vfs_bio.c revision 1.156 1 /* $NetBSD: vfs_bio.c,v 1.156 2006/02/04 12:02:35 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.156 2006/02/04 12:02:35 yamt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97
98 #include <uvm/uvm.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #ifndef BUFPAGES
103 # define BUFPAGES 0
104 #endif
105
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 # error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113
114 u_int nbuf; /* XXX - for softdep_lockedbufs */
115 u_int bufpages = BUFPAGES; /* optional hardwired count */
116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
117
118 /* Function prototypes */
119 struct bqueue;
120
121 static void buf_setwm(void);
122 static int buf_trim(void);
123 static void *bufpool_page_alloc(struct pool *, int);
124 static void bufpool_page_free(struct pool *, void *);
125 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126 struct ucred *, int);
127 static int buf_lotsfree(void);
128 static int buf_canrelease(void);
129 static inline u_long buf_mempoolidx(u_long);
130 static inline u_long buf_roundsize(u_long);
131 static inline caddr_t buf_malloc(size_t);
132 static void buf_mrelease(caddr_t, size_t);
133 static inline void binsheadfree(struct buf *, struct bqueue *);
134 static inline void binstailfree(struct buf *, struct bqueue *);
135 int count_lock_queue(void); /* XXX */
136 #ifdef DEBUG
137 static int checkfreelist(struct buf *, struct bqueue *);
138 #endif
139
140 /* Macros to clear/set/test flags. */
141 #define SET(t, f) (t) |= (f)
142 #define CLR(t, f) (t) &= ~(f)
143 #define ISSET(t, f) ((t) & (f))
144
145 /*
146 * Definitions for the buffer hash lists.
147 */
148 #define BUFHASH(dvp, lbn) \
149 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151 u_long bufhash;
152 #if !defined(SOFTDEP) || !defined(FFS)
153 struct bio_ops bioops; /* I/O operation notification */
154 #endif
155
156 /*
157 * Insq/Remq for the buffer hash lists.
158 */
159 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
160 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
161
162 /*
163 * Definitions for the buffer free lists.
164 */
165 #define BQUEUES 3 /* number of free buffer queues */
166
167 #define BQ_LOCKED 0 /* super-blocks &c */
168 #define BQ_LRU 1 /* lru, useful buffers */
169 #define BQ_AGE 2 /* rubbish */
170
171 struct bqueue {
172 TAILQ_HEAD(, buf) bq_queue;
173 uint64_t bq_bytes;
174 } bufqueues[BQUEUES];
175 int needbuffer;
176
177 /*
178 * Buffer queue lock.
179 * Take this lock first if also taking some buffer's b_interlock.
180 */
181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182
183 /*
184 * Buffer pool for I/O buffers.
185 * Access to this pool must be protected with splbio().
186 */
187 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
188
189
190 /* XXX - somewhat gross.. */
191 #if MAXBSIZE == 0x2000
192 #define NMEMPOOLS 4
193 #elif MAXBSIZE == 0x4000
194 #define NMEMPOOLS 5
195 #elif MAXBSIZE == 0x8000
196 #define NMEMPOOLS 6
197 #else
198 #define NMEMPOOLS 7
199 #endif
200
201 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */
202 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
203 #error update vfs_bio buffer memory parameters
204 #endif
205
206 /* Buffer memory pools */
207 static struct pool bmempools[NMEMPOOLS];
208
209 struct vm_map *buf_map;
210
211 /*
212 * Buffer memory pool allocator.
213 */
214 static void *
215 bufpool_page_alloc(struct pool *pp, int flags)
216 {
217
218 return (void *)uvm_km_alloc(buf_map,
219 MAXBSIZE, MAXBSIZE,
220 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
221 | UVM_KMF_WIRED);
222 }
223
224 static void
225 bufpool_page_free(struct pool *pp, void *v)
226 {
227
228 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
229 }
230
231 static struct pool_allocator bufmempool_allocator = {
232 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
233 };
234
235 /* Buffer memory management variables */
236 u_long bufmem_valimit;
237 u_long bufmem_hiwater;
238 u_long bufmem_lowater;
239 u_long bufmem;
240
241 /*
242 * MD code can call this to set a hard limit on the amount
243 * of virtual memory used by the buffer cache.
244 */
245 int
246 buf_setvalimit(vsize_t sz)
247 {
248
249 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
250 if (sz < NMEMPOOLS * MAXBSIZE)
251 return EINVAL;
252
253 bufmem_valimit = sz;
254 return 0;
255 }
256
257 static void
258 buf_setwm(void)
259 {
260
261 bufmem_hiwater = buf_memcalc();
262 /* lowater is approx. 2% of memory (with bufcache = 15) */
263 #define BUFMEM_WMSHIFT 3
264 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
265 if (bufmem_hiwater < BUFMEM_HIWMMIN)
266 /* Ensure a reasonable minimum value */
267 bufmem_hiwater = BUFMEM_HIWMMIN;
268 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
269 }
270
271 #ifdef DEBUG
272 int debug_verify_freelist = 0;
273 static int
274 checkfreelist(struct buf *bp, struct bqueue *dp)
275 {
276 struct buf *b;
277
278 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
279 if (b == bp)
280 return 1;
281 }
282 return 0;
283 }
284 #endif
285
286 /*
287 * Insq/Remq for the buffer hash lists.
288 * Call with buffer queue locked.
289 */
290 static inline void
291 binsheadfree(struct buf *bp, struct bqueue *dp)
292 {
293
294 KASSERT(bp->b_freelistindex == -1);
295 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
296 dp->bq_bytes += bp->b_bufsize;
297 bp->b_freelistindex = dp - bufqueues;
298 }
299
300 static inline void
301 binstailfree(struct buf *bp, struct bqueue *dp)
302 {
303
304 KASSERT(bp->b_freelistindex == -1);
305 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
306 dp->bq_bytes += bp->b_bufsize;
307 bp->b_freelistindex = dp - bufqueues;
308 }
309
310 void
311 bremfree(struct buf *bp)
312 {
313 struct bqueue *dp;
314 int bqidx = bp->b_freelistindex;
315
316 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
317
318 KASSERT(bqidx != -1);
319 dp = &bufqueues[bqidx];
320 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
321 KASSERT(dp->bq_bytes >= bp->b_bufsize);
322 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
323 dp->bq_bytes -= bp->b_bufsize;
324 #if defined(DIAGNOSTIC)
325 bp->b_freelistindex = -1;
326 #endif /* defined(DIAGNOSTIC) */
327 }
328
329 u_long
330 buf_memcalc(void)
331 {
332 u_long n;
333
334 /*
335 * Determine the upper bound of memory to use for buffers.
336 *
337 * - If bufpages is specified, use that as the number
338 * pages.
339 *
340 * - Otherwise, use bufcache as the percentage of
341 * physical memory.
342 */
343 if (bufpages != 0) {
344 n = bufpages;
345 } else {
346 if (bufcache < 5) {
347 printf("forcing bufcache %d -> 5", bufcache);
348 bufcache = 5;
349 }
350 if (bufcache > 95) {
351 printf("forcing bufcache %d -> 95", bufcache);
352 bufcache = 95;
353 }
354 n = physmem / 100 * bufcache;
355 }
356
357 n <<= PAGE_SHIFT;
358 if (bufmem_valimit != 0 && n > bufmem_valimit)
359 n = bufmem_valimit;
360
361 return (n);
362 }
363
364 /*
365 * Initialize buffers and hash links for buffers.
366 */
367 void
368 bufinit(void)
369 {
370 struct bqueue *dp;
371 int use_std;
372 u_int i;
373
374 /*
375 * Initialize buffer cache memory parameters.
376 */
377 bufmem = 0;
378 buf_setwm();
379
380 if (bufmem_valimit != 0) {
381 vaddr_t minaddr = 0, maxaddr;
382 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
383 bufmem_valimit, VM_MAP_PAGEABLE,
384 FALSE, 0);
385 if (buf_map == NULL)
386 panic("bufinit: cannot allocate submap");
387 } else
388 buf_map = kernel_map;
389
390 /* On "small" machines use small pool page sizes where possible */
391 use_std = (physmem < atop(16*1024*1024));
392
393 /*
394 * Also use them on systems that can map the pool pages using
395 * a direct-mapped segment.
396 */
397 #ifdef PMAP_MAP_POOLPAGE
398 use_std = 1;
399 #endif
400
401 for (i = 0; i < NMEMPOOLS; i++) {
402 struct pool_allocator *pa;
403 struct pool *pp = &bmempools[i];
404 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
405 char *name = malloc(8, M_TEMP, M_WAITOK);
406 snprintf(name, 8, "buf%dk", 1 << i);
407 pa = (size <= PAGE_SIZE && use_std)
408 ? &pool_allocator_nointr
409 : &bufmempool_allocator;
410 pool_init(pp, size, 0, 0, 0, name, pa);
411 pool_setlowat(pp, 1);
412 pool_sethiwat(pp, 1);
413 }
414
415 /* Initialize the buffer queues */
416 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
417 TAILQ_INIT(&dp->bq_queue);
418 dp->bq_bytes = 0;
419 }
420
421 /*
422 * Estimate hash table size based on the amount of memory we
423 * intend to use for the buffer cache. The average buffer
424 * size is dependent on our clients (i.e. filesystems).
425 *
426 * For now, use an empirical 3K per buffer.
427 */
428 nbuf = (bufmem_hiwater / 1024) / 3;
429 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
430 }
431
432 static int
433 buf_lotsfree(void)
434 {
435 int try, thresh;
436 struct lwp *l = curlwp;
437
438 /* Always allocate if doing copy on write */
439 if (l->l_flag & L_COWINPROGRESS)
440 return 1;
441
442 /* Always allocate if less than the low water mark. */
443 if (bufmem < bufmem_lowater)
444 return 1;
445
446 /* Never allocate if greater than the high water mark. */
447 if (bufmem > bufmem_hiwater)
448 return 0;
449
450 /* If there's anything on the AGE list, it should be eaten. */
451 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
452 return 0;
453
454 /*
455 * The probabily of getting a new allocation is inversely
456 * proportional to the current size of the cache, using
457 * a granularity of 16 steps.
458 */
459 try = random() & 0x0000000fL;
460
461 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
462 thresh = (bufmem - bufmem_lowater) /
463 ((bufmem_hiwater - bufmem_lowater) / 16);
464
465 if (try >= thresh)
466 return 1;
467
468 /* Otherwise don't allocate. */
469 return 0;
470 }
471
472 /*
473 * Return estimate of bytes we think need to be
474 * released to help resolve low memory conditions.
475 *
476 * => called at splbio.
477 * => called with bqueue_slock held.
478 */
479 static int
480 buf_canrelease(void)
481 {
482 int pagedemand, ninvalid = 0;
483
484 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
485
486 if (bufmem < bufmem_lowater)
487 return 0;
488
489 if (bufmem > bufmem_hiwater)
490 return bufmem - bufmem_hiwater;
491
492 ninvalid += bufqueues[BQ_AGE].bq_bytes;
493
494 pagedemand = uvmexp.freetarg - uvmexp.free;
495 if (pagedemand < 0)
496 return ninvalid;
497 return MAX(ninvalid, MIN(2 * MAXBSIZE,
498 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
499 }
500
501 /*
502 * Buffer memory allocation helper functions
503 */
504 static inline u_long
505 buf_mempoolidx(u_long size)
506 {
507 u_int n = 0;
508
509 size -= 1;
510 size >>= MEMPOOL_INDEX_OFFSET;
511 while (size) {
512 size >>= 1;
513 n += 1;
514 }
515 if (n >= NMEMPOOLS)
516 panic("buf mem pool index %d", n);
517 return n;
518 }
519
520 static inline u_long
521 buf_roundsize(u_long size)
522 {
523 /* Round up to nearest power of 2 */
524 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
525 }
526
527 static inline caddr_t
528 buf_malloc(size_t size)
529 {
530 u_int n = buf_mempoolidx(size);
531 caddr_t addr;
532 int s;
533
534 while (1) {
535 addr = pool_get(&bmempools[n], PR_NOWAIT);
536 if (addr != NULL)
537 break;
538
539 /* No memory, see if we can free some. If so, try again */
540 if (buf_drain(1) > 0)
541 continue;
542
543 /* Wait for buffers to arrive on the LRU queue */
544 s = splbio();
545 simple_lock(&bqueue_slock);
546 needbuffer = 1;
547 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
548 "buf_malloc", 0, &bqueue_slock);
549 splx(s);
550 }
551
552 return addr;
553 }
554
555 static void
556 buf_mrelease(caddr_t addr, size_t size)
557 {
558
559 pool_put(&bmempools[buf_mempoolidx(size)], addr);
560 }
561
562 /*
563 * bread()/breadn() helper.
564 */
565 static inline struct buf *
566 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
567 int async)
568 {
569 struct buf *bp;
570 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
571 struct proc *p = l->l_proc;
572 struct mount *mp;
573
574 bp = getblk(vp, blkno, size, 0, 0);
575
576 #ifdef DIAGNOSTIC
577 if (bp == NULL) {
578 panic("bio_doread: no such buf");
579 }
580 #endif
581
582 /*
583 * If buffer does not have data valid, start a read.
584 * Note that if buffer is B_INVAL, getblk() won't return it.
585 * Therefore, it's valid if its I/O has completed or been delayed.
586 */
587 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
588 /* Start I/O for the buffer. */
589 SET(bp->b_flags, B_READ | async);
590 if (async)
591 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
592 else
593 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
594 VOP_STRATEGY(vp, bp);
595
596 /* Pay for the read. */
597 p->p_stats->p_ru.ru_inblock++;
598 } else if (async) {
599 brelse(bp);
600 }
601
602 if (vp->v_type == VBLK)
603 mp = vp->v_specmountpoint;
604 else
605 mp = vp->v_mount;
606
607 /*
608 * Collect statistics on synchronous and asynchronous reads.
609 * Reads from block devices are charged to their associated
610 * filesystem (if any).
611 */
612 if (mp != NULL) {
613 if (async == 0)
614 mp->mnt_stat.f_syncreads++;
615 else
616 mp->mnt_stat.f_asyncreads++;
617 }
618
619 return (bp);
620 }
621
622 /*
623 * Read a disk block.
624 * This algorithm described in Bach (p.54).
625 */
626 int
627 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
628 struct buf **bpp)
629 {
630 struct buf *bp;
631
632 /* Get buffer for block. */
633 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
634
635 /* Wait for the read to complete, and return result. */
636 return (biowait(bp));
637 }
638
639 /*
640 * Read-ahead multiple disk blocks. The first is sync, the rest async.
641 * Trivial modification to the breada algorithm presented in Bach (p.55).
642 */
643 int
644 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
645 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
646 {
647 struct buf *bp;
648 int i;
649
650 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
651
652 /*
653 * For each of the read-ahead blocks, start a read, if necessary.
654 */
655 for (i = 0; i < nrablks; i++) {
656 /* If it's in the cache, just go on to next one. */
657 if (incore(vp, rablks[i]))
658 continue;
659
660 /* Get a buffer for the read-ahead block */
661 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
662 }
663
664 /* Otherwise, we had to start a read for it; wait until it's valid. */
665 return (biowait(bp));
666 }
667
668 /*
669 * Read with single-block read-ahead. Defined in Bach (p.55), but
670 * implemented as a call to breadn().
671 * XXX for compatibility with old file systems.
672 */
673 int
674 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
675 int rabsize, struct ucred *cred, struct buf **bpp)
676 {
677
678 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
679 }
680
681 /*
682 * Block write. Described in Bach (p.56)
683 */
684 int
685 bwrite(struct buf *bp)
686 {
687 int rv, sync, wasdelayed, s;
688 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
689 struct proc *p = l->l_proc;
690 struct vnode *vp;
691 struct mount *mp;
692
693 KASSERT(ISSET(bp->b_flags, B_BUSY));
694
695 vp = bp->b_vp;
696 if (vp != NULL) {
697 if (vp->v_type == VBLK)
698 mp = vp->v_specmountpoint;
699 else
700 mp = vp->v_mount;
701 } else {
702 mp = NULL;
703 }
704
705 /*
706 * Remember buffer type, to switch on it later. If the write was
707 * synchronous, but the file system was mounted with MNT_ASYNC,
708 * convert it to a delayed write.
709 * XXX note that this relies on delayed tape writes being converted
710 * to async, not sync writes (which is safe, but ugly).
711 */
712 sync = !ISSET(bp->b_flags, B_ASYNC);
713 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
714 bdwrite(bp);
715 return (0);
716 }
717
718 /*
719 * Collect statistics on synchronous and asynchronous writes.
720 * Writes to block devices are charged to their associated
721 * filesystem (if any).
722 */
723 if (mp != NULL) {
724 if (sync)
725 mp->mnt_stat.f_syncwrites++;
726 else
727 mp->mnt_stat.f_asyncwrites++;
728 }
729
730 s = splbio();
731 simple_lock(&bp->b_interlock);
732
733 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
734
735 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
736
737 /*
738 * Pay for the I/O operation and make sure the buf is on the correct
739 * vnode queue.
740 */
741 if (wasdelayed)
742 reassignbuf(bp, bp->b_vp);
743 else
744 p->p_stats->p_ru.ru_oublock++;
745
746 /* Initiate disk write. Make sure the appropriate party is charged. */
747 V_INCR_NUMOUTPUT(bp->b_vp);
748 simple_unlock(&bp->b_interlock);
749 splx(s);
750
751 if (sync)
752 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
753 else
754 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
755
756 VOP_STRATEGY(vp, bp);
757
758 if (sync) {
759 /* If I/O was synchronous, wait for it to complete. */
760 rv = biowait(bp);
761
762 /* Release the buffer. */
763 brelse(bp);
764
765 return (rv);
766 } else {
767 return (0);
768 }
769 }
770
771 int
772 vn_bwrite(void *v)
773 {
774 struct vop_bwrite_args *ap = v;
775
776 return (bwrite(ap->a_bp));
777 }
778
779 /*
780 * Delayed write.
781 *
782 * The buffer is marked dirty, but is not queued for I/O.
783 * This routine should be used when the buffer is expected
784 * to be modified again soon, typically a small write that
785 * partially fills a buffer.
786 *
787 * NB: magnetic tapes cannot be delayed; they must be
788 * written in the order that the writes are requested.
789 *
790 * Described in Leffler, et al. (pp. 208-213).
791 */
792 void
793 bdwrite(struct buf *bp)
794 {
795 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
796 struct proc *p = l->l_proc;
797 const struct bdevsw *bdev;
798 int s;
799
800 /* If this is a tape block, write the block now. */
801 bdev = bdevsw_lookup(bp->b_dev);
802 if (bdev != NULL && bdev->d_type == D_TAPE) {
803 bawrite(bp);
804 return;
805 }
806
807 /*
808 * If the block hasn't been seen before:
809 * (1) Mark it as having been seen,
810 * (2) Charge for the write,
811 * (3) Make sure it's on its vnode's correct block list.
812 */
813 s = splbio();
814 simple_lock(&bp->b_interlock);
815
816 KASSERT(ISSET(bp->b_flags, B_BUSY));
817
818 if (!ISSET(bp->b_flags, B_DELWRI)) {
819 SET(bp->b_flags, B_DELWRI);
820 p->p_stats->p_ru.ru_oublock++;
821 reassignbuf(bp, bp->b_vp);
822 }
823
824 /* Otherwise, the "write" is done, so mark and release the buffer. */
825 CLR(bp->b_flags, B_DONE);
826 simple_unlock(&bp->b_interlock);
827 splx(s);
828
829 brelse(bp);
830 }
831
832 /*
833 * Asynchronous block write; just an asynchronous bwrite().
834 */
835 void
836 bawrite(struct buf *bp)
837 {
838 int s;
839
840 s = splbio();
841 simple_lock(&bp->b_interlock);
842
843 KASSERT(ISSET(bp->b_flags, B_BUSY));
844
845 SET(bp->b_flags, B_ASYNC);
846 simple_unlock(&bp->b_interlock);
847 splx(s);
848 VOP_BWRITE(bp);
849 }
850
851 /*
852 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
853 * Call at splbio() and with the buffer interlock locked.
854 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
855 */
856 void
857 bdirty(struct buf *bp)
858 {
859 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
860 struct proc *p = l->l_proc;
861
862 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
863 KASSERT(ISSET(bp->b_flags, B_BUSY));
864
865 CLR(bp->b_flags, B_AGE);
866
867 if (!ISSET(bp->b_flags, B_DELWRI)) {
868 SET(bp->b_flags, B_DELWRI);
869 p->p_stats->p_ru.ru_oublock++;
870 reassignbuf(bp, bp->b_vp);
871 }
872 }
873
874 /*
875 * Release a buffer on to the free lists.
876 * Described in Bach (p. 46).
877 */
878 void
879 brelse(struct buf *bp)
880 {
881 struct bqueue *bufq;
882 int s;
883
884 /* Block disk interrupts. */
885 s = splbio();
886 simple_lock(&bqueue_slock);
887 simple_lock(&bp->b_interlock);
888
889 KASSERT(ISSET(bp->b_flags, B_BUSY));
890 KASSERT(!ISSET(bp->b_flags, B_CALL));
891
892 /* Wake up any processes waiting for any buffer to become free. */
893 if (needbuffer) {
894 needbuffer = 0;
895 wakeup(&needbuffer);
896 }
897
898 /* Wake up any proceeses waiting for _this_ buffer to become free. */
899 if (ISSET(bp->b_flags, B_WANTED)) {
900 CLR(bp->b_flags, B_WANTED|B_AGE);
901 wakeup(bp);
902 }
903
904 /*
905 * Determine which queue the buffer should be on, then put it there.
906 */
907
908 /* If it's locked, don't report an error; try again later. */
909 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
910 CLR(bp->b_flags, B_ERROR);
911
912 /* If it's not cacheable, or an error, mark it invalid. */
913 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
914 SET(bp->b_flags, B_INVAL);
915
916 if (ISSET(bp->b_flags, B_VFLUSH)) {
917 /*
918 * This is a delayed write buffer that was just flushed to
919 * disk. It is still on the LRU queue. If it's become
920 * invalid, then we need to move it to a different queue;
921 * otherwise leave it in its current position.
922 */
923 CLR(bp->b_flags, B_VFLUSH);
924 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
925 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
926 goto already_queued;
927 } else {
928 bremfree(bp);
929 }
930 }
931
932 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
933 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
934 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
935
936 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
937 /*
938 * If it's invalid or empty, dissociate it from its vnode
939 * and put on the head of the appropriate queue.
940 */
941 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
942 (*bioops.io_deallocate)(bp);
943 CLR(bp->b_flags, B_DONE|B_DELWRI);
944 if (bp->b_vp) {
945 reassignbuf(bp, bp->b_vp);
946 brelvp(bp);
947 }
948 if (bp->b_bufsize <= 0)
949 /* no data */
950 goto already_queued;
951 else
952 /* invalid data */
953 bufq = &bufqueues[BQ_AGE];
954 binsheadfree(bp, bufq);
955 } else {
956 /*
957 * It has valid data. Put it on the end of the appropriate
958 * queue, so that it'll stick around for as long as possible.
959 * If buf is AGE, but has dependencies, must put it on last
960 * bufqueue to be scanned, ie LRU. This protects against the
961 * livelock where BQ_AGE only has buffers with dependencies,
962 * and we thus never get to the dependent buffers in BQ_LRU.
963 */
964 if (ISSET(bp->b_flags, B_LOCKED))
965 /* locked in core */
966 bufq = &bufqueues[BQ_LOCKED];
967 else if (!ISSET(bp->b_flags, B_AGE))
968 /* valid data */
969 bufq = &bufqueues[BQ_LRU];
970 else {
971 /* stale but valid data */
972 int has_deps;
973
974 if (LIST_FIRST(&bp->b_dep) != NULL &&
975 bioops.io_countdeps)
976 has_deps = (*bioops.io_countdeps)(bp, 0);
977 else
978 has_deps = 0;
979 bufq = has_deps ? &bufqueues[BQ_LRU] :
980 &bufqueues[BQ_AGE];
981 }
982 binstailfree(bp, bufq);
983 }
984
985 already_queued:
986 /* Unlock the buffer. */
987 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
988 SET(bp->b_flags, B_CACHE);
989
990 /* Allow disk interrupts. */
991 simple_unlock(&bp->b_interlock);
992 simple_unlock(&bqueue_slock);
993 if (bp->b_bufsize <= 0) {
994 #ifdef DEBUG
995 memset((char *)bp, 0, sizeof(*bp));
996 #endif
997 pool_put(&bufpool, bp);
998 }
999 splx(s);
1000 }
1001
1002 /*
1003 * Determine if a block is in the cache.
1004 * Just look on what would be its hash chain. If it's there, return
1005 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1006 * we normally don't return the buffer, unless the caller explicitly
1007 * wants us to.
1008 */
1009 struct buf *
1010 incore(struct vnode *vp, daddr_t blkno)
1011 {
1012 struct buf *bp;
1013
1014 /* Search hash chain */
1015 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1016 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1017 !ISSET(bp->b_flags, B_INVAL))
1018 return (bp);
1019 }
1020
1021 return (NULL);
1022 }
1023
1024 /*
1025 * Get a block of requested size that is associated with
1026 * a given vnode and block offset. If it is found in the
1027 * block cache, mark it as having been found, make it busy
1028 * and return it. Otherwise, return an empty block of the
1029 * correct size. It is up to the caller to insure that the
1030 * cached blocks be of the correct size.
1031 */
1032 struct buf *
1033 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1034 {
1035 struct buf *bp;
1036 int s, err;
1037 int preserve;
1038
1039 start:
1040 s = splbio();
1041 simple_lock(&bqueue_slock);
1042 bp = incore(vp, blkno);
1043 if (bp != NULL) {
1044 simple_lock(&bp->b_interlock);
1045 if (ISSET(bp->b_flags, B_BUSY)) {
1046 simple_unlock(&bqueue_slock);
1047 if (curproc == uvm.pagedaemon_proc) {
1048 simple_unlock(&bp->b_interlock);
1049 splx(s);
1050 return NULL;
1051 }
1052 SET(bp->b_flags, B_WANTED);
1053 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1054 "getblk", slptimeo, &bp->b_interlock);
1055 splx(s);
1056 if (err)
1057 return (NULL);
1058 goto start;
1059 }
1060 #ifdef DIAGNOSTIC
1061 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1062 bp->b_bcount < size && vp->v_type != VBLK)
1063 panic("getblk: block size invariant failed");
1064 #endif
1065 SET(bp->b_flags, B_BUSY);
1066 bremfree(bp);
1067 preserve = 1;
1068 } else {
1069 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1070 simple_unlock(&bqueue_slock);
1071 splx(s);
1072 goto start;
1073 }
1074
1075 binshash(bp, BUFHASH(vp, blkno));
1076 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1077 bgetvp(vp, bp);
1078 preserve = 0;
1079 }
1080 simple_unlock(&bp->b_interlock);
1081 simple_unlock(&bqueue_slock);
1082 splx(s);
1083 /*
1084 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1085 * if we re-size buffers here.
1086 */
1087 if (ISSET(bp->b_flags, B_LOCKED)) {
1088 KASSERT(bp->b_bufsize >= size);
1089 } else {
1090 allocbuf(bp, size, preserve);
1091 }
1092 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1093 return (bp);
1094 }
1095
1096 /*
1097 * Get an empty, disassociated buffer of given size.
1098 */
1099 struct buf *
1100 geteblk(int size)
1101 {
1102 struct buf *bp;
1103 int s;
1104
1105 s = splbio();
1106 simple_lock(&bqueue_slock);
1107 while ((bp = getnewbuf(0, 0, 0)) == 0)
1108 ;
1109
1110 SET(bp->b_flags, B_INVAL);
1111 binshash(bp, &invalhash);
1112 simple_unlock(&bqueue_slock);
1113 simple_unlock(&bp->b_interlock);
1114 splx(s);
1115 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1116 allocbuf(bp, size, 0);
1117 return (bp);
1118 }
1119
1120 /*
1121 * Expand or contract the actual memory allocated to a buffer.
1122 *
1123 * If the buffer shrinks, data is lost, so it's up to the
1124 * caller to have written it out *first*; this routine will not
1125 * start a write. If the buffer grows, it's the callers
1126 * responsibility to fill out the buffer's additional contents.
1127 */
1128 void
1129 allocbuf(struct buf *bp, int size, int preserve)
1130 {
1131 vsize_t oldsize, desired_size;
1132 caddr_t addr;
1133 int s, delta;
1134
1135 desired_size = buf_roundsize(size);
1136 if (desired_size > MAXBSIZE)
1137 printf("allocbuf: buffer larger than MAXBSIZE requested");
1138
1139 bp->b_bcount = size;
1140
1141 oldsize = bp->b_bufsize;
1142 if (oldsize == desired_size)
1143 return;
1144
1145 /*
1146 * If we want a buffer of a different size, re-allocate the
1147 * buffer's memory; copy old content only if needed.
1148 */
1149 addr = buf_malloc(desired_size);
1150 if (preserve)
1151 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1152 if (bp->b_data != NULL)
1153 buf_mrelease(bp->b_data, oldsize);
1154 bp->b_data = addr;
1155 bp->b_bufsize = desired_size;
1156
1157 /*
1158 * Update overall buffer memory counter (protected by bqueue_slock)
1159 */
1160 delta = (long)desired_size - (long)oldsize;
1161
1162 s = splbio();
1163 simple_lock(&bqueue_slock);
1164 if ((bufmem += delta) > bufmem_hiwater) {
1165 /*
1166 * Need to trim overall memory usage.
1167 */
1168 while (buf_canrelease()) {
1169 if (curcpu()->ci_schedstate.spc_flags &
1170 SPCF_SHOULDYIELD) {
1171 simple_unlock(&bqueue_slock);
1172 splx(s);
1173 preempt(1);
1174 s = splbio();
1175 simple_lock(&bqueue_slock);
1176 }
1177
1178 if (buf_trim() == 0)
1179 break;
1180 }
1181 }
1182
1183 simple_unlock(&bqueue_slock);
1184 splx(s);
1185 }
1186
1187 /*
1188 * Find a buffer which is available for use.
1189 * Select something from a free list.
1190 * Preference is to AGE list, then LRU list.
1191 *
1192 * Called at splbio and with buffer queues locked.
1193 * Return buffer locked.
1194 */
1195 struct buf *
1196 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1197 {
1198 struct buf *bp;
1199
1200 start:
1201 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1202
1203 /*
1204 * Get a new buffer from the pool; but use NOWAIT because
1205 * we have the buffer queues locked.
1206 */
1207 if (!from_bufq && buf_lotsfree() &&
1208 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1209 memset((char *)bp, 0, sizeof(*bp));
1210 BUF_INIT(bp);
1211 bp->b_dev = NODEV;
1212 bp->b_vnbufs.le_next = NOLIST;
1213 bp->b_flags = B_BUSY;
1214 simple_lock(&bp->b_interlock);
1215 #if defined(DIAGNOSTIC)
1216 bp->b_freelistindex = -1;
1217 #endif /* defined(DIAGNOSTIC) */
1218 return (bp);
1219 }
1220
1221 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1222 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1223 simple_lock(&bp->b_interlock);
1224 bremfree(bp);
1225 } else {
1226 /*
1227 * XXX: !from_bufq should be removed.
1228 */
1229 if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1230 /* wait for a free buffer of any kind */
1231 needbuffer = 1;
1232 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1233 "getnewbuf", slptimeo, &bqueue_slock);
1234 }
1235 return (NULL);
1236 }
1237
1238 #ifdef DIAGNOSTIC
1239 if (bp->b_bufsize <= 0)
1240 panic("buffer %p: on queue but empty", bp);
1241 #endif
1242
1243 if (ISSET(bp->b_flags, B_VFLUSH)) {
1244 /*
1245 * This is a delayed write buffer being flushed to disk. Make
1246 * sure it gets aged out of the queue when it's finished, and
1247 * leave it off the LRU queue.
1248 */
1249 CLR(bp->b_flags, B_VFLUSH);
1250 SET(bp->b_flags, B_AGE);
1251 simple_unlock(&bp->b_interlock);
1252 goto start;
1253 }
1254
1255 /* Buffer is no longer on free lists. */
1256 SET(bp->b_flags, B_BUSY);
1257
1258 /*
1259 * If buffer was a delayed write, start it and return NULL
1260 * (since we might sleep while starting the write).
1261 */
1262 if (ISSET(bp->b_flags, B_DELWRI)) {
1263 /*
1264 * This buffer has gone through the LRU, so make sure it gets
1265 * reused ASAP.
1266 */
1267 SET(bp->b_flags, B_AGE);
1268 simple_unlock(&bp->b_interlock);
1269 simple_unlock(&bqueue_slock);
1270 bawrite(bp);
1271 simple_lock(&bqueue_slock);
1272 return (NULL);
1273 }
1274
1275 /* disassociate us from our vnode, if we had one... */
1276 if (bp->b_vp)
1277 brelvp(bp);
1278
1279 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1280 (*bioops.io_deallocate)(bp);
1281
1282 /* clear out various other fields */
1283 bp->b_flags = B_BUSY;
1284 bp->b_dev = NODEV;
1285 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1286 bp->b_iodone = 0;
1287 bp->b_error = 0;
1288 bp->b_resid = 0;
1289 bp->b_bcount = 0;
1290
1291 bremhash(bp);
1292 return (bp);
1293 }
1294
1295 /*
1296 * Attempt to free an aged buffer off the queues.
1297 * Called at splbio and with queue lock held.
1298 * Returns the amount of buffer memory freed.
1299 */
1300 static int
1301 buf_trim(void)
1302 {
1303 struct buf *bp;
1304 long size = 0;
1305
1306 /* Instruct getnewbuf() to get buffers off the queues */
1307 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1308 return 0;
1309
1310 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1311 simple_unlock(&bp->b_interlock);
1312 size = bp->b_bufsize;
1313 bufmem -= size;
1314 simple_unlock(&bqueue_slock);
1315 if (size > 0) {
1316 buf_mrelease(bp->b_data, size);
1317 bp->b_bcount = bp->b_bufsize = 0;
1318 }
1319 /* brelse() will return the buffer to the global buffer pool */
1320 brelse(bp);
1321 simple_lock(&bqueue_slock);
1322 return size;
1323 }
1324
1325 int
1326 buf_drain(int n)
1327 {
1328 int s, size = 0, sz;
1329
1330 s = splbio();
1331 simple_lock(&bqueue_slock);
1332
1333 while (size < n && bufmem > bufmem_lowater) {
1334 sz = buf_trim();
1335 if (sz <= 0)
1336 break;
1337 size += sz;
1338 }
1339
1340 simple_unlock(&bqueue_slock);
1341 splx(s);
1342 return size;
1343 }
1344
1345 /*
1346 * Wait for operations on the buffer to complete.
1347 * When they do, extract and return the I/O's error value.
1348 */
1349 int
1350 biowait(struct buf *bp)
1351 {
1352 int s, error;
1353
1354 s = splbio();
1355 simple_lock(&bp->b_interlock);
1356 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1357 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1358
1359 /* check errors. */
1360 if (ISSET(bp->b_flags, B_ERROR))
1361 error = bp->b_error ? bp->b_error : EIO;
1362 else
1363 error = 0;
1364
1365 simple_unlock(&bp->b_interlock);
1366 splx(s);
1367 return (error);
1368 }
1369
1370 /*
1371 * Mark I/O complete on a buffer.
1372 *
1373 * If a callback has been requested, e.g. the pageout
1374 * daemon, do so. Otherwise, awaken waiting processes.
1375 *
1376 * [ Leffler, et al., says on p.247:
1377 * "This routine wakes up the blocked process, frees the buffer
1378 * for an asynchronous write, or, for a request by the pagedaemon
1379 * process, invokes a procedure specified in the buffer structure" ]
1380 *
1381 * In real life, the pagedaemon (or other system processes) wants
1382 * to do async stuff to, and doesn't want the buffer brelse()'d.
1383 * (for swap pager, that puts swap buffers on the free lists (!!!),
1384 * for the vn device, that puts malloc'd buffers on the free lists!)
1385 */
1386 void
1387 biodone(struct buf *bp)
1388 {
1389 int s = splbio();
1390
1391 simple_lock(&bp->b_interlock);
1392 if (ISSET(bp->b_flags, B_DONE))
1393 panic("biodone already");
1394 SET(bp->b_flags, B_DONE); /* note that it's done */
1395 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1396
1397 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1398 (*bioops.io_complete)(bp);
1399
1400 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1401 vwakeup(bp);
1402
1403 /*
1404 * If necessary, call out. Unlock the buffer before calling
1405 * iodone() as the buffer isn't valid any more when it return.
1406 */
1407 if (ISSET(bp->b_flags, B_CALL)) {
1408 CLR(bp->b_flags, B_CALL); /* but note callout done */
1409 simple_unlock(&bp->b_interlock);
1410 (*bp->b_iodone)(bp);
1411 } else {
1412 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1413 simple_unlock(&bp->b_interlock);
1414 brelse(bp);
1415 } else { /* or just wakeup the buffer */
1416 CLR(bp->b_flags, B_WANTED);
1417 wakeup(bp);
1418 simple_unlock(&bp->b_interlock);
1419 }
1420 }
1421
1422 splx(s);
1423 }
1424
1425 /*
1426 * Return a count of buffers on the "locked" queue.
1427 */
1428 int
1429 count_lock_queue(void)
1430 {
1431 struct buf *bp;
1432 int n = 0;
1433
1434 simple_lock(&bqueue_slock);
1435 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1436 n++;
1437 simple_unlock(&bqueue_slock);
1438 return (n);
1439 }
1440
1441 /*
1442 * Wait for all buffers to complete I/O
1443 * Return the number of "stuck" buffers.
1444 */
1445 int
1446 buf_syncwait(void)
1447 {
1448 struct buf *bp;
1449 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1450
1451 dcount = 10000;
1452 for (iter = 0; iter < 20;) {
1453 s = splbio();
1454 simple_lock(&bqueue_slock);
1455 nbusy = 0;
1456 for (ihash = 0; ihash < bufhash+1; ihash++) {
1457 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1458 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1459 nbusy++;
1460 /*
1461 * With soft updates, some buffers that are
1462 * written will be remarked as dirty until other
1463 * buffers are written.
1464 */
1465 if (bp->b_vp && bp->b_vp->v_mount
1466 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1467 && (bp->b_flags & B_DELWRI)) {
1468 simple_lock(&bp->b_interlock);
1469 bremfree(bp);
1470 bp->b_flags |= B_BUSY;
1471 nbusy++;
1472 simple_unlock(&bp->b_interlock);
1473 simple_unlock(&bqueue_slock);
1474 bawrite(bp);
1475 if (dcount-- <= 0) {
1476 printf("softdep ");
1477 splx(s);
1478 goto fail;
1479 }
1480 simple_lock(&bqueue_slock);
1481 }
1482 }
1483 }
1484
1485 simple_unlock(&bqueue_slock);
1486 splx(s);
1487
1488 if (nbusy == 0)
1489 break;
1490 if (nbusy_prev == 0)
1491 nbusy_prev = nbusy;
1492 printf("%d ", nbusy);
1493 tsleep(&nbusy, PRIBIO, "bflush",
1494 (iter == 0) ? 1 : hz / 25 * iter);
1495 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1496 iter++;
1497 else
1498 nbusy_prev = nbusy;
1499 }
1500
1501 if (nbusy) {
1502 fail:;
1503 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1504 printf("giving up\nPrinting vnodes for busy buffers\n");
1505 s = splbio();
1506 for (ihash = 0; ihash < bufhash+1; ihash++) {
1507 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1508 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1509 vprint(NULL, bp->b_vp);
1510 }
1511 }
1512 splx(s);
1513 #endif
1514 }
1515
1516 return nbusy;
1517 }
1518
1519 static void
1520 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1521 {
1522
1523 o->b_flags = i->b_flags;
1524 o->b_error = i->b_error;
1525 o->b_prio = i->b_prio;
1526 o->b_dev = i->b_dev;
1527 o->b_bufsize = i->b_bufsize;
1528 o->b_bcount = i->b_bcount;
1529 o->b_resid = i->b_resid;
1530 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1531 o->b_blkno = i->b_blkno;
1532 o->b_rawblkno = i->b_rawblkno;
1533 o->b_iodone = PTRTOUINT64(i->b_iodone);
1534 o->b_proc = PTRTOUINT64(i->b_proc);
1535 o->b_vp = PTRTOUINT64(i->b_vp);
1536 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1537 o->b_lblkno = i->b_lblkno;
1538 }
1539
1540 #define KERN_BUFSLOP 20
1541 static int
1542 sysctl_dobuf(SYSCTLFN_ARGS)
1543 {
1544 struct buf *bp;
1545 struct buf_sysctl bs;
1546 char *dp;
1547 u_int i, op, arg;
1548 size_t len, needed, elem_size, out_size;
1549 int error, s, elem_count;
1550
1551 if (namelen == 1 && name[0] == CTL_QUERY)
1552 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1553
1554 if (namelen != 4)
1555 return (EINVAL);
1556
1557 dp = oldp;
1558 len = (oldp != NULL) ? *oldlenp : 0;
1559 op = name[0];
1560 arg = name[1];
1561 elem_size = name[2];
1562 elem_count = name[3];
1563 out_size = MIN(sizeof(bs), elem_size);
1564
1565 /*
1566 * at the moment, these are just "placeholders" to make the
1567 * API for retrieving kern.buf data more extensible in the
1568 * future.
1569 *
1570 * XXX kern.buf currently has "netbsd32" issues. hopefully
1571 * these will be resolved at a later point.
1572 */
1573 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1574 elem_size < 1 || elem_count < 0)
1575 return (EINVAL);
1576
1577 error = 0;
1578 needed = 0;
1579 s = splbio();
1580 simple_lock(&bqueue_slock);
1581 for (i = 0; i < BQUEUES; i++) {
1582 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1583 if (len >= elem_size && elem_count > 0) {
1584 sysctl_fillbuf(bp, &bs);
1585 error = copyout(&bs, dp, out_size);
1586 if (error)
1587 goto cleanup;
1588 dp += elem_size;
1589 len -= elem_size;
1590 }
1591 if (elem_count > 0) {
1592 needed += elem_size;
1593 if (elem_count != INT_MAX)
1594 elem_count--;
1595 }
1596 }
1597 }
1598 cleanup:
1599 simple_unlock(&bqueue_slock);
1600 splx(s);
1601
1602 *oldlenp = needed;
1603 if (oldp == NULL)
1604 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1605
1606 return (error);
1607 }
1608
1609 static int
1610 sysctl_bufvm_update(SYSCTLFN_ARGS)
1611 {
1612 int t, error;
1613 struct sysctlnode node;
1614
1615 node = *rnode;
1616 node.sysctl_data = &t;
1617 t = *(int *)rnode->sysctl_data;
1618 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1619 if (error || newp == NULL)
1620 return (error);
1621
1622 if (t < 0)
1623 return EINVAL;
1624 if (rnode->sysctl_data == &bufcache) {
1625 if (t > 100)
1626 return (EINVAL);
1627 bufcache = t;
1628 buf_setwm();
1629 } else if (rnode->sysctl_data == &bufmem_lowater) {
1630 if (bufmem_hiwater - t < 16)
1631 return (EINVAL);
1632 bufmem_lowater = t;
1633 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1634 if (t - bufmem_lowater < 16)
1635 return (EINVAL);
1636 bufmem_hiwater = t;
1637 } else
1638 return (EINVAL);
1639
1640 /* Drain until below new high water mark */
1641 while ((t = bufmem - bufmem_hiwater) >= 0) {
1642 if (buf_drain(t / (2 * 1024)) <= 0)
1643 break;
1644 }
1645
1646 return 0;
1647 }
1648
1649 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1650 {
1651
1652 sysctl_createv(clog, 0, NULL, NULL,
1653 CTLFLAG_PERMANENT,
1654 CTLTYPE_NODE, "kern", NULL,
1655 NULL, 0, NULL, 0,
1656 CTL_KERN, CTL_EOL);
1657 sysctl_createv(clog, 0, NULL, NULL,
1658 CTLFLAG_PERMANENT,
1659 CTLTYPE_NODE, "buf",
1660 SYSCTL_DESCR("Kernel buffer cache information"),
1661 sysctl_dobuf, 0, NULL, 0,
1662 CTL_KERN, KERN_BUF, CTL_EOL);
1663 }
1664
1665 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1666 {
1667
1668 sysctl_createv(clog, 0, NULL, NULL,
1669 CTLFLAG_PERMANENT,
1670 CTLTYPE_NODE, "vm", NULL,
1671 NULL, 0, NULL, 0,
1672 CTL_VM, CTL_EOL);
1673
1674 sysctl_createv(clog, 0, NULL, NULL,
1675 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1676 CTLTYPE_INT, "bufcache",
1677 SYSCTL_DESCR("Percentage of physical memory to use for "
1678 "buffer cache"),
1679 sysctl_bufvm_update, 0, &bufcache, 0,
1680 CTL_VM, CTL_CREATE, CTL_EOL);
1681 sysctl_createv(clog, 0, NULL, NULL,
1682 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1683 CTLTYPE_INT, "bufmem",
1684 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1685 "cache"),
1686 NULL, 0, &bufmem, 0,
1687 CTL_VM, CTL_CREATE, CTL_EOL);
1688 sysctl_createv(clog, 0, NULL, NULL,
1689 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1690 CTLTYPE_INT, "bufmem_lowater",
1691 SYSCTL_DESCR("Minimum amount of kernel memory to "
1692 "reserve for buffer cache"),
1693 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1694 CTL_VM, CTL_CREATE, CTL_EOL);
1695 sysctl_createv(clog, 0, NULL, NULL,
1696 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1697 CTLTYPE_INT, "bufmem_hiwater",
1698 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1699 "for buffer cache"),
1700 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1701 CTL_VM, CTL_CREATE, CTL_EOL);
1702 }
1703
1704 #ifdef DEBUG
1705 /*
1706 * Print out statistics on the current allocation of the buffer pool.
1707 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1708 * in vfs_syscalls.c using sysctl.
1709 */
1710 void
1711 vfs_bufstats(void)
1712 {
1713 int s, i, j, count;
1714 struct buf *bp;
1715 struct bqueue *dp;
1716 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1717 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1718
1719 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1720 count = 0;
1721 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1722 counts[j] = 0;
1723 s = splbio();
1724 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1725 counts[bp->b_bufsize/PAGE_SIZE]++;
1726 count++;
1727 }
1728 splx(s);
1729 printf("%s: total-%d", bname[i], count);
1730 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1731 if (counts[j] != 0)
1732 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1733 printf("\n");
1734 }
1735 }
1736 #endif /* DEBUG */
1737
1738 /* ------------------------------ */
1739
1740 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
1741
1742 static struct buf *
1743 getiobuf1(int prflags)
1744 {
1745 struct buf *bp;
1746 int s;
1747
1748 s = splbio();
1749 bp = pool_get(&bufiopool, prflags);
1750 splx(s);
1751 if (bp != NULL) {
1752 BUF_INIT(bp);
1753 }
1754 return bp;
1755 }
1756
1757 struct buf *
1758 getiobuf(void)
1759 {
1760
1761 return getiobuf1(PR_WAITOK);
1762 }
1763
1764 struct buf *
1765 getiobuf_nowait(void)
1766 {
1767
1768 return getiobuf1(PR_NOWAIT);
1769 }
1770
1771 void
1772 putiobuf(struct buf *bp)
1773 {
1774 int s;
1775
1776 s = splbio();
1777 pool_put(&bufiopool, bp);
1778 splx(s);
1779 }
1780
1781 /*
1782 * nestiobuf_iodone: b_iodone callback for nested buffers.
1783 */
1784
1785 static void
1786 nestiobuf_iodone(struct buf *bp)
1787 {
1788 struct buf *mbp = bp->b_private;
1789 int error;
1790 int donebytes;
1791
1792 KASSERT(bp->b_bcount <= bp->b_bufsize);
1793 KASSERT(mbp != bp);
1794
1795 error = 0;
1796 if ((bp->b_flags & B_ERROR) != 0) {
1797 error = EIO;
1798 /* check if an error code was returned */
1799 if (bp->b_error)
1800 error = bp->b_error;
1801 } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
1802 /*
1803 * Not all got transfered, raise an error. We have no way to
1804 * propagate these conditions to mbp.
1805 */
1806 error = EIO;
1807 }
1808
1809 donebytes = bp->b_bufsize;
1810
1811 putiobuf(bp);
1812 nestiobuf_done(mbp, donebytes, error);
1813 }
1814
1815 /*
1816 * nestiobuf_setup: setup a "nested" buffer.
1817 *
1818 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1819 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1820 * => 'offset' is a byte offset in the master buffer.
1821 * => 'size' is a size in bytes of this nested buffer.
1822 */
1823
1824 void
1825 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
1826 {
1827 const int b_read = mbp->b_flags & B_READ;
1828 struct vnode *vp = mbp->b_vp;
1829
1830 KASSERT(mbp->b_bcount >= offset + size);
1831 bp->b_vp = vp;
1832 bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
1833 bp->b_iodone = nestiobuf_iodone;
1834 bp->b_data = mbp->b_data + offset;
1835 bp->b_resid = bp->b_bcount = size;
1836 bp->b_bufsize = bp->b_bcount;
1837 bp->b_private = mbp;
1838 BIO_COPYPRIO(bp, mbp);
1839 if (!b_read && vp != NULL) {
1840 int s;
1841
1842 s = splbio();
1843 V_INCR_NUMOUTPUT(vp);
1844 splx(s);
1845 }
1846 }
1847
1848 /*
1849 * nestiobuf_done: propagate completion to the master buffer.
1850 *
1851 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1852 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1853 */
1854
1855 void
1856 nestiobuf_done(struct buf *mbp, int donebytes, int error)
1857 {
1858 int s;
1859
1860 if (donebytes == 0) {
1861 return;
1862 }
1863 s = splbio();
1864 KASSERT(mbp->b_resid >= donebytes);
1865 if (error) {
1866 mbp->b_flags |= B_ERROR;
1867 mbp->b_error = error;
1868 }
1869 mbp->b_resid -= donebytes;
1870 if (mbp->b_resid == 0) {
1871 if ((mbp->b_flags & B_ERROR) != 0) {
1872 mbp->b_resid = mbp->b_bcount; /* be conservative */
1873 }
1874 biodone(mbp);
1875 }
1876 splx(s);
1877 }
1878