Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.156
      1 /*	$NetBSD: vfs_bio.c,v 1.156 2006/02/04 12:02:35 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include "opt_bufcache.h"
     81 #include "opt_softdep.h"
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.156 2006/02/04 12:02:35 yamt Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 #include <sys/vnode.h>
     92 #include <sys/mount.h>
     93 #include <sys/malloc.h>
     94 #include <sys/resourcevar.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/conf.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 #include <miscfs/specfs/specdev.h>
    101 
    102 #ifndef	BUFPAGES
    103 # define BUFPAGES 0
    104 #endif
    105 
    106 #ifdef BUFCACHE
    107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    108 #  error BUFCACHE is not between 5 and 95
    109 # endif
    110 #else
    111 # define BUFCACHE 15
    112 #endif
    113 
    114 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    115 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    116 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    117 
    118 /* Function prototypes */
    119 struct bqueue;
    120 
    121 static void buf_setwm(void);
    122 static int buf_trim(void);
    123 static void *bufpool_page_alloc(struct pool *, int);
    124 static void bufpool_page_free(struct pool *, void *);
    125 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    126     struct ucred *, int);
    127 static int buf_lotsfree(void);
    128 static int buf_canrelease(void);
    129 static inline u_long buf_mempoolidx(u_long);
    130 static inline u_long buf_roundsize(u_long);
    131 static inline caddr_t buf_malloc(size_t);
    132 static void buf_mrelease(caddr_t, size_t);
    133 static inline void binsheadfree(struct buf *, struct bqueue *);
    134 static inline void binstailfree(struct buf *, struct bqueue *);
    135 int count_lock_queue(void); /* XXX */
    136 #ifdef DEBUG
    137 static int checkfreelist(struct buf *, struct bqueue *);
    138 #endif
    139 
    140 /* Macros to clear/set/test flags. */
    141 #define	SET(t, f)	(t) |= (f)
    142 #define	CLR(t, f)	(t) &= ~(f)
    143 #define	ISSET(t, f)	((t) & (f))
    144 
    145 /*
    146  * Definitions for the buffer hash lists.
    147  */
    148 #define	BUFHASH(dvp, lbn)	\
    149 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    151 u_long	bufhash;
    152 #if !defined(SOFTDEP) || !defined(FFS)
    153 struct bio_ops bioops;	/* I/O operation notification */
    154 #endif
    155 
    156 /*
    157  * Insq/Remq for the buffer hash lists.
    158  */
    159 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    160 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    161 
    162 /*
    163  * Definitions for the buffer free lists.
    164  */
    165 #define	BQUEUES		3		/* number of free buffer queues */
    166 
    167 #define	BQ_LOCKED	0		/* super-blocks &c */
    168 #define	BQ_LRU		1		/* lru, useful buffers */
    169 #define	BQ_AGE		2		/* rubbish */
    170 
    171 struct bqueue {
    172 	TAILQ_HEAD(, buf) bq_queue;
    173 	uint64_t bq_bytes;
    174 } bufqueues[BQUEUES];
    175 int needbuffer;
    176 
    177 /*
    178  * Buffer queue lock.
    179  * Take this lock first if also taking some buffer's b_interlock.
    180  */
    181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    182 
    183 /*
    184  * Buffer pool for I/O buffers.
    185  * Access to this pool must be protected with splbio().
    186  */
    187 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
    188 
    189 
    190 /* XXX - somewhat gross.. */
    191 #if MAXBSIZE == 0x2000
    192 #define NMEMPOOLS 4
    193 #elif MAXBSIZE == 0x4000
    194 #define NMEMPOOLS 5
    195 #elif MAXBSIZE == 0x8000
    196 #define NMEMPOOLS 6
    197 #else
    198 #define NMEMPOOLS 7
    199 #endif
    200 
    201 #define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
    202 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    203 #error update vfs_bio buffer memory parameters
    204 #endif
    205 
    206 /* Buffer memory pools */
    207 static struct pool bmempools[NMEMPOOLS];
    208 
    209 struct vm_map *buf_map;
    210 
    211 /*
    212  * Buffer memory pool allocator.
    213  */
    214 static void *
    215 bufpool_page_alloc(struct pool *pp, int flags)
    216 {
    217 
    218 	return (void *)uvm_km_alloc(buf_map,
    219 	    MAXBSIZE, MAXBSIZE,
    220 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    221 	    | UVM_KMF_WIRED);
    222 }
    223 
    224 static void
    225 bufpool_page_free(struct pool *pp, void *v)
    226 {
    227 
    228 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    229 }
    230 
    231 static struct pool_allocator bufmempool_allocator = {
    232 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
    233 };
    234 
    235 /* Buffer memory management variables */
    236 u_long bufmem_valimit;
    237 u_long bufmem_hiwater;
    238 u_long bufmem_lowater;
    239 u_long bufmem;
    240 
    241 /*
    242  * MD code can call this to set a hard limit on the amount
    243  * of virtual memory used by the buffer cache.
    244  */
    245 int
    246 buf_setvalimit(vsize_t sz)
    247 {
    248 
    249 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    250 	if (sz < NMEMPOOLS * MAXBSIZE)
    251 		return EINVAL;
    252 
    253 	bufmem_valimit = sz;
    254 	return 0;
    255 }
    256 
    257 static void
    258 buf_setwm(void)
    259 {
    260 
    261 	bufmem_hiwater = buf_memcalc();
    262 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    263 #define	BUFMEM_WMSHIFT	3
    264 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    265 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    266 		/* Ensure a reasonable minimum value */
    267 		bufmem_hiwater = BUFMEM_HIWMMIN;
    268 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    269 }
    270 
    271 #ifdef DEBUG
    272 int debug_verify_freelist = 0;
    273 static int
    274 checkfreelist(struct buf *bp, struct bqueue *dp)
    275 {
    276 	struct buf *b;
    277 
    278 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    279 		if (b == bp)
    280 			return 1;
    281 	}
    282 	return 0;
    283 }
    284 #endif
    285 
    286 /*
    287  * Insq/Remq for the buffer hash lists.
    288  * Call with buffer queue locked.
    289  */
    290 static inline void
    291 binsheadfree(struct buf *bp, struct bqueue *dp)
    292 {
    293 
    294 	KASSERT(bp->b_freelistindex == -1);
    295 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    296 	dp->bq_bytes += bp->b_bufsize;
    297 	bp->b_freelistindex = dp - bufqueues;
    298 }
    299 
    300 static inline void
    301 binstailfree(struct buf *bp, struct bqueue *dp)
    302 {
    303 
    304 	KASSERT(bp->b_freelistindex == -1);
    305 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    306 	dp->bq_bytes += bp->b_bufsize;
    307 	bp->b_freelistindex = dp - bufqueues;
    308 }
    309 
    310 void
    311 bremfree(struct buf *bp)
    312 {
    313 	struct bqueue *dp;
    314 	int bqidx = bp->b_freelistindex;
    315 
    316 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    317 
    318 	KASSERT(bqidx != -1);
    319 	dp = &bufqueues[bqidx];
    320 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    321 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    322 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    323 	dp->bq_bytes -= bp->b_bufsize;
    324 #if defined(DIAGNOSTIC)
    325 	bp->b_freelistindex = -1;
    326 #endif /* defined(DIAGNOSTIC) */
    327 }
    328 
    329 u_long
    330 buf_memcalc(void)
    331 {
    332 	u_long n;
    333 
    334 	/*
    335 	 * Determine the upper bound of memory to use for buffers.
    336 	 *
    337 	 *	- If bufpages is specified, use that as the number
    338 	 *	  pages.
    339 	 *
    340 	 *	- Otherwise, use bufcache as the percentage of
    341 	 *	  physical memory.
    342 	 */
    343 	if (bufpages != 0) {
    344 		n = bufpages;
    345 	} else {
    346 		if (bufcache < 5) {
    347 			printf("forcing bufcache %d -> 5", bufcache);
    348 			bufcache = 5;
    349 		}
    350 		if (bufcache > 95) {
    351 			printf("forcing bufcache %d -> 95", bufcache);
    352 			bufcache = 95;
    353 		}
    354 		n = physmem / 100 * bufcache;
    355 	}
    356 
    357 	n <<= PAGE_SHIFT;
    358 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    359 		n = bufmem_valimit;
    360 
    361 	return (n);
    362 }
    363 
    364 /*
    365  * Initialize buffers and hash links for buffers.
    366  */
    367 void
    368 bufinit(void)
    369 {
    370 	struct bqueue *dp;
    371 	int use_std;
    372 	u_int i;
    373 
    374 	/*
    375 	 * Initialize buffer cache memory parameters.
    376 	 */
    377 	bufmem = 0;
    378 	buf_setwm();
    379 
    380 	if (bufmem_valimit != 0) {
    381 		vaddr_t minaddr = 0, maxaddr;
    382 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    383 					  bufmem_valimit, VM_MAP_PAGEABLE,
    384 					  FALSE, 0);
    385 		if (buf_map == NULL)
    386 			panic("bufinit: cannot allocate submap");
    387 	} else
    388 		buf_map = kernel_map;
    389 
    390 	/* On "small" machines use small pool page sizes where possible */
    391 	use_std = (physmem < atop(16*1024*1024));
    392 
    393 	/*
    394 	 * Also use them on systems that can map the pool pages using
    395 	 * a direct-mapped segment.
    396 	 */
    397 #ifdef PMAP_MAP_POOLPAGE
    398 	use_std = 1;
    399 #endif
    400 
    401 	for (i = 0; i < NMEMPOOLS; i++) {
    402 		struct pool_allocator *pa;
    403 		struct pool *pp = &bmempools[i];
    404 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    405 		char *name = malloc(8, M_TEMP, M_WAITOK);
    406 		snprintf(name, 8, "buf%dk", 1 << i);
    407 		pa = (size <= PAGE_SIZE && use_std)
    408 			? &pool_allocator_nointr
    409 			: &bufmempool_allocator;
    410 		pool_init(pp, size, 0, 0, 0, name, pa);
    411 		pool_setlowat(pp, 1);
    412 		pool_sethiwat(pp, 1);
    413 	}
    414 
    415 	/* Initialize the buffer queues */
    416 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    417 		TAILQ_INIT(&dp->bq_queue);
    418 		dp->bq_bytes = 0;
    419 	}
    420 
    421 	/*
    422 	 * Estimate hash table size based on the amount of memory we
    423 	 * intend to use for the buffer cache. The average buffer
    424 	 * size is dependent on our clients (i.e. filesystems).
    425 	 *
    426 	 * For now, use an empirical 3K per buffer.
    427 	 */
    428 	nbuf = (bufmem_hiwater / 1024) / 3;
    429 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    430 }
    431 
    432 static int
    433 buf_lotsfree(void)
    434 {
    435 	int try, thresh;
    436 	struct lwp *l = curlwp;
    437 
    438 	/* Always allocate if doing copy on write */
    439 	if (l->l_flag & L_COWINPROGRESS)
    440 		return 1;
    441 
    442 	/* Always allocate if less than the low water mark. */
    443 	if (bufmem < bufmem_lowater)
    444 		return 1;
    445 
    446 	/* Never allocate if greater than the high water mark. */
    447 	if (bufmem > bufmem_hiwater)
    448 		return 0;
    449 
    450 	/* If there's anything on the AGE list, it should be eaten. */
    451 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    452 		return 0;
    453 
    454 	/*
    455 	 * The probabily of getting a new allocation is inversely
    456 	 * proportional to the current size of the cache, using
    457 	 * a granularity of 16 steps.
    458 	 */
    459 	try = random() & 0x0000000fL;
    460 
    461 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    462 	thresh = (bufmem - bufmem_lowater) /
    463 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    464 
    465 	if (try >= thresh)
    466 		return 1;
    467 
    468 	/* Otherwise don't allocate. */
    469 	return 0;
    470 }
    471 
    472 /*
    473  * Return estimate of bytes we think need to be
    474  * released to help resolve low memory conditions.
    475  *
    476  * => called at splbio.
    477  * => called with bqueue_slock held.
    478  */
    479 static int
    480 buf_canrelease(void)
    481 {
    482 	int pagedemand, ninvalid = 0;
    483 
    484 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    485 
    486 	if (bufmem < bufmem_lowater)
    487 		return 0;
    488 
    489 	if (bufmem > bufmem_hiwater)
    490 		return bufmem - bufmem_hiwater;
    491 
    492 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    493 
    494 	pagedemand = uvmexp.freetarg - uvmexp.free;
    495 	if (pagedemand < 0)
    496 		return ninvalid;
    497 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    498 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    499 }
    500 
    501 /*
    502  * Buffer memory allocation helper functions
    503  */
    504 static inline u_long
    505 buf_mempoolidx(u_long size)
    506 {
    507 	u_int n = 0;
    508 
    509 	size -= 1;
    510 	size >>= MEMPOOL_INDEX_OFFSET;
    511 	while (size) {
    512 		size >>= 1;
    513 		n += 1;
    514 	}
    515 	if (n >= NMEMPOOLS)
    516 		panic("buf mem pool index %d", n);
    517 	return n;
    518 }
    519 
    520 static inline u_long
    521 buf_roundsize(u_long size)
    522 {
    523 	/* Round up to nearest power of 2 */
    524 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    525 }
    526 
    527 static inline caddr_t
    528 buf_malloc(size_t size)
    529 {
    530 	u_int n = buf_mempoolidx(size);
    531 	caddr_t addr;
    532 	int s;
    533 
    534 	while (1) {
    535 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    536 		if (addr != NULL)
    537 			break;
    538 
    539 		/* No memory, see if we can free some. If so, try again */
    540 		if (buf_drain(1) > 0)
    541 			continue;
    542 
    543 		/* Wait for buffers to arrive on the LRU queue */
    544 		s = splbio();
    545 		simple_lock(&bqueue_slock);
    546 		needbuffer = 1;
    547 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    548 			"buf_malloc", 0, &bqueue_slock);
    549 		splx(s);
    550 	}
    551 
    552 	return addr;
    553 }
    554 
    555 static void
    556 buf_mrelease(caddr_t addr, size_t size)
    557 {
    558 
    559 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    560 }
    561 
    562 /*
    563  * bread()/breadn() helper.
    564  */
    565 static inline struct buf *
    566 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    567     int async)
    568 {
    569 	struct buf *bp;
    570 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    571 	struct proc *p = l->l_proc;
    572 	struct mount *mp;
    573 
    574 	bp = getblk(vp, blkno, size, 0, 0);
    575 
    576 #ifdef DIAGNOSTIC
    577 	if (bp == NULL) {
    578 		panic("bio_doread: no such buf");
    579 	}
    580 #endif
    581 
    582 	/*
    583 	 * If buffer does not have data valid, start a read.
    584 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    585 	 * Therefore, it's valid if its I/O has completed or been delayed.
    586 	 */
    587 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    588 		/* Start I/O for the buffer. */
    589 		SET(bp->b_flags, B_READ | async);
    590 		if (async)
    591 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    592 		else
    593 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    594 		VOP_STRATEGY(vp, bp);
    595 
    596 		/* Pay for the read. */
    597 		p->p_stats->p_ru.ru_inblock++;
    598 	} else if (async) {
    599 		brelse(bp);
    600 	}
    601 
    602 	if (vp->v_type == VBLK)
    603 		mp = vp->v_specmountpoint;
    604 	else
    605 		mp = vp->v_mount;
    606 
    607 	/*
    608 	 * Collect statistics on synchronous and asynchronous reads.
    609 	 * Reads from block devices are charged to their associated
    610 	 * filesystem (if any).
    611 	 */
    612 	if (mp != NULL) {
    613 		if (async == 0)
    614 			mp->mnt_stat.f_syncreads++;
    615 		else
    616 			mp->mnt_stat.f_asyncreads++;
    617 	}
    618 
    619 	return (bp);
    620 }
    621 
    622 /*
    623  * Read a disk block.
    624  * This algorithm described in Bach (p.54).
    625  */
    626 int
    627 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
    628     struct buf **bpp)
    629 {
    630 	struct buf *bp;
    631 
    632 	/* Get buffer for block. */
    633 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    634 
    635 	/* Wait for the read to complete, and return result. */
    636 	return (biowait(bp));
    637 }
    638 
    639 /*
    640  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    641  * Trivial modification to the breada algorithm presented in Bach (p.55).
    642  */
    643 int
    644 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    645     int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
    646 {
    647 	struct buf *bp;
    648 	int i;
    649 
    650 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    651 
    652 	/*
    653 	 * For each of the read-ahead blocks, start a read, if necessary.
    654 	 */
    655 	for (i = 0; i < nrablks; i++) {
    656 		/* If it's in the cache, just go on to next one. */
    657 		if (incore(vp, rablks[i]))
    658 			continue;
    659 
    660 		/* Get a buffer for the read-ahead block */
    661 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    662 	}
    663 
    664 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    665 	return (biowait(bp));
    666 }
    667 
    668 /*
    669  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    670  * implemented as a call to breadn().
    671  * XXX for compatibility with old file systems.
    672  */
    673 int
    674 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    675     int rabsize, struct ucred *cred, struct buf **bpp)
    676 {
    677 
    678 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    679 }
    680 
    681 /*
    682  * Block write.  Described in Bach (p.56)
    683  */
    684 int
    685 bwrite(struct buf *bp)
    686 {
    687 	int rv, sync, wasdelayed, s;
    688 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    689 	struct proc *p = l->l_proc;
    690 	struct vnode *vp;
    691 	struct mount *mp;
    692 
    693 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    694 
    695 	vp = bp->b_vp;
    696 	if (vp != NULL) {
    697 		if (vp->v_type == VBLK)
    698 			mp = vp->v_specmountpoint;
    699 		else
    700 			mp = vp->v_mount;
    701 	} else {
    702 		mp = NULL;
    703 	}
    704 
    705 	/*
    706 	 * Remember buffer type, to switch on it later.  If the write was
    707 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    708 	 * convert it to a delayed write.
    709 	 * XXX note that this relies on delayed tape writes being converted
    710 	 * to async, not sync writes (which is safe, but ugly).
    711 	 */
    712 	sync = !ISSET(bp->b_flags, B_ASYNC);
    713 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    714 		bdwrite(bp);
    715 		return (0);
    716 	}
    717 
    718 	/*
    719 	 * Collect statistics on synchronous and asynchronous writes.
    720 	 * Writes to block devices are charged to their associated
    721 	 * filesystem (if any).
    722 	 */
    723 	if (mp != NULL) {
    724 		if (sync)
    725 			mp->mnt_stat.f_syncwrites++;
    726 		else
    727 			mp->mnt_stat.f_asyncwrites++;
    728 	}
    729 
    730 	s = splbio();
    731 	simple_lock(&bp->b_interlock);
    732 
    733 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    734 
    735 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
    736 
    737 	/*
    738 	 * Pay for the I/O operation and make sure the buf is on the correct
    739 	 * vnode queue.
    740 	 */
    741 	if (wasdelayed)
    742 		reassignbuf(bp, bp->b_vp);
    743 	else
    744 		p->p_stats->p_ru.ru_oublock++;
    745 
    746 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    747 	V_INCR_NUMOUTPUT(bp->b_vp);
    748 	simple_unlock(&bp->b_interlock);
    749 	splx(s);
    750 
    751 	if (sync)
    752 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    753 	else
    754 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    755 
    756 	VOP_STRATEGY(vp, bp);
    757 
    758 	if (sync) {
    759 		/* If I/O was synchronous, wait for it to complete. */
    760 		rv = biowait(bp);
    761 
    762 		/* Release the buffer. */
    763 		brelse(bp);
    764 
    765 		return (rv);
    766 	} else {
    767 		return (0);
    768 	}
    769 }
    770 
    771 int
    772 vn_bwrite(void *v)
    773 {
    774 	struct vop_bwrite_args *ap = v;
    775 
    776 	return (bwrite(ap->a_bp));
    777 }
    778 
    779 /*
    780  * Delayed write.
    781  *
    782  * The buffer is marked dirty, but is not queued for I/O.
    783  * This routine should be used when the buffer is expected
    784  * to be modified again soon, typically a small write that
    785  * partially fills a buffer.
    786  *
    787  * NB: magnetic tapes cannot be delayed; they must be
    788  * written in the order that the writes are requested.
    789  *
    790  * Described in Leffler, et al. (pp. 208-213).
    791  */
    792 void
    793 bdwrite(struct buf *bp)
    794 {
    795 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    796 	struct proc *p = l->l_proc;
    797 	const struct bdevsw *bdev;
    798 	int s;
    799 
    800 	/* If this is a tape block, write the block now. */
    801 	bdev = bdevsw_lookup(bp->b_dev);
    802 	if (bdev != NULL && bdev->d_type == D_TAPE) {
    803 		bawrite(bp);
    804 		return;
    805 	}
    806 
    807 	/*
    808 	 * If the block hasn't been seen before:
    809 	 *	(1) Mark it as having been seen,
    810 	 *	(2) Charge for the write,
    811 	 *	(3) Make sure it's on its vnode's correct block list.
    812 	 */
    813 	s = splbio();
    814 	simple_lock(&bp->b_interlock);
    815 
    816 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    817 
    818 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    819 		SET(bp->b_flags, B_DELWRI);
    820 		p->p_stats->p_ru.ru_oublock++;
    821 		reassignbuf(bp, bp->b_vp);
    822 	}
    823 
    824 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    825 	CLR(bp->b_flags, B_DONE);
    826 	simple_unlock(&bp->b_interlock);
    827 	splx(s);
    828 
    829 	brelse(bp);
    830 }
    831 
    832 /*
    833  * Asynchronous block write; just an asynchronous bwrite().
    834  */
    835 void
    836 bawrite(struct buf *bp)
    837 {
    838 	int s;
    839 
    840 	s = splbio();
    841 	simple_lock(&bp->b_interlock);
    842 
    843 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    844 
    845 	SET(bp->b_flags, B_ASYNC);
    846 	simple_unlock(&bp->b_interlock);
    847 	splx(s);
    848 	VOP_BWRITE(bp);
    849 }
    850 
    851 /*
    852  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    853  * Call at splbio() and with the buffer interlock locked.
    854  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
    855  */
    856 void
    857 bdirty(struct buf *bp)
    858 {
    859 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    860 	struct proc *p = l->l_proc;
    861 
    862 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    863 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    864 
    865 	CLR(bp->b_flags, B_AGE);
    866 
    867 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    868 		SET(bp->b_flags, B_DELWRI);
    869 		p->p_stats->p_ru.ru_oublock++;
    870 		reassignbuf(bp, bp->b_vp);
    871 	}
    872 }
    873 
    874 /*
    875  * Release a buffer on to the free lists.
    876  * Described in Bach (p. 46).
    877  */
    878 void
    879 brelse(struct buf *bp)
    880 {
    881 	struct bqueue *bufq;
    882 	int s;
    883 
    884 	/* Block disk interrupts. */
    885 	s = splbio();
    886 	simple_lock(&bqueue_slock);
    887 	simple_lock(&bp->b_interlock);
    888 
    889 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    890 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    891 
    892 	/* Wake up any processes waiting for any buffer to become free. */
    893 	if (needbuffer) {
    894 		needbuffer = 0;
    895 		wakeup(&needbuffer);
    896 	}
    897 
    898 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    899 	if (ISSET(bp->b_flags, B_WANTED)) {
    900 		CLR(bp->b_flags, B_WANTED|B_AGE);
    901 		wakeup(bp);
    902 	}
    903 
    904 	/*
    905 	 * Determine which queue the buffer should be on, then put it there.
    906 	 */
    907 
    908 	/* If it's locked, don't report an error; try again later. */
    909 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
    910 		CLR(bp->b_flags, B_ERROR);
    911 
    912 	/* If it's not cacheable, or an error, mark it invalid. */
    913 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
    914 		SET(bp->b_flags, B_INVAL);
    915 
    916 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    917 		/*
    918 		 * This is a delayed write buffer that was just flushed to
    919 		 * disk.  It is still on the LRU queue.  If it's become
    920 		 * invalid, then we need to move it to a different queue;
    921 		 * otherwise leave it in its current position.
    922 		 */
    923 		CLR(bp->b_flags, B_VFLUSH);
    924 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
    925 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    926 			goto already_queued;
    927 		} else {
    928 			bremfree(bp);
    929 		}
    930 	}
    931 
    932   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    933   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    934   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    935 
    936 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    937 		/*
    938 		 * If it's invalid or empty, dissociate it from its vnode
    939 		 * and put on the head of the appropriate queue.
    940 		 */
    941 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    942 			(*bioops.io_deallocate)(bp);
    943 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    944 		if (bp->b_vp) {
    945 			reassignbuf(bp, bp->b_vp);
    946 			brelvp(bp);
    947 		}
    948 		if (bp->b_bufsize <= 0)
    949 			/* no data */
    950 			goto already_queued;
    951 		else
    952 			/* invalid data */
    953 			bufq = &bufqueues[BQ_AGE];
    954 		binsheadfree(bp, bufq);
    955 	} else {
    956 		/*
    957 		 * It has valid data.  Put it on the end of the appropriate
    958 		 * queue, so that it'll stick around for as long as possible.
    959 		 * If buf is AGE, but has dependencies, must put it on last
    960 		 * bufqueue to be scanned, ie LRU. This protects against the
    961 		 * livelock where BQ_AGE only has buffers with dependencies,
    962 		 * and we thus never get to the dependent buffers in BQ_LRU.
    963 		 */
    964 		if (ISSET(bp->b_flags, B_LOCKED))
    965 			/* locked in core */
    966 			bufq = &bufqueues[BQ_LOCKED];
    967 		else if (!ISSET(bp->b_flags, B_AGE))
    968 			/* valid data */
    969 			bufq = &bufqueues[BQ_LRU];
    970 		else {
    971 			/* stale but valid data */
    972 			int has_deps;
    973 
    974 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    975 			    bioops.io_countdeps)
    976 				has_deps = (*bioops.io_countdeps)(bp, 0);
    977 			else
    978 				has_deps = 0;
    979 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    980 			    &bufqueues[BQ_AGE];
    981 		}
    982 		binstailfree(bp, bufq);
    983 	}
    984 
    985 already_queued:
    986 	/* Unlock the buffer. */
    987 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    988 	SET(bp->b_flags, B_CACHE);
    989 
    990 	/* Allow disk interrupts. */
    991 	simple_unlock(&bp->b_interlock);
    992 	simple_unlock(&bqueue_slock);
    993 	if (bp->b_bufsize <= 0) {
    994 #ifdef DEBUG
    995 		memset((char *)bp, 0, sizeof(*bp));
    996 #endif
    997 		pool_put(&bufpool, bp);
    998 	}
    999 	splx(s);
   1000 }
   1001 
   1002 /*
   1003  * Determine if a block is in the cache.
   1004  * Just look on what would be its hash chain.  If it's there, return
   1005  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1006  * we normally don't return the buffer, unless the caller explicitly
   1007  * wants us to.
   1008  */
   1009 struct buf *
   1010 incore(struct vnode *vp, daddr_t blkno)
   1011 {
   1012 	struct buf *bp;
   1013 
   1014 	/* Search hash chain */
   1015 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1016 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1017 		    !ISSET(bp->b_flags, B_INVAL))
   1018 		return (bp);
   1019 	}
   1020 
   1021 	return (NULL);
   1022 }
   1023 
   1024 /*
   1025  * Get a block of requested size that is associated with
   1026  * a given vnode and block offset. If it is found in the
   1027  * block cache, mark it as having been found, make it busy
   1028  * and return it. Otherwise, return an empty block of the
   1029  * correct size. It is up to the caller to insure that the
   1030  * cached blocks be of the correct size.
   1031  */
   1032 struct buf *
   1033 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1034 {
   1035 	struct buf *bp;
   1036 	int s, err;
   1037 	int preserve;
   1038 
   1039 start:
   1040 	s = splbio();
   1041 	simple_lock(&bqueue_slock);
   1042 	bp = incore(vp, blkno);
   1043 	if (bp != NULL) {
   1044 		simple_lock(&bp->b_interlock);
   1045 		if (ISSET(bp->b_flags, B_BUSY)) {
   1046 			simple_unlock(&bqueue_slock);
   1047 			if (curproc == uvm.pagedaemon_proc) {
   1048 				simple_unlock(&bp->b_interlock);
   1049 				splx(s);
   1050 				return NULL;
   1051 			}
   1052 			SET(bp->b_flags, B_WANTED);
   1053 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1054 					"getblk", slptimeo, &bp->b_interlock);
   1055 			splx(s);
   1056 			if (err)
   1057 				return (NULL);
   1058 			goto start;
   1059 		}
   1060 #ifdef DIAGNOSTIC
   1061 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1062 		    bp->b_bcount < size && vp->v_type != VBLK)
   1063 			panic("getblk: block size invariant failed");
   1064 #endif
   1065 		SET(bp->b_flags, B_BUSY);
   1066 		bremfree(bp);
   1067 		preserve = 1;
   1068 	} else {
   1069 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1070 			simple_unlock(&bqueue_slock);
   1071 			splx(s);
   1072 			goto start;
   1073 		}
   1074 
   1075 		binshash(bp, BUFHASH(vp, blkno));
   1076 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1077 		bgetvp(vp, bp);
   1078 		preserve = 0;
   1079 	}
   1080 	simple_unlock(&bp->b_interlock);
   1081 	simple_unlock(&bqueue_slock);
   1082 	splx(s);
   1083 	/*
   1084 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1085 	 * if we re-size buffers here.
   1086 	 */
   1087 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1088 		KASSERT(bp->b_bufsize >= size);
   1089 	} else {
   1090 		allocbuf(bp, size, preserve);
   1091 	}
   1092 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1093 	return (bp);
   1094 }
   1095 
   1096 /*
   1097  * Get an empty, disassociated buffer of given size.
   1098  */
   1099 struct buf *
   1100 geteblk(int size)
   1101 {
   1102 	struct buf *bp;
   1103 	int s;
   1104 
   1105 	s = splbio();
   1106 	simple_lock(&bqueue_slock);
   1107 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1108 		;
   1109 
   1110 	SET(bp->b_flags, B_INVAL);
   1111 	binshash(bp, &invalhash);
   1112 	simple_unlock(&bqueue_slock);
   1113 	simple_unlock(&bp->b_interlock);
   1114 	splx(s);
   1115 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1116 	allocbuf(bp, size, 0);
   1117 	return (bp);
   1118 }
   1119 
   1120 /*
   1121  * Expand or contract the actual memory allocated to a buffer.
   1122  *
   1123  * If the buffer shrinks, data is lost, so it's up to the
   1124  * caller to have written it out *first*; this routine will not
   1125  * start a write.  If the buffer grows, it's the callers
   1126  * responsibility to fill out the buffer's additional contents.
   1127  */
   1128 void
   1129 allocbuf(struct buf *bp, int size, int preserve)
   1130 {
   1131 	vsize_t oldsize, desired_size;
   1132 	caddr_t addr;
   1133 	int s, delta;
   1134 
   1135 	desired_size = buf_roundsize(size);
   1136 	if (desired_size > MAXBSIZE)
   1137 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1138 
   1139 	bp->b_bcount = size;
   1140 
   1141 	oldsize = bp->b_bufsize;
   1142 	if (oldsize == desired_size)
   1143 		return;
   1144 
   1145 	/*
   1146 	 * If we want a buffer of a different size, re-allocate the
   1147 	 * buffer's memory; copy old content only if needed.
   1148 	 */
   1149 	addr = buf_malloc(desired_size);
   1150 	if (preserve)
   1151 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1152 	if (bp->b_data != NULL)
   1153 		buf_mrelease(bp->b_data, oldsize);
   1154 	bp->b_data = addr;
   1155 	bp->b_bufsize = desired_size;
   1156 
   1157 	/*
   1158 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1159 	 */
   1160 	delta = (long)desired_size - (long)oldsize;
   1161 
   1162 	s = splbio();
   1163 	simple_lock(&bqueue_slock);
   1164 	if ((bufmem += delta) > bufmem_hiwater) {
   1165 		/*
   1166 		 * Need to trim overall memory usage.
   1167 		 */
   1168 		while (buf_canrelease()) {
   1169 			if (curcpu()->ci_schedstate.spc_flags &
   1170 			    SPCF_SHOULDYIELD) {
   1171 				simple_unlock(&bqueue_slock);
   1172 				splx(s);
   1173 				preempt(1);
   1174 				s = splbio();
   1175 				simple_lock(&bqueue_slock);
   1176 			}
   1177 
   1178 			if (buf_trim() == 0)
   1179 				break;
   1180 		}
   1181 	}
   1182 
   1183 	simple_unlock(&bqueue_slock);
   1184 	splx(s);
   1185 }
   1186 
   1187 /*
   1188  * Find a buffer which is available for use.
   1189  * Select something from a free list.
   1190  * Preference is to AGE list, then LRU list.
   1191  *
   1192  * Called at splbio and with buffer queues locked.
   1193  * Return buffer locked.
   1194  */
   1195 struct buf *
   1196 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1197 {
   1198 	struct buf *bp;
   1199 
   1200 start:
   1201 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1202 
   1203 	/*
   1204 	 * Get a new buffer from the pool; but use NOWAIT because
   1205 	 * we have the buffer queues locked.
   1206 	 */
   1207 	if (!from_bufq && buf_lotsfree() &&
   1208 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1209 		memset((char *)bp, 0, sizeof(*bp));
   1210 		BUF_INIT(bp);
   1211 		bp->b_dev = NODEV;
   1212 		bp->b_vnbufs.le_next = NOLIST;
   1213 		bp->b_flags = B_BUSY;
   1214 		simple_lock(&bp->b_interlock);
   1215 #if defined(DIAGNOSTIC)
   1216 		bp->b_freelistindex = -1;
   1217 #endif /* defined(DIAGNOSTIC) */
   1218 		return (bp);
   1219 	}
   1220 
   1221 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1222 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1223 		simple_lock(&bp->b_interlock);
   1224 		bremfree(bp);
   1225 	} else {
   1226 		/*
   1227 		 * XXX: !from_bufq should be removed.
   1228 		 */
   1229 		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
   1230 			/* wait for a free buffer of any kind */
   1231 			needbuffer = 1;
   1232 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1233 			    "getnewbuf", slptimeo, &bqueue_slock);
   1234 		}
   1235 		return (NULL);
   1236 	}
   1237 
   1238 #ifdef DIAGNOSTIC
   1239 	if (bp->b_bufsize <= 0)
   1240 		panic("buffer %p: on queue but empty", bp);
   1241 #endif
   1242 
   1243 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1244 		/*
   1245 		 * This is a delayed write buffer being flushed to disk.  Make
   1246 		 * sure it gets aged out of the queue when it's finished, and
   1247 		 * leave it off the LRU queue.
   1248 		 */
   1249 		CLR(bp->b_flags, B_VFLUSH);
   1250 		SET(bp->b_flags, B_AGE);
   1251 		simple_unlock(&bp->b_interlock);
   1252 		goto start;
   1253 	}
   1254 
   1255 	/* Buffer is no longer on free lists. */
   1256 	SET(bp->b_flags, B_BUSY);
   1257 
   1258 	/*
   1259 	 * If buffer was a delayed write, start it and return NULL
   1260 	 * (since we might sleep while starting the write).
   1261 	 */
   1262 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1263 		/*
   1264 		 * This buffer has gone through the LRU, so make sure it gets
   1265 		 * reused ASAP.
   1266 		 */
   1267 		SET(bp->b_flags, B_AGE);
   1268 		simple_unlock(&bp->b_interlock);
   1269 		simple_unlock(&bqueue_slock);
   1270 		bawrite(bp);
   1271 		simple_lock(&bqueue_slock);
   1272 		return (NULL);
   1273 	}
   1274 
   1275 	/* disassociate us from our vnode, if we had one... */
   1276 	if (bp->b_vp)
   1277 		brelvp(bp);
   1278 
   1279 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
   1280 		(*bioops.io_deallocate)(bp);
   1281 
   1282 	/* clear out various other fields */
   1283 	bp->b_flags = B_BUSY;
   1284 	bp->b_dev = NODEV;
   1285 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1286 	bp->b_iodone = 0;
   1287 	bp->b_error = 0;
   1288 	bp->b_resid = 0;
   1289 	bp->b_bcount = 0;
   1290 
   1291 	bremhash(bp);
   1292 	return (bp);
   1293 }
   1294 
   1295 /*
   1296  * Attempt to free an aged buffer off the queues.
   1297  * Called at splbio and with queue lock held.
   1298  * Returns the amount of buffer memory freed.
   1299  */
   1300 static int
   1301 buf_trim(void)
   1302 {
   1303 	struct buf *bp;
   1304 	long size = 0;
   1305 
   1306 	/* Instruct getnewbuf() to get buffers off the queues */
   1307 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1308 		return 0;
   1309 
   1310 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1311 	simple_unlock(&bp->b_interlock);
   1312 	size = bp->b_bufsize;
   1313 	bufmem -= size;
   1314 	simple_unlock(&bqueue_slock);
   1315 	if (size > 0) {
   1316 		buf_mrelease(bp->b_data, size);
   1317 		bp->b_bcount = bp->b_bufsize = 0;
   1318 	}
   1319 	/* brelse() will return the buffer to the global buffer pool */
   1320 	brelse(bp);
   1321 	simple_lock(&bqueue_slock);
   1322 	return size;
   1323 }
   1324 
   1325 int
   1326 buf_drain(int n)
   1327 {
   1328 	int s, size = 0, sz;
   1329 
   1330 	s = splbio();
   1331 	simple_lock(&bqueue_slock);
   1332 
   1333 	while (size < n && bufmem > bufmem_lowater) {
   1334 		sz = buf_trim();
   1335 		if (sz <= 0)
   1336 			break;
   1337 		size += sz;
   1338 	}
   1339 
   1340 	simple_unlock(&bqueue_slock);
   1341 	splx(s);
   1342 	return size;
   1343 }
   1344 
   1345 /*
   1346  * Wait for operations on the buffer to complete.
   1347  * When they do, extract and return the I/O's error value.
   1348  */
   1349 int
   1350 biowait(struct buf *bp)
   1351 {
   1352 	int s, error;
   1353 
   1354 	s = splbio();
   1355 	simple_lock(&bp->b_interlock);
   1356 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1357 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1358 
   1359 	/* check errors. */
   1360 	if (ISSET(bp->b_flags, B_ERROR))
   1361 		error = bp->b_error ? bp->b_error : EIO;
   1362 	else
   1363 		error = 0;
   1364 
   1365 	simple_unlock(&bp->b_interlock);
   1366 	splx(s);
   1367 	return (error);
   1368 }
   1369 
   1370 /*
   1371  * Mark I/O complete on a buffer.
   1372  *
   1373  * If a callback has been requested, e.g. the pageout
   1374  * daemon, do so. Otherwise, awaken waiting processes.
   1375  *
   1376  * [ Leffler, et al., says on p.247:
   1377  *	"This routine wakes up the blocked process, frees the buffer
   1378  *	for an asynchronous write, or, for a request by the pagedaemon
   1379  *	process, invokes a procedure specified in the buffer structure" ]
   1380  *
   1381  * In real life, the pagedaemon (or other system processes) wants
   1382  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1383  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1384  * for the vn device, that puts malloc'd buffers on the free lists!)
   1385  */
   1386 void
   1387 biodone(struct buf *bp)
   1388 {
   1389 	int s = splbio();
   1390 
   1391 	simple_lock(&bp->b_interlock);
   1392 	if (ISSET(bp->b_flags, B_DONE))
   1393 		panic("biodone already");
   1394 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1395 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1396 
   1397 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
   1398 		(*bioops.io_complete)(bp);
   1399 
   1400 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1401 		vwakeup(bp);
   1402 
   1403 	/*
   1404 	 * If necessary, call out.  Unlock the buffer before calling
   1405 	 * iodone() as the buffer isn't valid any more when it return.
   1406 	 */
   1407 	if (ISSET(bp->b_flags, B_CALL)) {
   1408 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1409 		simple_unlock(&bp->b_interlock);
   1410 		(*bp->b_iodone)(bp);
   1411 	} else {
   1412 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1413 			simple_unlock(&bp->b_interlock);
   1414 			brelse(bp);
   1415 		} else {			/* or just wakeup the buffer */
   1416 			CLR(bp->b_flags, B_WANTED);
   1417 			wakeup(bp);
   1418 			simple_unlock(&bp->b_interlock);
   1419 		}
   1420 	}
   1421 
   1422 	splx(s);
   1423 }
   1424 
   1425 /*
   1426  * Return a count of buffers on the "locked" queue.
   1427  */
   1428 int
   1429 count_lock_queue(void)
   1430 {
   1431 	struct buf *bp;
   1432 	int n = 0;
   1433 
   1434 	simple_lock(&bqueue_slock);
   1435 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1436 		n++;
   1437 	simple_unlock(&bqueue_slock);
   1438 	return (n);
   1439 }
   1440 
   1441 /*
   1442  * Wait for all buffers to complete I/O
   1443  * Return the number of "stuck" buffers.
   1444  */
   1445 int
   1446 buf_syncwait(void)
   1447 {
   1448 	struct buf *bp;
   1449 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1450 
   1451 	dcount = 10000;
   1452 	for (iter = 0; iter < 20;) {
   1453 		s = splbio();
   1454 		simple_lock(&bqueue_slock);
   1455 		nbusy = 0;
   1456 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1457 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1458 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1459 				nbusy++;
   1460 			/*
   1461 			 * With soft updates, some buffers that are
   1462 			 * written will be remarked as dirty until other
   1463 			 * buffers are written.
   1464 			 */
   1465 			if (bp->b_vp && bp->b_vp->v_mount
   1466 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1467 			    && (bp->b_flags & B_DELWRI)) {
   1468 				simple_lock(&bp->b_interlock);
   1469 				bremfree(bp);
   1470 				bp->b_flags |= B_BUSY;
   1471 				nbusy++;
   1472 				simple_unlock(&bp->b_interlock);
   1473 				simple_unlock(&bqueue_slock);
   1474 				bawrite(bp);
   1475 				if (dcount-- <= 0) {
   1476 					printf("softdep ");
   1477 					splx(s);
   1478 					goto fail;
   1479 				}
   1480 				simple_lock(&bqueue_slock);
   1481 			}
   1482 		    }
   1483 		}
   1484 
   1485 		simple_unlock(&bqueue_slock);
   1486 		splx(s);
   1487 
   1488 		if (nbusy == 0)
   1489 			break;
   1490 		if (nbusy_prev == 0)
   1491 			nbusy_prev = nbusy;
   1492 		printf("%d ", nbusy);
   1493 		tsleep(&nbusy, PRIBIO, "bflush",
   1494 		    (iter == 0) ? 1 : hz / 25 * iter);
   1495 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1496 			iter++;
   1497 		else
   1498 			nbusy_prev = nbusy;
   1499 	}
   1500 
   1501 	if (nbusy) {
   1502 fail:;
   1503 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1504 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1505 		s = splbio();
   1506 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1507 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1508 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1509 				vprint(NULL, bp->b_vp);
   1510 		    }
   1511 		}
   1512 		splx(s);
   1513 #endif
   1514 	}
   1515 
   1516 	return nbusy;
   1517 }
   1518 
   1519 static void
   1520 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1521 {
   1522 
   1523 	o->b_flags = i->b_flags;
   1524 	o->b_error = i->b_error;
   1525 	o->b_prio = i->b_prio;
   1526 	o->b_dev = i->b_dev;
   1527 	o->b_bufsize = i->b_bufsize;
   1528 	o->b_bcount = i->b_bcount;
   1529 	o->b_resid = i->b_resid;
   1530 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
   1531 	o->b_blkno = i->b_blkno;
   1532 	o->b_rawblkno = i->b_rawblkno;
   1533 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1534 	o->b_proc = PTRTOUINT64(i->b_proc);
   1535 	o->b_vp = PTRTOUINT64(i->b_vp);
   1536 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1537 	o->b_lblkno = i->b_lblkno;
   1538 }
   1539 
   1540 #define KERN_BUFSLOP 20
   1541 static int
   1542 sysctl_dobuf(SYSCTLFN_ARGS)
   1543 {
   1544 	struct buf *bp;
   1545 	struct buf_sysctl bs;
   1546 	char *dp;
   1547 	u_int i, op, arg;
   1548 	size_t len, needed, elem_size, out_size;
   1549 	int error, s, elem_count;
   1550 
   1551 	if (namelen == 1 && name[0] == CTL_QUERY)
   1552 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1553 
   1554 	if (namelen != 4)
   1555 		return (EINVAL);
   1556 
   1557 	dp = oldp;
   1558 	len = (oldp != NULL) ? *oldlenp : 0;
   1559 	op = name[0];
   1560 	arg = name[1];
   1561 	elem_size = name[2];
   1562 	elem_count = name[3];
   1563 	out_size = MIN(sizeof(bs), elem_size);
   1564 
   1565 	/*
   1566 	 * at the moment, these are just "placeholders" to make the
   1567 	 * API for retrieving kern.buf data more extensible in the
   1568 	 * future.
   1569 	 *
   1570 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1571 	 * these will be resolved at a later point.
   1572 	 */
   1573 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1574 	    elem_size < 1 || elem_count < 0)
   1575 		return (EINVAL);
   1576 
   1577 	error = 0;
   1578 	needed = 0;
   1579 	s = splbio();
   1580 	simple_lock(&bqueue_slock);
   1581 	for (i = 0; i < BQUEUES; i++) {
   1582 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1583 			if (len >= elem_size && elem_count > 0) {
   1584 				sysctl_fillbuf(bp, &bs);
   1585 				error = copyout(&bs, dp, out_size);
   1586 				if (error)
   1587 					goto cleanup;
   1588 				dp += elem_size;
   1589 				len -= elem_size;
   1590 			}
   1591 			if (elem_count > 0) {
   1592 				needed += elem_size;
   1593 				if (elem_count != INT_MAX)
   1594 					elem_count--;
   1595 			}
   1596 		}
   1597 	}
   1598 cleanup:
   1599 	simple_unlock(&bqueue_slock);
   1600 	splx(s);
   1601 
   1602 	*oldlenp = needed;
   1603 	if (oldp == NULL)
   1604 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1605 
   1606 	return (error);
   1607 }
   1608 
   1609 static int
   1610 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1611 {
   1612 	int t, error;
   1613 	struct sysctlnode node;
   1614 
   1615 	node = *rnode;
   1616 	node.sysctl_data = &t;
   1617 	t = *(int *)rnode->sysctl_data;
   1618 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1619 	if (error || newp == NULL)
   1620 		return (error);
   1621 
   1622 	if (t < 0)
   1623 		return EINVAL;
   1624 	if (rnode->sysctl_data == &bufcache) {
   1625 		if (t > 100)
   1626 			return (EINVAL);
   1627 		bufcache = t;
   1628 		buf_setwm();
   1629 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1630 		if (bufmem_hiwater - t < 16)
   1631 			return (EINVAL);
   1632 		bufmem_lowater = t;
   1633 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1634 		if (t - bufmem_lowater < 16)
   1635 			return (EINVAL);
   1636 		bufmem_hiwater = t;
   1637 	} else
   1638 		return (EINVAL);
   1639 
   1640 	/* Drain until below new high water mark */
   1641 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1642 		if (buf_drain(t / (2 * 1024)) <= 0)
   1643 			break;
   1644 	}
   1645 
   1646 	return 0;
   1647 }
   1648 
   1649 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1650 {
   1651 
   1652 	sysctl_createv(clog, 0, NULL, NULL,
   1653 		       CTLFLAG_PERMANENT,
   1654 		       CTLTYPE_NODE, "kern", NULL,
   1655 		       NULL, 0, NULL, 0,
   1656 		       CTL_KERN, CTL_EOL);
   1657 	sysctl_createv(clog, 0, NULL, NULL,
   1658 		       CTLFLAG_PERMANENT,
   1659 		       CTLTYPE_NODE, "buf",
   1660 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1661 		       sysctl_dobuf, 0, NULL, 0,
   1662 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1663 }
   1664 
   1665 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1666 {
   1667 
   1668 	sysctl_createv(clog, 0, NULL, NULL,
   1669 		       CTLFLAG_PERMANENT,
   1670 		       CTLTYPE_NODE, "vm", NULL,
   1671 		       NULL, 0, NULL, 0,
   1672 		       CTL_VM, CTL_EOL);
   1673 
   1674 	sysctl_createv(clog, 0, NULL, NULL,
   1675 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1676 		       CTLTYPE_INT, "bufcache",
   1677 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1678 				    "buffer cache"),
   1679 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1680 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1681 	sysctl_createv(clog, 0, NULL, NULL,
   1682 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1683 		       CTLTYPE_INT, "bufmem",
   1684 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1685 				    "cache"),
   1686 		       NULL, 0, &bufmem, 0,
   1687 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1688 	sysctl_createv(clog, 0, NULL, NULL,
   1689 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1690 		       CTLTYPE_INT, "bufmem_lowater",
   1691 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1692 				    "reserve for buffer cache"),
   1693 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1694 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1695 	sysctl_createv(clog, 0, NULL, NULL,
   1696 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1697 		       CTLTYPE_INT, "bufmem_hiwater",
   1698 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1699 				    "for buffer cache"),
   1700 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1701 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1702 }
   1703 
   1704 #ifdef DEBUG
   1705 /*
   1706  * Print out statistics on the current allocation of the buffer pool.
   1707  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1708  * in vfs_syscalls.c using sysctl.
   1709  */
   1710 void
   1711 vfs_bufstats(void)
   1712 {
   1713 	int s, i, j, count;
   1714 	struct buf *bp;
   1715 	struct bqueue *dp;
   1716 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1717 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1718 
   1719 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1720 		count = 0;
   1721 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1722 			counts[j] = 0;
   1723 		s = splbio();
   1724 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1725 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1726 			count++;
   1727 		}
   1728 		splx(s);
   1729 		printf("%s: total-%d", bname[i], count);
   1730 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1731 			if (counts[j] != 0)
   1732 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1733 		printf("\n");
   1734 	}
   1735 }
   1736 #endif /* DEBUG */
   1737 
   1738 /* ------------------------------ */
   1739 
   1740 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
   1741 
   1742 static struct buf *
   1743 getiobuf1(int prflags)
   1744 {
   1745 	struct buf *bp;
   1746 	int s;
   1747 
   1748 	s = splbio();
   1749 	bp = pool_get(&bufiopool, prflags);
   1750 	splx(s);
   1751 	if (bp != NULL) {
   1752 		BUF_INIT(bp);
   1753 	}
   1754 	return bp;
   1755 }
   1756 
   1757 struct buf *
   1758 getiobuf(void)
   1759 {
   1760 
   1761 	return getiobuf1(PR_WAITOK);
   1762 }
   1763 
   1764 struct buf *
   1765 getiobuf_nowait(void)
   1766 {
   1767 
   1768 	return getiobuf1(PR_NOWAIT);
   1769 }
   1770 
   1771 void
   1772 putiobuf(struct buf *bp)
   1773 {
   1774 	int s;
   1775 
   1776 	s = splbio();
   1777 	pool_put(&bufiopool, bp);
   1778 	splx(s);
   1779 }
   1780 
   1781 /*
   1782  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1783  */
   1784 
   1785 static void
   1786 nestiobuf_iodone(struct buf *bp)
   1787 {
   1788 	struct buf *mbp = bp->b_private;
   1789 	int error;
   1790 	int donebytes;
   1791 
   1792 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1793 	KASSERT(mbp != bp);
   1794 
   1795 	error = 0;
   1796 	if ((bp->b_flags & B_ERROR) != 0) {
   1797 		error = EIO;
   1798 		/* check if an error code was returned */
   1799 		if (bp->b_error)
   1800 			error = bp->b_error;
   1801 	} else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
   1802 		/*
   1803 		 * Not all got transfered, raise an error. We have no way to
   1804 		 * propagate these conditions to mbp.
   1805 		 */
   1806 		error = EIO;
   1807 	}
   1808 
   1809 	donebytes = bp->b_bufsize;
   1810 
   1811 	putiobuf(bp);
   1812 	nestiobuf_done(mbp, donebytes, error);
   1813 }
   1814 
   1815 /*
   1816  * nestiobuf_setup: setup a "nested" buffer.
   1817  *
   1818  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1819  * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
   1820  * => 'offset' is a byte offset in the master buffer.
   1821  * => 'size' is a size in bytes of this nested buffer.
   1822  */
   1823 
   1824 void
   1825 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
   1826 {
   1827 	const int b_read = mbp->b_flags & B_READ;
   1828 	struct vnode *vp = mbp->b_vp;
   1829 
   1830 	KASSERT(mbp->b_bcount >= offset + size);
   1831 	bp->b_vp = vp;
   1832 	bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
   1833 	bp->b_iodone = nestiobuf_iodone;
   1834 	bp->b_data = mbp->b_data + offset;
   1835 	bp->b_resid = bp->b_bcount = size;
   1836 	bp->b_bufsize = bp->b_bcount;
   1837 	bp->b_private = mbp;
   1838 	BIO_COPYPRIO(bp, mbp);
   1839 	if (!b_read && vp != NULL) {
   1840 		int s;
   1841 
   1842 		s = splbio();
   1843 		V_INCR_NUMOUTPUT(vp);
   1844 		splx(s);
   1845 	}
   1846 }
   1847 
   1848 /*
   1849  * nestiobuf_done: propagate completion to the master buffer.
   1850  *
   1851  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1852  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1853  */
   1854 
   1855 void
   1856 nestiobuf_done(struct buf *mbp, int donebytes, int error)
   1857 {
   1858 	int s;
   1859 
   1860 	if (donebytes == 0) {
   1861 		return;
   1862 	}
   1863 	s = splbio();
   1864 	KASSERT(mbp->b_resid >= donebytes);
   1865 	if (error) {
   1866 		mbp->b_flags |= B_ERROR;
   1867 		mbp->b_error = error;
   1868 	}
   1869 	mbp->b_resid -= donebytes;
   1870 	if (mbp->b_resid == 0) {
   1871 		if ((mbp->b_flags & B_ERROR) != 0) {
   1872 			mbp->b_resid = mbp->b_bcount; /* be conservative */
   1873 		}
   1874 		biodone(mbp);
   1875 	}
   1876 	splx(s);
   1877 }
   1878