vfs_bio.c revision 1.173 1 /* $NetBSD: vfs_bio.c,v 1.173 2007/07/09 21:10:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "fs_ffs.h"
81 #include "opt_bufcache.h"
82 #include "opt_softdep.h"
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.173 2007/07/09 21:10:57 ad Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/proc.h>
91 #include <sys/buf.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/malloc.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sysctl.h>
97 #include <sys/conf.h>
98 #include <sys/kauth.h>
99
100 #include <uvm/uvm.h>
101
102 #include <miscfs/specfs/specdev.h>
103
104 #ifndef BUFPAGES
105 # define BUFPAGES 0
106 #endif
107
108 #ifdef BUFCACHE
109 # if (BUFCACHE < 5) || (BUFCACHE > 95)
110 # error BUFCACHE is not between 5 and 95
111 # endif
112 #else
113 # define BUFCACHE 15
114 #endif
115
116 u_int nbuf; /* XXX - for softdep_lockedbufs */
117 u_int bufpages = BUFPAGES; /* optional hardwired count */
118 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
119
120 /* Function prototypes */
121 struct bqueue;
122
123 static void buf_setwm(void);
124 static int buf_trim(void);
125 static void *bufpool_page_alloc(struct pool *, int);
126 static void bufpool_page_free(struct pool *, void *);
127 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
128 kauth_cred_t, int);
129 static struct buf *getnewbuf(int, int, int);
130 static int buf_lotsfree(void);
131 static int buf_canrelease(void);
132 static inline u_long buf_mempoolidx(u_long);
133 static inline u_long buf_roundsize(u_long);
134 static inline void *buf_malloc(size_t);
135 static void buf_mrelease(void *, size_t);
136 static inline void binsheadfree(struct buf *, struct bqueue *);
137 static inline void binstailfree(struct buf *, struct bqueue *);
138 int count_lock_queue(void); /* XXX */
139 #ifdef DEBUG
140 static int checkfreelist(struct buf *, struct bqueue *);
141 #endif
142
143 /*
144 * Definitions for the buffer hash lists.
145 */
146 #define BUFHASH(dvp, lbn) \
147 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
148 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
149 u_long bufhash;
150 #if !defined(SOFTDEP) || !defined(FFS)
151 struct bio_ops bioops; /* I/O operation notification */
152 #endif
153
154 /*
155 * Insq/Remq for the buffer hash lists.
156 */
157 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
158 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
159
160 /*
161 * Definitions for the buffer free lists.
162 */
163 #define BQUEUES 3 /* number of free buffer queues */
164
165 #define BQ_LOCKED 0 /* super-blocks &c */
166 #define BQ_LRU 1 /* lru, useful buffers */
167 #define BQ_AGE 2 /* rubbish */
168
169 struct bqueue {
170 TAILQ_HEAD(, buf) bq_queue;
171 uint64_t bq_bytes;
172 } bufqueues[BQUEUES];
173 int needbuffer;
174
175 /*
176 * Buffer queue lock.
177 * Take this lock first if also taking some buffer's b_interlock.
178 */
179 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
180
181 /*
182 * Buffer pool for I/O buffers.
183 */
184 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
185 &pool_allocator_nointr, IPL_NONE);
186
187
188 /* XXX - somewhat gross.. */
189 #if MAXBSIZE == 0x2000
190 #define NMEMPOOLS 5
191 #elif MAXBSIZE == 0x4000
192 #define NMEMPOOLS 6
193 #elif MAXBSIZE == 0x8000
194 #define NMEMPOOLS 7
195 #else
196 #define NMEMPOOLS 8
197 #endif
198
199 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201 #error update vfs_bio buffer memory parameters
202 #endif
203
204 /* Buffer memory pools */
205 static struct pool bmempools[NMEMPOOLS];
206
207 struct vm_map *buf_map;
208
209 /*
210 * Buffer memory pool allocator.
211 */
212 static void *
213 bufpool_page_alloc(struct pool *pp, int flags)
214 {
215
216 return (void *)uvm_km_alloc(buf_map,
217 MAXBSIZE, MAXBSIZE,
218 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
219 | UVM_KMF_WIRED);
220 }
221
222 static void
223 bufpool_page_free(struct pool *pp, void *v)
224 {
225
226 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
227 }
228
229 static struct pool_allocator bufmempool_allocator = {
230 .pa_alloc = bufpool_page_alloc,
231 .pa_free = bufpool_page_free,
232 .pa_pagesz = MAXBSIZE,
233 };
234
235 /* Buffer memory management variables */
236 u_long bufmem_valimit;
237 u_long bufmem_hiwater;
238 u_long bufmem_lowater;
239 u_long bufmem;
240
241 /*
242 * MD code can call this to set a hard limit on the amount
243 * of virtual memory used by the buffer cache.
244 */
245 int
246 buf_setvalimit(vsize_t sz)
247 {
248
249 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
250 if (sz < NMEMPOOLS * MAXBSIZE)
251 return EINVAL;
252
253 bufmem_valimit = sz;
254 return 0;
255 }
256
257 static void
258 buf_setwm(void)
259 {
260
261 bufmem_hiwater = buf_memcalc();
262 /* lowater is approx. 2% of memory (with bufcache = 15) */
263 #define BUFMEM_WMSHIFT 3
264 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
265 if (bufmem_hiwater < BUFMEM_HIWMMIN)
266 /* Ensure a reasonable minimum value */
267 bufmem_hiwater = BUFMEM_HIWMMIN;
268 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
269 }
270
271 #ifdef DEBUG
272 int debug_verify_freelist = 0;
273 static int
274 checkfreelist(struct buf *bp, struct bqueue *dp)
275 {
276 struct buf *b;
277
278 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
279 if (b == bp)
280 return 1;
281 }
282 return 0;
283 }
284 #endif
285
286 /*
287 * Insq/Remq for the buffer hash lists.
288 * Call with buffer queue locked.
289 */
290 static inline void
291 binsheadfree(struct buf *bp, struct bqueue *dp)
292 {
293
294 KASSERT(bp->b_freelistindex == -1);
295 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
296 dp->bq_bytes += bp->b_bufsize;
297 bp->b_freelistindex = dp - bufqueues;
298 }
299
300 static inline void
301 binstailfree(struct buf *bp, struct bqueue *dp)
302 {
303
304 KASSERT(bp->b_freelistindex == -1);
305 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
306 dp->bq_bytes += bp->b_bufsize;
307 bp->b_freelistindex = dp - bufqueues;
308 }
309
310 void
311 bremfree(struct buf *bp)
312 {
313 struct bqueue *dp;
314 int bqidx = bp->b_freelistindex;
315
316 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
317
318 KASSERT(bqidx != -1);
319 dp = &bufqueues[bqidx];
320 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
321 KASSERT(dp->bq_bytes >= bp->b_bufsize);
322 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
323 dp->bq_bytes -= bp->b_bufsize;
324 #if defined(DIAGNOSTIC)
325 bp->b_freelistindex = -1;
326 #endif /* defined(DIAGNOSTIC) */
327 }
328
329 u_long
330 buf_memcalc(void)
331 {
332 u_long n;
333
334 /*
335 * Determine the upper bound of memory to use for buffers.
336 *
337 * - If bufpages is specified, use that as the number
338 * pages.
339 *
340 * - Otherwise, use bufcache as the percentage of
341 * physical memory.
342 */
343 if (bufpages != 0) {
344 n = bufpages;
345 } else {
346 if (bufcache < 5) {
347 printf("forcing bufcache %d -> 5", bufcache);
348 bufcache = 5;
349 }
350 if (bufcache > 95) {
351 printf("forcing bufcache %d -> 95", bufcache);
352 bufcache = 95;
353 }
354 n = physmem / 100 * bufcache;
355 }
356
357 n <<= PAGE_SHIFT;
358 if (bufmem_valimit != 0 && n > bufmem_valimit)
359 n = bufmem_valimit;
360
361 return (n);
362 }
363
364 /*
365 * Initialize buffers and hash links for buffers.
366 */
367 void
368 bufinit(void)
369 {
370 struct bqueue *dp;
371 int use_std;
372 u_int i;
373
374 /*
375 * Initialize buffer cache memory parameters.
376 */
377 bufmem = 0;
378 buf_setwm();
379
380 if (bufmem_valimit != 0) {
381 vaddr_t minaddr = 0, maxaddr;
382 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
383 bufmem_valimit, 0, false, 0);
384 if (buf_map == NULL)
385 panic("bufinit: cannot allocate submap");
386 } else
387 buf_map = kernel_map;
388
389 /* On "small" machines use small pool page sizes where possible */
390 use_std = (physmem < atop(16*1024*1024));
391
392 /*
393 * Also use them on systems that can map the pool pages using
394 * a direct-mapped segment.
395 */
396 #ifdef PMAP_MAP_POOLPAGE
397 use_std = 1;
398 #endif
399
400 bufmempool_allocator.pa_backingmap = buf_map;
401 for (i = 0; i < NMEMPOOLS; i++) {
402 struct pool_allocator *pa;
403 struct pool *pp = &bmempools[i];
404 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
405 char *name = malloc(8, M_TEMP, M_WAITOK);
406 if (__predict_true(size >= 1024))
407 (void)snprintf(name, 8, "buf%dk", size / 1024);
408 else
409 (void)snprintf(name, 8, "buf%db", size);
410 pa = (size <= PAGE_SIZE && use_std)
411 ? &pool_allocator_nointr
412 : &bufmempool_allocator;
413 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
414 pool_setlowat(pp, 1);
415 pool_sethiwat(pp, 1);
416 }
417
418 /* Initialize the buffer queues */
419 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
420 TAILQ_INIT(&dp->bq_queue);
421 dp->bq_bytes = 0;
422 }
423
424 /*
425 * Estimate hash table size based on the amount of memory we
426 * intend to use for the buffer cache. The average buffer
427 * size is dependent on our clients (i.e. filesystems).
428 *
429 * For now, use an empirical 3K per buffer.
430 */
431 nbuf = (bufmem_hiwater / 1024) / 3;
432 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
433 }
434
435 static int
436 buf_lotsfree(void)
437 {
438 int try, thresh;
439
440 /* Always allocate if doing copy on write */
441 if (curlwp->l_pflag & LP_UFSCOW)
442 return 1;
443
444 /* Always allocate if less than the low water mark. */
445 if (bufmem < bufmem_lowater)
446 return 1;
447
448 /* Never allocate if greater than the high water mark. */
449 if (bufmem > bufmem_hiwater)
450 return 0;
451
452 /* If there's anything on the AGE list, it should be eaten. */
453 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
454 return 0;
455
456 /*
457 * The probabily of getting a new allocation is inversely
458 * proportional to the current size of the cache, using
459 * a granularity of 16 steps.
460 */
461 try = random() & 0x0000000fL;
462
463 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
464 thresh = (bufmem - bufmem_lowater) /
465 ((bufmem_hiwater - bufmem_lowater) / 16);
466
467 if (try >= thresh)
468 return 1;
469
470 /* Otherwise don't allocate. */
471 return 0;
472 }
473
474 /*
475 * Return estimate of bytes we think need to be
476 * released to help resolve low memory conditions.
477 *
478 * => called at splbio.
479 * => called with bqueue_slock held.
480 */
481 static int
482 buf_canrelease(void)
483 {
484 int pagedemand, ninvalid = 0;
485
486 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
487
488 if (bufmem < bufmem_lowater)
489 return 0;
490
491 if (bufmem > bufmem_hiwater)
492 return bufmem - bufmem_hiwater;
493
494 ninvalid += bufqueues[BQ_AGE].bq_bytes;
495
496 pagedemand = uvmexp.freetarg - uvmexp.free;
497 if (pagedemand < 0)
498 return ninvalid;
499 return MAX(ninvalid, MIN(2 * MAXBSIZE,
500 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
501 }
502
503 /*
504 * Buffer memory allocation helper functions
505 */
506 static inline u_long
507 buf_mempoolidx(u_long size)
508 {
509 u_int n = 0;
510
511 size -= 1;
512 size >>= MEMPOOL_INDEX_OFFSET;
513 while (size) {
514 size >>= 1;
515 n += 1;
516 }
517 if (n >= NMEMPOOLS)
518 panic("buf mem pool index %d", n);
519 return n;
520 }
521
522 static inline u_long
523 buf_roundsize(u_long size)
524 {
525 /* Round up to nearest power of 2 */
526 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
527 }
528
529 static inline void *
530 buf_malloc(size_t size)
531 {
532 u_int n = buf_mempoolidx(size);
533 void *addr;
534 int s;
535
536 while (1) {
537 addr = pool_get(&bmempools[n], PR_NOWAIT);
538 if (addr != NULL)
539 break;
540
541 /* No memory, see if we can free some. If so, try again */
542 if (buf_drain(1) > 0)
543 continue;
544
545 /* Wait for buffers to arrive on the LRU queue */
546 s = splbio();
547 simple_lock(&bqueue_slock);
548 needbuffer = 1;
549 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
550 "buf_malloc", 0, &bqueue_slock);
551 splx(s);
552 }
553
554 return addr;
555 }
556
557 static void
558 buf_mrelease(void *addr, size_t size)
559 {
560
561 pool_put(&bmempools[buf_mempoolidx(size)], addr);
562 }
563
564 /*
565 * bread()/breadn() helper.
566 */
567 static inline struct buf *
568 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
569 int async)
570 {
571 struct buf *bp;
572 struct mount *mp;
573
574 bp = getblk(vp, blkno, size, 0, 0);
575
576 #ifdef DIAGNOSTIC
577 if (bp == NULL) {
578 panic("bio_doread: no such buf");
579 }
580 #endif
581
582 /*
583 * If buffer does not have data valid, start a read.
584 * Note that if buffer is B_INVAL, getblk() won't return it.
585 * Therefore, it's valid if its I/O has completed or been delayed.
586 */
587 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
588 /* Start I/O for the buffer. */
589 SET(bp->b_flags, B_READ | async);
590 if (async)
591 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
592 else
593 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
594 VOP_STRATEGY(vp, bp);
595
596 /* Pay for the read. */
597 curproc->p_stats->p_ru.ru_inblock++;
598 } else if (async) {
599 brelse(bp);
600 }
601
602 if (vp->v_type == VBLK)
603 mp = vp->v_specmountpoint;
604 else
605 mp = vp->v_mount;
606
607 /*
608 * Collect statistics on synchronous and asynchronous reads.
609 * Reads from block devices are charged to their associated
610 * filesystem (if any).
611 */
612 if (mp != NULL) {
613 if (async == 0)
614 mp->mnt_stat.f_syncreads++;
615 else
616 mp->mnt_stat.f_asyncreads++;
617 }
618
619 return (bp);
620 }
621
622 /*
623 * Read a disk block.
624 * This algorithm described in Bach (p.54).
625 */
626 int
627 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
628 struct buf **bpp)
629 {
630 struct buf *bp;
631
632 /* Get buffer for block. */
633 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
634
635 /* Wait for the read to complete, and return result. */
636 return (biowait(bp));
637 }
638
639 /*
640 * Read-ahead multiple disk blocks. The first is sync, the rest async.
641 * Trivial modification to the breada algorithm presented in Bach (p.55).
642 */
643 int
644 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
645 int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
646 {
647 struct buf *bp;
648 int i;
649
650 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
651
652 /*
653 * For each of the read-ahead blocks, start a read, if necessary.
654 */
655 for (i = 0; i < nrablks; i++) {
656 /* If it's in the cache, just go on to next one. */
657 if (incore(vp, rablks[i]))
658 continue;
659
660 /* Get a buffer for the read-ahead block */
661 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
662 }
663
664 /* Otherwise, we had to start a read for it; wait until it's valid. */
665 return (biowait(bp));
666 }
667
668 /*
669 * Read with single-block read-ahead. Defined in Bach (p.55), but
670 * implemented as a call to breadn().
671 * XXX for compatibility with old file systems.
672 */
673 int
674 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
675 int rabsize, kauth_cred_t cred, struct buf **bpp)
676 {
677
678 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
679 }
680
681 /*
682 * Block write. Described in Bach (p.56)
683 */
684 int
685 bwrite(struct buf *bp)
686 {
687 int rv, sync, wasdelayed, s;
688 struct vnode *vp;
689 struct mount *mp;
690
691 KASSERT(ISSET(bp->b_flags, B_BUSY));
692
693 vp = bp->b_vp;
694 if (vp != NULL) {
695 if (vp->v_type == VBLK)
696 mp = vp->v_specmountpoint;
697 else
698 mp = vp->v_mount;
699 } else {
700 mp = NULL;
701 }
702
703 /*
704 * Remember buffer type, to switch on it later. If the write was
705 * synchronous, but the file system was mounted with MNT_ASYNC,
706 * convert it to a delayed write.
707 * XXX note that this relies on delayed tape writes being converted
708 * to async, not sync writes (which is safe, but ugly).
709 */
710 sync = !ISSET(bp->b_flags, B_ASYNC);
711 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
712 bdwrite(bp);
713 return (0);
714 }
715
716 /*
717 * Collect statistics on synchronous and asynchronous writes.
718 * Writes to block devices are charged to their associated
719 * filesystem (if any).
720 */
721 if (mp != NULL) {
722 if (sync)
723 mp->mnt_stat.f_syncwrites++;
724 else
725 mp->mnt_stat.f_asyncwrites++;
726 }
727
728 s = splbio();
729 simple_lock(&bp->b_interlock);
730
731 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
732
733 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
734
735 /*
736 * Pay for the I/O operation and make sure the buf is on the correct
737 * vnode queue.
738 */
739 if (wasdelayed)
740 reassignbuf(bp, bp->b_vp);
741 else
742 curproc->p_stats->p_ru.ru_oublock++;
743
744 /* Initiate disk write. Make sure the appropriate party is charged. */
745 V_INCR_NUMOUTPUT(bp->b_vp);
746 simple_unlock(&bp->b_interlock);
747 splx(s);
748
749 if (sync)
750 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
751 else
752 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
753
754 VOP_STRATEGY(vp, bp);
755
756 if (sync) {
757 /* If I/O was synchronous, wait for it to complete. */
758 rv = biowait(bp);
759
760 /* Release the buffer. */
761 brelse(bp);
762
763 return (rv);
764 } else {
765 return (0);
766 }
767 }
768
769 int
770 vn_bwrite(void *v)
771 {
772 struct vop_bwrite_args *ap = v;
773
774 return (bwrite(ap->a_bp));
775 }
776
777 /*
778 * Delayed write.
779 *
780 * The buffer is marked dirty, but is not queued for I/O.
781 * This routine should be used when the buffer is expected
782 * to be modified again soon, typically a small write that
783 * partially fills a buffer.
784 *
785 * NB: magnetic tapes cannot be delayed; they must be
786 * written in the order that the writes are requested.
787 *
788 * Described in Leffler, et al. (pp. 208-213).
789 */
790 void
791 bdwrite(struct buf *bp)
792 {
793 int s;
794
795 /* If this is a tape block, write the block now. */
796 if (bdev_type(bp->b_dev) == D_TAPE) {
797 bawrite(bp);
798 return;
799 }
800
801 /*
802 * If the block hasn't been seen before:
803 * (1) Mark it as having been seen,
804 * (2) Charge for the write,
805 * (3) Make sure it's on its vnode's correct block list.
806 */
807 s = splbio();
808 simple_lock(&bp->b_interlock);
809
810 KASSERT(ISSET(bp->b_flags, B_BUSY));
811
812 if (!ISSET(bp->b_flags, B_DELWRI)) {
813 SET(bp->b_flags, B_DELWRI);
814 curproc->p_stats->p_ru.ru_oublock++;
815 reassignbuf(bp, bp->b_vp);
816 }
817
818 /* Otherwise, the "write" is done, so mark and release the buffer. */
819 CLR(bp->b_flags, B_DONE);
820 simple_unlock(&bp->b_interlock);
821 splx(s);
822
823 brelse(bp);
824 }
825
826 /*
827 * Asynchronous block write; just an asynchronous bwrite().
828 */
829 void
830 bawrite(struct buf *bp)
831 {
832 int s;
833
834 s = splbio();
835 simple_lock(&bp->b_interlock);
836
837 KASSERT(ISSET(bp->b_flags, B_BUSY));
838
839 SET(bp->b_flags, B_ASYNC);
840 simple_unlock(&bp->b_interlock);
841 splx(s);
842 VOP_BWRITE(bp);
843 }
844
845 /*
846 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
847 * Call at splbio() and with the buffer interlock locked.
848 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
849 */
850 void
851 bdirty(struct buf *bp)
852 {
853
854 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
855 KASSERT(ISSET(bp->b_flags, B_BUSY));
856
857 CLR(bp->b_flags, B_AGE);
858
859 if (!ISSET(bp->b_flags, B_DELWRI)) {
860 SET(bp->b_flags, B_DELWRI);
861 curproc->p_stats->p_ru.ru_oublock++;
862 reassignbuf(bp, bp->b_vp);
863 }
864 }
865
866 /*
867 * Release a buffer on to the free lists.
868 * Described in Bach (p. 46).
869 */
870 void
871 brelse(struct buf *bp)
872 {
873 struct bqueue *bufq;
874 int s;
875
876 /* Block disk interrupts. */
877 s = splbio();
878 simple_lock(&bqueue_slock);
879 simple_lock(&bp->b_interlock);
880
881 KASSERT(ISSET(bp->b_flags, B_BUSY));
882 KASSERT(!ISSET(bp->b_flags, B_CALL));
883
884 /* Wake up any processes waiting for any buffer to become free. */
885 if (needbuffer) {
886 needbuffer = 0;
887 wakeup(&needbuffer);
888 }
889
890 /* Wake up any proceeses waiting for _this_ buffer to become free. */
891 if (ISSET(bp->b_flags, B_WANTED)) {
892 CLR(bp->b_flags, B_WANTED|B_AGE);
893 wakeup(bp);
894 }
895
896 /*
897 * Determine which queue the buffer should be on, then put it there.
898 */
899
900 /* If it's locked, don't report an error; try again later. */
901 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
902 CLR(bp->b_flags, B_ERROR);
903
904 /* If it's not cacheable, or an error, mark it invalid. */
905 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
906 SET(bp->b_flags, B_INVAL);
907
908 if (ISSET(bp->b_flags, B_VFLUSH)) {
909 /*
910 * This is a delayed write buffer that was just flushed to
911 * disk. It is still on the LRU queue. If it's become
912 * invalid, then we need to move it to a different queue;
913 * otherwise leave it in its current position.
914 */
915 CLR(bp->b_flags, B_VFLUSH);
916 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
917 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
918 goto already_queued;
919 } else {
920 bremfree(bp);
921 }
922 }
923
924 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
925 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
926 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
927
928 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
929 /*
930 * If it's invalid or empty, dissociate it from its vnode
931 * and put on the head of the appropriate queue.
932 */
933 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
934 (*bioops.io_deallocate)(bp);
935 CLR(bp->b_flags, B_DONE|B_DELWRI);
936 if (bp->b_vp) {
937 reassignbuf(bp, bp->b_vp);
938 brelvp(bp);
939 }
940 if (bp->b_bufsize <= 0)
941 /* no data */
942 goto already_queued;
943 else
944 /* invalid data */
945 bufq = &bufqueues[BQ_AGE];
946 binsheadfree(bp, bufq);
947 } else {
948 /*
949 * It has valid data. Put it on the end of the appropriate
950 * queue, so that it'll stick around for as long as possible.
951 * If buf is AGE, but has dependencies, must put it on last
952 * bufqueue to be scanned, ie LRU. This protects against the
953 * livelock where BQ_AGE only has buffers with dependencies,
954 * and we thus never get to the dependent buffers in BQ_LRU.
955 */
956 if (ISSET(bp->b_flags, B_LOCKED))
957 /* locked in core */
958 bufq = &bufqueues[BQ_LOCKED];
959 else if (!ISSET(bp->b_flags, B_AGE))
960 /* valid data */
961 bufq = &bufqueues[BQ_LRU];
962 else {
963 /* stale but valid data */
964 int has_deps;
965
966 if (LIST_FIRST(&bp->b_dep) != NULL &&
967 bioops.io_countdeps)
968 has_deps = (*bioops.io_countdeps)(bp, 0);
969 else
970 has_deps = 0;
971 bufq = has_deps ? &bufqueues[BQ_LRU] :
972 &bufqueues[BQ_AGE];
973 }
974 binstailfree(bp, bufq);
975 }
976
977 already_queued:
978 /* Unlock the buffer. */
979 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
980 SET(bp->b_flags, B_CACHE);
981
982 /* Allow disk interrupts. */
983 simple_unlock(&bp->b_interlock);
984 simple_unlock(&bqueue_slock);
985 splx(s);
986 if (bp->b_bufsize <= 0) {
987 #ifdef DEBUG
988 memset((char *)bp, 0, sizeof(*bp));
989 #endif
990 pool_put(&bufpool, bp);
991 }
992 }
993
994 /*
995 * Determine if a block is in the cache.
996 * Just look on what would be its hash chain. If it's there, return
997 * a pointer to it, unless it's marked invalid. If it's marked invalid,
998 * we normally don't return the buffer, unless the caller explicitly
999 * wants us to.
1000 */
1001 struct buf *
1002 incore(struct vnode *vp, daddr_t blkno)
1003 {
1004 struct buf *bp;
1005
1006 /* Search hash chain */
1007 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1008 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1009 !ISSET(bp->b_flags, B_INVAL))
1010 return (bp);
1011 }
1012
1013 return (NULL);
1014 }
1015
1016 /*
1017 * Get a block of requested size that is associated with
1018 * a given vnode and block offset. If it is found in the
1019 * block cache, mark it as having been found, make it busy
1020 * and return it. Otherwise, return an empty block of the
1021 * correct size. It is up to the caller to insure that the
1022 * cached blocks be of the correct size.
1023 */
1024 struct buf *
1025 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1026 {
1027 struct buf *bp;
1028 int s, err;
1029 int preserve;
1030
1031 start:
1032 s = splbio();
1033 simple_lock(&bqueue_slock);
1034 bp = incore(vp, blkno);
1035 if (bp != NULL) {
1036 simple_lock(&bp->b_interlock);
1037 if (ISSET(bp->b_flags, B_BUSY)) {
1038 simple_unlock(&bqueue_slock);
1039 if (curlwp == uvm.pagedaemon_lwp) {
1040 simple_unlock(&bp->b_interlock);
1041 splx(s);
1042 return NULL;
1043 }
1044 SET(bp->b_flags, B_WANTED);
1045 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1046 "getblk", slptimeo, &bp->b_interlock);
1047 splx(s);
1048 if (err)
1049 return (NULL);
1050 goto start;
1051 }
1052 #ifdef DIAGNOSTIC
1053 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1054 bp->b_bcount < size && vp->v_type != VBLK)
1055 panic("getblk: block size invariant failed");
1056 #endif
1057 SET(bp->b_flags, B_BUSY);
1058 bremfree(bp);
1059 preserve = 1;
1060 } else {
1061 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1062 simple_unlock(&bqueue_slock);
1063 splx(s);
1064 goto start;
1065 }
1066
1067 binshash(bp, BUFHASH(vp, blkno));
1068 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1069 bgetvp(vp, bp);
1070 preserve = 0;
1071 }
1072 simple_unlock(&bp->b_interlock);
1073 simple_unlock(&bqueue_slock);
1074 splx(s);
1075 /*
1076 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1077 * if we re-size buffers here.
1078 */
1079 if (ISSET(bp->b_flags, B_LOCKED)) {
1080 KASSERT(bp->b_bufsize >= size);
1081 } else {
1082 allocbuf(bp, size, preserve);
1083 }
1084 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1085 return (bp);
1086 }
1087
1088 /*
1089 * Get an empty, disassociated buffer of given size.
1090 */
1091 struct buf *
1092 geteblk(int size)
1093 {
1094 struct buf *bp;
1095 int s;
1096
1097 s = splbio();
1098 simple_lock(&bqueue_slock);
1099 while ((bp = getnewbuf(0, 0, 0)) == 0)
1100 ;
1101
1102 SET(bp->b_flags, B_INVAL);
1103 binshash(bp, &invalhash);
1104 simple_unlock(&bqueue_slock);
1105 simple_unlock(&bp->b_interlock);
1106 splx(s);
1107 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1108 allocbuf(bp, size, 0);
1109 return (bp);
1110 }
1111
1112 /*
1113 * Expand or contract the actual memory allocated to a buffer.
1114 *
1115 * If the buffer shrinks, data is lost, so it's up to the
1116 * caller to have written it out *first*; this routine will not
1117 * start a write. If the buffer grows, it's the callers
1118 * responsibility to fill out the buffer's additional contents.
1119 */
1120 void
1121 allocbuf(struct buf *bp, int size, int preserve)
1122 {
1123 vsize_t oldsize, desired_size;
1124 void *addr;
1125 int s, delta;
1126
1127 desired_size = buf_roundsize(size);
1128 if (desired_size > MAXBSIZE)
1129 printf("allocbuf: buffer larger than MAXBSIZE requested");
1130
1131 bp->b_bcount = size;
1132
1133 oldsize = bp->b_bufsize;
1134 if (oldsize == desired_size)
1135 return;
1136
1137 /*
1138 * If we want a buffer of a different size, re-allocate the
1139 * buffer's memory; copy old content only if needed.
1140 */
1141 addr = buf_malloc(desired_size);
1142 if (preserve)
1143 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1144 if (bp->b_data != NULL)
1145 buf_mrelease(bp->b_data, oldsize);
1146 bp->b_data = addr;
1147 bp->b_bufsize = desired_size;
1148
1149 /*
1150 * Update overall buffer memory counter (protected by bqueue_slock)
1151 */
1152 delta = (long)desired_size - (long)oldsize;
1153
1154 s = splbio();
1155 simple_lock(&bqueue_slock);
1156 if ((bufmem += delta) > bufmem_hiwater) {
1157 /*
1158 * Need to trim overall memory usage.
1159 */
1160 while (buf_canrelease()) {
1161 if (curcpu()->ci_schedstate.spc_flags &
1162 SPCF_SHOULDYIELD) {
1163 simple_unlock(&bqueue_slock);
1164 splx(s);
1165 preempt();
1166 s = splbio();
1167 simple_lock(&bqueue_slock);
1168 }
1169
1170 if (buf_trim() == 0)
1171 break;
1172 }
1173 }
1174
1175 simple_unlock(&bqueue_slock);
1176 splx(s);
1177 }
1178
1179 /*
1180 * Find a buffer which is available for use.
1181 * Select something from a free list.
1182 * Preference is to AGE list, then LRU list.
1183 *
1184 * Called at splbio and with buffer queues locked.
1185 * Return buffer locked.
1186 */
1187 struct buf *
1188 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1189 {
1190 struct buf *bp;
1191
1192 start:
1193 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1194
1195 /*
1196 * Get a new buffer from the pool; but use NOWAIT because
1197 * we have the buffer queues locked.
1198 */
1199 if (!from_bufq && buf_lotsfree() &&
1200 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1201 memset((char *)bp, 0, sizeof(*bp));
1202 BUF_INIT(bp);
1203 bp->b_dev = NODEV;
1204 bp->b_vnbufs.le_next = NOLIST;
1205 bp->b_flags = B_BUSY;
1206 simple_lock(&bp->b_interlock);
1207 #if defined(DIAGNOSTIC)
1208 bp->b_freelistindex = -1;
1209 #endif /* defined(DIAGNOSTIC) */
1210 return (bp);
1211 }
1212
1213 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1214 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1215 simple_lock(&bp->b_interlock);
1216 bremfree(bp);
1217 } else {
1218 /*
1219 * XXX: !from_bufq should be removed.
1220 */
1221 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1222 /* wait for a free buffer of any kind */
1223 needbuffer = 1;
1224 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1225 "getnewbuf", slptimeo, &bqueue_slock);
1226 }
1227 return (NULL);
1228 }
1229
1230 #ifdef DIAGNOSTIC
1231 if (bp->b_bufsize <= 0)
1232 panic("buffer %p: on queue but empty", bp);
1233 #endif
1234
1235 if (ISSET(bp->b_flags, B_VFLUSH)) {
1236 /*
1237 * This is a delayed write buffer being flushed to disk. Make
1238 * sure it gets aged out of the queue when it's finished, and
1239 * leave it off the LRU queue.
1240 */
1241 CLR(bp->b_flags, B_VFLUSH);
1242 SET(bp->b_flags, B_AGE);
1243 simple_unlock(&bp->b_interlock);
1244 goto start;
1245 }
1246
1247 /* Buffer is no longer on free lists. */
1248 SET(bp->b_flags, B_BUSY);
1249
1250 /*
1251 * If buffer was a delayed write, start it and return NULL
1252 * (since we might sleep while starting the write).
1253 */
1254 if (ISSET(bp->b_flags, B_DELWRI)) {
1255 /*
1256 * This buffer has gone through the LRU, so make sure it gets
1257 * reused ASAP.
1258 */
1259 SET(bp->b_flags, B_AGE);
1260 simple_unlock(&bp->b_interlock);
1261 simple_unlock(&bqueue_slock);
1262 bawrite(bp);
1263 simple_lock(&bqueue_slock);
1264 return (NULL);
1265 }
1266
1267 /* disassociate us from our vnode, if we had one... */
1268 if (bp->b_vp)
1269 brelvp(bp);
1270
1271 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1272 (*bioops.io_deallocate)(bp);
1273
1274 /* clear out various other fields */
1275 bp->b_flags = B_BUSY;
1276 bp->b_dev = NODEV;
1277 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1278 bp->b_iodone = 0;
1279 bp->b_error = 0;
1280 bp->b_resid = 0;
1281 bp->b_bcount = 0;
1282
1283 bremhash(bp);
1284 return (bp);
1285 }
1286
1287 /*
1288 * Attempt to free an aged buffer off the queues.
1289 * Called at splbio and with queue lock held.
1290 * Returns the amount of buffer memory freed.
1291 */
1292 static int
1293 buf_trim(void)
1294 {
1295 struct buf *bp;
1296 long size = 0;
1297
1298 /* Instruct getnewbuf() to get buffers off the queues */
1299 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1300 return 0;
1301
1302 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1303 simple_unlock(&bp->b_interlock);
1304 size = bp->b_bufsize;
1305 bufmem -= size;
1306 simple_unlock(&bqueue_slock);
1307 if (size > 0) {
1308 buf_mrelease(bp->b_data, size);
1309 bp->b_bcount = bp->b_bufsize = 0;
1310 }
1311 /* brelse() will return the buffer to the global buffer pool */
1312 brelse(bp);
1313 simple_lock(&bqueue_slock);
1314 return size;
1315 }
1316
1317 int
1318 buf_drain(int n)
1319 {
1320 int s, size = 0, sz;
1321
1322 s = splbio();
1323 simple_lock(&bqueue_slock);
1324
1325 while (size < n && bufmem > bufmem_lowater) {
1326 sz = buf_trim();
1327 if (sz <= 0)
1328 break;
1329 size += sz;
1330 }
1331
1332 simple_unlock(&bqueue_slock);
1333 splx(s);
1334 return size;
1335 }
1336
1337 /*
1338 * Wait for operations on the buffer to complete.
1339 * When they do, extract and return the I/O's error value.
1340 */
1341 int
1342 biowait(struct buf *bp)
1343 {
1344 int s, error;
1345
1346 s = splbio();
1347 simple_lock(&bp->b_interlock);
1348 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1349 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1350
1351 /* check errors. */
1352 if (ISSET(bp->b_flags, B_ERROR))
1353 error = bp->b_error ? bp->b_error : EIO;
1354 else
1355 error = 0;
1356
1357 simple_unlock(&bp->b_interlock);
1358 splx(s);
1359 return (error);
1360 }
1361
1362 /*
1363 * Mark I/O complete on a buffer.
1364 *
1365 * If a callback has been requested, e.g. the pageout
1366 * daemon, do so. Otherwise, awaken waiting processes.
1367 *
1368 * [ Leffler, et al., says on p.247:
1369 * "This routine wakes up the blocked process, frees the buffer
1370 * for an asynchronous write, or, for a request by the pagedaemon
1371 * process, invokes a procedure specified in the buffer structure" ]
1372 *
1373 * In real life, the pagedaemon (or other system processes) wants
1374 * to do async stuff to, and doesn't want the buffer brelse()'d.
1375 * (for swap pager, that puts swap buffers on the free lists (!!!),
1376 * for the vn device, that puts malloc'd buffers on the free lists!)
1377 */
1378 void
1379 biodone(struct buf *bp)
1380 {
1381 int s = splbio();
1382
1383 simple_lock(&bp->b_interlock);
1384 if (ISSET(bp->b_flags, B_DONE))
1385 panic("biodone already");
1386 SET(bp->b_flags, B_DONE); /* note that it's done */
1387 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1388
1389 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1390 (*bioops.io_complete)(bp);
1391
1392 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1393 vwakeup(bp);
1394
1395 /*
1396 * If necessary, call out. Unlock the buffer before calling
1397 * iodone() as the buffer isn't valid any more when it return.
1398 */
1399 if (ISSET(bp->b_flags, B_CALL)) {
1400 CLR(bp->b_flags, B_CALL); /* but note callout done */
1401 simple_unlock(&bp->b_interlock);
1402 (*bp->b_iodone)(bp);
1403 } else {
1404 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1405 simple_unlock(&bp->b_interlock);
1406 brelse(bp);
1407 } else { /* or just wakeup the buffer */
1408 CLR(bp->b_flags, B_WANTED);
1409 wakeup(bp);
1410 simple_unlock(&bp->b_interlock);
1411 }
1412 }
1413
1414 splx(s);
1415 }
1416
1417 /*
1418 * Return a count of buffers on the "locked" queue.
1419 */
1420 int
1421 count_lock_queue(void)
1422 {
1423 struct buf *bp;
1424 int n = 0;
1425
1426 simple_lock(&bqueue_slock);
1427 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1428 n++;
1429 simple_unlock(&bqueue_slock);
1430 return (n);
1431 }
1432
1433 /*
1434 * Wait for all buffers to complete I/O
1435 * Return the number of "stuck" buffers.
1436 */
1437 int
1438 buf_syncwait(void)
1439 {
1440 struct buf *bp;
1441 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1442
1443 dcount = 10000;
1444 for (iter = 0; iter < 20;) {
1445 s = splbio();
1446 simple_lock(&bqueue_slock);
1447 nbusy = 0;
1448 for (ihash = 0; ihash < bufhash+1; ihash++) {
1449 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1450 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1451 nbusy++;
1452 /*
1453 * With soft updates, some buffers that are
1454 * written will be remarked as dirty until other
1455 * buffers are written.
1456 */
1457 if (bp->b_vp && bp->b_vp->v_mount
1458 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1459 && (bp->b_flags & B_DELWRI)) {
1460 simple_lock(&bp->b_interlock);
1461 bremfree(bp);
1462 bp->b_flags |= B_BUSY;
1463 nbusy++;
1464 simple_unlock(&bp->b_interlock);
1465 simple_unlock(&bqueue_slock);
1466 bawrite(bp);
1467 if (dcount-- <= 0) {
1468 printf("softdep ");
1469 splx(s);
1470 goto fail;
1471 }
1472 simple_lock(&bqueue_slock);
1473 }
1474 }
1475 }
1476
1477 simple_unlock(&bqueue_slock);
1478 splx(s);
1479
1480 if (nbusy == 0)
1481 break;
1482 if (nbusy_prev == 0)
1483 nbusy_prev = nbusy;
1484 printf("%d ", nbusy);
1485 tsleep(&nbusy, PRIBIO, "bflush",
1486 (iter == 0) ? 1 : hz / 25 * iter);
1487 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1488 iter++;
1489 else
1490 nbusy_prev = nbusy;
1491 }
1492
1493 if (nbusy) {
1494 fail:;
1495 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1496 printf("giving up\nPrinting vnodes for busy buffers\n");
1497 s = splbio();
1498 for (ihash = 0; ihash < bufhash+1; ihash++) {
1499 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1500 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1501 vprint(NULL, bp->b_vp);
1502 }
1503 }
1504 splx(s);
1505 #endif
1506 }
1507
1508 return nbusy;
1509 }
1510
1511 static void
1512 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1513 {
1514
1515 o->b_flags = i->b_flags;
1516 o->b_error = i->b_error;
1517 o->b_prio = i->b_prio;
1518 o->b_dev = i->b_dev;
1519 o->b_bufsize = i->b_bufsize;
1520 o->b_bcount = i->b_bcount;
1521 o->b_resid = i->b_resid;
1522 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1523 o->b_blkno = i->b_blkno;
1524 o->b_rawblkno = i->b_rawblkno;
1525 o->b_iodone = PTRTOUINT64(i->b_iodone);
1526 o->b_proc = PTRTOUINT64(i->b_proc);
1527 o->b_vp = PTRTOUINT64(i->b_vp);
1528 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1529 o->b_lblkno = i->b_lblkno;
1530 }
1531
1532 #define KERN_BUFSLOP 20
1533 static int
1534 sysctl_dobuf(SYSCTLFN_ARGS)
1535 {
1536 struct buf *bp;
1537 struct buf_sysctl bs;
1538 char *dp;
1539 u_int i, op, arg;
1540 size_t len, needed, elem_size, out_size;
1541 int error, s, elem_count;
1542
1543 if (namelen == 1 && name[0] == CTL_QUERY)
1544 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1545
1546 if (namelen != 4)
1547 return (EINVAL);
1548
1549 dp = oldp;
1550 len = (oldp != NULL) ? *oldlenp : 0;
1551 op = name[0];
1552 arg = name[1];
1553 elem_size = name[2];
1554 elem_count = name[3];
1555 out_size = MIN(sizeof(bs), elem_size);
1556
1557 /*
1558 * at the moment, these are just "placeholders" to make the
1559 * API for retrieving kern.buf data more extensible in the
1560 * future.
1561 *
1562 * XXX kern.buf currently has "netbsd32" issues. hopefully
1563 * these will be resolved at a later point.
1564 */
1565 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1566 elem_size < 1 || elem_count < 0)
1567 return (EINVAL);
1568
1569 error = 0;
1570 needed = 0;
1571 s = splbio();
1572 simple_lock(&bqueue_slock);
1573 for (i = 0; i < BQUEUES; i++) {
1574 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1575 if (len >= elem_size && elem_count > 0) {
1576 sysctl_fillbuf(bp, &bs);
1577 error = copyout(&bs, dp, out_size);
1578 if (error)
1579 goto cleanup;
1580 dp += elem_size;
1581 len -= elem_size;
1582 }
1583 if (elem_count > 0) {
1584 needed += elem_size;
1585 if (elem_count != INT_MAX)
1586 elem_count--;
1587 }
1588 }
1589 }
1590 cleanup:
1591 simple_unlock(&bqueue_slock);
1592 splx(s);
1593
1594 *oldlenp = needed;
1595 if (oldp == NULL)
1596 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1597
1598 return (error);
1599 }
1600
1601 static int
1602 sysctl_bufvm_update(SYSCTLFN_ARGS)
1603 {
1604 int t, error;
1605 struct sysctlnode node;
1606
1607 node = *rnode;
1608 node.sysctl_data = &t;
1609 t = *(int *)rnode->sysctl_data;
1610 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1611 if (error || newp == NULL)
1612 return (error);
1613
1614 if (t < 0)
1615 return EINVAL;
1616 if (rnode->sysctl_data == &bufcache) {
1617 if (t > 100)
1618 return (EINVAL);
1619 bufcache = t;
1620 buf_setwm();
1621 } else if (rnode->sysctl_data == &bufmem_lowater) {
1622 if (bufmem_hiwater - t < 16)
1623 return (EINVAL);
1624 bufmem_lowater = t;
1625 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1626 if (t - bufmem_lowater < 16)
1627 return (EINVAL);
1628 bufmem_hiwater = t;
1629 } else
1630 return (EINVAL);
1631
1632 /* Drain until below new high water mark */
1633 while ((t = bufmem - bufmem_hiwater) >= 0) {
1634 if (buf_drain(t / (2 * 1024)) <= 0)
1635 break;
1636 }
1637
1638 return 0;
1639 }
1640
1641 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1642 {
1643
1644 sysctl_createv(clog, 0, NULL, NULL,
1645 CTLFLAG_PERMANENT,
1646 CTLTYPE_NODE, "kern", NULL,
1647 NULL, 0, NULL, 0,
1648 CTL_KERN, CTL_EOL);
1649 sysctl_createv(clog, 0, NULL, NULL,
1650 CTLFLAG_PERMANENT,
1651 CTLTYPE_NODE, "buf",
1652 SYSCTL_DESCR("Kernel buffer cache information"),
1653 sysctl_dobuf, 0, NULL, 0,
1654 CTL_KERN, KERN_BUF, CTL_EOL);
1655 }
1656
1657 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1658 {
1659
1660 sysctl_createv(clog, 0, NULL, NULL,
1661 CTLFLAG_PERMANENT,
1662 CTLTYPE_NODE, "vm", NULL,
1663 NULL, 0, NULL, 0,
1664 CTL_VM, CTL_EOL);
1665
1666 sysctl_createv(clog, 0, NULL, NULL,
1667 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1668 CTLTYPE_INT, "bufcache",
1669 SYSCTL_DESCR("Percentage of physical memory to use for "
1670 "buffer cache"),
1671 sysctl_bufvm_update, 0, &bufcache, 0,
1672 CTL_VM, CTL_CREATE, CTL_EOL);
1673 sysctl_createv(clog, 0, NULL, NULL,
1674 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1675 CTLTYPE_INT, "bufmem",
1676 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1677 "cache"),
1678 NULL, 0, &bufmem, 0,
1679 CTL_VM, CTL_CREATE, CTL_EOL);
1680 sysctl_createv(clog, 0, NULL, NULL,
1681 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1682 CTLTYPE_INT, "bufmem_lowater",
1683 SYSCTL_DESCR("Minimum amount of kernel memory to "
1684 "reserve for buffer cache"),
1685 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1686 CTL_VM, CTL_CREATE, CTL_EOL);
1687 sysctl_createv(clog, 0, NULL, NULL,
1688 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1689 CTLTYPE_INT, "bufmem_hiwater",
1690 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1691 "for buffer cache"),
1692 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1693 CTL_VM, CTL_CREATE, CTL_EOL);
1694 }
1695
1696 #ifdef DEBUG
1697 /*
1698 * Print out statistics on the current allocation of the buffer pool.
1699 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1700 * in vfs_syscalls.c using sysctl.
1701 */
1702 void
1703 vfs_bufstats(void)
1704 {
1705 int s, i, j, count;
1706 struct buf *bp;
1707 struct bqueue *dp;
1708 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1709 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1710
1711 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1712 count = 0;
1713 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1714 counts[j] = 0;
1715 s = splbio();
1716 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1717 counts[bp->b_bufsize/PAGE_SIZE]++;
1718 count++;
1719 }
1720 splx(s);
1721 printf("%s: total-%d", bname[i], count);
1722 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1723 if (counts[j] != 0)
1724 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1725 printf("\n");
1726 }
1727 }
1728 #endif /* DEBUG */
1729
1730 /* ------------------------------ */
1731
1732 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL,
1733 IPL_BIO);
1734
1735 static struct buf *
1736 getiobuf1(int prflags)
1737 {
1738 struct buf *bp;
1739 int s;
1740
1741 s = splbio();
1742 bp = pool_get(&bufiopool, prflags);
1743 splx(s);
1744 if (bp != NULL) {
1745 BUF_INIT(bp);
1746 }
1747 return bp;
1748 }
1749
1750 struct buf *
1751 getiobuf(void)
1752 {
1753
1754 return getiobuf1(PR_WAITOK);
1755 }
1756
1757 struct buf *
1758 getiobuf_nowait(void)
1759 {
1760
1761 return getiobuf1(PR_NOWAIT);
1762 }
1763
1764 void
1765 putiobuf(struct buf *bp)
1766 {
1767 int s;
1768
1769 s = splbio();
1770 pool_put(&bufiopool, bp);
1771 splx(s);
1772 }
1773
1774 /*
1775 * nestiobuf_iodone: b_iodone callback for nested buffers.
1776 */
1777
1778 void
1779 nestiobuf_iodone(struct buf *bp)
1780 {
1781 struct buf *mbp = bp->b_private;
1782 int error;
1783 int donebytes;
1784
1785 KASSERT(bp->b_bcount <= bp->b_bufsize);
1786 KASSERT(mbp != bp);
1787
1788 error = 0;
1789 if ((bp->b_flags & B_ERROR) != 0) {
1790 error = EIO;
1791 /* check if an error code was returned */
1792 if (bp->b_error)
1793 error = bp->b_error;
1794 } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
1795 /*
1796 * Not all got transfered, raise an error. We have no way to
1797 * propagate these conditions to mbp.
1798 */
1799 error = EIO;
1800 }
1801
1802 donebytes = bp->b_bufsize;
1803
1804 putiobuf(bp);
1805 nestiobuf_done(mbp, donebytes, error);
1806 }
1807
1808 /*
1809 * nestiobuf_setup: setup a "nested" buffer.
1810 *
1811 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1812 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1813 * => 'offset' is a byte offset in the master buffer.
1814 * => 'size' is a size in bytes of this nested buffer.
1815 */
1816
1817 void
1818 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
1819 {
1820 const int b_read = mbp->b_flags & B_READ;
1821 struct vnode *vp = mbp->b_vp;
1822
1823 KASSERT(mbp->b_bcount >= offset + size);
1824 bp->b_vp = vp;
1825 bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
1826 bp->b_iodone = nestiobuf_iodone;
1827 bp->b_data = (char *)mbp->b_data + offset;
1828 bp->b_resid = bp->b_bcount = size;
1829 bp->b_bufsize = bp->b_bcount;
1830 bp->b_private = mbp;
1831 BIO_COPYPRIO(bp, mbp);
1832 if (!b_read && vp != NULL) {
1833 int s;
1834
1835 s = splbio();
1836 V_INCR_NUMOUTPUT(vp);
1837 splx(s);
1838 }
1839 }
1840
1841 /*
1842 * nestiobuf_done: propagate completion to the master buffer.
1843 *
1844 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1845 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1846 */
1847
1848 void
1849 nestiobuf_done(struct buf *mbp, int donebytes, int error)
1850 {
1851 int s;
1852
1853 if (donebytes == 0) {
1854 return;
1855 }
1856 s = splbio();
1857 KASSERT(mbp->b_resid >= donebytes);
1858 if (error) {
1859 mbp->b_flags |= B_ERROR;
1860 mbp->b_error = error;
1861 }
1862 mbp->b_resid -= donebytes;
1863 if (mbp->b_resid == 0) {
1864 if ((mbp->b_flags & B_ERROR) != 0) {
1865 mbp->b_resid = mbp->b_bcount; /* be conservative */
1866 }
1867 biodone(mbp);
1868 }
1869 splx(s);
1870 }
1871