Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.174
      1 /*	$NetBSD: vfs_bio.c,v 1.174 2007/07/29 12:15:45 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include "fs_ffs.h"
     81 #include "opt_bufcache.h"
     82 #include "opt_softdep.h"
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.174 2007/07/29 12:15:45 ad Exp $");
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/kernel.h>
     90 #include <sys/proc.h>
     91 #include <sys/buf.h>
     92 #include <sys/vnode.h>
     93 #include <sys/mount.h>
     94 #include <sys/malloc.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sysctl.h>
     97 #include <sys/conf.h>
     98 #include <sys/kauth.h>
     99 
    100 #include <uvm/uvm.h>
    101 
    102 #include <miscfs/specfs/specdev.h>
    103 
    104 #ifndef	BUFPAGES
    105 # define BUFPAGES 0
    106 #endif
    107 
    108 #ifdef BUFCACHE
    109 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    110 #  error BUFCACHE is not between 5 and 95
    111 # endif
    112 #else
    113 # define BUFCACHE 15
    114 #endif
    115 
    116 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    117 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    118 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    119 
    120 /* Function prototypes */
    121 struct bqueue;
    122 
    123 static void buf_setwm(void);
    124 static int buf_trim(void);
    125 static void *bufpool_page_alloc(struct pool *, int);
    126 static void bufpool_page_free(struct pool *, void *);
    127 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    128     kauth_cred_t, int);
    129 static struct buf *getnewbuf(int, int, int);
    130 static int buf_lotsfree(void);
    131 static int buf_canrelease(void);
    132 static inline u_long buf_mempoolidx(u_long);
    133 static inline u_long buf_roundsize(u_long);
    134 static inline void *buf_malloc(size_t);
    135 static void buf_mrelease(void *, size_t);
    136 static inline void binsheadfree(struct buf *, struct bqueue *);
    137 static inline void binstailfree(struct buf *, struct bqueue *);
    138 int count_lock_queue(void); /* XXX */
    139 #ifdef DEBUG
    140 static int checkfreelist(struct buf *, struct bqueue *);
    141 #endif
    142 
    143 /*
    144  * Definitions for the buffer hash lists.
    145  */
    146 #define	BUFHASH(dvp, lbn)	\
    147 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    148 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    149 u_long	bufhash;
    150 #if !defined(SOFTDEP) || !defined(FFS)
    151 struct bio_ops bioops;	/* I/O operation notification */
    152 #endif
    153 
    154 /*
    155  * Insq/Remq for the buffer hash lists.
    156  */
    157 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    158 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    159 
    160 /*
    161  * Definitions for the buffer free lists.
    162  */
    163 #define	BQUEUES		3		/* number of free buffer queues */
    164 
    165 #define	BQ_LOCKED	0		/* super-blocks &c */
    166 #define	BQ_LRU		1		/* lru, useful buffers */
    167 #define	BQ_AGE		2		/* rubbish */
    168 
    169 struct bqueue {
    170 	TAILQ_HEAD(, buf) bq_queue;
    171 	uint64_t bq_bytes;
    172 } bufqueues[BQUEUES];
    173 int needbuffer;
    174 
    175 /*
    176  * Buffer queue lock.
    177  * Take this lock first if also taking some buffer's b_interlock.
    178  */
    179 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    180 
    181 /*
    182  * Buffer pool for I/O buffers.
    183  */
    184 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
    185     &pool_allocator_nointr, IPL_NONE);
    186 
    187 
    188 /* XXX - somewhat gross.. */
    189 #if MAXBSIZE == 0x2000
    190 #define NMEMPOOLS 5
    191 #elif MAXBSIZE == 0x4000
    192 #define NMEMPOOLS 6
    193 #elif MAXBSIZE == 0x8000
    194 #define NMEMPOOLS 7
    195 #else
    196 #define NMEMPOOLS 8
    197 #endif
    198 
    199 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    201 #error update vfs_bio buffer memory parameters
    202 #endif
    203 
    204 /* Buffer memory pools */
    205 static struct pool bmempools[NMEMPOOLS];
    206 
    207 struct vm_map *buf_map;
    208 
    209 /*
    210  * Buffer memory pool allocator.
    211  */
    212 static void *
    213 bufpool_page_alloc(struct pool *pp, int flags)
    214 {
    215 
    216 	return (void *)uvm_km_alloc(buf_map,
    217 	    MAXBSIZE, MAXBSIZE,
    218 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    219 	    | UVM_KMF_WIRED);
    220 }
    221 
    222 static void
    223 bufpool_page_free(struct pool *pp, void *v)
    224 {
    225 
    226 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    227 }
    228 
    229 static struct pool_allocator bufmempool_allocator = {
    230 	.pa_alloc = bufpool_page_alloc,
    231 	.pa_free = bufpool_page_free,
    232 	.pa_pagesz = MAXBSIZE,
    233 };
    234 
    235 /* Buffer memory management variables */
    236 u_long bufmem_valimit;
    237 u_long bufmem_hiwater;
    238 u_long bufmem_lowater;
    239 u_long bufmem;
    240 
    241 /*
    242  * MD code can call this to set a hard limit on the amount
    243  * of virtual memory used by the buffer cache.
    244  */
    245 int
    246 buf_setvalimit(vsize_t sz)
    247 {
    248 
    249 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    250 	if (sz < NMEMPOOLS * MAXBSIZE)
    251 		return EINVAL;
    252 
    253 	bufmem_valimit = sz;
    254 	return 0;
    255 }
    256 
    257 static void
    258 buf_setwm(void)
    259 {
    260 
    261 	bufmem_hiwater = buf_memcalc();
    262 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    263 #define	BUFMEM_WMSHIFT	3
    264 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    265 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    266 		/* Ensure a reasonable minimum value */
    267 		bufmem_hiwater = BUFMEM_HIWMMIN;
    268 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    269 }
    270 
    271 #ifdef DEBUG
    272 int debug_verify_freelist = 0;
    273 static int
    274 checkfreelist(struct buf *bp, struct bqueue *dp)
    275 {
    276 	struct buf *b;
    277 
    278 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    279 		if (b == bp)
    280 			return 1;
    281 	}
    282 	return 0;
    283 }
    284 #endif
    285 
    286 /*
    287  * Insq/Remq for the buffer hash lists.
    288  * Call with buffer queue locked.
    289  */
    290 static inline void
    291 binsheadfree(struct buf *bp, struct bqueue *dp)
    292 {
    293 
    294 	KASSERT(bp->b_freelistindex == -1);
    295 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    296 	dp->bq_bytes += bp->b_bufsize;
    297 	bp->b_freelistindex = dp - bufqueues;
    298 }
    299 
    300 static inline void
    301 binstailfree(struct buf *bp, struct bqueue *dp)
    302 {
    303 
    304 	KASSERT(bp->b_freelistindex == -1);
    305 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    306 	dp->bq_bytes += bp->b_bufsize;
    307 	bp->b_freelistindex = dp - bufqueues;
    308 }
    309 
    310 void
    311 bremfree(struct buf *bp)
    312 {
    313 	struct bqueue *dp;
    314 	int bqidx = bp->b_freelistindex;
    315 
    316 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    317 
    318 	KASSERT(bqidx != -1);
    319 	dp = &bufqueues[bqidx];
    320 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    321 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    322 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    323 	dp->bq_bytes -= bp->b_bufsize;
    324 #if defined(DIAGNOSTIC)
    325 	bp->b_freelistindex = -1;
    326 #endif /* defined(DIAGNOSTIC) */
    327 }
    328 
    329 u_long
    330 buf_memcalc(void)
    331 {
    332 	u_long n;
    333 
    334 	/*
    335 	 * Determine the upper bound of memory to use for buffers.
    336 	 *
    337 	 *	- If bufpages is specified, use that as the number
    338 	 *	  pages.
    339 	 *
    340 	 *	- Otherwise, use bufcache as the percentage of
    341 	 *	  physical memory.
    342 	 */
    343 	if (bufpages != 0) {
    344 		n = bufpages;
    345 	} else {
    346 		if (bufcache < 5) {
    347 			printf("forcing bufcache %d -> 5", bufcache);
    348 			bufcache = 5;
    349 		}
    350 		if (bufcache > 95) {
    351 			printf("forcing bufcache %d -> 95", bufcache);
    352 			bufcache = 95;
    353 		}
    354 		n = physmem / 100 * bufcache;
    355 	}
    356 
    357 	n <<= PAGE_SHIFT;
    358 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    359 		n = bufmem_valimit;
    360 
    361 	return (n);
    362 }
    363 
    364 /*
    365  * Initialize buffers and hash links for buffers.
    366  */
    367 void
    368 bufinit(void)
    369 {
    370 	struct bqueue *dp;
    371 	int use_std;
    372 	u_int i;
    373 
    374 	/*
    375 	 * Initialize buffer cache memory parameters.
    376 	 */
    377 	bufmem = 0;
    378 	buf_setwm();
    379 
    380 	if (bufmem_valimit != 0) {
    381 		vaddr_t minaddr = 0, maxaddr;
    382 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    383 					  bufmem_valimit, 0, false, 0);
    384 		if (buf_map == NULL)
    385 			panic("bufinit: cannot allocate submap");
    386 	} else
    387 		buf_map = kernel_map;
    388 
    389 	/* On "small" machines use small pool page sizes where possible */
    390 	use_std = (physmem < atop(16*1024*1024));
    391 
    392 	/*
    393 	 * Also use them on systems that can map the pool pages using
    394 	 * a direct-mapped segment.
    395 	 */
    396 #ifdef PMAP_MAP_POOLPAGE
    397 	use_std = 1;
    398 #endif
    399 
    400 	bufmempool_allocator.pa_backingmap = buf_map;
    401 	for (i = 0; i < NMEMPOOLS; i++) {
    402 		struct pool_allocator *pa;
    403 		struct pool *pp = &bmempools[i];
    404 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    405 		char *name = malloc(8, M_TEMP, M_WAITOK);
    406 		if (__predict_true(size >= 1024))
    407 			(void)snprintf(name, 8, "buf%dk", size / 1024);
    408 		else
    409 			(void)snprintf(name, 8, "buf%db", size);
    410 		pa = (size <= PAGE_SIZE && use_std)
    411 			? &pool_allocator_nointr
    412 			: &bufmempool_allocator;
    413 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    414 		pool_setlowat(pp, 1);
    415 		pool_sethiwat(pp, 1);
    416 	}
    417 
    418 	/* Initialize the buffer queues */
    419 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    420 		TAILQ_INIT(&dp->bq_queue);
    421 		dp->bq_bytes = 0;
    422 	}
    423 
    424 	/*
    425 	 * Estimate hash table size based on the amount of memory we
    426 	 * intend to use for the buffer cache. The average buffer
    427 	 * size is dependent on our clients (i.e. filesystems).
    428 	 *
    429 	 * For now, use an empirical 3K per buffer.
    430 	 */
    431 	nbuf = (bufmem_hiwater / 1024) / 3;
    432 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    433 }
    434 
    435 static int
    436 buf_lotsfree(void)
    437 {
    438 	int try, thresh;
    439 
    440 	/* Always allocate if doing copy on write */
    441 	if (curlwp->l_pflag & LP_UFSCOW)
    442 		return 1;
    443 
    444 	/* Always allocate if less than the low water mark. */
    445 	if (bufmem < bufmem_lowater)
    446 		return 1;
    447 
    448 	/* Never allocate if greater than the high water mark. */
    449 	if (bufmem > bufmem_hiwater)
    450 		return 0;
    451 
    452 	/* If there's anything on the AGE list, it should be eaten. */
    453 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    454 		return 0;
    455 
    456 	/*
    457 	 * The probabily of getting a new allocation is inversely
    458 	 * proportional to the current size of the cache, using
    459 	 * a granularity of 16 steps.
    460 	 */
    461 	try = random() & 0x0000000fL;
    462 
    463 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    464 	thresh = (bufmem - bufmem_lowater) /
    465 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    466 
    467 	if (try >= thresh)
    468 		return 1;
    469 
    470 	/* Otherwise don't allocate. */
    471 	return 0;
    472 }
    473 
    474 /*
    475  * Return estimate of bytes we think need to be
    476  * released to help resolve low memory conditions.
    477  *
    478  * => called at splbio.
    479  * => called with bqueue_slock held.
    480  */
    481 static int
    482 buf_canrelease(void)
    483 {
    484 	int pagedemand, ninvalid = 0;
    485 
    486 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    487 
    488 	if (bufmem < bufmem_lowater)
    489 		return 0;
    490 
    491 	if (bufmem > bufmem_hiwater)
    492 		return bufmem - bufmem_hiwater;
    493 
    494 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    495 
    496 	pagedemand = uvmexp.freetarg - uvmexp.free;
    497 	if (pagedemand < 0)
    498 		return ninvalid;
    499 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    500 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    501 }
    502 
    503 /*
    504  * Buffer memory allocation helper functions
    505  */
    506 static inline u_long
    507 buf_mempoolidx(u_long size)
    508 {
    509 	u_int n = 0;
    510 
    511 	size -= 1;
    512 	size >>= MEMPOOL_INDEX_OFFSET;
    513 	while (size) {
    514 		size >>= 1;
    515 		n += 1;
    516 	}
    517 	if (n >= NMEMPOOLS)
    518 		panic("buf mem pool index %d", n);
    519 	return n;
    520 }
    521 
    522 static inline u_long
    523 buf_roundsize(u_long size)
    524 {
    525 	/* Round up to nearest power of 2 */
    526 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    527 }
    528 
    529 static inline void *
    530 buf_malloc(size_t size)
    531 {
    532 	u_int n = buf_mempoolidx(size);
    533 	void *addr;
    534 	int s;
    535 
    536 	while (1) {
    537 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    538 		if (addr != NULL)
    539 			break;
    540 
    541 		/* No memory, see if we can free some. If so, try again */
    542 		if (buf_drain(1) > 0)
    543 			continue;
    544 
    545 		/* Wait for buffers to arrive on the LRU queue */
    546 		s = splbio();
    547 		simple_lock(&bqueue_slock);
    548 		needbuffer = 1;
    549 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    550 			"buf_malloc", 0, &bqueue_slock);
    551 		splx(s);
    552 	}
    553 
    554 	return addr;
    555 }
    556 
    557 static void
    558 buf_mrelease(void *addr, size_t size)
    559 {
    560 
    561 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    562 }
    563 
    564 /*
    565  * bread()/breadn() helper.
    566  */
    567 static inline struct buf *
    568 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    569     int async)
    570 {
    571 	struct buf *bp;
    572 	struct mount *mp;
    573 
    574 	bp = getblk(vp, blkno, size, 0, 0);
    575 
    576 #ifdef DIAGNOSTIC
    577 	if (bp == NULL) {
    578 		panic("bio_doread: no such buf");
    579 	}
    580 #endif
    581 
    582 	/*
    583 	 * If buffer does not have data valid, start a read.
    584 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    585 	 * Therefore, it's valid if its I/O has completed or been delayed.
    586 	 */
    587 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    588 		/* Start I/O for the buffer. */
    589 		SET(bp->b_flags, B_READ | async);
    590 		if (async)
    591 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    592 		else
    593 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    594 		VOP_STRATEGY(vp, bp);
    595 
    596 		/* Pay for the read. */
    597 		curproc->p_stats->p_ru.ru_inblock++;
    598 	} else if (async) {
    599 		brelse(bp);
    600 	}
    601 
    602 	if (vp->v_type == VBLK)
    603 		mp = vp->v_specmountpoint;
    604 	else
    605 		mp = vp->v_mount;
    606 
    607 	/*
    608 	 * Collect statistics on synchronous and asynchronous reads.
    609 	 * Reads from block devices are charged to their associated
    610 	 * filesystem (if any).
    611 	 */
    612 	if (mp != NULL) {
    613 		if (async == 0)
    614 			mp->mnt_stat.f_syncreads++;
    615 		else
    616 			mp->mnt_stat.f_asyncreads++;
    617 	}
    618 
    619 	return (bp);
    620 }
    621 
    622 /*
    623  * Read a disk block.
    624  * This algorithm described in Bach (p.54).
    625  */
    626 int
    627 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    628     struct buf **bpp)
    629 {
    630 	struct buf *bp;
    631 
    632 	/* Get buffer for block. */
    633 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    634 
    635 	/* Wait for the read to complete, and return result. */
    636 	return (biowait(bp));
    637 }
    638 
    639 /*
    640  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    641  * Trivial modification to the breada algorithm presented in Bach (p.55).
    642  */
    643 int
    644 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    645     int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
    646 {
    647 	struct buf *bp;
    648 	int i;
    649 
    650 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    651 
    652 	/*
    653 	 * For each of the read-ahead blocks, start a read, if necessary.
    654 	 */
    655 	for (i = 0; i < nrablks; i++) {
    656 		/* If it's in the cache, just go on to next one. */
    657 		if (incore(vp, rablks[i]))
    658 			continue;
    659 
    660 		/* Get a buffer for the read-ahead block */
    661 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    662 	}
    663 
    664 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    665 	return (biowait(bp));
    666 }
    667 
    668 /*
    669  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    670  * implemented as a call to breadn().
    671  * XXX for compatibility with old file systems.
    672  */
    673 int
    674 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    675     int rabsize, kauth_cred_t cred, struct buf **bpp)
    676 {
    677 
    678 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    679 }
    680 
    681 /*
    682  * Block write.  Described in Bach (p.56)
    683  */
    684 int
    685 bwrite(struct buf *bp)
    686 {
    687 	int rv, sync, wasdelayed, s;
    688 	struct vnode *vp;
    689 	struct mount *mp;
    690 
    691 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    692 
    693 	vp = bp->b_vp;
    694 	if (vp != NULL) {
    695 		if (vp->v_type == VBLK)
    696 			mp = vp->v_specmountpoint;
    697 		else
    698 			mp = vp->v_mount;
    699 	} else {
    700 		mp = NULL;
    701 	}
    702 
    703 	/*
    704 	 * Remember buffer type, to switch on it later.  If the write was
    705 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    706 	 * convert it to a delayed write.
    707 	 * XXX note that this relies on delayed tape writes being converted
    708 	 * to async, not sync writes (which is safe, but ugly).
    709 	 */
    710 	sync = !ISSET(bp->b_flags, B_ASYNC);
    711 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    712 		bdwrite(bp);
    713 		return (0);
    714 	}
    715 
    716 	/*
    717 	 * Collect statistics on synchronous and asynchronous writes.
    718 	 * Writes to block devices are charged to their associated
    719 	 * filesystem (if any).
    720 	 */
    721 	if (mp != NULL) {
    722 		if (sync)
    723 			mp->mnt_stat.f_syncwrites++;
    724 		else
    725 			mp->mnt_stat.f_asyncwrites++;
    726 	}
    727 
    728 	s = splbio();
    729 	simple_lock(&bp->b_interlock);
    730 
    731 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    732 
    733 	CLR(bp->b_flags, (B_READ | B_DONE | B_DELWRI));
    734 	bp->b_error = 0;
    735 
    736 	/*
    737 	 * Pay for the I/O operation and make sure the buf is on the correct
    738 	 * vnode queue.
    739 	 */
    740 	if (wasdelayed)
    741 		reassignbuf(bp, bp->b_vp);
    742 	else
    743 		curproc->p_stats->p_ru.ru_oublock++;
    744 
    745 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    746 	V_INCR_NUMOUTPUT(bp->b_vp);
    747 	simple_unlock(&bp->b_interlock);
    748 	splx(s);
    749 
    750 	if (sync)
    751 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    752 	else
    753 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    754 
    755 	VOP_STRATEGY(vp, bp);
    756 
    757 	if (sync) {
    758 		/* If I/O was synchronous, wait for it to complete. */
    759 		rv = biowait(bp);
    760 
    761 		/* Release the buffer. */
    762 		brelse(bp);
    763 
    764 		return (rv);
    765 	} else {
    766 		return (0);
    767 	}
    768 }
    769 
    770 int
    771 vn_bwrite(void *v)
    772 {
    773 	struct vop_bwrite_args *ap = v;
    774 
    775 	return (bwrite(ap->a_bp));
    776 }
    777 
    778 /*
    779  * Delayed write.
    780  *
    781  * The buffer is marked dirty, but is not queued for I/O.
    782  * This routine should be used when the buffer is expected
    783  * to be modified again soon, typically a small write that
    784  * partially fills a buffer.
    785  *
    786  * NB: magnetic tapes cannot be delayed; they must be
    787  * written in the order that the writes are requested.
    788  *
    789  * Described in Leffler, et al. (pp. 208-213).
    790  */
    791 void
    792 bdwrite(struct buf *bp)
    793 {
    794 	int s;
    795 
    796 	/* If this is a tape block, write the block now. */
    797 	if (bdev_type(bp->b_dev) == D_TAPE) {
    798 		bawrite(bp);
    799 		return;
    800 	}
    801 
    802 	/*
    803 	 * If the block hasn't been seen before:
    804 	 *	(1) Mark it as having been seen,
    805 	 *	(2) Charge for the write,
    806 	 *	(3) Make sure it's on its vnode's correct block list.
    807 	 */
    808 	s = splbio();
    809 	simple_lock(&bp->b_interlock);
    810 
    811 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    812 
    813 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    814 		SET(bp->b_flags, B_DELWRI);
    815 		curproc->p_stats->p_ru.ru_oublock++;
    816 		reassignbuf(bp, bp->b_vp);
    817 	}
    818 
    819 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    820 	CLR(bp->b_flags, B_DONE);
    821 	simple_unlock(&bp->b_interlock);
    822 	splx(s);
    823 
    824 	brelse(bp);
    825 }
    826 
    827 /*
    828  * Asynchronous block write; just an asynchronous bwrite().
    829  */
    830 void
    831 bawrite(struct buf *bp)
    832 {
    833 	int s;
    834 
    835 	s = splbio();
    836 	simple_lock(&bp->b_interlock);
    837 
    838 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    839 
    840 	SET(bp->b_flags, B_ASYNC);
    841 	simple_unlock(&bp->b_interlock);
    842 	splx(s);
    843 	VOP_BWRITE(bp);
    844 }
    845 
    846 /*
    847  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    848  * Call at splbio() and with the buffer interlock locked.
    849  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
    850  */
    851 void
    852 bdirty(struct buf *bp)
    853 {
    854 
    855 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    856 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    857 
    858 	CLR(bp->b_flags, B_AGE);
    859 
    860 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    861 		SET(bp->b_flags, B_DELWRI);
    862 		curproc->p_stats->p_ru.ru_oublock++;
    863 		reassignbuf(bp, bp->b_vp);
    864 	}
    865 }
    866 
    867 /*
    868  * Release a buffer on to the free lists.
    869  * Described in Bach (p. 46).
    870  */
    871 void
    872 brelse(struct buf *bp)
    873 {
    874 	struct bqueue *bufq;
    875 	int s;
    876 
    877 	/* Block disk interrupts. */
    878 	s = splbio();
    879 	simple_lock(&bqueue_slock);
    880 	simple_lock(&bp->b_interlock);
    881 
    882 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    883 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    884 
    885 	/* Wake up any processes waiting for any buffer to become free. */
    886 	if (needbuffer) {
    887 		needbuffer = 0;
    888 		wakeup(&needbuffer);
    889 	}
    890 
    891 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    892 	if (ISSET(bp->b_flags, B_WANTED)) {
    893 		CLR(bp->b_flags, B_WANTED|B_AGE);
    894 		wakeup(bp);
    895 	}
    896 
    897 	/*
    898 	 * Determine which queue the buffer should be on, then put it there.
    899 	 */
    900 
    901 	/* If it's locked, don't report an error; try again later. */
    902 	if (ISSET(bp->b_flags, B_LOCKED) && bp->b_error != 0)
    903 		bp->b_error = 0;
    904 
    905 	/* If it's not cacheable, or an error, mark it invalid. */
    906 	if (ISSET(bp->b_flags, B_NOCACHE) || bp->b_error != 0)
    907 		SET(bp->b_flags, B_INVAL);
    908 
    909 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    910 		/*
    911 		 * This is a delayed write buffer that was just flushed to
    912 		 * disk.  It is still on the LRU queue.  If it's become
    913 		 * invalid, then we need to move it to a different queue;
    914 		 * otherwise leave it in its current position.
    915 		 */
    916 		CLR(bp->b_flags, B_VFLUSH);
    917 		if (!ISSET(bp->b_flags, B_INVAL|B_LOCKED|B_AGE) &&
    918 		    bp->b_error == 0) {
    919 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    920 			goto already_queued;
    921 		} else {
    922 			bremfree(bp);
    923 		}
    924 	}
    925 
    926   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    927   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    928   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    929 
    930 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    931 		/*
    932 		 * If it's invalid or empty, dissociate it from its vnode
    933 		 * and put on the head of the appropriate queue.
    934 		 */
    935 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    936 			(*bioops.io_deallocate)(bp);
    937 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    938 		if (bp->b_vp) {
    939 			reassignbuf(bp, bp->b_vp);
    940 			brelvp(bp);
    941 		}
    942 		if (bp->b_bufsize <= 0)
    943 			/* no data */
    944 			goto already_queued;
    945 		else
    946 			/* invalid data */
    947 			bufq = &bufqueues[BQ_AGE];
    948 		binsheadfree(bp, bufq);
    949 	} else {
    950 		/*
    951 		 * It has valid data.  Put it on the end of the appropriate
    952 		 * queue, so that it'll stick around for as long as possible.
    953 		 * If buf is AGE, but has dependencies, must put it on last
    954 		 * bufqueue to be scanned, ie LRU. This protects against the
    955 		 * livelock where BQ_AGE only has buffers with dependencies,
    956 		 * and we thus never get to the dependent buffers in BQ_LRU.
    957 		 */
    958 		if (ISSET(bp->b_flags, B_LOCKED))
    959 			/* locked in core */
    960 			bufq = &bufqueues[BQ_LOCKED];
    961 		else if (!ISSET(bp->b_flags, B_AGE))
    962 			/* valid data */
    963 			bufq = &bufqueues[BQ_LRU];
    964 		else {
    965 			/* stale but valid data */
    966 			int has_deps;
    967 
    968 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    969 			    bioops.io_countdeps)
    970 				has_deps = (*bioops.io_countdeps)(bp, 0);
    971 			else
    972 				has_deps = 0;
    973 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    974 			    &bufqueues[BQ_AGE];
    975 		}
    976 		binstailfree(bp, bufq);
    977 	}
    978 
    979 already_queued:
    980 	/* Unlock the buffer. */
    981 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    982 	SET(bp->b_flags, B_CACHE);
    983 
    984 	/* Allow disk interrupts. */
    985 	simple_unlock(&bp->b_interlock);
    986 	simple_unlock(&bqueue_slock);
    987 	splx(s);
    988 	if (bp->b_bufsize <= 0) {
    989 #ifdef DEBUG
    990 		memset((char *)bp, 0, sizeof(*bp));
    991 #endif
    992 		pool_put(&bufpool, bp);
    993 	}
    994 }
    995 
    996 /*
    997  * Determine if a block is in the cache.
    998  * Just look on what would be its hash chain.  If it's there, return
    999  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1000  * we normally don't return the buffer, unless the caller explicitly
   1001  * wants us to.
   1002  */
   1003 struct buf *
   1004 incore(struct vnode *vp, daddr_t blkno)
   1005 {
   1006 	struct buf *bp;
   1007 
   1008 	/* Search hash chain */
   1009 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1010 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1011 		    !ISSET(bp->b_flags, B_INVAL))
   1012 		return (bp);
   1013 	}
   1014 
   1015 	return (NULL);
   1016 }
   1017 
   1018 /*
   1019  * Get a block of requested size that is associated with
   1020  * a given vnode and block offset. If it is found in the
   1021  * block cache, mark it as having been found, make it busy
   1022  * and return it. Otherwise, return an empty block of the
   1023  * correct size. It is up to the caller to insure that the
   1024  * cached blocks be of the correct size.
   1025  */
   1026 struct buf *
   1027 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1028 {
   1029 	struct buf *bp;
   1030 	int s, err;
   1031 	int preserve;
   1032 
   1033 start:
   1034 	s = splbio();
   1035 	simple_lock(&bqueue_slock);
   1036 	bp = incore(vp, blkno);
   1037 	if (bp != NULL) {
   1038 		simple_lock(&bp->b_interlock);
   1039 		if (ISSET(bp->b_flags, B_BUSY)) {
   1040 			simple_unlock(&bqueue_slock);
   1041 			if (curlwp == uvm.pagedaemon_lwp) {
   1042 				simple_unlock(&bp->b_interlock);
   1043 				splx(s);
   1044 				return NULL;
   1045 			}
   1046 			SET(bp->b_flags, B_WANTED);
   1047 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1048 					"getblk", slptimeo, &bp->b_interlock);
   1049 			splx(s);
   1050 			if (err)
   1051 				return (NULL);
   1052 			goto start;
   1053 		}
   1054 #ifdef DIAGNOSTIC
   1055 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1056 		    bp->b_bcount < size && vp->v_type != VBLK)
   1057 			panic("getblk: block size invariant failed");
   1058 #endif
   1059 		SET(bp->b_flags, B_BUSY);
   1060 		bremfree(bp);
   1061 		preserve = 1;
   1062 	} else {
   1063 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1064 			simple_unlock(&bqueue_slock);
   1065 			splx(s);
   1066 			goto start;
   1067 		}
   1068 
   1069 		binshash(bp, BUFHASH(vp, blkno));
   1070 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1071 		bgetvp(vp, bp);
   1072 		preserve = 0;
   1073 	}
   1074 	simple_unlock(&bp->b_interlock);
   1075 	simple_unlock(&bqueue_slock);
   1076 	splx(s);
   1077 	/*
   1078 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1079 	 * if we re-size buffers here.
   1080 	 */
   1081 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1082 		KASSERT(bp->b_bufsize >= size);
   1083 	} else {
   1084 		allocbuf(bp, size, preserve);
   1085 	}
   1086 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1087 	return (bp);
   1088 }
   1089 
   1090 /*
   1091  * Get an empty, disassociated buffer of given size.
   1092  */
   1093 struct buf *
   1094 geteblk(int size)
   1095 {
   1096 	struct buf *bp;
   1097 	int s;
   1098 
   1099 	s = splbio();
   1100 	simple_lock(&bqueue_slock);
   1101 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1102 		;
   1103 
   1104 	SET(bp->b_flags, B_INVAL);
   1105 	binshash(bp, &invalhash);
   1106 	simple_unlock(&bqueue_slock);
   1107 	simple_unlock(&bp->b_interlock);
   1108 	splx(s);
   1109 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1110 	allocbuf(bp, size, 0);
   1111 	return (bp);
   1112 }
   1113 
   1114 /*
   1115  * Expand or contract the actual memory allocated to a buffer.
   1116  *
   1117  * If the buffer shrinks, data is lost, so it's up to the
   1118  * caller to have written it out *first*; this routine will not
   1119  * start a write.  If the buffer grows, it's the callers
   1120  * responsibility to fill out the buffer's additional contents.
   1121  */
   1122 void
   1123 allocbuf(struct buf *bp, int size, int preserve)
   1124 {
   1125 	vsize_t oldsize, desired_size;
   1126 	void *addr;
   1127 	int s, delta;
   1128 
   1129 	desired_size = buf_roundsize(size);
   1130 	if (desired_size > MAXBSIZE)
   1131 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1132 
   1133 	bp->b_bcount = size;
   1134 
   1135 	oldsize = bp->b_bufsize;
   1136 	if (oldsize == desired_size)
   1137 		return;
   1138 
   1139 	/*
   1140 	 * If we want a buffer of a different size, re-allocate the
   1141 	 * buffer's memory; copy old content only if needed.
   1142 	 */
   1143 	addr = buf_malloc(desired_size);
   1144 	if (preserve)
   1145 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1146 	if (bp->b_data != NULL)
   1147 		buf_mrelease(bp->b_data, oldsize);
   1148 	bp->b_data = addr;
   1149 	bp->b_bufsize = desired_size;
   1150 
   1151 	/*
   1152 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1153 	 */
   1154 	delta = (long)desired_size - (long)oldsize;
   1155 
   1156 	s = splbio();
   1157 	simple_lock(&bqueue_slock);
   1158 	if ((bufmem += delta) > bufmem_hiwater) {
   1159 		/*
   1160 		 * Need to trim overall memory usage.
   1161 		 */
   1162 		while (buf_canrelease()) {
   1163 			if (curcpu()->ci_schedstate.spc_flags &
   1164 			    SPCF_SHOULDYIELD) {
   1165 				simple_unlock(&bqueue_slock);
   1166 				splx(s);
   1167 				preempt();
   1168 				s = splbio();
   1169 				simple_lock(&bqueue_slock);
   1170 			}
   1171 
   1172 			if (buf_trim() == 0)
   1173 				break;
   1174 		}
   1175 	}
   1176 
   1177 	simple_unlock(&bqueue_slock);
   1178 	splx(s);
   1179 }
   1180 
   1181 /*
   1182  * Find a buffer which is available for use.
   1183  * Select something from a free list.
   1184  * Preference is to AGE list, then LRU list.
   1185  *
   1186  * Called at splbio and with buffer queues locked.
   1187  * Return buffer locked.
   1188  */
   1189 struct buf *
   1190 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1191 {
   1192 	struct buf *bp;
   1193 
   1194 start:
   1195 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1196 
   1197 	/*
   1198 	 * Get a new buffer from the pool; but use NOWAIT because
   1199 	 * we have the buffer queues locked.
   1200 	 */
   1201 	if (!from_bufq && buf_lotsfree() &&
   1202 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1203 		memset((char *)bp, 0, sizeof(*bp));
   1204 		BUF_INIT(bp);
   1205 		bp->b_dev = NODEV;
   1206 		bp->b_vnbufs.le_next = NOLIST;
   1207 		bp->b_flags = B_BUSY;
   1208 		simple_lock(&bp->b_interlock);
   1209 #if defined(DIAGNOSTIC)
   1210 		bp->b_freelistindex = -1;
   1211 #endif /* defined(DIAGNOSTIC) */
   1212 		return (bp);
   1213 	}
   1214 
   1215 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1216 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1217 		simple_lock(&bp->b_interlock);
   1218 		bremfree(bp);
   1219 	} else {
   1220 		/*
   1221 		 * XXX: !from_bufq should be removed.
   1222 		 */
   1223 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1224 			/* wait for a free buffer of any kind */
   1225 			needbuffer = 1;
   1226 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1227 			    "getnewbuf", slptimeo, &bqueue_slock);
   1228 		}
   1229 		return (NULL);
   1230 	}
   1231 
   1232 #ifdef DIAGNOSTIC
   1233 	if (bp->b_bufsize <= 0)
   1234 		panic("buffer %p: on queue but empty", bp);
   1235 #endif
   1236 
   1237 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1238 		/*
   1239 		 * This is a delayed write buffer being flushed to disk.  Make
   1240 		 * sure it gets aged out of the queue when it's finished, and
   1241 		 * leave it off the LRU queue.
   1242 		 */
   1243 		CLR(bp->b_flags, B_VFLUSH);
   1244 		SET(bp->b_flags, B_AGE);
   1245 		simple_unlock(&bp->b_interlock);
   1246 		goto start;
   1247 	}
   1248 
   1249 	/* Buffer is no longer on free lists. */
   1250 	SET(bp->b_flags, B_BUSY);
   1251 
   1252 	/*
   1253 	 * If buffer was a delayed write, start it and return NULL
   1254 	 * (since we might sleep while starting the write).
   1255 	 */
   1256 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1257 		/*
   1258 		 * This buffer has gone through the LRU, so make sure it gets
   1259 		 * reused ASAP.
   1260 		 */
   1261 		SET(bp->b_flags, B_AGE);
   1262 		simple_unlock(&bp->b_interlock);
   1263 		simple_unlock(&bqueue_slock);
   1264 		bawrite(bp);
   1265 		simple_lock(&bqueue_slock);
   1266 		return (NULL);
   1267 	}
   1268 
   1269 	/* disassociate us from our vnode, if we had one... */
   1270 	if (bp->b_vp)
   1271 		brelvp(bp);
   1272 
   1273 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
   1274 		(*bioops.io_deallocate)(bp);
   1275 
   1276 	/* clear out various other fields */
   1277 	bp->b_flags = B_BUSY;
   1278 	bp->b_dev = NODEV;
   1279 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1280 	bp->b_iodone = 0;
   1281 	bp->b_error = 0;
   1282 	bp->b_resid = 0;
   1283 	bp->b_bcount = 0;
   1284 
   1285 	bremhash(bp);
   1286 	return (bp);
   1287 }
   1288 
   1289 /*
   1290  * Attempt to free an aged buffer off the queues.
   1291  * Called at splbio and with queue lock held.
   1292  * Returns the amount of buffer memory freed.
   1293  */
   1294 static int
   1295 buf_trim(void)
   1296 {
   1297 	struct buf *bp;
   1298 	long size = 0;
   1299 
   1300 	/* Instruct getnewbuf() to get buffers off the queues */
   1301 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1302 		return 0;
   1303 
   1304 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1305 	simple_unlock(&bp->b_interlock);
   1306 	size = bp->b_bufsize;
   1307 	bufmem -= size;
   1308 	simple_unlock(&bqueue_slock);
   1309 	if (size > 0) {
   1310 		buf_mrelease(bp->b_data, size);
   1311 		bp->b_bcount = bp->b_bufsize = 0;
   1312 	}
   1313 	/* brelse() will return the buffer to the global buffer pool */
   1314 	brelse(bp);
   1315 	simple_lock(&bqueue_slock);
   1316 	return size;
   1317 }
   1318 
   1319 int
   1320 buf_drain(int n)
   1321 {
   1322 	int s, size = 0, sz;
   1323 
   1324 	s = splbio();
   1325 	simple_lock(&bqueue_slock);
   1326 
   1327 	while (size < n && bufmem > bufmem_lowater) {
   1328 		sz = buf_trim();
   1329 		if (sz <= 0)
   1330 			break;
   1331 		size += sz;
   1332 	}
   1333 
   1334 	simple_unlock(&bqueue_slock);
   1335 	splx(s);
   1336 	return size;
   1337 }
   1338 
   1339 /*
   1340  * Wait for operations on the buffer to complete.
   1341  * When they do, extract and return the I/O's error value.
   1342  */
   1343 int
   1344 biowait(struct buf *bp)
   1345 {
   1346 	int s, error;
   1347 
   1348 	s = splbio();
   1349 	simple_lock(&bp->b_interlock);
   1350 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1351 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1352 
   1353 	/* check errors. */
   1354 	if (ISSET(bp->b_flags, B_ERROR) && bp->b_error == 0)
   1355 		bp->b_error = EIO;
   1356 	error = bp->b_error;
   1357 
   1358 	simple_unlock(&bp->b_interlock);
   1359 	splx(s);
   1360 	return (error);
   1361 }
   1362 
   1363 /*
   1364  * Mark I/O complete on a buffer.
   1365  *
   1366  * If a callback has been requested, e.g. the pageout
   1367  * daemon, do so. Otherwise, awaken waiting processes.
   1368  *
   1369  * [ Leffler, et al., says on p.247:
   1370  *	"This routine wakes up the blocked process, frees the buffer
   1371  *	for an asynchronous write, or, for a request by the pagedaemon
   1372  *	process, invokes a procedure specified in the buffer structure" ]
   1373  *
   1374  * In real life, the pagedaemon (or other system processes) wants
   1375  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1376  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1377  * for the vn device, that puts malloc'd buffers on the free lists!)
   1378  */
   1379 void
   1380 biodone(struct buf *bp)
   1381 {
   1382 	int s = splbio();
   1383 
   1384 	simple_lock(&bp->b_interlock);
   1385 	if (ISSET(bp->b_flags, B_DONE))
   1386 		panic("biodone already");
   1387 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1388 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1389 
   1390 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
   1391 		(*bioops.io_complete)(bp);
   1392 
   1393 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1394 		vwakeup(bp);
   1395 
   1396 	/*
   1397 	 * If necessary, call out.  Unlock the buffer before calling
   1398 	 * iodone() as the buffer isn't valid any more when it return.
   1399 	 */
   1400 	if (ISSET(bp->b_flags, B_CALL)) {
   1401 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1402 		simple_unlock(&bp->b_interlock);
   1403 		(*bp->b_iodone)(bp);
   1404 	} else {
   1405 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1406 			simple_unlock(&bp->b_interlock);
   1407 			brelse(bp);
   1408 		} else {			/* or just wakeup the buffer */
   1409 			CLR(bp->b_flags, B_WANTED);
   1410 			wakeup(bp);
   1411 			simple_unlock(&bp->b_interlock);
   1412 		}
   1413 	}
   1414 
   1415 	splx(s);
   1416 }
   1417 
   1418 /*
   1419  * Return a count of buffers on the "locked" queue.
   1420  */
   1421 int
   1422 count_lock_queue(void)
   1423 {
   1424 	struct buf *bp;
   1425 	int n = 0;
   1426 
   1427 	simple_lock(&bqueue_slock);
   1428 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1429 		n++;
   1430 	simple_unlock(&bqueue_slock);
   1431 	return (n);
   1432 }
   1433 
   1434 /*
   1435  * Wait for all buffers to complete I/O
   1436  * Return the number of "stuck" buffers.
   1437  */
   1438 int
   1439 buf_syncwait(void)
   1440 {
   1441 	struct buf *bp;
   1442 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1443 
   1444 	dcount = 10000;
   1445 	for (iter = 0; iter < 20;) {
   1446 		s = splbio();
   1447 		simple_lock(&bqueue_slock);
   1448 		nbusy = 0;
   1449 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1450 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1451 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1452 				nbusy++;
   1453 			/*
   1454 			 * With soft updates, some buffers that are
   1455 			 * written will be remarked as dirty until other
   1456 			 * buffers are written.
   1457 			 */
   1458 			if (bp->b_vp && bp->b_vp->v_mount
   1459 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1460 			    && (bp->b_flags & B_DELWRI)) {
   1461 				simple_lock(&bp->b_interlock);
   1462 				bremfree(bp);
   1463 				bp->b_flags |= B_BUSY;
   1464 				nbusy++;
   1465 				simple_unlock(&bp->b_interlock);
   1466 				simple_unlock(&bqueue_slock);
   1467 				bawrite(bp);
   1468 				if (dcount-- <= 0) {
   1469 					printf("softdep ");
   1470 					splx(s);
   1471 					goto fail;
   1472 				}
   1473 				simple_lock(&bqueue_slock);
   1474 			}
   1475 		    }
   1476 		}
   1477 
   1478 		simple_unlock(&bqueue_slock);
   1479 		splx(s);
   1480 
   1481 		if (nbusy == 0)
   1482 			break;
   1483 		if (nbusy_prev == 0)
   1484 			nbusy_prev = nbusy;
   1485 		printf("%d ", nbusy);
   1486 		tsleep(&nbusy, PRIBIO, "bflush",
   1487 		    (iter == 0) ? 1 : hz / 25 * iter);
   1488 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1489 			iter++;
   1490 		else
   1491 			nbusy_prev = nbusy;
   1492 	}
   1493 
   1494 	if (nbusy) {
   1495 fail:;
   1496 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1497 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1498 		s = splbio();
   1499 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1500 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1501 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1502 				vprint(NULL, bp->b_vp);
   1503 		    }
   1504 		}
   1505 		splx(s);
   1506 #endif
   1507 	}
   1508 
   1509 	return nbusy;
   1510 }
   1511 
   1512 static void
   1513 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1514 {
   1515 
   1516 	o->b_flags = i->b_flags;
   1517 	o->b_error = i->b_error;
   1518 	o->b_prio = i->b_prio;
   1519 	o->b_dev = i->b_dev;
   1520 	o->b_bufsize = i->b_bufsize;
   1521 	o->b_bcount = i->b_bcount;
   1522 	o->b_resid = i->b_resid;
   1523 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
   1524 	o->b_blkno = i->b_blkno;
   1525 	o->b_rawblkno = i->b_rawblkno;
   1526 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1527 	o->b_proc = PTRTOUINT64(i->b_proc);
   1528 	o->b_vp = PTRTOUINT64(i->b_vp);
   1529 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1530 	o->b_lblkno = i->b_lblkno;
   1531 }
   1532 
   1533 #define KERN_BUFSLOP 20
   1534 static int
   1535 sysctl_dobuf(SYSCTLFN_ARGS)
   1536 {
   1537 	struct buf *bp;
   1538 	struct buf_sysctl bs;
   1539 	char *dp;
   1540 	u_int i, op, arg;
   1541 	size_t len, needed, elem_size, out_size;
   1542 	int error, s, elem_count;
   1543 
   1544 	if (namelen == 1 && name[0] == CTL_QUERY)
   1545 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1546 
   1547 	if (namelen != 4)
   1548 		return (EINVAL);
   1549 
   1550 	dp = oldp;
   1551 	len = (oldp != NULL) ? *oldlenp : 0;
   1552 	op = name[0];
   1553 	arg = name[1];
   1554 	elem_size = name[2];
   1555 	elem_count = name[3];
   1556 	out_size = MIN(sizeof(bs), elem_size);
   1557 
   1558 	/*
   1559 	 * at the moment, these are just "placeholders" to make the
   1560 	 * API for retrieving kern.buf data more extensible in the
   1561 	 * future.
   1562 	 *
   1563 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1564 	 * these will be resolved at a later point.
   1565 	 */
   1566 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1567 	    elem_size < 1 || elem_count < 0)
   1568 		return (EINVAL);
   1569 
   1570 	error = 0;
   1571 	needed = 0;
   1572 	s = splbio();
   1573 	simple_lock(&bqueue_slock);
   1574 	for (i = 0; i < BQUEUES; i++) {
   1575 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1576 			if (len >= elem_size && elem_count > 0) {
   1577 				sysctl_fillbuf(bp, &bs);
   1578 				error = copyout(&bs, dp, out_size);
   1579 				if (error)
   1580 					goto cleanup;
   1581 				dp += elem_size;
   1582 				len -= elem_size;
   1583 			}
   1584 			if (elem_count > 0) {
   1585 				needed += elem_size;
   1586 				if (elem_count != INT_MAX)
   1587 					elem_count--;
   1588 			}
   1589 		}
   1590 	}
   1591 cleanup:
   1592 	simple_unlock(&bqueue_slock);
   1593 	splx(s);
   1594 
   1595 	*oldlenp = needed;
   1596 	if (oldp == NULL)
   1597 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1598 
   1599 	return (error);
   1600 }
   1601 
   1602 static int
   1603 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1604 {
   1605 	int t, error;
   1606 	struct sysctlnode node;
   1607 
   1608 	node = *rnode;
   1609 	node.sysctl_data = &t;
   1610 	t = *(int *)rnode->sysctl_data;
   1611 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1612 	if (error || newp == NULL)
   1613 		return (error);
   1614 
   1615 	if (t < 0)
   1616 		return EINVAL;
   1617 	if (rnode->sysctl_data == &bufcache) {
   1618 		if (t > 100)
   1619 			return (EINVAL);
   1620 		bufcache = t;
   1621 		buf_setwm();
   1622 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1623 		if (bufmem_hiwater - t < 16)
   1624 			return (EINVAL);
   1625 		bufmem_lowater = t;
   1626 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1627 		if (t - bufmem_lowater < 16)
   1628 			return (EINVAL);
   1629 		bufmem_hiwater = t;
   1630 	} else
   1631 		return (EINVAL);
   1632 
   1633 	/* Drain until below new high water mark */
   1634 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1635 		if (buf_drain(t / (2 * 1024)) <= 0)
   1636 			break;
   1637 	}
   1638 
   1639 	return 0;
   1640 }
   1641 
   1642 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1643 {
   1644 
   1645 	sysctl_createv(clog, 0, NULL, NULL,
   1646 		       CTLFLAG_PERMANENT,
   1647 		       CTLTYPE_NODE, "kern", NULL,
   1648 		       NULL, 0, NULL, 0,
   1649 		       CTL_KERN, CTL_EOL);
   1650 	sysctl_createv(clog, 0, NULL, NULL,
   1651 		       CTLFLAG_PERMANENT,
   1652 		       CTLTYPE_NODE, "buf",
   1653 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1654 		       sysctl_dobuf, 0, NULL, 0,
   1655 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1656 }
   1657 
   1658 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1659 {
   1660 
   1661 	sysctl_createv(clog, 0, NULL, NULL,
   1662 		       CTLFLAG_PERMANENT,
   1663 		       CTLTYPE_NODE, "vm", NULL,
   1664 		       NULL, 0, NULL, 0,
   1665 		       CTL_VM, CTL_EOL);
   1666 
   1667 	sysctl_createv(clog, 0, NULL, NULL,
   1668 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1669 		       CTLTYPE_INT, "bufcache",
   1670 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1671 				    "buffer cache"),
   1672 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1673 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1674 	sysctl_createv(clog, 0, NULL, NULL,
   1675 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1676 		       CTLTYPE_INT, "bufmem",
   1677 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1678 				    "cache"),
   1679 		       NULL, 0, &bufmem, 0,
   1680 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1681 	sysctl_createv(clog, 0, NULL, NULL,
   1682 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1683 		       CTLTYPE_INT, "bufmem_lowater",
   1684 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1685 				    "reserve for buffer cache"),
   1686 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1687 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1688 	sysctl_createv(clog, 0, NULL, NULL,
   1689 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1690 		       CTLTYPE_INT, "bufmem_hiwater",
   1691 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1692 				    "for buffer cache"),
   1693 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1694 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1695 }
   1696 
   1697 #ifdef DEBUG
   1698 /*
   1699  * Print out statistics on the current allocation of the buffer pool.
   1700  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1701  * in vfs_syscalls.c using sysctl.
   1702  */
   1703 void
   1704 vfs_bufstats(void)
   1705 {
   1706 	int s, i, j, count;
   1707 	struct buf *bp;
   1708 	struct bqueue *dp;
   1709 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1710 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1711 
   1712 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1713 		count = 0;
   1714 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1715 			counts[j] = 0;
   1716 		s = splbio();
   1717 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1718 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1719 			count++;
   1720 		}
   1721 		splx(s);
   1722 		printf("%s: total-%d", bname[i], count);
   1723 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1724 			if (counts[j] != 0)
   1725 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1726 		printf("\n");
   1727 	}
   1728 }
   1729 #endif /* DEBUG */
   1730 
   1731 /* ------------------------------ */
   1732 
   1733 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL,
   1734     IPL_BIO);
   1735 
   1736 static struct buf *
   1737 getiobuf1(int prflags)
   1738 {
   1739 	struct buf *bp;
   1740 	int s;
   1741 
   1742 	s = splbio();
   1743 	bp = pool_get(&bufiopool, prflags);
   1744 	splx(s);
   1745 	if (bp != NULL) {
   1746 		BUF_INIT(bp);
   1747 	}
   1748 	return bp;
   1749 }
   1750 
   1751 struct buf *
   1752 getiobuf(void)
   1753 {
   1754 
   1755 	return getiobuf1(PR_WAITOK);
   1756 }
   1757 
   1758 struct buf *
   1759 getiobuf_nowait(void)
   1760 {
   1761 
   1762 	return getiobuf1(PR_NOWAIT);
   1763 }
   1764 
   1765 void
   1766 putiobuf(struct buf *bp)
   1767 {
   1768 	int s;
   1769 
   1770 	s = splbio();
   1771 	pool_put(&bufiopool, bp);
   1772 	splx(s);
   1773 }
   1774 
   1775 /*
   1776  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1777  */
   1778 
   1779 void
   1780 nestiobuf_iodone(struct buf *bp)
   1781 {
   1782 	struct buf *mbp = bp->b_private;
   1783 	int error;
   1784 	int donebytes;
   1785 
   1786 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1787 	KASSERT(mbp != bp);
   1788 
   1789 	error = 0;
   1790 	if (bp->b_error != 0) {
   1791 		error = bp->b_error;
   1792 	} else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
   1793 		/*
   1794 		 * Not all got transfered, raise an error. We have no way to
   1795 		 * propagate these conditions to mbp.
   1796 		 */
   1797 		error = EIO;
   1798 	}
   1799 
   1800 	donebytes = bp->b_bufsize;
   1801 
   1802 	putiobuf(bp);
   1803 	nestiobuf_done(mbp, donebytes, error);
   1804 }
   1805 
   1806 /*
   1807  * nestiobuf_setup: setup a "nested" buffer.
   1808  *
   1809  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1810  * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
   1811  * => 'offset' is a byte offset in the master buffer.
   1812  * => 'size' is a size in bytes of this nested buffer.
   1813  */
   1814 
   1815 void
   1816 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
   1817 {
   1818 	const int b_read = mbp->b_flags & B_READ;
   1819 	struct vnode *vp = mbp->b_vp;
   1820 
   1821 	KASSERT(mbp->b_bcount >= offset + size);
   1822 	bp->b_vp = vp;
   1823 	bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
   1824 	bp->b_iodone = nestiobuf_iodone;
   1825 	bp->b_data = (char *)mbp->b_data + offset;
   1826 	bp->b_resid = bp->b_bcount = size;
   1827 	bp->b_bufsize = bp->b_bcount;
   1828 	bp->b_private = mbp;
   1829 	BIO_COPYPRIO(bp, mbp);
   1830 	if (!b_read && vp != NULL) {
   1831 		int s;
   1832 
   1833 		s = splbio();
   1834 		V_INCR_NUMOUTPUT(vp);
   1835 		splx(s);
   1836 	}
   1837 }
   1838 
   1839 /*
   1840  * nestiobuf_done: propagate completion to the master buffer.
   1841  *
   1842  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1843  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1844  */
   1845 
   1846 void
   1847 nestiobuf_done(struct buf *mbp, int donebytes, int error)
   1848 {
   1849 	int s;
   1850 
   1851 	if (donebytes == 0) {
   1852 		return;
   1853 	}
   1854 	s = splbio();
   1855 	KASSERT(mbp->b_resid >= donebytes);
   1856 	if (error) {
   1857 		mbp->b_error = error;
   1858 	}
   1859 	mbp->b_resid -= donebytes;
   1860 	if (mbp->b_resid == 0) {
   1861 		if (mbp->b_error != 0) {
   1862 			mbp->b_resid = mbp->b_bcount; /* be conservative */
   1863 		}
   1864 		biodone(mbp);
   1865 	}
   1866 	splx(s);
   1867 }
   1868