vfs_bio.c revision 1.174 1 /* $NetBSD: vfs_bio.c,v 1.174 2007/07/29 12:15:45 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include "fs_ffs.h"
81 #include "opt_bufcache.h"
82 #include "opt_softdep.h"
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.174 2007/07/29 12:15:45 ad Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/proc.h>
91 #include <sys/buf.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/malloc.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sysctl.h>
97 #include <sys/conf.h>
98 #include <sys/kauth.h>
99
100 #include <uvm/uvm.h>
101
102 #include <miscfs/specfs/specdev.h>
103
104 #ifndef BUFPAGES
105 # define BUFPAGES 0
106 #endif
107
108 #ifdef BUFCACHE
109 # if (BUFCACHE < 5) || (BUFCACHE > 95)
110 # error BUFCACHE is not between 5 and 95
111 # endif
112 #else
113 # define BUFCACHE 15
114 #endif
115
116 u_int nbuf; /* XXX - for softdep_lockedbufs */
117 u_int bufpages = BUFPAGES; /* optional hardwired count */
118 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
119
120 /* Function prototypes */
121 struct bqueue;
122
123 static void buf_setwm(void);
124 static int buf_trim(void);
125 static void *bufpool_page_alloc(struct pool *, int);
126 static void bufpool_page_free(struct pool *, void *);
127 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
128 kauth_cred_t, int);
129 static struct buf *getnewbuf(int, int, int);
130 static int buf_lotsfree(void);
131 static int buf_canrelease(void);
132 static inline u_long buf_mempoolidx(u_long);
133 static inline u_long buf_roundsize(u_long);
134 static inline void *buf_malloc(size_t);
135 static void buf_mrelease(void *, size_t);
136 static inline void binsheadfree(struct buf *, struct bqueue *);
137 static inline void binstailfree(struct buf *, struct bqueue *);
138 int count_lock_queue(void); /* XXX */
139 #ifdef DEBUG
140 static int checkfreelist(struct buf *, struct bqueue *);
141 #endif
142
143 /*
144 * Definitions for the buffer hash lists.
145 */
146 #define BUFHASH(dvp, lbn) \
147 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
148 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
149 u_long bufhash;
150 #if !defined(SOFTDEP) || !defined(FFS)
151 struct bio_ops bioops; /* I/O operation notification */
152 #endif
153
154 /*
155 * Insq/Remq for the buffer hash lists.
156 */
157 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
158 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
159
160 /*
161 * Definitions for the buffer free lists.
162 */
163 #define BQUEUES 3 /* number of free buffer queues */
164
165 #define BQ_LOCKED 0 /* super-blocks &c */
166 #define BQ_LRU 1 /* lru, useful buffers */
167 #define BQ_AGE 2 /* rubbish */
168
169 struct bqueue {
170 TAILQ_HEAD(, buf) bq_queue;
171 uint64_t bq_bytes;
172 } bufqueues[BQUEUES];
173 int needbuffer;
174
175 /*
176 * Buffer queue lock.
177 * Take this lock first if also taking some buffer's b_interlock.
178 */
179 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
180
181 /*
182 * Buffer pool for I/O buffers.
183 */
184 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
185 &pool_allocator_nointr, IPL_NONE);
186
187
188 /* XXX - somewhat gross.. */
189 #if MAXBSIZE == 0x2000
190 #define NMEMPOOLS 5
191 #elif MAXBSIZE == 0x4000
192 #define NMEMPOOLS 6
193 #elif MAXBSIZE == 0x8000
194 #define NMEMPOOLS 7
195 #else
196 #define NMEMPOOLS 8
197 #endif
198
199 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201 #error update vfs_bio buffer memory parameters
202 #endif
203
204 /* Buffer memory pools */
205 static struct pool bmempools[NMEMPOOLS];
206
207 struct vm_map *buf_map;
208
209 /*
210 * Buffer memory pool allocator.
211 */
212 static void *
213 bufpool_page_alloc(struct pool *pp, int flags)
214 {
215
216 return (void *)uvm_km_alloc(buf_map,
217 MAXBSIZE, MAXBSIZE,
218 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
219 | UVM_KMF_WIRED);
220 }
221
222 static void
223 bufpool_page_free(struct pool *pp, void *v)
224 {
225
226 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
227 }
228
229 static struct pool_allocator bufmempool_allocator = {
230 .pa_alloc = bufpool_page_alloc,
231 .pa_free = bufpool_page_free,
232 .pa_pagesz = MAXBSIZE,
233 };
234
235 /* Buffer memory management variables */
236 u_long bufmem_valimit;
237 u_long bufmem_hiwater;
238 u_long bufmem_lowater;
239 u_long bufmem;
240
241 /*
242 * MD code can call this to set a hard limit on the amount
243 * of virtual memory used by the buffer cache.
244 */
245 int
246 buf_setvalimit(vsize_t sz)
247 {
248
249 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
250 if (sz < NMEMPOOLS * MAXBSIZE)
251 return EINVAL;
252
253 bufmem_valimit = sz;
254 return 0;
255 }
256
257 static void
258 buf_setwm(void)
259 {
260
261 bufmem_hiwater = buf_memcalc();
262 /* lowater is approx. 2% of memory (with bufcache = 15) */
263 #define BUFMEM_WMSHIFT 3
264 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
265 if (bufmem_hiwater < BUFMEM_HIWMMIN)
266 /* Ensure a reasonable minimum value */
267 bufmem_hiwater = BUFMEM_HIWMMIN;
268 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
269 }
270
271 #ifdef DEBUG
272 int debug_verify_freelist = 0;
273 static int
274 checkfreelist(struct buf *bp, struct bqueue *dp)
275 {
276 struct buf *b;
277
278 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
279 if (b == bp)
280 return 1;
281 }
282 return 0;
283 }
284 #endif
285
286 /*
287 * Insq/Remq for the buffer hash lists.
288 * Call with buffer queue locked.
289 */
290 static inline void
291 binsheadfree(struct buf *bp, struct bqueue *dp)
292 {
293
294 KASSERT(bp->b_freelistindex == -1);
295 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
296 dp->bq_bytes += bp->b_bufsize;
297 bp->b_freelistindex = dp - bufqueues;
298 }
299
300 static inline void
301 binstailfree(struct buf *bp, struct bqueue *dp)
302 {
303
304 KASSERT(bp->b_freelistindex == -1);
305 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
306 dp->bq_bytes += bp->b_bufsize;
307 bp->b_freelistindex = dp - bufqueues;
308 }
309
310 void
311 bremfree(struct buf *bp)
312 {
313 struct bqueue *dp;
314 int bqidx = bp->b_freelistindex;
315
316 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
317
318 KASSERT(bqidx != -1);
319 dp = &bufqueues[bqidx];
320 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
321 KASSERT(dp->bq_bytes >= bp->b_bufsize);
322 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
323 dp->bq_bytes -= bp->b_bufsize;
324 #if defined(DIAGNOSTIC)
325 bp->b_freelistindex = -1;
326 #endif /* defined(DIAGNOSTIC) */
327 }
328
329 u_long
330 buf_memcalc(void)
331 {
332 u_long n;
333
334 /*
335 * Determine the upper bound of memory to use for buffers.
336 *
337 * - If bufpages is specified, use that as the number
338 * pages.
339 *
340 * - Otherwise, use bufcache as the percentage of
341 * physical memory.
342 */
343 if (bufpages != 0) {
344 n = bufpages;
345 } else {
346 if (bufcache < 5) {
347 printf("forcing bufcache %d -> 5", bufcache);
348 bufcache = 5;
349 }
350 if (bufcache > 95) {
351 printf("forcing bufcache %d -> 95", bufcache);
352 bufcache = 95;
353 }
354 n = physmem / 100 * bufcache;
355 }
356
357 n <<= PAGE_SHIFT;
358 if (bufmem_valimit != 0 && n > bufmem_valimit)
359 n = bufmem_valimit;
360
361 return (n);
362 }
363
364 /*
365 * Initialize buffers and hash links for buffers.
366 */
367 void
368 bufinit(void)
369 {
370 struct bqueue *dp;
371 int use_std;
372 u_int i;
373
374 /*
375 * Initialize buffer cache memory parameters.
376 */
377 bufmem = 0;
378 buf_setwm();
379
380 if (bufmem_valimit != 0) {
381 vaddr_t minaddr = 0, maxaddr;
382 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
383 bufmem_valimit, 0, false, 0);
384 if (buf_map == NULL)
385 panic("bufinit: cannot allocate submap");
386 } else
387 buf_map = kernel_map;
388
389 /* On "small" machines use small pool page sizes where possible */
390 use_std = (physmem < atop(16*1024*1024));
391
392 /*
393 * Also use them on systems that can map the pool pages using
394 * a direct-mapped segment.
395 */
396 #ifdef PMAP_MAP_POOLPAGE
397 use_std = 1;
398 #endif
399
400 bufmempool_allocator.pa_backingmap = buf_map;
401 for (i = 0; i < NMEMPOOLS; i++) {
402 struct pool_allocator *pa;
403 struct pool *pp = &bmempools[i];
404 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
405 char *name = malloc(8, M_TEMP, M_WAITOK);
406 if (__predict_true(size >= 1024))
407 (void)snprintf(name, 8, "buf%dk", size / 1024);
408 else
409 (void)snprintf(name, 8, "buf%db", size);
410 pa = (size <= PAGE_SIZE && use_std)
411 ? &pool_allocator_nointr
412 : &bufmempool_allocator;
413 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
414 pool_setlowat(pp, 1);
415 pool_sethiwat(pp, 1);
416 }
417
418 /* Initialize the buffer queues */
419 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
420 TAILQ_INIT(&dp->bq_queue);
421 dp->bq_bytes = 0;
422 }
423
424 /*
425 * Estimate hash table size based on the amount of memory we
426 * intend to use for the buffer cache. The average buffer
427 * size is dependent on our clients (i.e. filesystems).
428 *
429 * For now, use an empirical 3K per buffer.
430 */
431 nbuf = (bufmem_hiwater / 1024) / 3;
432 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
433 }
434
435 static int
436 buf_lotsfree(void)
437 {
438 int try, thresh;
439
440 /* Always allocate if doing copy on write */
441 if (curlwp->l_pflag & LP_UFSCOW)
442 return 1;
443
444 /* Always allocate if less than the low water mark. */
445 if (bufmem < bufmem_lowater)
446 return 1;
447
448 /* Never allocate if greater than the high water mark. */
449 if (bufmem > bufmem_hiwater)
450 return 0;
451
452 /* If there's anything on the AGE list, it should be eaten. */
453 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
454 return 0;
455
456 /*
457 * The probabily of getting a new allocation is inversely
458 * proportional to the current size of the cache, using
459 * a granularity of 16 steps.
460 */
461 try = random() & 0x0000000fL;
462
463 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
464 thresh = (bufmem - bufmem_lowater) /
465 ((bufmem_hiwater - bufmem_lowater) / 16);
466
467 if (try >= thresh)
468 return 1;
469
470 /* Otherwise don't allocate. */
471 return 0;
472 }
473
474 /*
475 * Return estimate of bytes we think need to be
476 * released to help resolve low memory conditions.
477 *
478 * => called at splbio.
479 * => called with bqueue_slock held.
480 */
481 static int
482 buf_canrelease(void)
483 {
484 int pagedemand, ninvalid = 0;
485
486 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
487
488 if (bufmem < bufmem_lowater)
489 return 0;
490
491 if (bufmem > bufmem_hiwater)
492 return bufmem - bufmem_hiwater;
493
494 ninvalid += bufqueues[BQ_AGE].bq_bytes;
495
496 pagedemand = uvmexp.freetarg - uvmexp.free;
497 if (pagedemand < 0)
498 return ninvalid;
499 return MAX(ninvalid, MIN(2 * MAXBSIZE,
500 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
501 }
502
503 /*
504 * Buffer memory allocation helper functions
505 */
506 static inline u_long
507 buf_mempoolidx(u_long size)
508 {
509 u_int n = 0;
510
511 size -= 1;
512 size >>= MEMPOOL_INDEX_OFFSET;
513 while (size) {
514 size >>= 1;
515 n += 1;
516 }
517 if (n >= NMEMPOOLS)
518 panic("buf mem pool index %d", n);
519 return n;
520 }
521
522 static inline u_long
523 buf_roundsize(u_long size)
524 {
525 /* Round up to nearest power of 2 */
526 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
527 }
528
529 static inline void *
530 buf_malloc(size_t size)
531 {
532 u_int n = buf_mempoolidx(size);
533 void *addr;
534 int s;
535
536 while (1) {
537 addr = pool_get(&bmempools[n], PR_NOWAIT);
538 if (addr != NULL)
539 break;
540
541 /* No memory, see if we can free some. If so, try again */
542 if (buf_drain(1) > 0)
543 continue;
544
545 /* Wait for buffers to arrive on the LRU queue */
546 s = splbio();
547 simple_lock(&bqueue_slock);
548 needbuffer = 1;
549 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
550 "buf_malloc", 0, &bqueue_slock);
551 splx(s);
552 }
553
554 return addr;
555 }
556
557 static void
558 buf_mrelease(void *addr, size_t size)
559 {
560
561 pool_put(&bmempools[buf_mempoolidx(size)], addr);
562 }
563
564 /*
565 * bread()/breadn() helper.
566 */
567 static inline struct buf *
568 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
569 int async)
570 {
571 struct buf *bp;
572 struct mount *mp;
573
574 bp = getblk(vp, blkno, size, 0, 0);
575
576 #ifdef DIAGNOSTIC
577 if (bp == NULL) {
578 panic("bio_doread: no such buf");
579 }
580 #endif
581
582 /*
583 * If buffer does not have data valid, start a read.
584 * Note that if buffer is B_INVAL, getblk() won't return it.
585 * Therefore, it's valid if its I/O has completed or been delayed.
586 */
587 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
588 /* Start I/O for the buffer. */
589 SET(bp->b_flags, B_READ | async);
590 if (async)
591 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
592 else
593 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
594 VOP_STRATEGY(vp, bp);
595
596 /* Pay for the read. */
597 curproc->p_stats->p_ru.ru_inblock++;
598 } else if (async) {
599 brelse(bp);
600 }
601
602 if (vp->v_type == VBLK)
603 mp = vp->v_specmountpoint;
604 else
605 mp = vp->v_mount;
606
607 /*
608 * Collect statistics on synchronous and asynchronous reads.
609 * Reads from block devices are charged to their associated
610 * filesystem (if any).
611 */
612 if (mp != NULL) {
613 if (async == 0)
614 mp->mnt_stat.f_syncreads++;
615 else
616 mp->mnt_stat.f_asyncreads++;
617 }
618
619 return (bp);
620 }
621
622 /*
623 * Read a disk block.
624 * This algorithm described in Bach (p.54).
625 */
626 int
627 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
628 struct buf **bpp)
629 {
630 struct buf *bp;
631
632 /* Get buffer for block. */
633 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
634
635 /* Wait for the read to complete, and return result. */
636 return (biowait(bp));
637 }
638
639 /*
640 * Read-ahead multiple disk blocks. The first is sync, the rest async.
641 * Trivial modification to the breada algorithm presented in Bach (p.55).
642 */
643 int
644 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
645 int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
646 {
647 struct buf *bp;
648 int i;
649
650 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
651
652 /*
653 * For each of the read-ahead blocks, start a read, if necessary.
654 */
655 for (i = 0; i < nrablks; i++) {
656 /* If it's in the cache, just go on to next one. */
657 if (incore(vp, rablks[i]))
658 continue;
659
660 /* Get a buffer for the read-ahead block */
661 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
662 }
663
664 /* Otherwise, we had to start a read for it; wait until it's valid. */
665 return (biowait(bp));
666 }
667
668 /*
669 * Read with single-block read-ahead. Defined in Bach (p.55), but
670 * implemented as a call to breadn().
671 * XXX for compatibility with old file systems.
672 */
673 int
674 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
675 int rabsize, kauth_cred_t cred, struct buf **bpp)
676 {
677
678 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
679 }
680
681 /*
682 * Block write. Described in Bach (p.56)
683 */
684 int
685 bwrite(struct buf *bp)
686 {
687 int rv, sync, wasdelayed, s;
688 struct vnode *vp;
689 struct mount *mp;
690
691 KASSERT(ISSET(bp->b_flags, B_BUSY));
692
693 vp = bp->b_vp;
694 if (vp != NULL) {
695 if (vp->v_type == VBLK)
696 mp = vp->v_specmountpoint;
697 else
698 mp = vp->v_mount;
699 } else {
700 mp = NULL;
701 }
702
703 /*
704 * Remember buffer type, to switch on it later. If the write was
705 * synchronous, but the file system was mounted with MNT_ASYNC,
706 * convert it to a delayed write.
707 * XXX note that this relies on delayed tape writes being converted
708 * to async, not sync writes (which is safe, but ugly).
709 */
710 sync = !ISSET(bp->b_flags, B_ASYNC);
711 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
712 bdwrite(bp);
713 return (0);
714 }
715
716 /*
717 * Collect statistics on synchronous and asynchronous writes.
718 * Writes to block devices are charged to their associated
719 * filesystem (if any).
720 */
721 if (mp != NULL) {
722 if (sync)
723 mp->mnt_stat.f_syncwrites++;
724 else
725 mp->mnt_stat.f_asyncwrites++;
726 }
727
728 s = splbio();
729 simple_lock(&bp->b_interlock);
730
731 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
732
733 CLR(bp->b_flags, (B_READ | B_DONE | B_DELWRI));
734 bp->b_error = 0;
735
736 /*
737 * Pay for the I/O operation and make sure the buf is on the correct
738 * vnode queue.
739 */
740 if (wasdelayed)
741 reassignbuf(bp, bp->b_vp);
742 else
743 curproc->p_stats->p_ru.ru_oublock++;
744
745 /* Initiate disk write. Make sure the appropriate party is charged. */
746 V_INCR_NUMOUTPUT(bp->b_vp);
747 simple_unlock(&bp->b_interlock);
748 splx(s);
749
750 if (sync)
751 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
752 else
753 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
754
755 VOP_STRATEGY(vp, bp);
756
757 if (sync) {
758 /* If I/O was synchronous, wait for it to complete. */
759 rv = biowait(bp);
760
761 /* Release the buffer. */
762 brelse(bp);
763
764 return (rv);
765 } else {
766 return (0);
767 }
768 }
769
770 int
771 vn_bwrite(void *v)
772 {
773 struct vop_bwrite_args *ap = v;
774
775 return (bwrite(ap->a_bp));
776 }
777
778 /*
779 * Delayed write.
780 *
781 * The buffer is marked dirty, but is not queued for I/O.
782 * This routine should be used when the buffer is expected
783 * to be modified again soon, typically a small write that
784 * partially fills a buffer.
785 *
786 * NB: magnetic tapes cannot be delayed; they must be
787 * written in the order that the writes are requested.
788 *
789 * Described in Leffler, et al. (pp. 208-213).
790 */
791 void
792 bdwrite(struct buf *bp)
793 {
794 int s;
795
796 /* If this is a tape block, write the block now. */
797 if (bdev_type(bp->b_dev) == D_TAPE) {
798 bawrite(bp);
799 return;
800 }
801
802 /*
803 * If the block hasn't been seen before:
804 * (1) Mark it as having been seen,
805 * (2) Charge for the write,
806 * (3) Make sure it's on its vnode's correct block list.
807 */
808 s = splbio();
809 simple_lock(&bp->b_interlock);
810
811 KASSERT(ISSET(bp->b_flags, B_BUSY));
812
813 if (!ISSET(bp->b_flags, B_DELWRI)) {
814 SET(bp->b_flags, B_DELWRI);
815 curproc->p_stats->p_ru.ru_oublock++;
816 reassignbuf(bp, bp->b_vp);
817 }
818
819 /* Otherwise, the "write" is done, so mark and release the buffer. */
820 CLR(bp->b_flags, B_DONE);
821 simple_unlock(&bp->b_interlock);
822 splx(s);
823
824 brelse(bp);
825 }
826
827 /*
828 * Asynchronous block write; just an asynchronous bwrite().
829 */
830 void
831 bawrite(struct buf *bp)
832 {
833 int s;
834
835 s = splbio();
836 simple_lock(&bp->b_interlock);
837
838 KASSERT(ISSET(bp->b_flags, B_BUSY));
839
840 SET(bp->b_flags, B_ASYNC);
841 simple_unlock(&bp->b_interlock);
842 splx(s);
843 VOP_BWRITE(bp);
844 }
845
846 /*
847 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
848 * Call at splbio() and with the buffer interlock locked.
849 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
850 */
851 void
852 bdirty(struct buf *bp)
853 {
854
855 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
856 KASSERT(ISSET(bp->b_flags, B_BUSY));
857
858 CLR(bp->b_flags, B_AGE);
859
860 if (!ISSET(bp->b_flags, B_DELWRI)) {
861 SET(bp->b_flags, B_DELWRI);
862 curproc->p_stats->p_ru.ru_oublock++;
863 reassignbuf(bp, bp->b_vp);
864 }
865 }
866
867 /*
868 * Release a buffer on to the free lists.
869 * Described in Bach (p. 46).
870 */
871 void
872 brelse(struct buf *bp)
873 {
874 struct bqueue *bufq;
875 int s;
876
877 /* Block disk interrupts. */
878 s = splbio();
879 simple_lock(&bqueue_slock);
880 simple_lock(&bp->b_interlock);
881
882 KASSERT(ISSET(bp->b_flags, B_BUSY));
883 KASSERT(!ISSET(bp->b_flags, B_CALL));
884
885 /* Wake up any processes waiting for any buffer to become free. */
886 if (needbuffer) {
887 needbuffer = 0;
888 wakeup(&needbuffer);
889 }
890
891 /* Wake up any proceeses waiting for _this_ buffer to become free. */
892 if (ISSET(bp->b_flags, B_WANTED)) {
893 CLR(bp->b_flags, B_WANTED|B_AGE);
894 wakeup(bp);
895 }
896
897 /*
898 * Determine which queue the buffer should be on, then put it there.
899 */
900
901 /* If it's locked, don't report an error; try again later. */
902 if (ISSET(bp->b_flags, B_LOCKED) && bp->b_error != 0)
903 bp->b_error = 0;
904
905 /* If it's not cacheable, or an error, mark it invalid. */
906 if (ISSET(bp->b_flags, B_NOCACHE) || bp->b_error != 0)
907 SET(bp->b_flags, B_INVAL);
908
909 if (ISSET(bp->b_flags, B_VFLUSH)) {
910 /*
911 * This is a delayed write buffer that was just flushed to
912 * disk. It is still on the LRU queue. If it's become
913 * invalid, then we need to move it to a different queue;
914 * otherwise leave it in its current position.
915 */
916 CLR(bp->b_flags, B_VFLUSH);
917 if (!ISSET(bp->b_flags, B_INVAL|B_LOCKED|B_AGE) &&
918 bp->b_error == 0) {
919 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
920 goto already_queued;
921 } else {
922 bremfree(bp);
923 }
924 }
925
926 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
927 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
928 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
929
930 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
931 /*
932 * If it's invalid or empty, dissociate it from its vnode
933 * and put on the head of the appropriate queue.
934 */
935 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
936 (*bioops.io_deallocate)(bp);
937 CLR(bp->b_flags, B_DONE|B_DELWRI);
938 if (bp->b_vp) {
939 reassignbuf(bp, bp->b_vp);
940 brelvp(bp);
941 }
942 if (bp->b_bufsize <= 0)
943 /* no data */
944 goto already_queued;
945 else
946 /* invalid data */
947 bufq = &bufqueues[BQ_AGE];
948 binsheadfree(bp, bufq);
949 } else {
950 /*
951 * It has valid data. Put it on the end of the appropriate
952 * queue, so that it'll stick around for as long as possible.
953 * If buf is AGE, but has dependencies, must put it on last
954 * bufqueue to be scanned, ie LRU. This protects against the
955 * livelock where BQ_AGE only has buffers with dependencies,
956 * and we thus never get to the dependent buffers in BQ_LRU.
957 */
958 if (ISSET(bp->b_flags, B_LOCKED))
959 /* locked in core */
960 bufq = &bufqueues[BQ_LOCKED];
961 else if (!ISSET(bp->b_flags, B_AGE))
962 /* valid data */
963 bufq = &bufqueues[BQ_LRU];
964 else {
965 /* stale but valid data */
966 int has_deps;
967
968 if (LIST_FIRST(&bp->b_dep) != NULL &&
969 bioops.io_countdeps)
970 has_deps = (*bioops.io_countdeps)(bp, 0);
971 else
972 has_deps = 0;
973 bufq = has_deps ? &bufqueues[BQ_LRU] :
974 &bufqueues[BQ_AGE];
975 }
976 binstailfree(bp, bufq);
977 }
978
979 already_queued:
980 /* Unlock the buffer. */
981 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
982 SET(bp->b_flags, B_CACHE);
983
984 /* Allow disk interrupts. */
985 simple_unlock(&bp->b_interlock);
986 simple_unlock(&bqueue_slock);
987 splx(s);
988 if (bp->b_bufsize <= 0) {
989 #ifdef DEBUG
990 memset((char *)bp, 0, sizeof(*bp));
991 #endif
992 pool_put(&bufpool, bp);
993 }
994 }
995
996 /*
997 * Determine if a block is in the cache.
998 * Just look on what would be its hash chain. If it's there, return
999 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1000 * we normally don't return the buffer, unless the caller explicitly
1001 * wants us to.
1002 */
1003 struct buf *
1004 incore(struct vnode *vp, daddr_t blkno)
1005 {
1006 struct buf *bp;
1007
1008 /* Search hash chain */
1009 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1010 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1011 !ISSET(bp->b_flags, B_INVAL))
1012 return (bp);
1013 }
1014
1015 return (NULL);
1016 }
1017
1018 /*
1019 * Get a block of requested size that is associated with
1020 * a given vnode and block offset. If it is found in the
1021 * block cache, mark it as having been found, make it busy
1022 * and return it. Otherwise, return an empty block of the
1023 * correct size. It is up to the caller to insure that the
1024 * cached blocks be of the correct size.
1025 */
1026 struct buf *
1027 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1028 {
1029 struct buf *bp;
1030 int s, err;
1031 int preserve;
1032
1033 start:
1034 s = splbio();
1035 simple_lock(&bqueue_slock);
1036 bp = incore(vp, blkno);
1037 if (bp != NULL) {
1038 simple_lock(&bp->b_interlock);
1039 if (ISSET(bp->b_flags, B_BUSY)) {
1040 simple_unlock(&bqueue_slock);
1041 if (curlwp == uvm.pagedaemon_lwp) {
1042 simple_unlock(&bp->b_interlock);
1043 splx(s);
1044 return NULL;
1045 }
1046 SET(bp->b_flags, B_WANTED);
1047 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1048 "getblk", slptimeo, &bp->b_interlock);
1049 splx(s);
1050 if (err)
1051 return (NULL);
1052 goto start;
1053 }
1054 #ifdef DIAGNOSTIC
1055 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1056 bp->b_bcount < size && vp->v_type != VBLK)
1057 panic("getblk: block size invariant failed");
1058 #endif
1059 SET(bp->b_flags, B_BUSY);
1060 bremfree(bp);
1061 preserve = 1;
1062 } else {
1063 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1064 simple_unlock(&bqueue_slock);
1065 splx(s);
1066 goto start;
1067 }
1068
1069 binshash(bp, BUFHASH(vp, blkno));
1070 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1071 bgetvp(vp, bp);
1072 preserve = 0;
1073 }
1074 simple_unlock(&bp->b_interlock);
1075 simple_unlock(&bqueue_slock);
1076 splx(s);
1077 /*
1078 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1079 * if we re-size buffers here.
1080 */
1081 if (ISSET(bp->b_flags, B_LOCKED)) {
1082 KASSERT(bp->b_bufsize >= size);
1083 } else {
1084 allocbuf(bp, size, preserve);
1085 }
1086 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1087 return (bp);
1088 }
1089
1090 /*
1091 * Get an empty, disassociated buffer of given size.
1092 */
1093 struct buf *
1094 geteblk(int size)
1095 {
1096 struct buf *bp;
1097 int s;
1098
1099 s = splbio();
1100 simple_lock(&bqueue_slock);
1101 while ((bp = getnewbuf(0, 0, 0)) == 0)
1102 ;
1103
1104 SET(bp->b_flags, B_INVAL);
1105 binshash(bp, &invalhash);
1106 simple_unlock(&bqueue_slock);
1107 simple_unlock(&bp->b_interlock);
1108 splx(s);
1109 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1110 allocbuf(bp, size, 0);
1111 return (bp);
1112 }
1113
1114 /*
1115 * Expand or contract the actual memory allocated to a buffer.
1116 *
1117 * If the buffer shrinks, data is lost, so it's up to the
1118 * caller to have written it out *first*; this routine will not
1119 * start a write. If the buffer grows, it's the callers
1120 * responsibility to fill out the buffer's additional contents.
1121 */
1122 void
1123 allocbuf(struct buf *bp, int size, int preserve)
1124 {
1125 vsize_t oldsize, desired_size;
1126 void *addr;
1127 int s, delta;
1128
1129 desired_size = buf_roundsize(size);
1130 if (desired_size > MAXBSIZE)
1131 printf("allocbuf: buffer larger than MAXBSIZE requested");
1132
1133 bp->b_bcount = size;
1134
1135 oldsize = bp->b_bufsize;
1136 if (oldsize == desired_size)
1137 return;
1138
1139 /*
1140 * If we want a buffer of a different size, re-allocate the
1141 * buffer's memory; copy old content only if needed.
1142 */
1143 addr = buf_malloc(desired_size);
1144 if (preserve)
1145 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1146 if (bp->b_data != NULL)
1147 buf_mrelease(bp->b_data, oldsize);
1148 bp->b_data = addr;
1149 bp->b_bufsize = desired_size;
1150
1151 /*
1152 * Update overall buffer memory counter (protected by bqueue_slock)
1153 */
1154 delta = (long)desired_size - (long)oldsize;
1155
1156 s = splbio();
1157 simple_lock(&bqueue_slock);
1158 if ((bufmem += delta) > bufmem_hiwater) {
1159 /*
1160 * Need to trim overall memory usage.
1161 */
1162 while (buf_canrelease()) {
1163 if (curcpu()->ci_schedstate.spc_flags &
1164 SPCF_SHOULDYIELD) {
1165 simple_unlock(&bqueue_slock);
1166 splx(s);
1167 preempt();
1168 s = splbio();
1169 simple_lock(&bqueue_slock);
1170 }
1171
1172 if (buf_trim() == 0)
1173 break;
1174 }
1175 }
1176
1177 simple_unlock(&bqueue_slock);
1178 splx(s);
1179 }
1180
1181 /*
1182 * Find a buffer which is available for use.
1183 * Select something from a free list.
1184 * Preference is to AGE list, then LRU list.
1185 *
1186 * Called at splbio and with buffer queues locked.
1187 * Return buffer locked.
1188 */
1189 struct buf *
1190 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1191 {
1192 struct buf *bp;
1193
1194 start:
1195 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1196
1197 /*
1198 * Get a new buffer from the pool; but use NOWAIT because
1199 * we have the buffer queues locked.
1200 */
1201 if (!from_bufq && buf_lotsfree() &&
1202 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1203 memset((char *)bp, 0, sizeof(*bp));
1204 BUF_INIT(bp);
1205 bp->b_dev = NODEV;
1206 bp->b_vnbufs.le_next = NOLIST;
1207 bp->b_flags = B_BUSY;
1208 simple_lock(&bp->b_interlock);
1209 #if defined(DIAGNOSTIC)
1210 bp->b_freelistindex = -1;
1211 #endif /* defined(DIAGNOSTIC) */
1212 return (bp);
1213 }
1214
1215 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1216 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1217 simple_lock(&bp->b_interlock);
1218 bremfree(bp);
1219 } else {
1220 /*
1221 * XXX: !from_bufq should be removed.
1222 */
1223 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1224 /* wait for a free buffer of any kind */
1225 needbuffer = 1;
1226 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1227 "getnewbuf", slptimeo, &bqueue_slock);
1228 }
1229 return (NULL);
1230 }
1231
1232 #ifdef DIAGNOSTIC
1233 if (bp->b_bufsize <= 0)
1234 panic("buffer %p: on queue but empty", bp);
1235 #endif
1236
1237 if (ISSET(bp->b_flags, B_VFLUSH)) {
1238 /*
1239 * This is a delayed write buffer being flushed to disk. Make
1240 * sure it gets aged out of the queue when it's finished, and
1241 * leave it off the LRU queue.
1242 */
1243 CLR(bp->b_flags, B_VFLUSH);
1244 SET(bp->b_flags, B_AGE);
1245 simple_unlock(&bp->b_interlock);
1246 goto start;
1247 }
1248
1249 /* Buffer is no longer on free lists. */
1250 SET(bp->b_flags, B_BUSY);
1251
1252 /*
1253 * If buffer was a delayed write, start it and return NULL
1254 * (since we might sleep while starting the write).
1255 */
1256 if (ISSET(bp->b_flags, B_DELWRI)) {
1257 /*
1258 * This buffer has gone through the LRU, so make sure it gets
1259 * reused ASAP.
1260 */
1261 SET(bp->b_flags, B_AGE);
1262 simple_unlock(&bp->b_interlock);
1263 simple_unlock(&bqueue_slock);
1264 bawrite(bp);
1265 simple_lock(&bqueue_slock);
1266 return (NULL);
1267 }
1268
1269 /* disassociate us from our vnode, if we had one... */
1270 if (bp->b_vp)
1271 brelvp(bp);
1272
1273 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1274 (*bioops.io_deallocate)(bp);
1275
1276 /* clear out various other fields */
1277 bp->b_flags = B_BUSY;
1278 bp->b_dev = NODEV;
1279 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1280 bp->b_iodone = 0;
1281 bp->b_error = 0;
1282 bp->b_resid = 0;
1283 bp->b_bcount = 0;
1284
1285 bremhash(bp);
1286 return (bp);
1287 }
1288
1289 /*
1290 * Attempt to free an aged buffer off the queues.
1291 * Called at splbio and with queue lock held.
1292 * Returns the amount of buffer memory freed.
1293 */
1294 static int
1295 buf_trim(void)
1296 {
1297 struct buf *bp;
1298 long size = 0;
1299
1300 /* Instruct getnewbuf() to get buffers off the queues */
1301 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1302 return 0;
1303
1304 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1305 simple_unlock(&bp->b_interlock);
1306 size = bp->b_bufsize;
1307 bufmem -= size;
1308 simple_unlock(&bqueue_slock);
1309 if (size > 0) {
1310 buf_mrelease(bp->b_data, size);
1311 bp->b_bcount = bp->b_bufsize = 0;
1312 }
1313 /* brelse() will return the buffer to the global buffer pool */
1314 brelse(bp);
1315 simple_lock(&bqueue_slock);
1316 return size;
1317 }
1318
1319 int
1320 buf_drain(int n)
1321 {
1322 int s, size = 0, sz;
1323
1324 s = splbio();
1325 simple_lock(&bqueue_slock);
1326
1327 while (size < n && bufmem > bufmem_lowater) {
1328 sz = buf_trim();
1329 if (sz <= 0)
1330 break;
1331 size += sz;
1332 }
1333
1334 simple_unlock(&bqueue_slock);
1335 splx(s);
1336 return size;
1337 }
1338
1339 /*
1340 * Wait for operations on the buffer to complete.
1341 * When they do, extract and return the I/O's error value.
1342 */
1343 int
1344 biowait(struct buf *bp)
1345 {
1346 int s, error;
1347
1348 s = splbio();
1349 simple_lock(&bp->b_interlock);
1350 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1351 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1352
1353 /* check errors. */
1354 if (ISSET(bp->b_flags, B_ERROR) && bp->b_error == 0)
1355 bp->b_error = EIO;
1356 error = bp->b_error;
1357
1358 simple_unlock(&bp->b_interlock);
1359 splx(s);
1360 return (error);
1361 }
1362
1363 /*
1364 * Mark I/O complete on a buffer.
1365 *
1366 * If a callback has been requested, e.g. the pageout
1367 * daemon, do so. Otherwise, awaken waiting processes.
1368 *
1369 * [ Leffler, et al., says on p.247:
1370 * "This routine wakes up the blocked process, frees the buffer
1371 * for an asynchronous write, or, for a request by the pagedaemon
1372 * process, invokes a procedure specified in the buffer structure" ]
1373 *
1374 * In real life, the pagedaemon (or other system processes) wants
1375 * to do async stuff to, and doesn't want the buffer brelse()'d.
1376 * (for swap pager, that puts swap buffers on the free lists (!!!),
1377 * for the vn device, that puts malloc'd buffers on the free lists!)
1378 */
1379 void
1380 biodone(struct buf *bp)
1381 {
1382 int s = splbio();
1383
1384 simple_lock(&bp->b_interlock);
1385 if (ISSET(bp->b_flags, B_DONE))
1386 panic("biodone already");
1387 SET(bp->b_flags, B_DONE); /* note that it's done */
1388 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1389
1390 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1391 (*bioops.io_complete)(bp);
1392
1393 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1394 vwakeup(bp);
1395
1396 /*
1397 * If necessary, call out. Unlock the buffer before calling
1398 * iodone() as the buffer isn't valid any more when it return.
1399 */
1400 if (ISSET(bp->b_flags, B_CALL)) {
1401 CLR(bp->b_flags, B_CALL); /* but note callout done */
1402 simple_unlock(&bp->b_interlock);
1403 (*bp->b_iodone)(bp);
1404 } else {
1405 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1406 simple_unlock(&bp->b_interlock);
1407 brelse(bp);
1408 } else { /* or just wakeup the buffer */
1409 CLR(bp->b_flags, B_WANTED);
1410 wakeup(bp);
1411 simple_unlock(&bp->b_interlock);
1412 }
1413 }
1414
1415 splx(s);
1416 }
1417
1418 /*
1419 * Return a count of buffers on the "locked" queue.
1420 */
1421 int
1422 count_lock_queue(void)
1423 {
1424 struct buf *bp;
1425 int n = 0;
1426
1427 simple_lock(&bqueue_slock);
1428 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1429 n++;
1430 simple_unlock(&bqueue_slock);
1431 return (n);
1432 }
1433
1434 /*
1435 * Wait for all buffers to complete I/O
1436 * Return the number of "stuck" buffers.
1437 */
1438 int
1439 buf_syncwait(void)
1440 {
1441 struct buf *bp;
1442 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1443
1444 dcount = 10000;
1445 for (iter = 0; iter < 20;) {
1446 s = splbio();
1447 simple_lock(&bqueue_slock);
1448 nbusy = 0;
1449 for (ihash = 0; ihash < bufhash+1; ihash++) {
1450 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1451 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1452 nbusy++;
1453 /*
1454 * With soft updates, some buffers that are
1455 * written will be remarked as dirty until other
1456 * buffers are written.
1457 */
1458 if (bp->b_vp && bp->b_vp->v_mount
1459 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1460 && (bp->b_flags & B_DELWRI)) {
1461 simple_lock(&bp->b_interlock);
1462 bremfree(bp);
1463 bp->b_flags |= B_BUSY;
1464 nbusy++;
1465 simple_unlock(&bp->b_interlock);
1466 simple_unlock(&bqueue_slock);
1467 bawrite(bp);
1468 if (dcount-- <= 0) {
1469 printf("softdep ");
1470 splx(s);
1471 goto fail;
1472 }
1473 simple_lock(&bqueue_slock);
1474 }
1475 }
1476 }
1477
1478 simple_unlock(&bqueue_slock);
1479 splx(s);
1480
1481 if (nbusy == 0)
1482 break;
1483 if (nbusy_prev == 0)
1484 nbusy_prev = nbusy;
1485 printf("%d ", nbusy);
1486 tsleep(&nbusy, PRIBIO, "bflush",
1487 (iter == 0) ? 1 : hz / 25 * iter);
1488 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1489 iter++;
1490 else
1491 nbusy_prev = nbusy;
1492 }
1493
1494 if (nbusy) {
1495 fail:;
1496 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1497 printf("giving up\nPrinting vnodes for busy buffers\n");
1498 s = splbio();
1499 for (ihash = 0; ihash < bufhash+1; ihash++) {
1500 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1501 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1502 vprint(NULL, bp->b_vp);
1503 }
1504 }
1505 splx(s);
1506 #endif
1507 }
1508
1509 return nbusy;
1510 }
1511
1512 static void
1513 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1514 {
1515
1516 o->b_flags = i->b_flags;
1517 o->b_error = i->b_error;
1518 o->b_prio = i->b_prio;
1519 o->b_dev = i->b_dev;
1520 o->b_bufsize = i->b_bufsize;
1521 o->b_bcount = i->b_bcount;
1522 o->b_resid = i->b_resid;
1523 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1524 o->b_blkno = i->b_blkno;
1525 o->b_rawblkno = i->b_rawblkno;
1526 o->b_iodone = PTRTOUINT64(i->b_iodone);
1527 o->b_proc = PTRTOUINT64(i->b_proc);
1528 o->b_vp = PTRTOUINT64(i->b_vp);
1529 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1530 o->b_lblkno = i->b_lblkno;
1531 }
1532
1533 #define KERN_BUFSLOP 20
1534 static int
1535 sysctl_dobuf(SYSCTLFN_ARGS)
1536 {
1537 struct buf *bp;
1538 struct buf_sysctl bs;
1539 char *dp;
1540 u_int i, op, arg;
1541 size_t len, needed, elem_size, out_size;
1542 int error, s, elem_count;
1543
1544 if (namelen == 1 && name[0] == CTL_QUERY)
1545 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1546
1547 if (namelen != 4)
1548 return (EINVAL);
1549
1550 dp = oldp;
1551 len = (oldp != NULL) ? *oldlenp : 0;
1552 op = name[0];
1553 arg = name[1];
1554 elem_size = name[2];
1555 elem_count = name[3];
1556 out_size = MIN(sizeof(bs), elem_size);
1557
1558 /*
1559 * at the moment, these are just "placeholders" to make the
1560 * API for retrieving kern.buf data more extensible in the
1561 * future.
1562 *
1563 * XXX kern.buf currently has "netbsd32" issues. hopefully
1564 * these will be resolved at a later point.
1565 */
1566 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1567 elem_size < 1 || elem_count < 0)
1568 return (EINVAL);
1569
1570 error = 0;
1571 needed = 0;
1572 s = splbio();
1573 simple_lock(&bqueue_slock);
1574 for (i = 0; i < BQUEUES; i++) {
1575 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1576 if (len >= elem_size && elem_count > 0) {
1577 sysctl_fillbuf(bp, &bs);
1578 error = copyout(&bs, dp, out_size);
1579 if (error)
1580 goto cleanup;
1581 dp += elem_size;
1582 len -= elem_size;
1583 }
1584 if (elem_count > 0) {
1585 needed += elem_size;
1586 if (elem_count != INT_MAX)
1587 elem_count--;
1588 }
1589 }
1590 }
1591 cleanup:
1592 simple_unlock(&bqueue_slock);
1593 splx(s);
1594
1595 *oldlenp = needed;
1596 if (oldp == NULL)
1597 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1598
1599 return (error);
1600 }
1601
1602 static int
1603 sysctl_bufvm_update(SYSCTLFN_ARGS)
1604 {
1605 int t, error;
1606 struct sysctlnode node;
1607
1608 node = *rnode;
1609 node.sysctl_data = &t;
1610 t = *(int *)rnode->sysctl_data;
1611 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1612 if (error || newp == NULL)
1613 return (error);
1614
1615 if (t < 0)
1616 return EINVAL;
1617 if (rnode->sysctl_data == &bufcache) {
1618 if (t > 100)
1619 return (EINVAL);
1620 bufcache = t;
1621 buf_setwm();
1622 } else if (rnode->sysctl_data == &bufmem_lowater) {
1623 if (bufmem_hiwater - t < 16)
1624 return (EINVAL);
1625 bufmem_lowater = t;
1626 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1627 if (t - bufmem_lowater < 16)
1628 return (EINVAL);
1629 bufmem_hiwater = t;
1630 } else
1631 return (EINVAL);
1632
1633 /* Drain until below new high water mark */
1634 while ((t = bufmem - bufmem_hiwater) >= 0) {
1635 if (buf_drain(t / (2 * 1024)) <= 0)
1636 break;
1637 }
1638
1639 return 0;
1640 }
1641
1642 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1643 {
1644
1645 sysctl_createv(clog, 0, NULL, NULL,
1646 CTLFLAG_PERMANENT,
1647 CTLTYPE_NODE, "kern", NULL,
1648 NULL, 0, NULL, 0,
1649 CTL_KERN, CTL_EOL);
1650 sysctl_createv(clog, 0, NULL, NULL,
1651 CTLFLAG_PERMANENT,
1652 CTLTYPE_NODE, "buf",
1653 SYSCTL_DESCR("Kernel buffer cache information"),
1654 sysctl_dobuf, 0, NULL, 0,
1655 CTL_KERN, KERN_BUF, CTL_EOL);
1656 }
1657
1658 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1659 {
1660
1661 sysctl_createv(clog, 0, NULL, NULL,
1662 CTLFLAG_PERMANENT,
1663 CTLTYPE_NODE, "vm", NULL,
1664 NULL, 0, NULL, 0,
1665 CTL_VM, CTL_EOL);
1666
1667 sysctl_createv(clog, 0, NULL, NULL,
1668 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1669 CTLTYPE_INT, "bufcache",
1670 SYSCTL_DESCR("Percentage of physical memory to use for "
1671 "buffer cache"),
1672 sysctl_bufvm_update, 0, &bufcache, 0,
1673 CTL_VM, CTL_CREATE, CTL_EOL);
1674 sysctl_createv(clog, 0, NULL, NULL,
1675 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1676 CTLTYPE_INT, "bufmem",
1677 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1678 "cache"),
1679 NULL, 0, &bufmem, 0,
1680 CTL_VM, CTL_CREATE, CTL_EOL);
1681 sysctl_createv(clog, 0, NULL, NULL,
1682 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1683 CTLTYPE_INT, "bufmem_lowater",
1684 SYSCTL_DESCR("Minimum amount of kernel memory to "
1685 "reserve for buffer cache"),
1686 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1687 CTL_VM, CTL_CREATE, CTL_EOL);
1688 sysctl_createv(clog, 0, NULL, NULL,
1689 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1690 CTLTYPE_INT, "bufmem_hiwater",
1691 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1692 "for buffer cache"),
1693 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1694 CTL_VM, CTL_CREATE, CTL_EOL);
1695 }
1696
1697 #ifdef DEBUG
1698 /*
1699 * Print out statistics on the current allocation of the buffer pool.
1700 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1701 * in vfs_syscalls.c using sysctl.
1702 */
1703 void
1704 vfs_bufstats(void)
1705 {
1706 int s, i, j, count;
1707 struct buf *bp;
1708 struct bqueue *dp;
1709 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1710 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1711
1712 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1713 count = 0;
1714 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1715 counts[j] = 0;
1716 s = splbio();
1717 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1718 counts[bp->b_bufsize/PAGE_SIZE]++;
1719 count++;
1720 }
1721 splx(s);
1722 printf("%s: total-%d", bname[i], count);
1723 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1724 if (counts[j] != 0)
1725 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1726 printf("\n");
1727 }
1728 }
1729 #endif /* DEBUG */
1730
1731 /* ------------------------------ */
1732
1733 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL,
1734 IPL_BIO);
1735
1736 static struct buf *
1737 getiobuf1(int prflags)
1738 {
1739 struct buf *bp;
1740 int s;
1741
1742 s = splbio();
1743 bp = pool_get(&bufiopool, prflags);
1744 splx(s);
1745 if (bp != NULL) {
1746 BUF_INIT(bp);
1747 }
1748 return bp;
1749 }
1750
1751 struct buf *
1752 getiobuf(void)
1753 {
1754
1755 return getiobuf1(PR_WAITOK);
1756 }
1757
1758 struct buf *
1759 getiobuf_nowait(void)
1760 {
1761
1762 return getiobuf1(PR_NOWAIT);
1763 }
1764
1765 void
1766 putiobuf(struct buf *bp)
1767 {
1768 int s;
1769
1770 s = splbio();
1771 pool_put(&bufiopool, bp);
1772 splx(s);
1773 }
1774
1775 /*
1776 * nestiobuf_iodone: b_iodone callback for nested buffers.
1777 */
1778
1779 void
1780 nestiobuf_iodone(struct buf *bp)
1781 {
1782 struct buf *mbp = bp->b_private;
1783 int error;
1784 int donebytes;
1785
1786 KASSERT(bp->b_bcount <= bp->b_bufsize);
1787 KASSERT(mbp != bp);
1788
1789 error = 0;
1790 if (bp->b_error != 0) {
1791 error = bp->b_error;
1792 } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
1793 /*
1794 * Not all got transfered, raise an error. We have no way to
1795 * propagate these conditions to mbp.
1796 */
1797 error = EIO;
1798 }
1799
1800 donebytes = bp->b_bufsize;
1801
1802 putiobuf(bp);
1803 nestiobuf_done(mbp, donebytes, error);
1804 }
1805
1806 /*
1807 * nestiobuf_setup: setup a "nested" buffer.
1808 *
1809 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1810 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1811 * => 'offset' is a byte offset in the master buffer.
1812 * => 'size' is a size in bytes of this nested buffer.
1813 */
1814
1815 void
1816 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
1817 {
1818 const int b_read = mbp->b_flags & B_READ;
1819 struct vnode *vp = mbp->b_vp;
1820
1821 KASSERT(mbp->b_bcount >= offset + size);
1822 bp->b_vp = vp;
1823 bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
1824 bp->b_iodone = nestiobuf_iodone;
1825 bp->b_data = (char *)mbp->b_data + offset;
1826 bp->b_resid = bp->b_bcount = size;
1827 bp->b_bufsize = bp->b_bcount;
1828 bp->b_private = mbp;
1829 BIO_COPYPRIO(bp, mbp);
1830 if (!b_read && vp != NULL) {
1831 int s;
1832
1833 s = splbio();
1834 V_INCR_NUMOUTPUT(vp);
1835 splx(s);
1836 }
1837 }
1838
1839 /*
1840 * nestiobuf_done: propagate completion to the master buffer.
1841 *
1842 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1843 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1844 */
1845
1846 void
1847 nestiobuf_done(struct buf *mbp, int donebytes, int error)
1848 {
1849 int s;
1850
1851 if (donebytes == 0) {
1852 return;
1853 }
1854 s = splbio();
1855 KASSERT(mbp->b_resid >= donebytes);
1856 if (error) {
1857 mbp->b_error = error;
1858 }
1859 mbp->b_resid -= donebytes;
1860 if (mbp->b_resid == 0) {
1861 if (mbp->b_error != 0) {
1862 mbp->b_resid = mbp->b_bcount; /* be conservative */
1863 }
1864 biodone(mbp);
1865 }
1866 splx(s);
1867 }
1868