 static struct buf *
1741 getiobuf1(int prflags)
1742 {
1743 struct buf *bp;
1744 int s;
1745
1746 s = splbio();
1747 bp = pool_get(&bufiopool, prflags);
1748 splx(s);
1749 if (bp != NULL) {
1750 BUF_INIT(bp);
1751 }
1752 return bp;
1753 }
1754
1755 struct buf *
1756 getiobuf(void)
1757 {
1758
1759 return getiobuf1(PR_WAITOK);
1760 }
1761
1762 struct buf *
1763 getiobuf_nowait(void)
1764 {
1765
1766 return getiobuf1(PR_NOWAIT);
1767 }
1768
1769 void
1770 putiobuf(struct buf *bp)
1771 {
1772 int s;
1773
1774 s = splbio();
1775 pool_put(&bufiopool, bp);
1776 splx(s);
1777 }
1778