Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.160
      1 /*	$NetBSD: vfs_bio.c,v 1.160 2006/05/14 21:15:12 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include "fs_ffs.h"
     81 #include "opt_bufcache.h"
     82 #include "opt_softdep.h"
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.160 2006/05/14 21:15:12 elad Exp $");
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/kernel.h>
     90 #include <sys/proc.h>
     91 #include <sys/buf.h>
     92 #include <sys/vnode.h>
     93 #include <sys/mount.h>
     94 #include <sys/malloc.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sysctl.h>
     97 #include <sys/conf.h>
     98 #include <sys/kauth.h>
     99 
    100 #include <uvm/uvm.h>
    101 
    102 #include <miscfs/specfs/specdev.h>
    103 
    104 #ifndef	BUFPAGES
    105 # define BUFPAGES 0
    106 #endif
    107 
    108 #ifdef BUFCACHE
    109 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    110 #  error BUFCACHE is not between 5 and 95
    111 # endif
    112 #else
    113 # define BUFCACHE 15
    114 #endif
    115 
    116 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    117 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    118 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    119 
    120 /* Function prototypes */
    121 struct bqueue;
    122 
    123 static void buf_setwm(void);
    124 static int buf_trim(void);
    125 static void *bufpool_page_alloc(struct pool *, int);
    126 static void bufpool_page_free(struct pool *, void *);
    127 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    128     kauth_cred_t, int);
    129 static int buf_lotsfree(void);
    130 static int buf_canrelease(void);
    131 static inline u_long buf_mempoolidx(u_long);
    132 static inline u_long buf_roundsize(u_long);
    133 static inline caddr_t buf_malloc(size_t);
    134 static void buf_mrelease(caddr_t, size_t);
    135 static inline void binsheadfree(struct buf *, struct bqueue *);
    136 static inline void binstailfree(struct buf *, struct bqueue *);
    137 int count_lock_queue(void); /* XXX */
    138 #ifdef DEBUG
    139 static int checkfreelist(struct buf *, struct bqueue *);
    140 #endif
    141 
    142 /*
    143  * Definitions for the buffer hash lists.
    144  */
    145 #define	BUFHASH(dvp, lbn)	\
    146 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    147 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    148 u_long	bufhash;
    149 #if !defined(SOFTDEP) || !defined(FFS)
    150 struct bio_ops bioops;	/* I/O operation notification */
    151 #endif
    152 
    153 /*
    154  * Insq/Remq for the buffer hash lists.
    155  */
    156 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    157 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    158 
    159 /*
    160  * Definitions for the buffer free lists.
    161  */
    162 #define	BQUEUES		3		/* number of free buffer queues */
    163 
    164 #define	BQ_LOCKED	0		/* super-blocks &c */
    165 #define	BQ_LRU		1		/* lru, useful buffers */
    166 #define	BQ_AGE		2		/* rubbish */
    167 
    168 struct bqueue {
    169 	TAILQ_HEAD(, buf) bq_queue;
    170 	uint64_t bq_bytes;
    171 } bufqueues[BQUEUES];
    172 int needbuffer;
    173 
    174 /*
    175  * Buffer queue lock.
    176  * Take this lock first if also taking some buffer's b_interlock.
    177  */
    178 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    179 
    180 /*
    181  * Buffer pool for I/O buffers.
    182  * Access to this pool must be protected with splbio().
    183  */
    184 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
    185 
    186 
    187 /* XXX - somewhat gross.. */
    188 #if MAXBSIZE == 0x2000
    189 #define NMEMPOOLS 5
    190 #elif MAXBSIZE == 0x4000
    191 #define NMEMPOOLS 6
    192 #elif MAXBSIZE == 0x8000
    193 #define NMEMPOOLS 7
    194 #else
    195 #define NMEMPOOLS 8
    196 #endif
    197 
    198 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    199 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    200 #error update vfs_bio buffer memory parameters
    201 #endif
    202 
    203 /* Buffer memory pools */
    204 static struct pool bmempools[NMEMPOOLS];
    205 
    206 struct vm_map *buf_map;
    207 
    208 /*
    209  * Buffer memory pool allocator.
    210  */
    211 static void *
    212 bufpool_page_alloc(struct pool *pp, int flags)
    213 {
    214 
    215 	return (void *)uvm_km_alloc(buf_map,
    216 	    MAXBSIZE, MAXBSIZE,
    217 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    218 	    | UVM_KMF_WIRED);
    219 }
    220 
    221 static void
    222 bufpool_page_free(struct pool *pp, void *v)
    223 {
    224 
    225 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    226 }
    227 
    228 static struct pool_allocator bufmempool_allocator = {
    229 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
    230 };
    231 
    232 /* Buffer memory management variables */
    233 u_long bufmem_valimit;
    234 u_long bufmem_hiwater;
    235 u_long bufmem_lowater;
    236 u_long bufmem;
    237 
    238 /*
    239  * MD code can call this to set a hard limit on the amount
    240  * of virtual memory used by the buffer cache.
    241  */
    242 int
    243 buf_setvalimit(vsize_t sz)
    244 {
    245 
    246 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    247 	if (sz < NMEMPOOLS * MAXBSIZE)
    248 		return EINVAL;
    249 
    250 	bufmem_valimit = sz;
    251 	return 0;
    252 }
    253 
    254 static void
    255 buf_setwm(void)
    256 {
    257 
    258 	bufmem_hiwater = buf_memcalc();
    259 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    260 #define	BUFMEM_WMSHIFT	3
    261 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    262 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    263 		/* Ensure a reasonable minimum value */
    264 		bufmem_hiwater = BUFMEM_HIWMMIN;
    265 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    266 }
    267 
    268 #ifdef DEBUG
    269 int debug_verify_freelist = 0;
    270 static int
    271 checkfreelist(struct buf *bp, struct bqueue *dp)
    272 {
    273 	struct buf *b;
    274 
    275 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    276 		if (b == bp)
    277 			return 1;
    278 	}
    279 	return 0;
    280 }
    281 #endif
    282 
    283 /*
    284  * Insq/Remq for the buffer hash lists.
    285  * Call with buffer queue locked.
    286  */
    287 static inline void
    288 binsheadfree(struct buf *bp, struct bqueue *dp)
    289 {
    290 
    291 	KASSERT(bp->b_freelistindex == -1);
    292 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    293 	dp->bq_bytes += bp->b_bufsize;
    294 	bp->b_freelistindex = dp - bufqueues;
    295 }
    296 
    297 static inline void
    298 binstailfree(struct buf *bp, struct bqueue *dp)
    299 {
    300 
    301 	KASSERT(bp->b_freelistindex == -1);
    302 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    303 	dp->bq_bytes += bp->b_bufsize;
    304 	bp->b_freelistindex = dp - bufqueues;
    305 }
    306 
    307 void
    308 bremfree(struct buf *bp)
    309 {
    310 	struct bqueue *dp;
    311 	int bqidx = bp->b_freelistindex;
    312 
    313 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    314 
    315 	KASSERT(bqidx != -1);
    316 	dp = &bufqueues[bqidx];
    317 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    318 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    319 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    320 	dp->bq_bytes -= bp->b_bufsize;
    321 #if defined(DIAGNOSTIC)
    322 	bp->b_freelistindex = -1;
    323 #endif /* defined(DIAGNOSTIC) */
    324 }
    325 
    326 u_long
    327 buf_memcalc(void)
    328 {
    329 	u_long n;
    330 
    331 	/*
    332 	 * Determine the upper bound of memory to use for buffers.
    333 	 *
    334 	 *	- If bufpages is specified, use that as the number
    335 	 *	  pages.
    336 	 *
    337 	 *	- Otherwise, use bufcache as the percentage of
    338 	 *	  physical memory.
    339 	 */
    340 	if (bufpages != 0) {
    341 		n = bufpages;
    342 	} else {
    343 		if (bufcache < 5) {
    344 			printf("forcing bufcache %d -> 5", bufcache);
    345 			bufcache = 5;
    346 		}
    347 		if (bufcache > 95) {
    348 			printf("forcing bufcache %d -> 95", bufcache);
    349 			bufcache = 95;
    350 		}
    351 		n = physmem / 100 * bufcache;
    352 	}
    353 
    354 	n <<= PAGE_SHIFT;
    355 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    356 		n = bufmem_valimit;
    357 
    358 	return (n);
    359 }
    360 
    361 /*
    362  * Initialize buffers and hash links for buffers.
    363  */
    364 void
    365 bufinit(void)
    366 {
    367 	struct bqueue *dp;
    368 	int use_std;
    369 	u_int i;
    370 
    371 	/*
    372 	 * Initialize buffer cache memory parameters.
    373 	 */
    374 	bufmem = 0;
    375 	buf_setwm();
    376 
    377 	if (bufmem_valimit != 0) {
    378 		vaddr_t minaddr = 0, maxaddr;
    379 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    380 					  bufmem_valimit, VM_MAP_PAGEABLE,
    381 					  FALSE, 0);
    382 		if (buf_map == NULL)
    383 			panic("bufinit: cannot allocate submap");
    384 	} else
    385 		buf_map = kernel_map;
    386 
    387 	/* On "small" machines use small pool page sizes where possible */
    388 	use_std = (physmem < atop(16*1024*1024));
    389 
    390 	/*
    391 	 * Also use them on systems that can map the pool pages using
    392 	 * a direct-mapped segment.
    393 	 */
    394 #ifdef PMAP_MAP_POOLPAGE
    395 	use_std = 1;
    396 #endif
    397 
    398 	for (i = 0; i < NMEMPOOLS; i++) {
    399 		struct pool_allocator *pa;
    400 		struct pool *pp = &bmempools[i];
    401 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    402 		char *name = malloc(8, M_TEMP, M_WAITOK);
    403 		snprintf(name, 8, "buf%dk", 1 << i);
    404 		pa = (size <= PAGE_SIZE && use_std)
    405 			? &pool_allocator_nointr
    406 			: &bufmempool_allocator;
    407 		pool_init(pp, size, 0, 0, 0, name, pa);
    408 		pool_setlowat(pp, 1);
    409 		pool_sethiwat(pp, 1);
    410 	}
    411 
    412 	/* Initialize the buffer queues */
    413 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    414 		TAILQ_INIT(&dp->bq_queue);
    415 		dp->bq_bytes = 0;
    416 	}
    417 
    418 	/*
    419 	 * Estimate hash table size based on the amount of memory we
    420 	 * intend to use for the buffer cache. The average buffer
    421 	 * size is dependent on our clients (i.e. filesystems).
    422 	 *
    423 	 * For now, use an empirical 3K per buffer.
    424 	 */
    425 	nbuf = (bufmem_hiwater / 1024) / 3;
    426 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    427 }
    428 
    429 static int
    430 buf_lotsfree(void)
    431 {
    432 	int try, thresh;
    433 	struct lwp *l = curlwp;
    434 
    435 	/* Always allocate if doing copy on write */
    436 	if (l->l_flag & L_COWINPROGRESS)
    437 		return 1;
    438 
    439 	/* Always allocate if less than the low water mark. */
    440 	if (bufmem < bufmem_lowater)
    441 		return 1;
    442 
    443 	/* Never allocate if greater than the high water mark. */
    444 	if (bufmem > bufmem_hiwater)
    445 		return 0;
    446 
    447 	/* If there's anything on the AGE list, it should be eaten. */
    448 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    449 		return 0;
    450 
    451 	/*
    452 	 * The probabily of getting a new allocation is inversely
    453 	 * proportional to the current size of the cache, using
    454 	 * a granularity of 16 steps.
    455 	 */
    456 	try = random() & 0x0000000fL;
    457 
    458 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    459 	thresh = (bufmem - bufmem_lowater) /
    460 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    461 
    462 	if (try >= thresh)
    463 		return 1;
    464 
    465 	/* Otherwise don't allocate. */
    466 	return 0;
    467 }
    468 
    469 /*
    470  * Return estimate of bytes we think need to be
    471  * released to help resolve low memory conditions.
    472  *
    473  * => called at splbio.
    474  * => called with bqueue_slock held.
    475  */
    476 static int
    477 buf_canrelease(void)
    478 {
    479 	int pagedemand, ninvalid = 0;
    480 
    481 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    482 
    483 	if (bufmem < bufmem_lowater)
    484 		return 0;
    485 
    486 	if (bufmem > bufmem_hiwater)
    487 		return bufmem - bufmem_hiwater;
    488 
    489 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    490 
    491 	pagedemand = uvmexp.freetarg - uvmexp.free;
    492 	if (pagedemand < 0)
    493 		return ninvalid;
    494 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    495 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    496 }
    497 
    498 /*
    499  * Buffer memory allocation helper functions
    500  */
    501 static inline u_long
    502 buf_mempoolidx(u_long size)
    503 {
    504 	u_int n = 0;
    505 
    506 	size -= 1;
    507 	size >>= MEMPOOL_INDEX_OFFSET;
    508 	while (size) {
    509 		size >>= 1;
    510 		n += 1;
    511 	}
    512 	if (n >= NMEMPOOLS)
    513 		panic("buf mem pool index %d", n);
    514 	return n;
    515 }
    516 
    517 static inline u_long
    518 buf_roundsize(u_long size)
    519 {
    520 	/* Round up to nearest power of 2 */
    521 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    522 }
    523 
    524 static inline caddr_t
    525 buf_malloc(size_t size)
    526 {
    527 	u_int n = buf_mempoolidx(size);
    528 	caddr_t addr;
    529 	int s;
    530 
    531 	while (1) {
    532 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    533 		if (addr != NULL)
    534 			break;
    535 
    536 		/* No memory, see if we can free some. If so, try again */
    537 		if (buf_drain(1) > 0)
    538 			continue;
    539 
    540 		/* Wait for buffers to arrive on the LRU queue */
    541 		s = splbio();
    542 		simple_lock(&bqueue_slock);
    543 		needbuffer = 1;
    544 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    545 			"buf_malloc", 0, &bqueue_slock);
    546 		splx(s);
    547 	}
    548 
    549 	return addr;
    550 }
    551 
    552 static void
    553 buf_mrelease(caddr_t addr, size_t size)
    554 {
    555 
    556 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    557 }
    558 
    559 /*
    560  * bread()/breadn() helper.
    561  */
    562 static inline struct buf *
    563 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    564     int async)
    565 {
    566 	struct buf *bp;
    567 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    568 	struct proc *p = l->l_proc;
    569 	struct mount *mp;
    570 
    571 	bp = getblk(vp, blkno, size, 0, 0);
    572 
    573 #ifdef DIAGNOSTIC
    574 	if (bp == NULL) {
    575 		panic("bio_doread: no such buf");
    576 	}
    577 #endif
    578 
    579 	/*
    580 	 * If buffer does not have data valid, start a read.
    581 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    582 	 * Therefore, it's valid if its I/O has completed or been delayed.
    583 	 */
    584 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    585 		/* Start I/O for the buffer. */
    586 		SET(bp->b_flags, B_READ | async);
    587 		if (async)
    588 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    589 		else
    590 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    591 		VOP_STRATEGY(vp, bp);
    592 
    593 		/* Pay for the read. */
    594 		p->p_stats->p_ru.ru_inblock++;
    595 	} else if (async) {
    596 		brelse(bp);
    597 	}
    598 
    599 	if (vp->v_type == VBLK)
    600 		mp = vp->v_specmountpoint;
    601 	else
    602 		mp = vp->v_mount;
    603 
    604 	/*
    605 	 * Collect statistics on synchronous and asynchronous reads.
    606 	 * Reads from block devices are charged to their associated
    607 	 * filesystem (if any).
    608 	 */
    609 	if (mp != NULL) {
    610 		if (async == 0)
    611 			mp->mnt_stat.f_syncreads++;
    612 		else
    613 			mp->mnt_stat.f_asyncreads++;
    614 	}
    615 
    616 	return (bp);
    617 }
    618 
    619 /*
    620  * Read a disk block.
    621  * This algorithm described in Bach (p.54).
    622  */
    623 int
    624 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    625     struct buf **bpp)
    626 {
    627 	struct buf *bp;
    628 
    629 	/* Get buffer for block. */
    630 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    631 
    632 	/* Wait for the read to complete, and return result. */
    633 	return (biowait(bp));
    634 }
    635 
    636 /*
    637  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    638  * Trivial modification to the breada algorithm presented in Bach (p.55).
    639  */
    640 int
    641 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    642     int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
    643 {
    644 	struct buf *bp;
    645 	int i;
    646 
    647 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    648 
    649 	/*
    650 	 * For each of the read-ahead blocks, start a read, if necessary.
    651 	 */
    652 	for (i = 0; i < nrablks; i++) {
    653 		/* If it's in the cache, just go on to next one. */
    654 		if (incore(vp, rablks[i]))
    655 			continue;
    656 
    657 		/* Get a buffer for the read-ahead block */
    658 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    659 	}
    660 
    661 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    662 	return (biowait(bp));
    663 }
    664 
    665 /*
    666  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    667  * implemented as a call to breadn().
    668  * XXX for compatibility with old file systems.
    669  */
    670 int
    671 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    672     int rabsize, kauth_cred_t cred, struct buf **bpp)
    673 {
    674 
    675 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    676 }
    677 
    678 /*
    679  * Block write.  Described in Bach (p.56)
    680  */
    681 int
    682 bwrite(struct buf *bp)
    683 {
    684 	int rv, sync, wasdelayed, s;
    685 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    686 	struct proc *p = l->l_proc;
    687 	struct vnode *vp;
    688 	struct mount *mp;
    689 
    690 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    691 
    692 	vp = bp->b_vp;
    693 	if (vp != NULL) {
    694 		if (vp->v_type == VBLK)
    695 			mp = vp->v_specmountpoint;
    696 		else
    697 			mp = vp->v_mount;
    698 	} else {
    699 		mp = NULL;
    700 	}
    701 
    702 	/*
    703 	 * Remember buffer type, to switch on it later.  If the write was
    704 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    705 	 * convert it to a delayed write.
    706 	 * XXX note that this relies on delayed tape writes being converted
    707 	 * to async, not sync writes (which is safe, but ugly).
    708 	 */
    709 	sync = !ISSET(bp->b_flags, B_ASYNC);
    710 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    711 		bdwrite(bp);
    712 		return (0);
    713 	}
    714 
    715 	/*
    716 	 * Collect statistics on synchronous and asynchronous writes.
    717 	 * Writes to block devices are charged to their associated
    718 	 * filesystem (if any).
    719 	 */
    720 	if (mp != NULL) {
    721 		if (sync)
    722 			mp->mnt_stat.f_syncwrites++;
    723 		else
    724 			mp->mnt_stat.f_asyncwrites++;
    725 	}
    726 
    727 	s = splbio();
    728 	simple_lock(&bp->b_interlock);
    729 
    730 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    731 
    732 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
    733 
    734 	/*
    735 	 * Pay for the I/O operation and make sure the buf is on the correct
    736 	 * vnode queue.
    737 	 */
    738 	if (wasdelayed)
    739 		reassignbuf(bp, bp->b_vp);
    740 	else
    741 		p->p_stats->p_ru.ru_oublock++;
    742 
    743 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    744 	V_INCR_NUMOUTPUT(bp->b_vp);
    745 	simple_unlock(&bp->b_interlock);
    746 	splx(s);
    747 
    748 	if (sync)
    749 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    750 	else
    751 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    752 
    753 	VOP_STRATEGY(vp, bp);
    754 
    755 	if (sync) {
    756 		/* If I/O was synchronous, wait for it to complete. */
    757 		rv = biowait(bp);
    758 
    759 		/* Release the buffer. */
    760 		brelse(bp);
    761 
    762 		return (rv);
    763 	} else {
    764 		return (0);
    765 	}
    766 }
    767 
    768 int
    769 vn_bwrite(void *v)
    770 {
    771 	struct vop_bwrite_args *ap = v;
    772 
    773 	return (bwrite(ap->a_bp));
    774 }
    775 
    776 /*
    777  * Delayed write.
    778  *
    779  * The buffer is marked dirty, but is not queued for I/O.
    780  * This routine should be used when the buffer is expected
    781  * to be modified again soon, typically a small write that
    782  * partially fills a buffer.
    783  *
    784  * NB: magnetic tapes cannot be delayed; they must be
    785  * written in the order that the writes are requested.
    786  *
    787  * Described in Leffler, et al. (pp. 208-213).
    788  */
    789 void
    790 bdwrite(struct buf *bp)
    791 {
    792 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    793 	struct proc *p = l->l_proc;
    794 	const struct bdevsw *bdev;
    795 	int s;
    796 
    797 	/* If this is a tape block, write the block now. */
    798 	bdev = bdevsw_lookup(bp->b_dev);
    799 	if (bdev != NULL && bdev->d_type == D_TAPE) {
    800 		bawrite(bp);
    801 		return;
    802 	}
    803 
    804 	/*
    805 	 * If the block hasn't been seen before:
    806 	 *	(1) Mark it as having been seen,
    807 	 *	(2) Charge for the write,
    808 	 *	(3) Make sure it's on its vnode's correct block list.
    809 	 */
    810 	s = splbio();
    811 	simple_lock(&bp->b_interlock);
    812 
    813 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    814 
    815 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    816 		SET(bp->b_flags, B_DELWRI);
    817 		p->p_stats->p_ru.ru_oublock++;
    818 		reassignbuf(bp, bp->b_vp);
    819 	}
    820 
    821 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    822 	CLR(bp->b_flags, B_DONE);
    823 	simple_unlock(&bp->b_interlock);
    824 	splx(s);
    825 
    826 	brelse(bp);
    827 }
    828 
    829 /*
    830  * Asynchronous block write; just an asynchronous bwrite().
    831  */
    832 void
    833 bawrite(struct buf *bp)
    834 {
    835 	int s;
    836 
    837 	s = splbio();
    838 	simple_lock(&bp->b_interlock);
    839 
    840 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    841 
    842 	SET(bp->b_flags, B_ASYNC);
    843 	simple_unlock(&bp->b_interlock);
    844 	splx(s);
    845 	VOP_BWRITE(bp);
    846 }
    847 
    848 /*
    849  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    850  * Call at splbio() and with the buffer interlock locked.
    851  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
    852  */
    853 void
    854 bdirty(struct buf *bp)
    855 {
    856 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
    857 	struct proc *p = l->l_proc;
    858 
    859 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    860 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    861 
    862 	CLR(bp->b_flags, B_AGE);
    863 
    864 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    865 		SET(bp->b_flags, B_DELWRI);
    866 		p->p_stats->p_ru.ru_oublock++;
    867 		reassignbuf(bp, bp->b_vp);
    868 	}
    869 }
    870 
    871 /*
    872  * Release a buffer on to the free lists.
    873  * Described in Bach (p. 46).
    874  */
    875 void
    876 brelse(struct buf *bp)
    877 {
    878 	struct bqueue *bufq;
    879 	int s;
    880 
    881 	/* Block disk interrupts. */
    882 	s = splbio();
    883 	simple_lock(&bqueue_slock);
    884 	simple_lock(&bp->b_interlock);
    885 
    886 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    887 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    888 
    889 	/* Wake up any processes waiting for any buffer to become free. */
    890 	if (needbuffer) {
    891 		needbuffer = 0;
    892 		wakeup(&needbuffer);
    893 	}
    894 
    895 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    896 	if (ISSET(bp->b_flags, B_WANTED)) {
    897 		CLR(bp->b_flags, B_WANTED|B_AGE);
    898 		wakeup(bp);
    899 	}
    900 
    901 	/*
    902 	 * Determine which queue the buffer should be on, then put it there.
    903 	 */
    904 
    905 	/* If it's locked, don't report an error; try again later. */
    906 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
    907 		CLR(bp->b_flags, B_ERROR);
    908 
    909 	/* If it's not cacheable, or an error, mark it invalid. */
    910 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
    911 		SET(bp->b_flags, B_INVAL);
    912 
    913 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    914 		/*
    915 		 * This is a delayed write buffer that was just flushed to
    916 		 * disk.  It is still on the LRU queue.  If it's become
    917 		 * invalid, then we need to move it to a different queue;
    918 		 * otherwise leave it in its current position.
    919 		 */
    920 		CLR(bp->b_flags, B_VFLUSH);
    921 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
    922 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    923 			goto already_queued;
    924 		} else {
    925 			bremfree(bp);
    926 		}
    927 	}
    928 
    929   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    930   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    931   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    932 
    933 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    934 		/*
    935 		 * If it's invalid or empty, dissociate it from its vnode
    936 		 * and put on the head of the appropriate queue.
    937 		 */
    938 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    939 			(*bioops.io_deallocate)(bp);
    940 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    941 		if (bp->b_vp) {
    942 			reassignbuf(bp, bp->b_vp);
    943 			brelvp(bp);
    944 		}
    945 		if (bp->b_bufsize <= 0)
    946 			/* no data */
    947 			goto already_queued;
    948 		else
    949 			/* invalid data */
    950 			bufq = &bufqueues[BQ_AGE];
    951 		binsheadfree(bp, bufq);
    952 	} else {
    953 		/*
    954 		 * It has valid data.  Put it on the end of the appropriate
    955 		 * queue, so that it'll stick around for as long as possible.
    956 		 * If buf is AGE, but has dependencies, must put it on last
    957 		 * bufqueue to be scanned, ie LRU. This protects against the
    958 		 * livelock where BQ_AGE only has buffers with dependencies,
    959 		 * and we thus never get to the dependent buffers in BQ_LRU.
    960 		 */
    961 		if (ISSET(bp->b_flags, B_LOCKED))
    962 			/* locked in core */
    963 			bufq = &bufqueues[BQ_LOCKED];
    964 		else if (!ISSET(bp->b_flags, B_AGE))
    965 			/* valid data */
    966 			bufq = &bufqueues[BQ_LRU];
    967 		else {
    968 			/* stale but valid data */
    969 			int has_deps;
    970 
    971 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    972 			    bioops.io_countdeps)
    973 				has_deps = (*bioops.io_countdeps)(bp, 0);
    974 			else
    975 				has_deps = 0;
    976 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    977 			    &bufqueues[BQ_AGE];
    978 		}
    979 		binstailfree(bp, bufq);
    980 	}
    981 
    982 already_queued:
    983 	/* Unlock the buffer. */
    984 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    985 	SET(bp->b_flags, B_CACHE);
    986 
    987 	/* Allow disk interrupts. */
    988 	simple_unlock(&bp->b_interlock);
    989 	simple_unlock(&bqueue_slock);
    990 	if (bp->b_bufsize <= 0) {
    991 #ifdef DEBUG
    992 		memset((char *)bp, 0, sizeof(*bp));
    993 #endif
    994 		pool_put(&bufpool, bp);
    995 	}
    996 	splx(s);
    997 }
    998 
    999 /*
   1000  * Determine if a block is in the cache.
   1001  * Just look on what would be its hash chain.  If it's there, return
   1002  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1003  * we normally don't return the buffer, unless the caller explicitly
   1004  * wants us to.
   1005  */
   1006 struct buf *
   1007 incore(struct vnode *vp, daddr_t blkno)
   1008 {
   1009 	struct buf *bp;
   1010 
   1011 	/* Search hash chain */
   1012 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1013 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1014 		    !ISSET(bp->b_flags, B_INVAL))
   1015 		return (bp);
   1016 	}
   1017 
   1018 	return (NULL);
   1019 }
   1020 
   1021 /*
   1022  * Get a block of requested size that is associated with
   1023  * a given vnode and block offset. If it is found in the
   1024  * block cache, mark it as having been found, make it busy
   1025  * and return it. Otherwise, return an empty block of the
   1026  * correct size. It is up to the caller to insure that the
   1027  * cached blocks be of the correct size.
   1028  */
   1029 struct buf *
   1030 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1031 {
   1032 	struct buf *bp;
   1033 	int s, err;
   1034 	int preserve;
   1035 
   1036 start:
   1037 	s = splbio();
   1038 	simple_lock(&bqueue_slock);
   1039 	bp = incore(vp, blkno);
   1040 	if (bp != NULL) {
   1041 		simple_lock(&bp->b_interlock);
   1042 		if (ISSET(bp->b_flags, B_BUSY)) {
   1043 			simple_unlock(&bqueue_slock);
   1044 			if (curproc == uvm.pagedaemon_proc) {
   1045 				simple_unlock(&bp->b_interlock);
   1046 				splx(s);
   1047 				return NULL;
   1048 			}
   1049 			SET(bp->b_flags, B_WANTED);
   1050 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1051 					"getblk", slptimeo, &bp->b_interlock);
   1052 			splx(s);
   1053 			if (err)
   1054 				return (NULL);
   1055 			goto start;
   1056 		}
   1057 #ifdef DIAGNOSTIC
   1058 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1059 		    bp->b_bcount < size && vp->v_type != VBLK)
   1060 			panic("getblk: block size invariant failed");
   1061 #endif
   1062 		SET(bp->b_flags, B_BUSY);
   1063 		bremfree(bp);
   1064 		preserve = 1;
   1065 	} else {
   1066 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1067 			simple_unlock(&bqueue_slock);
   1068 			splx(s);
   1069 			goto start;
   1070 		}
   1071 
   1072 		binshash(bp, BUFHASH(vp, blkno));
   1073 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1074 		bgetvp(vp, bp);
   1075 		preserve = 0;
   1076 	}
   1077 	simple_unlock(&bp->b_interlock);
   1078 	simple_unlock(&bqueue_slock);
   1079 	splx(s);
   1080 	/*
   1081 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1082 	 * if we re-size buffers here.
   1083 	 */
   1084 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1085 		KASSERT(bp->b_bufsize >= size);
   1086 	} else {
   1087 		allocbuf(bp, size, preserve);
   1088 	}
   1089 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1090 	return (bp);
   1091 }
   1092 
   1093 /*
   1094  * Get an empty, disassociated buffer of given size.
   1095  */
   1096 struct buf *
   1097 geteblk(int size)
   1098 {
   1099 	struct buf *bp;
   1100 	int s;
   1101 
   1102 	s = splbio();
   1103 	simple_lock(&bqueue_slock);
   1104 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1105 		;
   1106 
   1107 	SET(bp->b_flags, B_INVAL);
   1108 	binshash(bp, &invalhash);
   1109 	simple_unlock(&bqueue_slock);
   1110 	simple_unlock(&bp->b_interlock);
   1111 	splx(s);
   1112 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1113 	allocbuf(bp, size, 0);
   1114 	return (bp);
   1115 }
   1116 
   1117 /*
   1118  * Expand or contract the actual memory allocated to a buffer.
   1119  *
   1120  * If the buffer shrinks, data is lost, so it's up to the
   1121  * caller to have written it out *first*; this routine will not
   1122  * start a write.  If the buffer grows, it's the callers
   1123  * responsibility to fill out the buffer's additional contents.
   1124  */
   1125 void
   1126 allocbuf(struct buf *bp, int size, int preserve)
   1127 {
   1128 	vsize_t oldsize, desired_size;
   1129 	caddr_t addr;
   1130 	int s, delta;
   1131 
   1132 	desired_size = buf_roundsize(size);
   1133 	if (desired_size > MAXBSIZE)
   1134 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1135 
   1136 	bp->b_bcount = size;
   1137 
   1138 	oldsize = bp->b_bufsize;
   1139 	if (oldsize == desired_size)
   1140 		return;
   1141 
   1142 	/*
   1143 	 * If we want a buffer of a different size, re-allocate the
   1144 	 * buffer's memory; copy old content only if needed.
   1145 	 */
   1146 	addr = buf_malloc(desired_size);
   1147 	if (preserve)
   1148 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1149 	if (bp->b_data != NULL)
   1150 		buf_mrelease(bp->b_data, oldsize);
   1151 	bp->b_data = addr;
   1152 	bp->b_bufsize = desired_size;
   1153 
   1154 	/*
   1155 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1156 	 */
   1157 	delta = (long)desired_size - (long)oldsize;
   1158 
   1159 	s = splbio();
   1160 	simple_lock(&bqueue_slock);
   1161 	if ((bufmem += delta) > bufmem_hiwater) {
   1162 		/*
   1163 		 * Need to trim overall memory usage.
   1164 		 */
   1165 		while (buf_canrelease()) {
   1166 			if (curcpu()->ci_schedstate.spc_flags &
   1167 			    SPCF_SHOULDYIELD) {
   1168 				simple_unlock(&bqueue_slock);
   1169 				splx(s);
   1170 				preempt(1);
   1171 				s = splbio();
   1172 				simple_lock(&bqueue_slock);
   1173 			}
   1174 
   1175 			if (buf_trim() == 0)
   1176 				break;
   1177 		}
   1178 	}
   1179 
   1180 	simple_unlock(&bqueue_slock);
   1181 	splx(s);
   1182 }
   1183 
   1184 /*
   1185  * Find a buffer which is available for use.
   1186  * Select something from a free list.
   1187  * Preference is to AGE list, then LRU list.
   1188  *
   1189  * Called at splbio and with buffer queues locked.
   1190  * Return buffer locked.
   1191  */
   1192 struct buf *
   1193 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1194 {
   1195 	struct buf *bp;
   1196 
   1197 start:
   1198 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1199 
   1200 	/*
   1201 	 * Get a new buffer from the pool; but use NOWAIT because
   1202 	 * we have the buffer queues locked.
   1203 	 */
   1204 	if (!from_bufq && buf_lotsfree() &&
   1205 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1206 		memset((char *)bp, 0, sizeof(*bp));
   1207 		BUF_INIT(bp);
   1208 		bp->b_dev = NODEV;
   1209 		bp->b_vnbufs.le_next = NOLIST;
   1210 		bp->b_flags = B_BUSY;
   1211 		simple_lock(&bp->b_interlock);
   1212 #if defined(DIAGNOSTIC)
   1213 		bp->b_freelistindex = -1;
   1214 #endif /* defined(DIAGNOSTIC) */
   1215 		return (bp);
   1216 	}
   1217 
   1218 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1219 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1220 		simple_lock(&bp->b_interlock);
   1221 		bremfree(bp);
   1222 	} else {
   1223 		/*
   1224 		 * XXX: !from_bufq should be removed.
   1225 		 */
   1226 		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
   1227 			/* wait for a free buffer of any kind */
   1228 			needbuffer = 1;
   1229 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1230 			    "getnewbuf", slptimeo, &bqueue_slock);
   1231 		}
   1232 		return (NULL);
   1233 	}
   1234 
   1235 #ifdef DIAGNOSTIC
   1236 	if (bp->b_bufsize <= 0)
   1237 		panic("buffer %p: on queue but empty", bp);
   1238 #endif
   1239 
   1240 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1241 		/*
   1242 		 * This is a delayed write buffer being flushed to disk.  Make
   1243 		 * sure it gets aged out of the queue when it's finished, and
   1244 		 * leave it off the LRU queue.
   1245 		 */
   1246 		CLR(bp->b_flags, B_VFLUSH);
   1247 		SET(bp->b_flags, B_AGE);
   1248 		simple_unlock(&bp->b_interlock);
   1249 		goto start;
   1250 	}
   1251 
   1252 	/* Buffer is no longer on free lists. */
   1253 	SET(bp->b_flags, B_BUSY);
   1254 
   1255 	/*
   1256 	 * If buffer was a delayed write, start it and return NULL
   1257 	 * (since we might sleep while starting the write).
   1258 	 */
   1259 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1260 		/*
   1261 		 * This buffer has gone through the LRU, so make sure it gets
   1262 		 * reused ASAP.
   1263 		 */
   1264 		SET(bp->b_flags, B_AGE);
   1265 		simple_unlock(&bp->b_interlock);
   1266 		simple_unlock(&bqueue_slock);
   1267 		bawrite(bp);
   1268 		simple_lock(&bqueue_slock);
   1269 		return (NULL);
   1270 	}
   1271 
   1272 	/* disassociate us from our vnode, if we had one... */
   1273 	if (bp->b_vp)
   1274 		brelvp(bp);
   1275 
   1276 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
   1277 		(*bioops.io_deallocate)(bp);
   1278 
   1279 	/* clear out various other fields */
   1280 	bp->b_flags = B_BUSY;
   1281 	bp->b_dev = NODEV;
   1282 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1283 	bp->b_iodone = 0;
   1284 	bp->b_error = 0;
   1285 	bp->b_resid = 0;
   1286 	bp->b_bcount = 0;
   1287 
   1288 	bremhash(bp);
   1289 	return (bp);
   1290 }
   1291 
   1292 /*
   1293  * Attempt to free an aged buffer off the queues.
   1294  * Called at splbio and with queue lock held.
   1295  * Returns the amount of buffer memory freed.
   1296  */
   1297 static int
   1298 buf_trim(void)
   1299 {
   1300 	struct buf *bp;
   1301 	long size = 0;
   1302 
   1303 	/* Instruct getnewbuf() to get buffers off the queues */
   1304 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1305 		return 0;
   1306 
   1307 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1308 	simple_unlock(&bp->b_interlock);
   1309 	size = bp->b_bufsize;
   1310 	bufmem -= size;
   1311 	simple_unlock(&bqueue_slock);
   1312 	if (size > 0) {
   1313 		buf_mrelease(bp->b_data, size);
   1314 		bp->b_bcount = bp->b_bufsize = 0;
   1315 	}
   1316 	/* brelse() will return the buffer to the global buffer pool */
   1317 	brelse(bp);
   1318 	simple_lock(&bqueue_slock);
   1319 	return size;
   1320 }
   1321 
   1322 int
   1323 buf_drain(int n)
   1324 {
   1325 	int s, size = 0, sz;
   1326 
   1327 	s = splbio();
   1328 	simple_lock(&bqueue_slock);
   1329 
   1330 	while (size < n && bufmem > bufmem_lowater) {
   1331 		sz = buf_trim();
   1332 		if (sz <= 0)
   1333 			break;
   1334 		size += sz;
   1335 	}
   1336 
   1337 	simple_unlock(&bqueue_slock);
   1338 	splx(s);
   1339 	return size;
   1340 }
   1341 
   1342 /*
   1343  * Wait for operations on the buffer to complete.
   1344  * When they do, extract and return the I/O's error value.
   1345  */
   1346 int
   1347 biowait(struct buf *bp)
   1348 {
   1349 	int s, error;
   1350 
   1351 	s = splbio();
   1352 	simple_lock(&bp->b_interlock);
   1353 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1354 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1355 
   1356 	/* check errors. */
   1357 	if (ISSET(bp->b_flags, B_ERROR))
   1358 		error = bp->b_error ? bp->b_error : EIO;
   1359 	else
   1360 		error = 0;
   1361 
   1362 	simple_unlock(&bp->b_interlock);
   1363 	splx(s);
   1364 	return (error);
   1365 }
   1366 
   1367 /*
   1368  * Mark I/O complete on a buffer.
   1369  *
   1370  * If a callback has been requested, e.g. the pageout
   1371  * daemon, do so. Otherwise, awaken waiting processes.
   1372  *
   1373  * [ Leffler, et al., says on p.247:
   1374  *	"This routine wakes up the blocked process, frees the buffer
   1375  *	for an asynchronous write, or, for a request by the pagedaemon
   1376  *	process, invokes a procedure specified in the buffer structure" ]
   1377  *
   1378  * In real life, the pagedaemon (or other system processes) wants
   1379  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1380  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1381  * for the vn device, that puts malloc'd buffers on the free lists!)
   1382  */
   1383 void
   1384 biodone(struct buf *bp)
   1385 {
   1386 	int s = splbio();
   1387 
   1388 	simple_lock(&bp->b_interlock);
   1389 	if (ISSET(bp->b_flags, B_DONE))
   1390 		panic("biodone already");
   1391 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1392 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1393 
   1394 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
   1395 		(*bioops.io_complete)(bp);
   1396 
   1397 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1398 		vwakeup(bp);
   1399 
   1400 	/*
   1401 	 * If necessary, call out.  Unlock the buffer before calling
   1402 	 * iodone() as the buffer isn't valid any more when it return.
   1403 	 */
   1404 	if (ISSET(bp->b_flags, B_CALL)) {
   1405 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1406 		simple_unlock(&bp->b_interlock);
   1407 		(*bp->b_iodone)(bp);
   1408 	} else {
   1409 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1410 			simple_unlock(&bp->b_interlock);
   1411 			brelse(bp);
   1412 		} else {			/* or just wakeup the buffer */
   1413 			CLR(bp->b_flags, B_WANTED);
   1414 			wakeup(bp);
   1415 			simple_unlock(&bp->b_interlock);
   1416 		}
   1417 	}
   1418 
   1419 	splx(s);
   1420 }
   1421 
   1422 /*
   1423  * Return a count of buffers on the "locked" queue.
   1424  */
   1425 int
   1426 count_lock_queue(void)
   1427 {
   1428 	struct buf *bp;
   1429 	int n = 0;
   1430 
   1431 	simple_lock(&bqueue_slock);
   1432 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1433 		n++;
   1434 	simple_unlock(&bqueue_slock);
   1435 	return (n);
   1436 }
   1437 
   1438 /*
   1439  * Wait for all buffers to complete I/O
   1440  * Return the number of "stuck" buffers.
   1441  */
   1442 int
   1443 buf_syncwait(void)
   1444 {
   1445 	struct buf *bp;
   1446 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1447 
   1448 	dcount = 10000;
   1449 	for (iter = 0; iter < 20;) {
   1450 		s = splbio();
   1451 		simple_lock(&bqueue_slock);
   1452 		nbusy = 0;
   1453 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1454 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1455 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1456 				nbusy++;
   1457 			/*
   1458 			 * With soft updates, some buffers that are
   1459 			 * written will be remarked as dirty until other
   1460 			 * buffers are written.
   1461 			 */
   1462 			if (bp->b_vp && bp->b_vp->v_mount
   1463 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1464 			    && (bp->b_flags & B_DELWRI)) {
   1465 				simple_lock(&bp->b_interlock);
   1466 				bremfree(bp);
   1467 				bp->b_flags |= B_BUSY;
   1468 				nbusy++;
   1469 				simple_unlock(&bp->b_interlock);
   1470 				simple_unlock(&bqueue_slock);
   1471 				bawrite(bp);
   1472 				if (dcount-- <= 0) {
   1473 					printf("softdep ");
   1474 					splx(s);
   1475 					goto fail;
   1476 				}
   1477 				simple_lock(&bqueue_slock);
   1478 			}
   1479 		    }
   1480 		}
   1481 
   1482 		simple_unlock(&bqueue_slock);
   1483 		splx(s);
   1484 
   1485 		if (nbusy == 0)
   1486 			break;
   1487 		if (nbusy_prev == 0)
   1488 			nbusy_prev = nbusy;
   1489 		printf("%d ", nbusy);
   1490 		tsleep(&nbusy, PRIBIO, "bflush",
   1491 		    (iter == 0) ? 1 : hz / 25 * iter);
   1492 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1493 			iter++;
   1494 		else
   1495 			nbusy_prev = nbusy;
   1496 	}
   1497 
   1498 	if (nbusy) {
   1499 fail:;
   1500 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1501 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1502 		s = splbio();
   1503 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1504 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1505 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1506 				vprint(NULL, bp->b_vp);
   1507 		    }
   1508 		}
   1509 		splx(s);
   1510 #endif
   1511 	}
   1512 
   1513 	return nbusy;
   1514 }
   1515 
   1516 static void
   1517 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1518 {
   1519 
   1520 	o->b_flags = i->b_flags;
   1521 	o->b_error = i->b_error;
   1522 	o->b_prio = i->b_prio;
   1523 	o->b_dev = i->b_dev;
   1524 	o->b_bufsize = i->b_bufsize;
   1525 	o->b_bcount = i->b_bcount;
   1526 	o->b_resid = i->b_resid;
   1527 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
   1528 	o->b_blkno = i->b_blkno;
   1529 	o->b_rawblkno = i->b_rawblkno;
   1530 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1531 	o->b_proc = PTRTOUINT64(i->b_proc);
   1532 	o->b_vp = PTRTOUINT64(i->b_vp);
   1533 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1534 	o->b_lblkno = i->b_lblkno;
   1535 }
   1536 
   1537 #define KERN_BUFSLOP 20
   1538 static int
   1539 sysctl_dobuf(SYSCTLFN_ARGS)
   1540 {
   1541 	struct buf *bp;
   1542 	struct buf_sysctl bs;
   1543 	char *dp;
   1544 	u_int i, op, arg;
   1545 	size_t len, needed, elem_size, out_size;
   1546 	int error, s, elem_count;
   1547 
   1548 	if (namelen == 1 && name[0] == CTL_QUERY)
   1549 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1550 
   1551 	if (namelen != 4)
   1552 		return (EINVAL);
   1553 
   1554 	dp = oldp;
   1555 	len = (oldp != NULL) ? *oldlenp : 0;
   1556 	op = name[0];
   1557 	arg = name[1];
   1558 	elem_size = name[2];
   1559 	elem_count = name[3];
   1560 	out_size = MIN(sizeof(bs), elem_size);
   1561 
   1562 	/*
   1563 	 * at the moment, these are just "placeholders" to make the
   1564 	 * API for retrieving kern.buf data more extensible in the
   1565 	 * future.
   1566 	 *
   1567 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1568 	 * these will be resolved at a later point.
   1569 	 */
   1570 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1571 	    elem_size < 1 || elem_count < 0)
   1572 		return (EINVAL);
   1573 
   1574 	error = 0;
   1575 	needed = 0;
   1576 	s = splbio();
   1577 	simple_lock(&bqueue_slock);
   1578 	for (i = 0; i < BQUEUES; i++) {
   1579 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1580 			if (len >= elem_size && elem_count > 0) {
   1581 				sysctl_fillbuf(bp, &bs);
   1582 				error = copyout(&bs, dp, out_size);
   1583 				if (error)
   1584 					goto cleanup;
   1585 				dp += elem_size;
   1586 				len -= elem_size;
   1587 			}
   1588 			if (elem_count > 0) {
   1589 				needed += elem_size;
   1590 				if (elem_count != INT_MAX)
   1591 					elem_count--;
   1592 			}
   1593 		}
   1594 	}
   1595 cleanup:
   1596 	simple_unlock(&bqueue_slock);
   1597 	splx(s);
   1598 
   1599 	*oldlenp = needed;
   1600 	if (oldp == NULL)
   1601 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1602 
   1603 	return (error);
   1604 }
   1605 
   1606 static int
   1607 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1608 {
   1609 	int t, error;
   1610 	struct sysctlnode node;
   1611 
   1612 	node = *rnode;
   1613 	node.sysctl_data = &t;
   1614 	t = *(int *)rnode->sysctl_data;
   1615 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1616 	if (error || newp == NULL)
   1617 		return (error);
   1618 
   1619 	if (t < 0)
   1620 		return EINVAL;
   1621 	if (rnode->sysctl_data == &bufcache) {
   1622 		if (t > 100)
   1623 			return (EINVAL);
   1624 		bufcache = t;
   1625 		buf_setwm();
   1626 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1627 		if (bufmem_hiwater - t < 16)
   1628 			return (EINVAL);
   1629 		bufmem_lowater = t;
   1630 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1631 		if (t - bufmem_lowater < 16)
   1632 			return (EINVAL);
   1633 		bufmem_hiwater = t;
   1634 	} else
   1635 		return (EINVAL);
   1636 
   1637 	/* Drain until below new high water mark */
   1638 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1639 		if (buf_drain(t / (2 * 1024)) <= 0)
   1640 			break;
   1641 	}
   1642 
   1643 	return 0;
   1644 }
   1645 
   1646 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1647 {
   1648 
   1649 	sysctl_createv(clog, 0, NULL, NULL,
   1650 		       CTLFLAG_PERMANENT,
   1651 		       CTLTYPE_NODE, "kern", NULL,
   1652 		       NULL, 0, NULL, 0,
   1653 		       CTL_KERN, CTL_EOL);
   1654 	sysctl_createv(clog, 0, NULL, NULL,
   1655 		       CTLFLAG_PERMANENT,
   1656 		       CTLTYPE_NODE, "buf",
   1657 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1658 		       sysctl_dobuf, 0, NULL, 0,
   1659 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1660 }
   1661 
   1662 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1663 {
   1664 
   1665 	sysctl_createv(clog, 0, NULL, NULL,
   1666 		       CTLFLAG_PERMANENT,
   1667 		       CTLTYPE_NODE, "vm", NULL,
   1668 		       NULL, 0, NULL, 0,
   1669 		       CTL_VM, CTL_EOL);
   1670 
   1671 	sysctl_createv(clog, 0, NULL, NULL,
   1672 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1673 		       CTLTYPE_INT, "bufcache",
   1674 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1675 				    "buffer cache"),
   1676 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1677 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1678 	sysctl_createv(clog, 0, NULL, NULL,
   1679 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1680 		       CTLTYPE_INT, "bufmem",
   1681 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1682 				    "cache"),
   1683 		       NULL, 0, &bufmem, 0,
   1684 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1685 	sysctl_createv(clog, 0, NULL, NULL,
   1686 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1687 		       CTLTYPE_INT, "bufmem_lowater",
   1688 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1689 				    "reserve for buffer cache"),
   1690 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1691 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1692 	sysctl_createv(clog, 0, NULL, NULL,
   1693 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1694 		       CTLTYPE_INT, "bufmem_hiwater",
   1695 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1696 				    "for buffer cache"),
   1697 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1698 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1699 }
   1700 
   1701 #ifdef DEBUG
   1702 /*
   1703  * Print out statistics on the current allocation of the buffer pool.
   1704  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1705  * in vfs_syscalls.c using sysctl.
   1706  */
   1707 void
   1708 vfs_bufstats(void)
   1709 {
   1710 	int s, i, j, count;
   1711 	struct buf *bp;
   1712 	struct bqueue *dp;
   1713 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1714 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1715 
   1716 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1717 		count = 0;
   1718 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1719 			counts[j] = 0;
   1720 		s = splbio();
   1721 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1722 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1723 			count++;
   1724 		}
   1725 		splx(s);
   1726 		printf("%s: total-%d", bname[i], count);
   1727 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1728 			if (counts[j] != 0)
   1729 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1730 		printf("\n");
   1731 	}
   1732 }
   1733 #endif /* DEBUG */
   1734 
   1735 /* ------------------------------ */
   1736 
   1737 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
   1738 
   1739 static struct buf *
   1740 getiobuf1(int prflags)
   1741 {
   1742 	struct buf *bp;
   1743 	int s;
   1744 
   1745 	s = splbio();
   1746 	bp = pool_get(&bufiopool, prflags);
   1747 	splx(s);
   1748 	if (bp != NULL) {
   1749 		BUF_INIT(bp);
   1750 	}
   1751 	return bp;
   1752 }
   1753 
   1754 struct buf *
   1755 getiobuf(void)
   1756 {
   1757 
   1758 	return getiobuf1(PR_WAITOK);
   1759 }
   1760 
   1761 struct buf *
   1762 getiobuf_nowait(void)
   1763 {
   1764 
   1765 	return getiobuf1(PR_NOWAIT);
   1766 }
   1767 
   1768 void
   1769 putiobuf(struct buf *bp)
   1770 {
   1771 	int s;
   1772 
   1773 	s = splbio();
   1774 	pool_put(&bufiopool, bp);
   1775 	splx(s);
   1776 }
   1777 
   1778 /*
   1779  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1780  */
   1781 
   1782 static void
   1783 nestiobuf_iodone(struct buf *bp)
   1784 {
   1785 	struct buf *mbp = bp->b_private;
   1786 	int error;
   1787 	int donebytes;
   1788 
   1789 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1790 	KASSERT(mbp != bp);
   1791 
   1792 	error = 0;
   1793 	if ((bp->b_flags & B_ERROR) != 0) {
   1794 		error = EIO;
   1795 		/* check if an error code was returned */
   1796 		if (bp->b_error)
   1797 			error = bp->b_error;
   1798 	} else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
   1799 		/*
   1800 		 * Not all got transfered, raise an error. We have no way to
   1801 		 * propagate these conditions to mbp.
   1802 		 */
   1803 		error = EIO;
   1804 	}
   1805 
   1806 	donebytes = bp->b_bufsize;
   1807 
   1808 	putiobuf(bp);
   1809 	nestiobuf_done(mbp, donebytes, error);
   1810 }
   1811 
   1812 /*
   1813  * nestiobuf_setup: setup a "nested" buffer.
   1814  *
   1815  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1816  * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
   1817  * => 'offset' is a byte offset in the master buffer.
   1818  * => 'size' is a size in bytes of this nested buffer.
   1819  */
   1820 
   1821 void
   1822 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
   1823 {
   1824 	const int b_read = mbp->b_flags & B_READ;
   1825 	struct vnode *vp = mbp->b_vp;
   1826 
   1827 	KASSERT(mbp->b_bcount >= offset + size);
   1828 	bp->b_vp = vp;
   1829 	bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
   1830 	bp->b_iodone = nestiobuf_iodone;
   1831 	bp->b_data = mbp->b_data + offset;
   1832 	bp->b_resid = bp->b_bcount = size;
   1833 	bp->b_bufsize = bp->b_bcount;
   1834 	bp->b_private = mbp;
   1835 	BIO_COPYPRIO(bp, mbp);
   1836 	if (!b_read && vp != NULL) {
   1837 		int s;
   1838 
   1839 		s = splbio();
   1840 		V_INCR_NUMOUTPUT(vp);
   1841 		splx(s);
   1842 	}
   1843 }
   1844 
   1845 /*
   1846  * nestiobuf_done: propagate completion to the master buffer.
   1847  *
   1848  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1849  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1850  */
   1851 
   1852 void
   1853 nestiobuf_done(struct buf *mbp, int donebytes, int error)
   1854 {
   1855 	int s;
   1856 
   1857 	if (donebytes == 0) {
   1858 		return;
   1859 	}
   1860 	s = splbio();
   1861 	KASSERT(mbp->b_resid >= donebytes);
   1862 	if (error) {
   1863 		mbp->b_flags |= B_ERROR;
   1864 		mbp->b_error = error;
   1865 	}
   1866 	mbp->b_resid -= donebytes;
   1867 	if (mbp->b_resid == 0) {
   1868 		if ((mbp->b_flags & B_ERROR) != 0) {
   1869 			mbp->b_resid = mbp->b_bcount; /* be conservative */
   1870 		}
   1871 		biodone(mbp);
   1872 	}
   1873 	splx(s);
   1874 }
   1875