vfs_bio.c revision 1.160 1 /* $NetBSD: vfs_bio.c,v 1.160 2006/05/14 21:15:12 elad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "fs_ffs.h"
81 #include "opt_bufcache.h"
82 #include "opt_softdep.h"
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.160 2006/05/14 21:15:12 elad Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/proc.h>
91 #include <sys/buf.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/malloc.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sysctl.h>
97 #include <sys/conf.h>
98 #include <sys/kauth.h>
99
100 #include <uvm/uvm.h>
101
102 #include <miscfs/specfs/specdev.h>
103
104 #ifndef BUFPAGES
105 # define BUFPAGES 0
106 #endif
107
108 #ifdef BUFCACHE
109 # if (BUFCACHE < 5) || (BUFCACHE > 95)
110 # error BUFCACHE is not between 5 and 95
111 # endif
112 #else
113 # define BUFCACHE 15
114 #endif
115
116 u_int nbuf; /* XXX - for softdep_lockedbufs */
117 u_int bufpages = BUFPAGES; /* optional hardwired count */
118 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
119
120 /* Function prototypes */
121 struct bqueue;
122
123 static void buf_setwm(void);
124 static int buf_trim(void);
125 static void *bufpool_page_alloc(struct pool *, int);
126 static void bufpool_page_free(struct pool *, void *);
127 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
128 kauth_cred_t, int);
129 static int buf_lotsfree(void);
130 static int buf_canrelease(void);
131 static inline u_long buf_mempoolidx(u_long);
132 static inline u_long buf_roundsize(u_long);
133 static inline caddr_t buf_malloc(size_t);
134 static void buf_mrelease(caddr_t, size_t);
135 static inline void binsheadfree(struct buf *, struct bqueue *);
136 static inline void binstailfree(struct buf *, struct bqueue *);
137 int count_lock_queue(void); /* XXX */
138 #ifdef DEBUG
139 static int checkfreelist(struct buf *, struct bqueue *);
140 #endif
141
142 /*
143 * Definitions for the buffer hash lists.
144 */
145 #define BUFHASH(dvp, lbn) \
146 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
147 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
148 u_long bufhash;
149 #if !defined(SOFTDEP) || !defined(FFS)
150 struct bio_ops bioops; /* I/O operation notification */
151 #endif
152
153 /*
154 * Insq/Remq for the buffer hash lists.
155 */
156 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
157 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
158
159 /*
160 * Definitions for the buffer free lists.
161 */
162 #define BQUEUES 3 /* number of free buffer queues */
163
164 #define BQ_LOCKED 0 /* super-blocks &c */
165 #define BQ_LRU 1 /* lru, useful buffers */
166 #define BQ_AGE 2 /* rubbish */
167
168 struct bqueue {
169 TAILQ_HEAD(, buf) bq_queue;
170 uint64_t bq_bytes;
171 } bufqueues[BQUEUES];
172 int needbuffer;
173
174 /*
175 * Buffer queue lock.
176 * Take this lock first if also taking some buffer's b_interlock.
177 */
178 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
179
180 /*
181 * Buffer pool for I/O buffers.
182 * Access to this pool must be protected with splbio().
183 */
184 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
185
186
187 /* XXX - somewhat gross.. */
188 #if MAXBSIZE == 0x2000
189 #define NMEMPOOLS 5
190 #elif MAXBSIZE == 0x4000
191 #define NMEMPOOLS 6
192 #elif MAXBSIZE == 0x8000
193 #define NMEMPOOLS 7
194 #else
195 #define NMEMPOOLS 8
196 #endif
197
198 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
199 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
200 #error update vfs_bio buffer memory parameters
201 #endif
202
203 /* Buffer memory pools */
204 static struct pool bmempools[NMEMPOOLS];
205
206 struct vm_map *buf_map;
207
208 /*
209 * Buffer memory pool allocator.
210 */
211 static void *
212 bufpool_page_alloc(struct pool *pp, int flags)
213 {
214
215 return (void *)uvm_km_alloc(buf_map,
216 MAXBSIZE, MAXBSIZE,
217 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
218 | UVM_KMF_WIRED);
219 }
220
221 static void
222 bufpool_page_free(struct pool *pp, void *v)
223 {
224
225 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
226 }
227
228 static struct pool_allocator bufmempool_allocator = {
229 bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
230 };
231
232 /* Buffer memory management variables */
233 u_long bufmem_valimit;
234 u_long bufmem_hiwater;
235 u_long bufmem_lowater;
236 u_long bufmem;
237
238 /*
239 * MD code can call this to set a hard limit on the amount
240 * of virtual memory used by the buffer cache.
241 */
242 int
243 buf_setvalimit(vsize_t sz)
244 {
245
246 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
247 if (sz < NMEMPOOLS * MAXBSIZE)
248 return EINVAL;
249
250 bufmem_valimit = sz;
251 return 0;
252 }
253
254 static void
255 buf_setwm(void)
256 {
257
258 bufmem_hiwater = buf_memcalc();
259 /* lowater is approx. 2% of memory (with bufcache = 15) */
260 #define BUFMEM_WMSHIFT 3
261 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
262 if (bufmem_hiwater < BUFMEM_HIWMMIN)
263 /* Ensure a reasonable minimum value */
264 bufmem_hiwater = BUFMEM_HIWMMIN;
265 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
266 }
267
268 #ifdef DEBUG
269 int debug_verify_freelist = 0;
270 static int
271 checkfreelist(struct buf *bp, struct bqueue *dp)
272 {
273 struct buf *b;
274
275 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
276 if (b == bp)
277 return 1;
278 }
279 return 0;
280 }
281 #endif
282
283 /*
284 * Insq/Remq for the buffer hash lists.
285 * Call with buffer queue locked.
286 */
287 static inline void
288 binsheadfree(struct buf *bp, struct bqueue *dp)
289 {
290
291 KASSERT(bp->b_freelistindex == -1);
292 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
293 dp->bq_bytes += bp->b_bufsize;
294 bp->b_freelistindex = dp - bufqueues;
295 }
296
297 static inline void
298 binstailfree(struct buf *bp, struct bqueue *dp)
299 {
300
301 KASSERT(bp->b_freelistindex == -1);
302 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
303 dp->bq_bytes += bp->b_bufsize;
304 bp->b_freelistindex = dp - bufqueues;
305 }
306
307 void
308 bremfree(struct buf *bp)
309 {
310 struct bqueue *dp;
311 int bqidx = bp->b_freelistindex;
312
313 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
314
315 KASSERT(bqidx != -1);
316 dp = &bufqueues[bqidx];
317 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
318 KASSERT(dp->bq_bytes >= bp->b_bufsize);
319 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes -= bp->b_bufsize;
321 #if defined(DIAGNOSTIC)
322 bp->b_freelistindex = -1;
323 #endif /* defined(DIAGNOSTIC) */
324 }
325
326 u_long
327 buf_memcalc(void)
328 {
329 u_long n;
330
331 /*
332 * Determine the upper bound of memory to use for buffers.
333 *
334 * - If bufpages is specified, use that as the number
335 * pages.
336 *
337 * - Otherwise, use bufcache as the percentage of
338 * physical memory.
339 */
340 if (bufpages != 0) {
341 n = bufpages;
342 } else {
343 if (bufcache < 5) {
344 printf("forcing bufcache %d -> 5", bufcache);
345 bufcache = 5;
346 }
347 if (bufcache > 95) {
348 printf("forcing bufcache %d -> 95", bufcache);
349 bufcache = 95;
350 }
351 n = physmem / 100 * bufcache;
352 }
353
354 n <<= PAGE_SHIFT;
355 if (bufmem_valimit != 0 && n > bufmem_valimit)
356 n = bufmem_valimit;
357
358 return (n);
359 }
360
361 /*
362 * Initialize buffers and hash links for buffers.
363 */
364 void
365 bufinit(void)
366 {
367 struct bqueue *dp;
368 int use_std;
369 u_int i;
370
371 /*
372 * Initialize buffer cache memory parameters.
373 */
374 bufmem = 0;
375 buf_setwm();
376
377 if (bufmem_valimit != 0) {
378 vaddr_t minaddr = 0, maxaddr;
379 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
380 bufmem_valimit, VM_MAP_PAGEABLE,
381 FALSE, 0);
382 if (buf_map == NULL)
383 panic("bufinit: cannot allocate submap");
384 } else
385 buf_map = kernel_map;
386
387 /* On "small" machines use small pool page sizes where possible */
388 use_std = (physmem < atop(16*1024*1024));
389
390 /*
391 * Also use them on systems that can map the pool pages using
392 * a direct-mapped segment.
393 */
394 #ifdef PMAP_MAP_POOLPAGE
395 use_std = 1;
396 #endif
397
398 for (i = 0; i < NMEMPOOLS; i++) {
399 struct pool_allocator *pa;
400 struct pool *pp = &bmempools[i];
401 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
402 char *name = malloc(8, M_TEMP, M_WAITOK);
403 snprintf(name, 8, "buf%dk", 1 << i);
404 pa = (size <= PAGE_SIZE && use_std)
405 ? &pool_allocator_nointr
406 : &bufmempool_allocator;
407 pool_init(pp, size, 0, 0, 0, name, pa);
408 pool_setlowat(pp, 1);
409 pool_sethiwat(pp, 1);
410 }
411
412 /* Initialize the buffer queues */
413 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
414 TAILQ_INIT(&dp->bq_queue);
415 dp->bq_bytes = 0;
416 }
417
418 /*
419 * Estimate hash table size based on the amount of memory we
420 * intend to use for the buffer cache. The average buffer
421 * size is dependent on our clients (i.e. filesystems).
422 *
423 * For now, use an empirical 3K per buffer.
424 */
425 nbuf = (bufmem_hiwater / 1024) / 3;
426 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
427 }
428
429 static int
430 buf_lotsfree(void)
431 {
432 int try, thresh;
433 struct lwp *l = curlwp;
434
435 /* Always allocate if doing copy on write */
436 if (l->l_flag & L_COWINPROGRESS)
437 return 1;
438
439 /* Always allocate if less than the low water mark. */
440 if (bufmem < bufmem_lowater)
441 return 1;
442
443 /* Never allocate if greater than the high water mark. */
444 if (bufmem > bufmem_hiwater)
445 return 0;
446
447 /* If there's anything on the AGE list, it should be eaten. */
448 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
449 return 0;
450
451 /*
452 * The probabily of getting a new allocation is inversely
453 * proportional to the current size of the cache, using
454 * a granularity of 16 steps.
455 */
456 try = random() & 0x0000000fL;
457
458 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
459 thresh = (bufmem - bufmem_lowater) /
460 ((bufmem_hiwater - bufmem_lowater) / 16);
461
462 if (try >= thresh)
463 return 1;
464
465 /* Otherwise don't allocate. */
466 return 0;
467 }
468
469 /*
470 * Return estimate of bytes we think need to be
471 * released to help resolve low memory conditions.
472 *
473 * => called at splbio.
474 * => called with bqueue_slock held.
475 */
476 static int
477 buf_canrelease(void)
478 {
479 int pagedemand, ninvalid = 0;
480
481 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
482
483 if (bufmem < bufmem_lowater)
484 return 0;
485
486 if (bufmem > bufmem_hiwater)
487 return bufmem - bufmem_hiwater;
488
489 ninvalid += bufqueues[BQ_AGE].bq_bytes;
490
491 pagedemand = uvmexp.freetarg - uvmexp.free;
492 if (pagedemand < 0)
493 return ninvalid;
494 return MAX(ninvalid, MIN(2 * MAXBSIZE,
495 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
496 }
497
498 /*
499 * Buffer memory allocation helper functions
500 */
501 static inline u_long
502 buf_mempoolidx(u_long size)
503 {
504 u_int n = 0;
505
506 size -= 1;
507 size >>= MEMPOOL_INDEX_OFFSET;
508 while (size) {
509 size >>= 1;
510 n += 1;
511 }
512 if (n >= NMEMPOOLS)
513 panic("buf mem pool index %d", n);
514 return n;
515 }
516
517 static inline u_long
518 buf_roundsize(u_long size)
519 {
520 /* Round up to nearest power of 2 */
521 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
522 }
523
524 static inline caddr_t
525 buf_malloc(size_t size)
526 {
527 u_int n = buf_mempoolidx(size);
528 caddr_t addr;
529 int s;
530
531 while (1) {
532 addr = pool_get(&bmempools[n], PR_NOWAIT);
533 if (addr != NULL)
534 break;
535
536 /* No memory, see if we can free some. If so, try again */
537 if (buf_drain(1) > 0)
538 continue;
539
540 /* Wait for buffers to arrive on the LRU queue */
541 s = splbio();
542 simple_lock(&bqueue_slock);
543 needbuffer = 1;
544 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
545 "buf_malloc", 0, &bqueue_slock);
546 splx(s);
547 }
548
549 return addr;
550 }
551
552 static void
553 buf_mrelease(caddr_t addr, size_t size)
554 {
555
556 pool_put(&bmempools[buf_mempoolidx(size)], addr);
557 }
558
559 /*
560 * bread()/breadn() helper.
561 */
562 static inline struct buf *
563 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
564 int async)
565 {
566 struct buf *bp;
567 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
568 struct proc *p = l->l_proc;
569 struct mount *mp;
570
571 bp = getblk(vp, blkno, size, 0, 0);
572
573 #ifdef DIAGNOSTIC
574 if (bp == NULL) {
575 panic("bio_doread: no such buf");
576 }
577 #endif
578
579 /*
580 * If buffer does not have data valid, start a read.
581 * Note that if buffer is B_INVAL, getblk() won't return it.
582 * Therefore, it's valid if its I/O has completed or been delayed.
583 */
584 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
585 /* Start I/O for the buffer. */
586 SET(bp->b_flags, B_READ | async);
587 if (async)
588 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
589 else
590 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
591 VOP_STRATEGY(vp, bp);
592
593 /* Pay for the read. */
594 p->p_stats->p_ru.ru_inblock++;
595 } else if (async) {
596 brelse(bp);
597 }
598
599 if (vp->v_type == VBLK)
600 mp = vp->v_specmountpoint;
601 else
602 mp = vp->v_mount;
603
604 /*
605 * Collect statistics on synchronous and asynchronous reads.
606 * Reads from block devices are charged to their associated
607 * filesystem (if any).
608 */
609 if (mp != NULL) {
610 if (async == 0)
611 mp->mnt_stat.f_syncreads++;
612 else
613 mp->mnt_stat.f_asyncreads++;
614 }
615
616 return (bp);
617 }
618
619 /*
620 * Read a disk block.
621 * This algorithm described in Bach (p.54).
622 */
623 int
624 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
625 struct buf **bpp)
626 {
627 struct buf *bp;
628
629 /* Get buffer for block. */
630 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
631
632 /* Wait for the read to complete, and return result. */
633 return (biowait(bp));
634 }
635
636 /*
637 * Read-ahead multiple disk blocks. The first is sync, the rest async.
638 * Trivial modification to the breada algorithm presented in Bach (p.55).
639 */
640 int
641 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
642 int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
643 {
644 struct buf *bp;
645 int i;
646
647 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
648
649 /*
650 * For each of the read-ahead blocks, start a read, if necessary.
651 */
652 for (i = 0; i < nrablks; i++) {
653 /* If it's in the cache, just go on to next one. */
654 if (incore(vp, rablks[i]))
655 continue;
656
657 /* Get a buffer for the read-ahead block */
658 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
659 }
660
661 /* Otherwise, we had to start a read for it; wait until it's valid. */
662 return (biowait(bp));
663 }
664
665 /*
666 * Read with single-block read-ahead. Defined in Bach (p.55), but
667 * implemented as a call to breadn().
668 * XXX for compatibility with old file systems.
669 */
670 int
671 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
672 int rabsize, kauth_cred_t cred, struct buf **bpp)
673 {
674
675 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
676 }
677
678 /*
679 * Block write. Described in Bach (p.56)
680 */
681 int
682 bwrite(struct buf *bp)
683 {
684 int rv, sync, wasdelayed, s;
685 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
686 struct proc *p = l->l_proc;
687 struct vnode *vp;
688 struct mount *mp;
689
690 KASSERT(ISSET(bp->b_flags, B_BUSY));
691
692 vp = bp->b_vp;
693 if (vp != NULL) {
694 if (vp->v_type == VBLK)
695 mp = vp->v_specmountpoint;
696 else
697 mp = vp->v_mount;
698 } else {
699 mp = NULL;
700 }
701
702 /*
703 * Remember buffer type, to switch on it later. If the write was
704 * synchronous, but the file system was mounted with MNT_ASYNC,
705 * convert it to a delayed write.
706 * XXX note that this relies on delayed tape writes being converted
707 * to async, not sync writes (which is safe, but ugly).
708 */
709 sync = !ISSET(bp->b_flags, B_ASYNC);
710 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
711 bdwrite(bp);
712 return (0);
713 }
714
715 /*
716 * Collect statistics on synchronous and asynchronous writes.
717 * Writes to block devices are charged to their associated
718 * filesystem (if any).
719 */
720 if (mp != NULL) {
721 if (sync)
722 mp->mnt_stat.f_syncwrites++;
723 else
724 mp->mnt_stat.f_asyncwrites++;
725 }
726
727 s = splbio();
728 simple_lock(&bp->b_interlock);
729
730 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
731
732 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
733
734 /*
735 * Pay for the I/O operation and make sure the buf is on the correct
736 * vnode queue.
737 */
738 if (wasdelayed)
739 reassignbuf(bp, bp->b_vp);
740 else
741 p->p_stats->p_ru.ru_oublock++;
742
743 /* Initiate disk write. Make sure the appropriate party is charged. */
744 V_INCR_NUMOUTPUT(bp->b_vp);
745 simple_unlock(&bp->b_interlock);
746 splx(s);
747
748 if (sync)
749 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
750 else
751 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
752
753 VOP_STRATEGY(vp, bp);
754
755 if (sync) {
756 /* If I/O was synchronous, wait for it to complete. */
757 rv = biowait(bp);
758
759 /* Release the buffer. */
760 brelse(bp);
761
762 return (rv);
763 } else {
764 return (0);
765 }
766 }
767
768 int
769 vn_bwrite(void *v)
770 {
771 struct vop_bwrite_args *ap = v;
772
773 return (bwrite(ap->a_bp));
774 }
775
776 /*
777 * Delayed write.
778 *
779 * The buffer is marked dirty, but is not queued for I/O.
780 * This routine should be used when the buffer is expected
781 * to be modified again soon, typically a small write that
782 * partially fills a buffer.
783 *
784 * NB: magnetic tapes cannot be delayed; they must be
785 * written in the order that the writes are requested.
786 *
787 * Described in Leffler, et al. (pp. 208-213).
788 */
789 void
790 bdwrite(struct buf *bp)
791 {
792 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
793 struct proc *p = l->l_proc;
794 const struct bdevsw *bdev;
795 int s;
796
797 /* If this is a tape block, write the block now. */
798 bdev = bdevsw_lookup(bp->b_dev);
799 if (bdev != NULL && bdev->d_type == D_TAPE) {
800 bawrite(bp);
801 return;
802 }
803
804 /*
805 * If the block hasn't been seen before:
806 * (1) Mark it as having been seen,
807 * (2) Charge for the write,
808 * (3) Make sure it's on its vnode's correct block list.
809 */
810 s = splbio();
811 simple_lock(&bp->b_interlock);
812
813 KASSERT(ISSET(bp->b_flags, B_BUSY));
814
815 if (!ISSET(bp->b_flags, B_DELWRI)) {
816 SET(bp->b_flags, B_DELWRI);
817 p->p_stats->p_ru.ru_oublock++;
818 reassignbuf(bp, bp->b_vp);
819 }
820
821 /* Otherwise, the "write" is done, so mark and release the buffer. */
822 CLR(bp->b_flags, B_DONE);
823 simple_unlock(&bp->b_interlock);
824 splx(s);
825
826 brelse(bp);
827 }
828
829 /*
830 * Asynchronous block write; just an asynchronous bwrite().
831 */
832 void
833 bawrite(struct buf *bp)
834 {
835 int s;
836
837 s = splbio();
838 simple_lock(&bp->b_interlock);
839
840 KASSERT(ISSET(bp->b_flags, B_BUSY));
841
842 SET(bp->b_flags, B_ASYNC);
843 simple_unlock(&bp->b_interlock);
844 splx(s);
845 VOP_BWRITE(bp);
846 }
847
848 /*
849 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
850 * Call at splbio() and with the buffer interlock locked.
851 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
852 */
853 void
854 bdirty(struct buf *bp)
855 {
856 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
857 struct proc *p = l->l_proc;
858
859 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
860 KASSERT(ISSET(bp->b_flags, B_BUSY));
861
862 CLR(bp->b_flags, B_AGE);
863
864 if (!ISSET(bp->b_flags, B_DELWRI)) {
865 SET(bp->b_flags, B_DELWRI);
866 p->p_stats->p_ru.ru_oublock++;
867 reassignbuf(bp, bp->b_vp);
868 }
869 }
870
871 /*
872 * Release a buffer on to the free lists.
873 * Described in Bach (p. 46).
874 */
875 void
876 brelse(struct buf *bp)
877 {
878 struct bqueue *bufq;
879 int s;
880
881 /* Block disk interrupts. */
882 s = splbio();
883 simple_lock(&bqueue_slock);
884 simple_lock(&bp->b_interlock);
885
886 KASSERT(ISSET(bp->b_flags, B_BUSY));
887 KASSERT(!ISSET(bp->b_flags, B_CALL));
888
889 /* Wake up any processes waiting for any buffer to become free. */
890 if (needbuffer) {
891 needbuffer = 0;
892 wakeup(&needbuffer);
893 }
894
895 /* Wake up any proceeses waiting for _this_ buffer to become free. */
896 if (ISSET(bp->b_flags, B_WANTED)) {
897 CLR(bp->b_flags, B_WANTED|B_AGE);
898 wakeup(bp);
899 }
900
901 /*
902 * Determine which queue the buffer should be on, then put it there.
903 */
904
905 /* If it's locked, don't report an error; try again later. */
906 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
907 CLR(bp->b_flags, B_ERROR);
908
909 /* If it's not cacheable, or an error, mark it invalid. */
910 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
911 SET(bp->b_flags, B_INVAL);
912
913 if (ISSET(bp->b_flags, B_VFLUSH)) {
914 /*
915 * This is a delayed write buffer that was just flushed to
916 * disk. It is still on the LRU queue. If it's become
917 * invalid, then we need to move it to a different queue;
918 * otherwise leave it in its current position.
919 */
920 CLR(bp->b_flags, B_VFLUSH);
921 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
922 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
923 goto already_queued;
924 } else {
925 bremfree(bp);
926 }
927 }
928
929 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
930 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
931 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
932
933 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
934 /*
935 * If it's invalid or empty, dissociate it from its vnode
936 * and put on the head of the appropriate queue.
937 */
938 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
939 (*bioops.io_deallocate)(bp);
940 CLR(bp->b_flags, B_DONE|B_DELWRI);
941 if (bp->b_vp) {
942 reassignbuf(bp, bp->b_vp);
943 brelvp(bp);
944 }
945 if (bp->b_bufsize <= 0)
946 /* no data */
947 goto already_queued;
948 else
949 /* invalid data */
950 bufq = &bufqueues[BQ_AGE];
951 binsheadfree(bp, bufq);
952 } else {
953 /*
954 * It has valid data. Put it on the end of the appropriate
955 * queue, so that it'll stick around for as long as possible.
956 * If buf is AGE, but has dependencies, must put it on last
957 * bufqueue to be scanned, ie LRU. This protects against the
958 * livelock where BQ_AGE only has buffers with dependencies,
959 * and we thus never get to the dependent buffers in BQ_LRU.
960 */
961 if (ISSET(bp->b_flags, B_LOCKED))
962 /* locked in core */
963 bufq = &bufqueues[BQ_LOCKED];
964 else if (!ISSET(bp->b_flags, B_AGE))
965 /* valid data */
966 bufq = &bufqueues[BQ_LRU];
967 else {
968 /* stale but valid data */
969 int has_deps;
970
971 if (LIST_FIRST(&bp->b_dep) != NULL &&
972 bioops.io_countdeps)
973 has_deps = (*bioops.io_countdeps)(bp, 0);
974 else
975 has_deps = 0;
976 bufq = has_deps ? &bufqueues[BQ_LRU] :
977 &bufqueues[BQ_AGE];
978 }
979 binstailfree(bp, bufq);
980 }
981
982 already_queued:
983 /* Unlock the buffer. */
984 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
985 SET(bp->b_flags, B_CACHE);
986
987 /* Allow disk interrupts. */
988 simple_unlock(&bp->b_interlock);
989 simple_unlock(&bqueue_slock);
990 if (bp->b_bufsize <= 0) {
991 #ifdef DEBUG
992 memset((char *)bp, 0, sizeof(*bp));
993 #endif
994 pool_put(&bufpool, bp);
995 }
996 splx(s);
997 }
998
999 /*
1000 * Determine if a block is in the cache.
1001 * Just look on what would be its hash chain. If it's there, return
1002 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1003 * we normally don't return the buffer, unless the caller explicitly
1004 * wants us to.
1005 */
1006 struct buf *
1007 incore(struct vnode *vp, daddr_t blkno)
1008 {
1009 struct buf *bp;
1010
1011 /* Search hash chain */
1012 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1013 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1014 !ISSET(bp->b_flags, B_INVAL))
1015 return (bp);
1016 }
1017
1018 return (NULL);
1019 }
1020
1021 /*
1022 * Get a block of requested size that is associated with
1023 * a given vnode and block offset. If it is found in the
1024 * block cache, mark it as having been found, make it busy
1025 * and return it. Otherwise, return an empty block of the
1026 * correct size. It is up to the caller to insure that the
1027 * cached blocks be of the correct size.
1028 */
1029 struct buf *
1030 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1031 {
1032 struct buf *bp;
1033 int s, err;
1034 int preserve;
1035
1036 start:
1037 s = splbio();
1038 simple_lock(&bqueue_slock);
1039 bp = incore(vp, blkno);
1040 if (bp != NULL) {
1041 simple_lock(&bp->b_interlock);
1042 if (ISSET(bp->b_flags, B_BUSY)) {
1043 simple_unlock(&bqueue_slock);
1044 if (curproc == uvm.pagedaemon_proc) {
1045 simple_unlock(&bp->b_interlock);
1046 splx(s);
1047 return NULL;
1048 }
1049 SET(bp->b_flags, B_WANTED);
1050 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1051 "getblk", slptimeo, &bp->b_interlock);
1052 splx(s);
1053 if (err)
1054 return (NULL);
1055 goto start;
1056 }
1057 #ifdef DIAGNOSTIC
1058 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1059 bp->b_bcount < size && vp->v_type != VBLK)
1060 panic("getblk: block size invariant failed");
1061 #endif
1062 SET(bp->b_flags, B_BUSY);
1063 bremfree(bp);
1064 preserve = 1;
1065 } else {
1066 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1067 simple_unlock(&bqueue_slock);
1068 splx(s);
1069 goto start;
1070 }
1071
1072 binshash(bp, BUFHASH(vp, blkno));
1073 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1074 bgetvp(vp, bp);
1075 preserve = 0;
1076 }
1077 simple_unlock(&bp->b_interlock);
1078 simple_unlock(&bqueue_slock);
1079 splx(s);
1080 /*
1081 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1082 * if we re-size buffers here.
1083 */
1084 if (ISSET(bp->b_flags, B_LOCKED)) {
1085 KASSERT(bp->b_bufsize >= size);
1086 } else {
1087 allocbuf(bp, size, preserve);
1088 }
1089 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1090 return (bp);
1091 }
1092
1093 /*
1094 * Get an empty, disassociated buffer of given size.
1095 */
1096 struct buf *
1097 geteblk(int size)
1098 {
1099 struct buf *bp;
1100 int s;
1101
1102 s = splbio();
1103 simple_lock(&bqueue_slock);
1104 while ((bp = getnewbuf(0, 0, 0)) == 0)
1105 ;
1106
1107 SET(bp->b_flags, B_INVAL);
1108 binshash(bp, &invalhash);
1109 simple_unlock(&bqueue_slock);
1110 simple_unlock(&bp->b_interlock);
1111 splx(s);
1112 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1113 allocbuf(bp, size, 0);
1114 return (bp);
1115 }
1116
1117 /*
1118 * Expand or contract the actual memory allocated to a buffer.
1119 *
1120 * If the buffer shrinks, data is lost, so it's up to the
1121 * caller to have written it out *first*; this routine will not
1122 * start a write. If the buffer grows, it's the callers
1123 * responsibility to fill out the buffer's additional contents.
1124 */
1125 void
1126 allocbuf(struct buf *bp, int size, int preserve)
1127 {
1128 vsize_t oldsize, desired_size;
1129 caddr_t addr;
1130 int s, delta;
1131
1132 desired_size = buf_roundsize(size);
1133 if (desired_size > MAXBSIZE)
1134 printf("allocbuf: buffer larger than MAXBSIZE requested");
1135
1136 bp->b_bcount = size;
1137
1138 oldsize = bp->b_bufsize;
1139 if (oldsize == desired_size)
1140 return;
1141
1142 /*
1143 * If we want a buffer of a different size, re-allocate the
1144 * buffer's memory; copy old content only if needed.
1145 */
1146 addr = buf_malloc(desired_size);
1147 if (preserve)
1148 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1149 if (bp->b_data != NULL)
1150 buf_mrelease(bp->b_data, oldsize);
1151 bp->b_data = addr;
1152 bp->b_bufsize = desired_size;
1153
1154 /*
1155 * Update overall buffer memory counter (protected by bqueue_slock)
1156 */
1157 delta = (long)desired_size - (long)oldsize;
1158
1159 s = splbio();
1160 simple_lock(&bqueue_slock);
1161 if ((bufmem += delta) > bufmem_hiwater) {
1162 /*
1163 * Need to trim overall memory usage.
1164 */
1165 while (buf_canrelease()) {
1166 if (curcpu()->ci_schedstate.spc_flags &
1167 SPCF_SHOULDYIELD) {
1168 simple_unlock(&bqueue_slock);
1169 splx(s);
1170 preempt(1);
1171 s = splbio();
1172 simple_lock(&bqueue_slock);
1173 }
1174
1175 if (buf_trim() == 0)
1176 break;
1177 }
1178 }
1179
1180 simple_unlock(&bqueue_slock);
1181 splx(s);
1182 }
1183
1184 /*
1185 * Find a buffer which is available for use.
1186 * Select something from a free list.
1187 * Preference is to AGE list, then LRU list.
1188 *
1189 * Called at splbio and with buffer queues locked.
1190 * Return buffer locked.
1191 */
1192 struct buf *
1193 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1194 {
1195 struct buf *bp;
1196
1197 start:
1198 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1199
1200 /*
1201 * Get a new buffer from the pool; but use NOWAIT because
1202 * we have the buffer queues locked.
1203 */
1204 if (!from_bufq && buf_lotsfree() &&
1205 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1206 memset((char *)bp, 0, sizeof(*bp));
1207 BUF_INIT(bp);
1208 bp->b_dev = NODEV;
1209 bp->b_vnbufs.le_next = NOLIST;
1210 bp->b_flags = B_BUSY;
1211 simple_lock(&bp->b_interlock);
1212 #if defined(DIAGNOSTIC)
1213 bp->b_freelistindex = -1;
1214 #endif /* defined(DIAGNOSTIC) */
1215 return (bp);
1216 }
1217
1218 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1219 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1220 simple_lock(&bp->b_interlock);
1221 bremfree(bp);
1222 } else {
1223 /*
1224 * XXX: !from_bufq should be removed.
1225 */
1226 if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1227 /* wait for a free buffer of any kind */
1228 needbuffer = 1;
1229 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1230 "getnewbuf", slptimeo, &bqueue_slock);
1231 }
1232 return (NULL);
1233 }
1234
1235 #ifdef DIAGNOSTIC
1236 if (bp->b_bufsize <= 0)
1237 panic("buffer %p: on queue but empty", bp);
1238 #endif
1239
1240 if (ISSET(bp->b_flags, B_VFLUSH)) {
1241 /*
1242 * This is a delayed write buffer being flushed to disk. Make
1243 * sure it gets aged out of the queue when it's finished, and
1244 * leave it off the LRU queue.
1245 */
1246 CLR(bp->b_flags, B_VFLUSH);
1247 SET(bp->b_flags, B_AGE);
1248 simple_unlock(&bp->b_interlock);
1249 goto start;
1250 }
1251
1252 /* Buffer is no longer on free lists. */
1253 SET(bp->b_flags, B_BUSY);
1254
1255 /*
1256 * If buffer was a delayed write, start it and return NULL
1257 * (since we might sleep while starting the write).
1258 */
1259 if (ISSET(bp->b_flags, B_DELWRI)) {
1260 /*
1261 * This buffer has gone through the LRU, so make sure it gets
1262 * reused ASAP.
1263 */
1264 SET(bp->b_flags, B_AGE);
1265 simple_unlock(&bp->b_interlock);
1266 simple_unlock(&bqueue_slock);
1267 bawrite(bp);
1268 simple_lock(&bqueue_slock);
1269 return (NULL);
1270 }
1271
1272 /* disassociate us from our vnode, if we had one... */
1273 if (bp->b_vp)
1274 brelvp(bp);
1275
1276 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1277 (*bioops.io_deallocate)(bp);
1278
1279 /* clear out various other fields */
1280 bp->b_flags = B_BUSY;
1281 bp->b_dev = NODEV;
1282 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1283 bp->b_iodone = 0;
1284 bp->b_error = 0;
1285 bp->b_resid = 0;
1286 bp->b_bcount = 0;
1287
1288 bremhash(bp);
1289 return (bp);
1290 }
1291
1292 /*
1293 * Attempt to free an aged buffer off the queues.
1294 * Called at splbio and with queue lock held.
1295 * Returns the amount of buffer memory freed.
1296 */
1297 static int
1298 buf_trim(void)
1299 {
1300 struct buf *bp;
1301 long size = 0;
1302
1303 /* Instruct getnewbuf() to get buffers off the queues */
1304 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1305 return 0;
1306
1307 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1308 simple_unlock(&bp->b_interlock);
1309 size = bp->b_bufsize;
1310 bufmem -= size;
1311 simple_unlock(&bqueue_slock);
1312 if (size > 0) {
1313 buf_mrelease(bp->b_data, size);
1314 bp->b_bcount = bp->b_bufsize = 0;
1315 }
1316 /* brelse() will return the buffer to the global buffer pool */
1317 brelse(bp);
1318 simple_lock(&bqueue_slock);
1319 return size;
1320 }
1321
1322 int
1323 buf_drain(int n)
1324 {
1325 int s, size = 0, sz;
1326
1327 s = splbio();
1328 simple_lock(&bqueue_slock);
1329
1330 while (size < n && bufmem > bufmem_lowater) {
1331 sz = buf_trim();
1332 if (sz <= 0)
1333 break;
1334 size += sz;
1335 }
1336
1337 simple_unlock(&bqueue_slock);
1338 splx(s);
1339 return size;
1340 }
1341
1342 /*
1343 * Wait for operations on the buffer to complete.
1344 * When they do, extract and return the I/O's error value.
1345 */
1346 int
1347 biowait(struct buf *bp)
1348 {
1349 int s, error;
1350
1351 s = splbio();
1352 simple_lock(&bp->b_interlock);
1353 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1354 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1355
1356 /* check errors. */
1357 if (ISSET(bp->b_flags, B_ERROR))
1358 error = bp->b_error ? bp->b_error : EIO;
1359 else
1360 error = 0;
1361
1362 simple_unlock(&bp->b_interlock);
1363 splx(s);
1364 return (error);
1365 }
1366
1367 /*
1368 * Mark I/O complete on a buffer.
1369 *
1370 * If a callback has been requested, e.g. the pageout
1371 * daemon, do so. Otherwise, awaken waiting processes.
1372 *
1373 * [ Leffler, et al., says on p.247:
1374 * "This routine wakes up the blocked process, frees the buffer
1375 * for an asynchronous write, or, for a request by the pagedaemon
1376 * process, invokes a procedure specified in the buffer structure" ]
1377 *
1378 * In real life, the pagedaemon (or other system processes) wants
1379 * to do async stuff to, and doesn't want the buffer brelse()'d.
1380 * (for swap pager, that puts swap buffers on the free lists (!!!),
1381 * for the vn device, that puts malloc'd buffers on the free lists!)
1382 */
1383 void
1384 biodone(struct buf *bp)
1385 {
1386 int s = splbio();
1387
1388 simple_lock(&bp->b_interlock);
1389 if (ISSET(bp->b_flags, B_DONE))
1390 panic("biodone already");
1391 SET(bp->b_flags, B_DONE); /* note that it's done */
1392 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1393
1394 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1395 (*bioops.io_complete)(bp);
1396
1397 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1398 vwakeup(bp);
1399
1400 /*
1401 * If necessary, call out. Unlock the buffer before calling
1402 * iodone() as the buffer isn't valid any more when it return.
1403 */
1404 if (ISSET(bp->b_flags, B_CALL)) {
1405 CLR(bp->b_flags, B_CALL); /* but note callout done */
1406 simple_unlock(&bp->b_interlock);
1407 (*bp->b_iodone)(bp);
1408 } else {
1409 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1410 simple_unlock(&bp->b_interlock);
1411 brelse(bp);
1412 } else { /* or just wakeup the buffer */
1413 CLR(bp->b_flags, B_WANTED);
1414 wakeup(bp);
1415 simple_unlock(&bp->b_interlock);
1416 }
1417 }
1418
1419 splx(s);
1420 }
1421
1422 /*
1423 * Return a count of buffers on the "locked" queue.
1424 */
1425 int
1426 count_lock_queue(void)
1427 {
1428 struct buf *bp;
1429 int n = 0;
1430
1431 simple_lock(&bqueue_slock);
1432 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1433 n++;
1434 simple_unlock(&bqueue_slock);
1435 return (n);
1436 }
1437
1438 /*
1439 * Wait for all buffers to complete I/O
1440 * Return the number of "stuck" buffers.
1441 */
1442 int
1443 buf_syncwait(void)
1444 {
1445 struct buf *bp;
1446 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1447
1448 dcount = 10000;
1449 for (iter = 0; iter < 20;) {
1450 s = splbio();
1451 simple_lock(&bqueue_slock);
1452 nbusy = 0;
1453 for (ihash = 0; ihash < bufhash+1; ihash++) {
1454 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1455 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1456 nbusy++;
1457 /*
1458 * With soft updates, some buffers that are
1459 * written will be remarked as dirty until other
1460 * buffers are written.
1461 */
1462 if (bp->b_vp && bp->b_vp->v_mount
1463 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1464 && (bp->b_flags & B_DELWRI)) {
1465 simple_lock(&bp->b_interlock);
1466 bremfree(bp);
1467 bp->b_flags |= B_BUSY;
1468 nbusy++;
1469 simple_unlock(&bp->b_interlock);
1470 simple_unlock(&bqueue_slock);
1471 bawrite(bp);
1472 if (dcount-- <= 0) {
1473 printf("softdep ");
1474 splx(s);
1475 goto fail;
1476 }
1477 simple_lock(&bqueue_slock);
1478 }
1479 }
1480 }
1481
1482 simple_unlock(&bqueue_slock);
1483 splx(s);
1484
1485 if (nbusy == 0)
1486 break;
1487 if (nbusy_prev == 0)
1488 nbusy_prev = nbusy;
1489 printf("%d ", nbusy);
1490 tsleep(&nbusy, PRIBIO, "bflush",
1491 (iter == 0) ? 1 : hz / 25 * iter);
1492 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1493 iter++;
1494 else
1495 nbusy_prev = nbusy;
1496 }
1497
1498 if (nbusy) {
1499 fail:;
1500 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1501 printf("giving up\nPrinting vnodes for busy buffers\n");
1502 s = splbio();
1503 for (ihash = 0; ihash < bufhash+1; ihash++) {
1504 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1505 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1506 vprint(NULL, bp->b_vp);
1507 }
1508 }
1509 splx(s);
1510 #endif
1511 }
1512
1513 return nbusy;
1514 }
1515
1516 static void
1517 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1518 {
1519
1520 o->b_flags = i->b_flags;
1521 o->b_error = i->b_error;
1522 o->b_prio = i->b_prio;
1523 o->b_dev = i->b_dev;
1524 o->b_bufsize = i->b_bufsize;
1525 o->b_bcount = i->b_bcount;
1526 o->b_resid = i->b_resid;
1527 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1528 o->b_blkno = i->b_blkno;
1529 o->b_rawblkno = i->b_rawblkno;
1530 o->b_iodone = PTRTOUINT64(i->b_iodone);
1531 o->b_proc = PTRTOUINT64(i->b_proc);
1532 o->b_vp = PTRTOUINT64(i->b_vp);
1533 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1534 o->b_lblkno = i->b_lblkno;
1535 }
1536
1537 #define KERN_BUFSLOP 20
1538 static int
1539 sysctl_dobuf(SYSCTLFN_ARGS)
1540 {
1541 struct buf *bp;
1542 struct buf_sysctl bs;
1543 char *dp;
1544 u_int i, op, arg;
1545 size_t len, needed, elem_size, out_size;
1546 int error, s, elem_count;
1547
1548 if (namelen == 1 && name[0] == CTL_QUERY)
1549 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1550
1551 if (namelen != 4)
1552 return (EINVAL);
1553
1554 dp = oldp;
1555 len = (oldp != NULL) ? *oldlenp : 0;
1556 op = name[0];
1557 arg = name[1];
1558 elem_size = name[2];
1559 elem_count = name[3];
1560 out_size = MIN(sizeof(bs), elem_size);
1561
1562 /*
1563 * at the moment, these are just "placeholders" to make the
1564 * API for retrieving kern.buf data more extensible in the
1565 * future.
1566 *
1567 * XXX kern.buf currently has "netbsd32" issues. hopefully
1568 * these will be resolved at a later point.
1569 */
1570 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1571 elem_size < 1 || elem_count < 0)
1572 return (EINVAL);
1573
1574 error = 0;
1575 needed = 0;
1576 s = splbio();
1577 simple_lock(&bqueue_slock);
1578 for (i = 0; i < BQUEUES; i++) {
1579 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1580 if (len >= elem_size && elem_count > 0) {
1581 sysctl_fillbuf(bp, &bs);
1582 error = copyout(&bs, dp, out_size);
1583 if (error)
1584 goto cleanup;
1585 dp += elem_size;
1586 len -= elem_size;
1587 }
1588 if (elem_count > 0) {
1589 needed += elem_size;
1590 if (elem_count != INT_MAX)
1591 elem_count--;
1592 }
1593 }
1594 }
1595 cleanup:
1596 simple_unlock(&bqueue_slock);
1597 splx(s);
1598
1599 *oldlenp = needed;
1600 if (oldp == NULL)
1601 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1602
1603 return (error);
1604 }
1605
1606 static int
1607 sysctl_bufvm_update(SYSCTLFN_ARGS)
1608 {
1609 int t, error;
1610 struct sysctlnode node;
1611
1612 node = *rnode;
1613 node.sysctl_data = &t;
1614 t = *(int *)rnode->sysctl_data;
1615 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1616 if (error || newp == NULL)
1617 return (error);
1618
1619 if (t < 0)
1620 return EINVAL;
1621 if (rnode->sysctl_data == &bufcache) {
1622 if (t > 100)
1623 return (EINVAL);
1624 bufcache = t;
1625 buf_setwm();
1626 } else if (rnode->sysctl_data == &bufmem_lowater) {
1627 if (bufmem_hiwater - t < 16)
1628 return (EINVAL);
1629 bufmem_lowater = t;
1630 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1631 if (t - bufmem_lowater < 16)
1632 return (EINVAL);
1633 bufmem_hiwater = t;
1634 } else
1635 return (EINVAL);
1636
1637 /* Drain until below new high water mark */
1638 while ((t = bufmem - bufmem_hiwater) >= 0) {
1639 if (buf_drain(t / (2 * 1024)) <= 0)
1640 break;
1641 }
1642
1643 return 0;
1644 }
1645
1646 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1647 {
1648
1649 sysctl_createv(clog, 0, NULL, NULL,
1650 CTLFLAG_PERMANENT,
1651 CTLTYPE_NODE, "kern", NULL,
1652 NULL, 0, NULL, 0,
1653 CTL_KERN, CTL_EOL);
1654 sysctl_createv(clog, 0, NULL, NULL,
1655 CTLFLAG_PERMANENT,
1656 CTLTYPE_NODE, "buf",
1657 SYSCTL_DESCR("Kernel buffer cache information"),
1658 sysctl_dobuf, 0, NULL, 0,
1659 CTL_KERN, KERN_BUF, CTL_EOL);
1660 }
1661
1662 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1663 {
1664
1665 sysctl_createv(clog, 0, NULL, NULL,
1666 CTLFLAG_PERMANENT,
1667 CTLTYPE_NODE, "vm", NULL,
1668 NULL, 0, NULL, 0,
1669 CTL_VM, CTL_EOL);
1670
1671 sysctl_createv(clog, 0, NULL, NULL,
1672 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1673 CTLTYPE_INT, "bufcache",
1674 SYSCTL_DESCR("Percentage of physical memory to use for "
1675 "buffer cache"),
1676 sysctl_bufvm_update, 0, &bufcache, 0,
1677 CTL_VM, CTL_CREATE, CTL_EOL);
1678 sysctl_createv(clog, 0, NULL, NULL,
1679 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1680 CTLTYPE_INT, "bufmem",
1681 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1682 "cache"),
1683 NULL, 0, &bufmem, 0,
1684 CTL_VM, CTL_CREATE, CTL_EOL);
1685 sysctl_createv(clog, 0, NULL, NULL,
1686 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1687 CTLTYPE_INT, "bufmem_lowater",
1688 SYSCTL_DESCR("Minimum amount of kernel memory to "
1689 "reserve for buffer cache"),
1690 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1691 CTL_VM, CTL_CREATE, CTL_EOL);
1692 sysctl_createv(clog, 0, NULL, NULL,
1693 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1694 CTLTYPE_INT, "bufmem_hiwater",
1695 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1696 "for buffer cache"),
1697 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1698 CTL_VM, CTL_CREATE, CTL_EOL);
1699 }
1700
1701 #ifdef DEBUG
1702 /*
1703 * Print out statistics on the current allocation of the buffer pool.
1704 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1705 * in vfs_syscalls.c using sysctl.
1706 */
1707 void
1708 vfs_bufstats(void)
1709 {
1710 int s, i, j, count;
1711 struct buf *bp;
1712 struct bqueue *dp;
1713 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1714 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1715
1716 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1717 count = 0;
1718 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1719 counts[j] = 0;
1720 s = splbio();
1721 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1722 counts[bp->b_bufsize/PAGE_SIZE]++;
1723 count++;
1724 }
1725 splx(s);
1726 printf("%s: total-%d", bname[i], count);
1727 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1728 if (counts[j] != 0)
1729 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1730 printf("\n");
1731 }
1732 }
1733 #endif /* DEBUG */
1734
1735 /* ------------------------------ */
1736
1737 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
1738
1739 static struct buf *
1740 getiobuf1(int prflags)
1741 {
1742 struct buf *bp;
1743 int s;
1744
1745 s = splbio();
1746 bp = pool_get(&bufiopool, prflags);
1747 splx(s);
1748 if (bp != NULL) {
1749 BUF_INIT(bp);
1750 }
1751 return bp;
1752 }
1753
1754 struct buf *
1755 getiobuf(void)
1756 {
1757
1758 return getiobuf1(PR_WAITOK);
1759 }
1760
1761 struct buf *
1762 getiobuf_nowait(void)
1763 {
1764
1765 return getiobuf1(PR_NOWAIT);
1766 }
1767
1768 void
1769 putiobuf(struct buf *bp)
1770 {
1771 int s;
1772
1773 s = splbio();
1774 pool_put(&bufiopool, bp);
1775 splx(s);
1776 }
1777
1778 /*
1779 * nestiobuf_iodone: b_iodone callback for nested buffers.
1780 */
1781
1782 static void
1783 nestiobuf_iodone(struct buf *bp)
1784 {
1785 struct buf *mbp = bp->b_private;
1786 int error;
1787 int donebytes;
1788
1789 KASSERT(bp->b_bcount <= bp->b_bufsize);
1790 KASSERT(mbp != bp);
1791
1792 error = 0;
1793 if ((bp->b_flags & B_ERROR) != 0) {
1794 error = EIO;
1795 /* check if an error code was returned */
1796 if (bp->b_error)
1797 error = bp->b_error;
1798 } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
1799 /*
1800 * Not all got transfered, raise an error. We have no way to
1801 * propagate these conditions to mbp.
1802 */
1803 error = EIO;
1804 }
1805
1806 donebytes = bp->b_bufsize;
1807
1808 putiobuf(bp);
1809 nestiobuf_done(mbp, donebytes, error);
1810 }
1811
1812 /*
1813 * nestiobuf_setup: setup a "nested" buffer.
1814 *
1815 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1816 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1817 * => 'offset' is a byte offset in the master buffer.
1818 * => 'size' is a size in bytes of this nested buffer.
1819 */
1820
1821 void
1822 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
1823 {
1824 const int b_read = mbp->b_flags & B_READ;
1825 struct vnode *vp = mbp->b_vp;
1826
1827 KASSERT(mbp->b_bcount >= offset + size);
1828 bp->b_vp = vp;
1829 bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
1830 bp->b_iodone = nestiobuf_iodone;
1831 bp->b_data = mbp->b_data + offset;
1832 bp->b_resid = bp->b_bcount = size;
1833 bp->b_bufsize = bp->b_bcount;
1834 bp->b_private = mbp;
1835 BIO_COPYPRIO(bp, mbp);
1836 if (!b_read && vp != NULL) {
1837 int s;
1838
1839 s = splbio();
1840 V_INCR_NUMOUTPUT(vp);
1841 splx(s);
1842 }
1843 }
1844
1845 /*
1846 * nestiobuf_done: propagate completion to the master buffer.
1847 *
1848 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1849 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1850 */
1851
1852 void
1853 nestiobuf_done(struct buf *mbp, int donebytes, int error)
1854 {
1855 int s;
1856
1857 if (donebytes == 0) {
1858 return;
1859 }
1860 s = splbio();
1861 KASSERT(mbp->b_resid >= donebytes);
1862 if (error) {
1863 mbp->b_flags |= B_ERROR;
1864 mbp->b_error = error;
1865 }
1866 mbp->b_resid -= donebytes;
1867 if (mbp->b_resid == 0) {
1868 if ((mbp->b_flags & B_ERROR) != 0) {
1869 mbp->b_resid = mbp->b_bcount; /* be conservative */
1870 }
1871 biodone(mbp);
1872 }
1873 splx(s);
1874 }
1875