vfs_bio.c revision 1.180 1 /* $NetBSD: vfs_bio.c,v 1.180 2007/10/21 23:27:16 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
37 */
38
39 /*-
40 * Copyright (c) 1994 Christopher G. Demetriou
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
71 */
72
73 /*
74 * Some references:
75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76 * Leffler, et al.: The Design and Implementation of the 4.3BSD
77 * UNIX Operating System (Addison Welley, 1989)
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.180 2007/10/21 23:27:16 martin Exp $");
82
83 #include "fs_ffs.h"
84 #include "opt_bufcache.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97 #include <sys/kauth.h>
98
99 #include <uvm/uvm.h>
100
101 #include <miscfs/specfs/specdev.h>
102
103 #ifndef BUFPAGES
104 # define BUFPAGES 0
105 #endif
106
107 #ifdef BUFCACHE
108 # if (BUFCACHE < 5) || (BUFCACHE > 95)
109 # error BUFCACHE is not between 5 and 95
110 # endif
111 #else
112 # define BUFCACHE 15
113 #endif
114
115 u_int nbuf; /* XXX - for softdep_lockedbufs */
116 u_int bufpages = BUFPAGES; /* optional hardwired count */
117 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
118
119 /* Function prototypes */
120 struct bqueue;
121
122 static void buf_setwm(void);
123 static int buf_trim(void);
124 static void *bufpool_page_alloc(struct pool *, int);
125 static void bufpool_page_free(struct pool *, void *);
126 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
127 kauth_cred_t, int);
128 static struct buf *getnewbuf(int, int, int);
129 static int buf_lotsfree(void);
130 static int buf_canrelease(void);
131 static inline u_long buf_mempoolidx(u_long);
132 static inline u_long buf_roundsize(u_long);
133 static inline void *buf_malloc(size_t);
134 static void buf_mrelease(void *, size_t);
135 static inline void binsheadfree(struct buf *, struct bqueue *);
136 static inline void binstailfree(struct buf *, struct bqueue *);
137 int count_lock_queue(void); /* XXX */
138 #ifdef DEBUG
139 static int checkfreelist(struct buf *, struct bqueue *);
140 #endif
141
142 /*
143 * Definitions for the buffer hash lists.
144 */
145 #define BUFHASH(dvp, lbn) \
146 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
147 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
148 u_long bufhash;
149
150 struct bio_ops *bioopsp; /* can be overriden by ffs_softdep */
151
152 /*
153 * Insq/Remq for the buffer hash lists.
154 */
155 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
156 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
157
158 /*
159 * Definitions for the buffer free lists.
160 */
161 #define BQUEUES 3 /* number of free buffer queues */
162
163 #define BQ_LOCKED 0 /* super-blocks &c */
164 #define BQ_LRU 1 /* lru, useful buffers */
165 #define BQ_AGE 2 /* rubbish */
166
167 struct bqueue {
168 TAILQ_HEAD(, buf) bq_queue;
169 uint64_t bq_bytes;
170 } bufqueues[BQUEUES];
171 int needbuffer;
172
173 /*
174 * Buffer queue lock.
175 * Take this lock first if also taking some buffer's b_interlock.
176 */
177 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
178
179 /*
180 * Buffer pools for I/O buffers.
181 */
182 static struct pool bufpool;
183 static struct pool bufiopool;
184
185
186 /* XXX - somewhat gross.. */
187 #if MAXBSIZE == 0x2000
188 #define NMEMPOOLS 5
189 #elif MAXBSIZE == 0x4000
190 #define NMEMPOOLS 6
191 #elif MAXBSIZE == 0x8000
192 #define NMEMPOOLS 7
193 #else
194 #define NMEMPOOLS 8
195 #endif
196
197 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
198 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
199 #error update vfs_bio buffer memory parameters
200 #endif
201
202 /* Buffer memory pools */
203 static struct pool bmempools[NMEMPOOLS];
204
205 struct vm_map *buf_map;
206
207 /*
208 * Buffer memory pool allocator.
209 */
210 static void *
211 bufpool_page_alloc(struct pool *pp, int flags)
212 {
213
214 return (void *)uvm_km_alloc(buf_map,
215 MAXBSIZE, MAXBSIZE,
216 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
217 | UVM_KMF_WIRED);
218 }
219
220 static void
221 bufpool_page_free(struct pool *pp, void *v)
222 {
223
224 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
225 }
226
227 static struct pool_allocator bufmempool_allocator = {
228 .pa_alloc = bufpool_page_alloc,
229 .pa_free = bufpool_page_free,
230 .pa_pagesz = MAXBSIZE,
231 };
232
233 /* Buffer memory management variables */
234 uint64_t bufmem_valimit;
235 uint64_t bufmem_hiwater;
236 uint64_t bufmem_lowater;
237 uint64_t bufmem;
238
239 /*
240 * MD code can call this to set a hard limit on the amount
241 * of virtual memory used by the buffer cache.
242 */
243 int
244 buf_setvalimit(vsize_t sz)
245 {
246
247 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
248 if (sz < NMEMPOOLS * MAXBSIZE)
249 return EINVAL;
250
251 bufmem_valimit = sz;
252 return 0;
253 }
254
255 static void
256 buf_setwm(void)
257 {
258
259 bufmem_hiwater = buf_memcalc();
260 /* lowater is approx. 2% of memory (with bufcache = 15) */
261 #define BUFMEM_WMSHIFT 3
262 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
263 if (bufmem_hiwater < BUFMEM_HIWMMIN)
264 /* Ensure a reasonable minimum value */
265 bufmem_hiwater = BUFMEM_HIWMMIN;
266 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
267 }
268
269 #ifdef DEBUG
270 int debug_verify_freelist = 0;
271 static int
272 checkfreelist(struct buf *bp, struct bqueue *dp)
273 {
274 struct buf *b;
275
276 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
277 if (b == bp)
278 return 1;
279 }
280 return 0;
281 }
282 #endif
283
284 /*
285 * Insq/Remq for the buffer hash lists.
286 * Call with buffer queue locked.
287 */
288 static inline void
289 binsheadfree(struct buf *bp, struct bqueue *dp)
290 {
291
292 KASSERT(bp->b_freelistindex == -1);
293 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
294 dp->bq_bytes += bp->b_bufsize;
295 bp->b_freelistindex = dp - bufqueues;
296 }
297
298 static inline void
299 binstailfree(struct buf *bp, struct bqueue *dp)
300 {
301
302 KASSERT(bp->b_freelistindex == -1);
303 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
304 dp->bq_bytes += bp->b_bufsize;
305 bp->b_freelistindex = dp - bufqueues;
306 }
307
308 void
309 bremfree(struct buf *bp)
310 {
311 struct bqueue *dp;
312 int bqidx = bp->b_freelistindex;
313
314 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
315
316 KASSERT(bqidx != -1);
317 dp = &bufqueues[bqidx];
318 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
319 KASSERT(dp->bq_bytes >= bp->b_bufsize);
320 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
321 dp->bq_bytes -= bp->b_bufsize;
322 #if defined(DIAGNOSTIC)
323 bp->b_freelistindex = -1;
324 #endif /* defined(DIAGNOSTIC) */
325 }
326
327 u_long
328 buf_memcalc(void)
329 {
330 u_long n;
331
332 /*
333 * Determine the upper bound of memory to use for buffers.
334 *
335 * - If bufpages is specified, use that as the number
336 * pages.
337 *
338 * - Otherwise, use bufcache as the percentage of
339 * physical memory.
340 */
341 if (bufpages != 0) {
342 n = bufpages;
343 } else {
344 if (bufcache < 5) {
345 printf("forcing bufcache %d -> 5", bufcache);
346 bufcache = 5;
347 }
348 if (bufcache > 95) {
349 printf("forcing bufcache %d -> 95", bufcache);
350 bufcache = 95;
351 }
352 n = physmem / 100 * bufcache;
353 }
354
355 n <<= PAGE_SHIFT;
356 if (bufmem_valimit != 0 && n > bufmem_valimit)
357 n = bufmem_valimit;
358
359 return (n);
360 }
361
362 /*
363 * Initialize buffers and hash links for buffers.
364 */
365 void
366 bufinit(void)
367 {
368 struct bqueue *dp;
369 int use_std;
370 u_int i;
371
372 /*
373 * Initialize buffer cache memory parameters.
374 */
375 bufmem = 0;
376 buf_setwm();
377
378 if (bufmem_valimit != 0) {
379 vaddr_t minaddr = 0, maxaddr;
380 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
381 bufmem_valimit, 0, false, 0);
382 if (buf_map == NULL)
383 panic("bufinit: cannot allocate submap");
384 } else
385 buf_map = kernel_map;
386
387 /* On "small" machines use small pool page sizes where possible */
388 use_std = (physmem < atop(16*1024*1024));
389
390 /*
391 * Also use them on systems that can map the pool pages using
392 * a direct-mapped segment.
393 */
394 #ifdef PMAP_MAP_POOLPAGE
395 use_std = 1;
396 #endif
397
398 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
399 &pool_allocator_nointr, IPL_NONE);
400 pool_init(&bufiopool, sizeof(struct buf), 0, 0, 0, "biopl",
401 NULL, IPL_BIO);
402
403 bufmempool_allocator.pa_backingmap = buf_map;
404 for (i = 0; i < NMEMPOOLS; i++) {
405 struct pool_allocator *pa;
406 struct pool *pp = &bmempools[i];
407 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
408 char *name = malloc(8, M_TEMP, M_WAITOK);
409 if (__predict_true(size >= 1024))
410 (void)snprintf(name, 8, "buf%dk", size / 1024);
411 else
412 (void)snprintf(name, 8, "buf%db", size);
413 pa = (size <= PAGE_SIZE && use_std)
414 ? &pool_allocator_nointr
415 : &bufmempool_allocator;
416 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
417 pool_setlowat(pp, 1);
418 pool_sethiwat(pp, 1);
419 }
420
421 /* Initialize the buffer queues */
422 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
423 TAILQ_INIT(&dp->bq_queue);
424 dp->bq_bytes = 0;
425 }
426
427 /*
428 * Estimate hash table size based on the amount of memory we
429 * intend to use for the buffer cache. The average buffer
430 * size is dependent on our clients (i.e. filesystems).
431 *
432 * For now, use an empirical 3K per buffer.
433 */
434 nbuf = (bufmem_hiwater / 1024) / 3;
435 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
436 }
437
438 static int
439 buf_lotsfree(void)
440 {
441 int try, thresh;
442
443 /* Always allocate if doing copy on write */
444 if (curlwp->l_pflag & LP_UFSCOW)
445 return 1;
446
447 /* Always allocate if less than the low water mark. */
448 if (bufmem < bufmem_lowater)
449 return 1;
450
451 /* Never allocate if greater than the high water mark. */
452 if (bufmem > bufmem_hiwater)
453 return 0;
454
455 /* If there's anything on the AGE list, it should be eaten. */
456 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
457 return 0;
458
459 /*
460 * The probabily of getting a new allocation is inversely
461 * proportional to the current size of the cache, using
462 * a granularity of 16 steps.
463 */
464 try = random() & 0x0000000fL;
465
466 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
467 thresh = (bufmem - bufmem_lowater) /
468 ((bufmem_hiwater - bufmem_lowater) / 16);
469
470 if (try >= thresh)
471 return 1;
472
473 /* Otherwise don't allocate. */
474 return 0;
475 }
476
477 /*
478 * Return estimate of bytes we think need to be
479 * released to help resolve low memory conditions.
480 *
481 * => called at splbio.
482 * => called with bqueue_slock held.
483 */
484 static int
485 buf_canrelease(void)
486 {
487 int pagedemand, ninvalid = 0;
488
489 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
490
491 if (bufmem < bufmem_lowater)
492 return 0;
493
494 if (bufmem > bufmem_hiwater)
495 return bufmem - bufmem_hiwater;
496
497 ninvalid += bufqueues[BQ_AGE].bq_bytes;
498
499 pagedemand = uvmexp.freetarg - uvmexp.free;
500 if (pagedemand < 0)
501 return ninvalid;
502 return MAX(ninvalid, MIN(2 * MAXBSIZE,
503 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
504 }
505
506 /*
507 * Buffer memory allocation helper functions
508 */
509 static inline u_long
510 buf_mempoolidx(u_long size)
511 {
512 u_int n = 0;
513
514 size -= 1;
515 size >>= MEMPOOL_INDEX_OFFSET;
516 while (size) {
517 size >>= 1;
518 n += 1;
519 }
520 if (n >= NMEMPOOLS)
521 panic("buf mem pool index %d", n);
522 return n;
523 }
524
525 static inline u_long
526 buf_roundsize(u_long size)
527 {
528 /* Round up to nearest power of 2 */
529 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
530 }
531
532 static inline void *
533 buf_malloc(size_t size)
534 {
535 u_int n = buf_mempoolidx(size);
536 void *addr;
537 int s;
538
539 while (1) {
540 addr = pool_get(&bmempools[n], PR_NOWAIT);
541 if (addr != NULL)
542 break;
543
544 /* No memory, see if we can free some. If so, try again */
545 if (buf_drain(1) > 0)
546 continue;
547
548 /* Wait for buffers to arrive on the LRU queue */
549 s = splbio();
550 simple_lock(&bqueue_slock);
551 needbuffer = 1;
552 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
553 "buf_malloc", 0, &bqueue_slock);
554 splx(s);
555 }
556
557 return addr;
558 }
559
560 static void
561 buf_mrelease(void *addr, size_t size)
562 {
563
564 pool_put(&bmempools[buf_mempoolidx(size)], addr);
565 }
566
567 /*
568 * bread()/breadn() helper.
569 */
570 static inline struct buf *
571 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
572 int async)
573 {
574 struct buf *bp;
575 struct mount *mp;
576
577 bp = getblk(vp, blkno, size, 0, 0);
578
579 #ifdef DIAGNOSTIC
580 if (bp == NULL) {
581 panic("bio_doread: no such buf");
582 }
583 #endif
584
585 /*
586 * If buffer does not have data valid, start a read.
587 * Note that if buffer is B_INVAL, getblk() won't return it.
588 * Therefore, it's valid if its I/O has completed or been delayed.
589 */
590 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
591 /* Start I/O for the buffer. */
592 SET(bp->b_flags, B_READ | async);
593 if (async)
594 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
595 else
596 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
597 VOP_STRATEGY(vp, bp);
598
599 /* Pay for the read. */
600 curproc->p_stats->p_ru.ru_inblock++;
601 } else if (async) {
602 brelse(bp, 0);
603 }
604
605 if (vp->v_type == VBLK)
606 mp = vp->v_specmountpoint;
607 else
608 mp = vp->v_mount;
609
610 /*
611 * Collect statistics on synchronous and asynchronous reads.
612 * Reads from block devices are charged to their associated
613 * filesystem (if any).
614 */
615 if (mp != NULL) {
616 if (async == 0)
617 mp->mnt_stat.f_syncreads++;
618 else
619 mp->mnt_stat.f_asyncreads++;
620 }
621
622 return (bp);
623 }
624
625 /*
626 * Read a disk block.
627 * This algorithm described in Bach (p.54).
628 */
629 int
630 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
631 struct buf **bpp)
632 {
633 struct buf *bp;
634
635 /* Get buffer for block. */
636 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
637
638 /* Wait for the read to complete, and return result. */
639 return (biowait(bp));
640 }
641
642 /*
643 * Read-ahead multiple disk blocks. The first is sync, the rest async.
644 * Trivial modification to the breada algorithm presented in Bach (p.55).
645 */
646 int
647 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
648 int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
649 {
650 struct buf *bp;
651 int i;
652
653 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
654
655 /*
656 * For each of the read-ahead blocks, start a read, if necessary.
657 */
658 for (i = 0; i < nrablks; i++) {
659 /* If it's in the cache, just go on to next one. */
660 if (incore(vp, rablks[i]))
661 continue;
662
663 /* Get a buffer for the read-ahead block */
664 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
665 }
666
667 /* Otherwise, we had to start a read for it; wait until it's valid. */
668 return (biowait(bp));
669 }
670
671 /*
672 * Read with single-block read-ahead. Defined in Bach (p.55), but
673 * implemented as a call to breadn().
674 * XXX for compatibility with old file systems.
675 */
676 int
677 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
678 int rabsize, kauth_cred_t cred, struct buf **bpp)
679 {
680
681 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
682 }
683
684 /*
685 * Block write. Described in Bach (p.56)
686 */
687 int
688 bwrite(struct buf *bp)
689 {
690 int rv, sync, wasdelayed, s;
691 struct vnode *vp;
692 struct mount *mp;
693
694 KASSERT(ISSET(bp->b_flags, B_BUSY));
695
696 vp = bp->b_vp;
697 if (vp != NULL) {
698 if (vp->v_type == VBLK)
699 mp = vp->v_specmountpoint;
700 else
701 mp = vp->v_mount;
702 } else {
703 mp = NULL;
704 }
705
706 /*
707 * Remember buffer type, to switch on it later. If the write was
708 * synchronous, but the file system was mounted with MNT_ASYNC,
709 * convert it to a delayed write.
710 * XXX note that this relies on delayed tape writes being converted
711 * to async, not sync writes (which is safe, but ugly).
712 */
713 sync = !ISSET(bp->b_flags, B_ASYNC);
714 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
715 bdwrite(bp);
716 return (0);
717 }
718
719 /*
720 * Collect statistics on synchronous and asynchronous writes.
721 * Writes to block devices are charged to their associated
722 * filesystem (if any).
723 */
724 if (mp != NULL) {
725 if (sync)
726 mp->mnt_stat.f_syncwrites++;
727 else
728 mp->mnt_stat.f_asyncwrites++;
729 }
730
731 s = splbio();
732 simple_lock(&bp->b_interlock);
733
734 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
735
736 CLR(bp->b_flags, (B_READ | B_DONE | B_DELWRI));
737 bp->b_error = 0;
738
739 /*
740 * Pay for the I/O operation and make sure the buf is on the correct
741 * vnode queue.
742 */
743 if (wasdelayed)
744 reassignbuf(bp, bp->b_vp);
745 else
746 curproc->p_stats->p_ru.ru_oublock++;
747
748 /* Initiate disk write. Make sure the appropriate party is charged. */
749 V_INCR_NUMOUTPUT(bp->b_vp);
750 simple_unlock(&bp->b_interlock);
751 splx(s);
752
753 if (sync)
754 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
755 else
756 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
757
758 VOP_STRATEGY(vp, bp);
759
760 if (sync) {
761 /* If I/O was synchronous, wait for it to complete. */
762 rv = biowait(bp);
763
764 /* Release the buffer. */
765 brelse(bp, 0);
766
767 return (rv);
768 } else {
769 return (0);
770 }
771 }
772
773 int
774 vn_bwrite(void *v)
775 {
776 struct vop_bwrite_args *ap = v;
777
778 return (bwrite(ap->a_bp));
779 }
780
781 /*
782 * Delayed write.
783 *
784 * The buffer is marked dirty, but is not queued for I/O.
785 * This routine should be used when the buffer is expected
786 * to be modified again soon, typically a small write that
787 * partially fills a buffer.
788 *
789 * NB: magnetic tapes cannot be delayed; they must be
790 * written in the order that the writes are requested.
791 *
792 * Described in Leffler, et al. (pp. 208-213).
793 */
794 void
795 bdwrite(struct buf *bp)
796 {
797 int s;
798
799 /* If this is a tape block, write the block now. */
800 if (bdev_type(bp->b_dev) == D_TAPE) {
801 bawrite(bp);
802 return;
803 }
804
805 /*
806 * If the block hasn't been seen before:
807 * (1) Mark it as having been seen,
808 * (2) Charge for the write,
809 * (3) Make sure it's on its vnode's correct block list.
810 */
811 s = splbio();
812 simple_lock(&bp->b_interlock);
813
814 KASSERT(ISSET(bp->b_flags, B_BUSY));
815
816 if (!ISSET(bp->b_flags, B_DELWRI)) {
817 SET(bp->b_flags, B_DELWRI);
818 curproc->p_stats->p_ru.ru_oublock++;
819 reassignbuf(bp, bp->b_vp);
820 }
821
822 /* Otherwise, the "write" is done, so mark and release the buffer. */
823 CLR(bp->b_flags, B_DONE);
824 simple_unlock(&bp->b_interlock);
825 splx(s);
826
827 brelse(bp, 0);
828 }
829
830 /*
831 * Asynchronous block write; just an asynchronous bwrite().
832 */
833 void
834 bawrite(struct buf *bp)
835 {
836 int s;
837
838 s = splbio();
839 simple_lock(&bp->b_interlock);
840
841 KASSERT(ISSET(bp->b_flags, B_BUSY));
842
843 SET(bp->b_flags, B_ASYNC);
844 simple_unlock(&bp->b_interlock);
845 splx(s);
846 VOP_BWRITE(bp);
847 }
848
849 /*
850 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
851 * Call at splbio() and with the buffer interlock locked.
852 * Note: called only from biodone() through ffs softdep's bioopsp->io_complete()
853 */
854 void
855 bdirty(struct buf *bp)
856 {
857
858 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
859 KASSERT(ISSET(bp->b_flags, B_BUSY));
860
861 CLR(bp->b_flags, B_AGE);
862
863 if (!ISSET(bp->b_flags, B_DELWRI)) {
864 SET(bp->b_flags, B_DELWRI);
865 curproc->p_stats->p_ru.ru_oublock++;
866 reassignbuf(bp, bp->b_vp);
867 }
868 }
869
870 /*
871 * Release a buffer on to the free lists.
872 * Described in Bach (p. 46).
873 */
874 void
875 brelse(struct buf *bp, int set)
876 {
877 struct bqueue *bufq;
878 int s;
879
880 /* Block disk interrupts. */
881 s = splbio();
882 simple_lock(&bqueue_slock);
883 simple_lock(&bp->b_interlock);
884
885 bp->b_flags |= set;
886
887 KASSERT(ISSET(bp->b_flags, B_BUSY));
888 KASSERT(!ISSET(bp->b_flags, B_CALL));
889
890 /* Wake up any processes waiting for any buffer to become free. */
891 if (needbuffer) {
892 needbuffer = 0;
893 wakeup(&needbuffer);
894 }
895
896 /* Wake up any proceeses waiting for _this_ buffer to become free. */
897 if (ISSET(bp->b_flags, B_WANTED)) {
898 CLR(bp->b_flags, B_WANTED|B_AGE);
899 wakeup(bp);
900 }
901
902 /*
903 * Determine which queue the buffer should be on, then put it there.
904 */
905
906 /* If it's locked, don't report an error; try again later. */
907 if (ISSET(bp->b_flags, B_LOCKED) && bp->b_error != 0)
908 bp->b_error = 0;
909
910 /* If it's not cacheable, or an error, mark it invalid. */
911 if (ISSET(bp->b_flags, B_NOCACHE) || bp->b_error != 0)
912 SET(bp->b_flags, B_INVAL);
913
914 if (ISSET(bp->b_flags, B_VFLUSH)) {
915 /*
916 * This is a delayed write buffer that was just flushed to
917 * disk. It is still on the LRU queue. If it's become
918 * invalid, then we need to move it to a different queue;
919 * otherwise leave it in its current position.
920 */
921 CLR(bp->b_flags, B_VFLUSH);
922 if (!ISSET(bp->b_flags, B_INVAL|B_LOCKED|B_AGE) &&
923 bp->b_error == 0) {
924 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
925 goto already_queued;
926 } else {
927 bremfree(bp);
928 }
929 }
930
931 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
932 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
933 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
934
935 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
936 /*
937 * If it's invalid or empty, dissociate it from its vnode
938 * and put on the head of the appropriate queue.
939 */
940 if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
941 bioopsp->io_deallocate(bp);
942 CLR(bp->b_flags, B_DONE|B_DELWRI);
943 if (bp->b_vp) {
944 reassignbuf(bp, bp->b_vp);
945 brelvp(bp);
946 }
947 if (bp->b_bufsize <= 0)
948 /* no data */
949 goto already_queued;
950 else
951 /* invalid data */
952 bufq = &bufqueues[BQ_AGE];
953 binsheadfree(bp, bufq);
954 } else {
955 /*
956 * It has valid data. Put it on the end of the appropriate
957 * queue, so that it'll stick around for as long as possible.
958 * If buf is AGE, but has dependencies, must put it on last
959 * bufqueue to be scanned, ie LRU. This protects against the
960 * livelock where BQ_AGE only has buffers with dependencies,
961 * and we thus never get to the dependent buffers in BQ_LRU.
962 */
963 if (ISSET(bp->b_flags, B_LOCKED))
964 /* locked in core */
965 bufq = &bufqueues[BQ_LOCKED];
966 else if (!ISSET(bp->b_flags, B_AGE))
967 /* valid data */
968 bufq = &bufqueues[BQ_LRU];
969 else {
970 /* stale but valid data */
971 int has_deps;
972
973 if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
974 has_deps = bioopsp->io_countdeps(bp, 0);
975 else
976 has_deps = 0;
977 bufq = has_deps ? &bufqueues[BQ_LRU] :
978 &bufqueues[BQ_AGE];
979 }
980 binstailfree(bp, bufq);
981 }
982
983 already_queued:
984 /* Unlock the buffer. */
985 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
986 SET(bp->b_flags, B_CACHE);
987
988 /* Allow disk interrupts. */
989 simple_unlock(&bp->b_interlock);
990 simple_unlock(&bqueue_slock);
991 splx(s);
992 if (bp->b_bufsize <= 0) {
993 #ifdef DEBUG
994 memset((char *)bp, 0, sizeof(*bp));
995 #endif
996 pool_put(&bufpool, bp);
997 }
998 }
999
1000 /*
1001 * Determine if a block is in the cache.
1002 * Just look on what would be its hash chain. If it's there, return
1003 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1004 * we normally don't return the buffer, unless the caller explicitly
1005 * wants us to.
1006 */
1007 struct buf *
1008 incore(struct vnode *vp, daddr_t blkno)
1009 {
1010 struct buf *bp;
1011
1012 /* Search hash chain */
1013 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1014 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1015 !ISSET(bp->b_flags, B_INVAL))
1016 return (bp);
1017 }
1018
1019 return (NULL);
1020 }
1021
1022 /*
1023 * Get a block of requested size that is associated with
1024 * a given vnode and block offset. If it is found in the
1025 * block cache, mark it as having been found, make it busy
1026 * and return it. Otherwise, return an empty block of the
1027 * correct size. It is up to the caller to insure that the
1028 * cached blocks be of the correct size.
1029 */
1030 struct buf *
1031 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1032 {
1033 struct buf *bp;
1034 int s, err;
1035 int preserve;
1036
1037 start:
1038 s = splbio();
1039 simple_lock(&bqueue_slock);
1040 bp = incore(vp, blkno);
1041 if (bp != NULL) {
1042 simple_lock(&bp->b_interlock);
1043 if (ISSET(bp->b_flags, B_BUSY)) {
1044 simple_unlock(&bqueue_slock);
1045 if (curlwp == uvm.pagedaemon_lwp) {
1046 simple_unlock(&bp->b_interlock);
1047 splx(s);
1048 return NULL;
1049 }
1050 SET(bp->b_flags, B_WANTED);
1051 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1052 "getblk", slptimeo, &bp->b_interlock);
1053 splx(s);
1054 if (err)
1055 return (NULL);
1056 goto start;
1057 }
1058 #ifdef DIAGNOSTIC
1059 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1060 bp->b_bcount < size && vp->v_type != VBLK)
1061 panic("getblk: block size invariant failed");
1062 #endif
1063 SET(bp->b_flags, B_BUSY);
1064 bremfree(bp);
1065 preserve = 1;
1066 } else {
1067 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1068 simple_unlock(&bqueue_slock);
1069 splx(s);
1070 goto start;
1071 }
1072
1073 binshash(bp, BUFHASH(vp, blkno));
1074 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1075 bgetvp(vp, bp);
1076 preserve = 0;
1077 }
1078 simple_unlock(&bp->b_interlock);
1079 simple_unlock(&bqueue_slock);
1080 splx(s);
1081 /*
1082 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1083 * if we re-size buffers here.
1084 */
1085 if (ISSET(bp->b_flags, B_LOCKED)) {
1086 KASSERT(bp->b_bufsize >= size);
1087 } else {
1088 allocbuf(bp, size, preserve);
1089 }
1090 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1091 return (bp);
1092 }
1093
1094 /*
1095 * Get an empty, disassociated buffer of given size.
1096 */
1097 struct buf *
1098 geteblk(int size)
1099 {
1100 struct buf *bp;
1101 int s;
1102
1103 s = splbio();
1104 simple_lock(&bqueue_slock);
1105 while ((bp = getnewbuf(0, 0, 0)) == 0)
1106 ;
1107
1108 SET(bp->b_flags, B_INVAL);
1109 binshash(bp, &invalhash);
1110 simple_unlock(&bqueue_slock);
1111 simple_unlock(&bp->b_interlock);
1112 splx(s);
1113 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1114 allocbuf(bp, size, 0);
1115 return (bp);
1116 }
1117
1118 /*
1119 * Expand or contract the actual memory allocated to a buffer.
1120 *
1121 * If the buffer shrinks, data is lost, so it's up to the
1122 * caller to have written it out *first*; this routine will not
1123 * start a write. If the buffer grows, it's the callers
1124 * responsibility to fill out the buffer's additional contents.
1125 */
1126 void
1127 allocbuf(struct buf *bp, int size, int preserve)
1128 {
1129 vsize_t oldsize, desired_size;
1130 void *addr;
1131 int s, delta;
1132
1133 desired_size = buf_roundsize(size);
1134 if (desired_size > MAXBSIZE)
1135 printf("allocbuf: buffer larger than MAXBSIZE requested");
1136
1137 bp->b_bcount = size;
1138
1139 oldsize = bp->b_bufsize;
1140 if (oldsize == desired_size)
1141 return;
1142
1143 /*
1144 * If we want a buffer of a different size, re-allocate the
1145 * buffer's memory; copy old content only if needed.
1146 */
1147 addr = buf_malloc(desired_size);
1148 if (preserve)
1149 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1150 if (bp->b_data != NULL)
1151 buf_mrelease(bp->b_data, oldsize);
1152 bp->b_data = addr;
1153 bp->b_bufsize = desired_size;
1154
1155 /*
1156 * Update overall buffer memory counter (protected by bqueue_slock)
1157 */
1158 delta = (long)desired_size - (long)oldsize;
1159
1160 s = splbio();
1161 simple_lock(&bqueue_slock);
1162 if ((bufmem += delta) > bufmem_hiwater) {
1163 /*
1164 * Need to trim overall memory usage.
1165 */
1166 while (buf_canrelease()) {
1167 if (curcpu()->ci_schedstate.spc_flags &
1168 SPCF_SHOULDYIELD) {
1169 simple_unlock(&bqueue_slock);
1170 splx(s);
1171 preempt();
1172 s = splbio();
1173 simple_lock(&bqueue_slock);
1174 }
1175
1176 if (buf_trim() == 0)
1177 break;
1178 }
1179 }
1180
1181 simple_unlock(&bqueue_slock);
1182 splx(s);
1183 }
1184
1185 /*
1186 * Find a buffer which is available for use.
1187 * Select something from a free list.
1188 * Preference is to AGE list, then LRU list.
1189 *
1190 * Called at splbio and with buffer queues locked.
1191 * Return buffer locked.
1192 */
1193 struct buf *
1194 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1195 {
1196 struct buf *bp;
1197
1198 start:
1199 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1200
1201 /*
1202 * Get a new buffer from the pool; but use NOWAIT because
1203 * we have the buffer queues locked.
1204 */
1205 if (!from_bufq && buf_lotsfree() &&
1206 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1207 memset((char *)bp, 0, sizeof(*bp));
1208 BUF_INIT(bp);
1209 bp->b_dev = NODEV;
1210 bp->b_vnbufs.le_next = NOLIST;
1211 bp->b_flags = B_BUSY;
1212 simple_lock(&bp->b_interlock);
1213 #if defined(DIAGNOSTIC)
1214 bp->b_freelistindex = -1;
1215 #endif /* defined(DIAGNOSTIC) */
1216 return (bp);
1217 }
1218
1219 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1220 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1221 simple_lock(&bp->b_interlock);
1222 bremfree(bp);
1223 } else {
1224 /*
1225 * XXX: !from_bufq should be removed.
1226 */
1227 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1228 /* wait for a free buffer of any kind */
1229 needbuffer = 1;
1230 ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1231 "getnewbuf", slptimeo, &bqueue_slock);
1232 }
1233 return (NULL);
1234 }
1235
1236 #ifdef DIAGNOSTIC
1237 if (bp->b_bufsize <= 0)
1238 panic("buffer %p: on queue but empty", bp);
1239 #endif
1240
1241 if (ISSET(bp->b_flags, B_VFLUSH)) {
1242 /*
1243 * This is a delayed write buffer being flushed to disk. Make
1244 * sure it gets aged out of the queue when it's finished, and
1245 * leave it off the LRU queue.
1246 */
1247 CLR(bp->b_flags, B_VFLUSH);
1248 SET(bp->b_flags, B_AGE);
1249 simple_unlock(&bp->b_interlock);
1250 goto start;
1251 }
1252
1253 /* Buffer is no longer on free lists. */
1254 SET(bp->b_flags, B_BUSY);
1255
1256 /*
1257 * If buffer was a delayed write, start it and return NULL
1258 * (since we might sleep while starting the write).
1259 */
1260 if (ISSET(bp->b_flags, B_DELWRI)) {
1261 /*
1262 * This buffer has gone through the LRU, so make sure it gets
1263 * reused ASAP.
1264 */
1265 SET(bp->b_flags, B_AGE);
1266 simple_unlock(&bp->b_interlock);
1267 simple_unlock(&bqueue_slock);
1268 bawrite(bp);
1269 simple_lock(&bqueue_slock);
1270 return (NULL);
1271 }
1272
1273 /* disassociate us from our vnode, if we had one... */
1274 if (bp->b_vp)
1275 brelvp(bp);
1276
1277 if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
1278 bioopsp->io_deallocate(bp);
1279
1280 /* clear out various other fields */
1281 bp->b_flags = B_BUSY;
1282 bp->b_dev = NODEV;
1283 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1284 bp->b_iodone = 0;
1285 bp->b_error = 0;
1286 bp->b_resid = 0;
1287 bp->b_bcount = 0;
1288
1289 bremhash(bp);
1290 return (bp);
1291 }
1292
1293 /*
1294 * Attempt to free an aged buffer off the queues.
1295 * Called at splbio and with queue lock held.
1296 * Returns the amount of buffer memory freed.
1297 */
1298 static int
1299 buf_trim(void)
1300 {
1301 struct buf *bp;
1302 long size = 0;
1303
1304 /* Instruct getnewbuf() to get buffers off the queues */
1305 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1306 return 0;
1307
1308 KASSERT(!ISSET(bp->b_flags, B_WANTED));
1309 simple_unlock(&bp->b_interlock);
1310 size = bp->b_bufsize;
1311 bufmem -= size;
1312 simple_unlock(&bqueue_slock);
1313 if (size > 0) {
1314 buf_mrelease(bp->b_data, size);
1315 bp->b_bcount = bp->b_bufsize = 0;
1316 }
1317 /* brelse() will return the buffer to the global buffer pool */
1318 brelse(bp, 0);
1319 simple_lock(&bqueue_slock);
1320 return size;
1321 }
1322
1323 int
1324 buf_drain(int n)
1325 {
1326 int s, size = 0, sz;
1327
1328 s = splbio();
1329 simple_lock(&bqueue_slock);
1330
1331 while (size < n && bufmem > bufmem_lowater) {
1332 sz = buf_trim();
1333 if (sz <= 0)
1334 break;
1335 size += sz;
1336 }
1337
1338 simple_unlock(&bqueue_slock);
1339 splx(s);
1340 return size;
1341 }
1342
1343 /*
1344 * Wait for operations on the buffer to complete.
1345 * When they do, extract and return the I/O's error value.
1346 */
1347 int
1348 biowait(struct buf *bp)
1349 {
1350 int s, error;
1351
1352 s = splbio();
1353 simple_lock(&bp->b_interlock);
1354 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1355 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1356 error = bp->b_error;
1357 simple_unlock(&bp->b_interlock);
1358 splx(s);
1359 return (error);
1360 }
1361
1362 /*
1363 * Mark I/O complete on a buffer.
1364 *
1365 * If a callback has been requested, e.g. the pageout
1366 * daemon, do so. Otherwise, awaken waiting processes.
1367 *
1368 * [ Leffler, et al., says on p.247:
1369 * "This routine wakes up the blocked process, frees the buffer
1370 * for an asynchronous write, or, for a request by the pagedaemon
1371 * process, invokes a procedure specified in the buffer structure" ]
1372 *
1373 * In real life, the pagedaemon (or other system processes) wants
1374 * to do async stuff to, and doesn't want the buffer brelse()'d.
1375 * (for swap pager, that puts swap buffers on the free lists (!!!),
1376 * for the vn device, that puts malloc'd buffers on the free lists!)
1377 */
1378 void
1379 biodone(struct buf *bp)
1380 {
1381 int s = splbio();
1382
1383 simple_lock(&bp->b_interlock);
1384 if (ISSET(bp->b_flags, B_DONE))
1385 panic("biodone already");
1386 SET(bp->b_flags, B_DONE); /* note that it's done */
1387 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1388
1389 if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
1390 bioopsp->io_complete(bp);
1391
1392 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
1393 vwakeup(bp);
1394
1395 /*
1396 * If necessary, call out. Unlock the buffer before calling
1397 * iodone() as the buffer isn't valid any more when it return.
1398 */
1399 if (ISSET(bp->b_flags, B_CALL)) {
1400 CLR(bp->b_flags, B_CALL); /* but note callout done */
1401 simple_unlock(&bp->b_interlock);
1402 (*bp->b_iodone)(bp);
1403 } else {
1404 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
1405 simple_unlock(&bp->b_interlock);
1406 brelse(bp, 0);
1407 } else { /* or just wakeup the buffer */
1408 CLR(bp->b_flags, B_WANTED);
1409 wakeup(bp);
1410 simple_unlock(&bp->b_interlock);
1411 }
1412 }
1413
1414 splx(s);
1415 }
1416
1417 /*
1418 * Return a count of buffers on the "locked" queue.
1419 */
1420 int
1421 count_lock_queue(void)
1422 {
1423 struct buf *bp;
1424 int n = 0;
1425
1426 simple_lock(&bqueue_slock);
1427 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1428 n++;
1429 simple_unlock(&bqueue_slock);
1430 return (n);
1431 }
1432
1433 /*
1434 * Wait for all buffers to complete I/O
1435 * Return the number of "stuck" buffers.
1436 */
1437 int
1438 buf_syncwait(void)
1439 {
1440 struct buf *bp;
1441 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1442
1443 dcount = 10000;
1444 for (iter = 0; iter < 20;) {
1445 s = splbio();
1446 simple_lock(&bqueue_slock);
1447 nbusy = 0;
1448 for (ihash = 0; ihash < bufhash+1; ihash++) {
1449 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1450 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1451 nbusy++;
1452 /*
1453 * With soft updates, some buffers that are
1454 * written will be remarked as dirty until other
1455 * buffers are written.
1456 */
1457 if (bp->b_vp && bp->b_vp->v_mount
1458 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1459 && (bp->b_flags & B_DELWRI)) {
1460 simple_lock(&bp->b_interlock);
1461 bremfree(bp);
1462 bp->b_flags |= B_BUSY;
1463 nbusy++;
1464 simple_unlock(&bp->b_interlock);
1465 simple_unlock(&bqueue_slock);
1466 bawrite(bp);
1467 if (dcount-- <= 0) {
1468 printf("softdep ");
1469 splx(s);
1470 goto fail;
1471 }
1472 simple_lock(&bqueue_slock);
1473 }
1474 }
1475 }
1476
1477 simple_unlock(&bqueue_slock);
1478 splx(s);
1479
1480 if (nbusy == 0)
1481 break;
1482 if (nbusy_prev == 0)
1483 nbusy_prev = nbusy;
1484 printf("%d ", nbusy);
1485 tsleep(&nbusy, PRIBIO, "bflush",
1486 (iter == 0) ? 1 : hz / 25 * iter);
1487 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1488 iter++;
1489 else
1490 nbusy_prev = nbusy;
1491 }
1492
1493 if (nbusy) {
1494 fail:;
1495 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1496 printf("giving up\nPrinting vnodes for busy buffers\n");
1497 s = splbio();
1498 for (ihash = 0; ihash < bufhash+1; ihash++) {
1499 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1500 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1501 vprint(NULL, bp->b_vp);
1502 }
1503 }
1504 splx(s);
1505 #endif
1506 }
1507
1508 return nbusy;
1509 }
1510
1511 static void
1512 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1513 {
1514
1515 o->b_flags = i->b_flags;
1516 o->b_error = i->b_error;
1517 o->b_prio = i->b_prio;
1518 o->b_dev = i->b_dev;
1519 o->b_bufsize = i->b_bufsize;
1520 o->b_bcount = i->b_bcount;
1521 o->b_resid = i->b_resid;
1522 o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1523 o->b_blkno = i->b_blkno;
1524 o->b_rawblkno = i->b_rawblkno;
1525 o->b_iodone = PTRTOUINT64(i->b_iodone);
1526 o->b_proc = PTRTOUINT64(i->b_proc);
1527 o->b_vp = PTRTOUINT64(i->b_vp);
1528 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1529 o->b_lblkno = i->b_lblkno;
1530 }
1531
1532 #define KERN_BUFSLOP 20
1533 static int
1534 sysctl_dobuf(SYSCTLFN_ARGS)
1535 {
1536 struct buf *bp;
1537 struct buf_sysctl bs;
1538 char *dp;
1539 u_int i, op, arg;
1540 size_t len, needed, elem_size, out_size;
1541 int error, s, elem_count;
1542
1543 if (namelen == 1 && name[0] == CTL_QUERY)
1544 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1545
1546 if (namelen != 4)
1547 return (EINVAL);
1548
1549 dp = oldp;
1550 len = (oldp != NULL) ? *oldlenp : 0;
1551 op = name[0];
1552 arg = name[1];
1553 elem_size = name[2];
1554 elem_count = name[3];
1555 out_size = MIN(sizeof(bs), elem_size);
1556
1557 /*
1558 * at the moment, these are just "placeholders" to make the
1559 * API for retrieving kern.buf data more extensible in the
1560 * future.
1561 *
1562 * XXX kern.buf currently has "netbsd32" issues. hopefully
1563 * these will be resolved at a later point.
1564 */
1565 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1566 elem_size < 1 || elem_count < 0)
1567 return (EINVAL);
1568
1569 error = 0;
1570 needed = 0;
1571 s = splbio();
1572 simple_lock(&bqueue_slock);
1573 for (i = 0; i < BQUEUES; i++) {
1574 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1575 if (len >= elem_size && elem_count > 0) {
1576 sysctl_fillbuf(bp, &bs);
1577 error = copyout(&bs, dp, out_size);
1578 if (error)
1579 goto cleanup;
1580 dp += elem_size;
1581 len -= elem_size;
1582 }
1583 if (elem_count > 0) {
1584 needed += elem_size;
1585 if (elem_count != INT_MAX)
1586 elem_count--;
1587 }
1588 }
1589 }
1590 cleanup:
1591 simple_unlock(&bqueue_slock);
1592 splx(s);
1593
1594 *oldlenp = needed;
1595 if (oldp == NULL)
1596 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1597
1598 return (error);
1599 }
1600
1601 static void
1602 sysctl_bufvm_common(void)
1603 {
1604 int64_t t;
1605
1606 /* Drain until below new high water mark */
1607 while ((t = (int64_t)bufmem - (int64_t)bufmem_hiwater) >= 0) {
1608 if (buf_drain(t / (2 * 1024)) <= 0)
1609 break;
1610 }
1611 }
1612
1613 static int
1614 sysctl_bufcache_update(SYSCTLFN_ARGS)
1615 {
1616 int t, error;
1617 struct sysctlnode node;
1618
1619 node = *rnode;
1620 node.sysctl_data = &t;
1621 t = *(int *)rnode->sysctl_data;
1622 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1623 if (error || newp == NULL)
1624 return (error);
1625
1626 if (t < 0 || t > 100)
1627 return EINVAL;
1628 bufcache = t;
1629 buf_setwm();
1630
1631 sysctl_bufvm_common();
1632 return 0;
1633 }
1634
1635 static int
1636 sysctl_bufvm_update(SYSCTLFN_ARGS)
1637 {
1638 int64_t t;
1639 int error;
1640 struct sysctlnode node;
1641
1642 node = *rnode;
1643 node.sysctl_data = &t;
1644 t = *(int64_t *)rnode->sysctl_data;
1645 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1646 if (error || newp == NULL)
1647 return (error);
1648
1649 if (t < 0)
1650 return EINVAL;
1651 if (rnode->sysctl_data == &bufmem_lowater) {
1652 if (bufmem_hiwater - t < 16)
1653 return (EINVAL);
1654 bufmem_lowater = t;
1655 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1656 if (t - bufmem_lowater < 16)
1657 return (EINVAL);
1658 bufmem_hiwater = t;
1659 } else
1660 return (EINVAL);
1661
1662 sysctl_bufvm_common();
1663
1664 return 0;
1665 }
1666
1667 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1668 {
1669
1670 sysctl_createv(clog, 0, NULL, NULL,
1671 CTLFLAG_PERMANENT,
1672 CTLTYPE_NODE, "kern", NULL,
1673 NULL, 0, NULL, 0,
1674 CTL_KERN, CTL_EOL);
1675 sysctl_createv(clog, 0, NULL, NULL,
1676 CTLFLAG_PERMANENT,
1677 CTLTYPE_NODE, "buf",
1678 SYSCTL_DESCR("Kernel buffer cache information"),
1679 sysctl_dobuf, 0, NULL, 0,
1680 CTL_KERN, KERN_BUF, CTL_EOL);
1681 }
1682
1683 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1684 {
1685
1686 sysctl_createv(clog, 0, NULL, NULL,
1687 CTLFLAG_PERMANENT,
1688 CTLTYPE_NODE, "vm", NULL,
1689 NULL, 0, NULL, 0,
1690 CTL_VM, CTL_EOL);
1691
1692 sysctl_createv(clog, 0, NULL, NULL,
1693 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1694 CTLTYPE_INT, "bufcache",
1695 SYSCTL_DESCR("Percentage of physical memory to use for "
1696 "buffer cache"),
1697 sysctl_bufcache_update, 0, &bufcache, 0,
1698 CTL_VM, CTL_CREATE, CTL_EOL);
1699 sysctl_createv(clog, 0, NULL, NULL,
1700 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1701 CTLTYPE_QUAD, "bufmem",
1702 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1703 "cache"),
1704 NULL, 0, &bufmem, 0,
1705 CTL_VM, CTL_CREATE, CTL_EOL);
1706 sysctl_createv(clog, 0, NULL, NULL,
1707 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1708 CTLTYPE_QUAD, "bufmem_lowater",
1709 SYSCTL_DESCR("Minimum amount of kernel memory to "
1710 "reserve for buffer cache"),
1711 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1712 CTL_VM, CTL_CREATE, CTL_EOL);
1713 sysctl_createv(clog, 0, NULL, NULL,
1714 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1715 CTLTYPE_QUAD, "bufmem_hiwater",
1716 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1717 "for buffer cache"),
1718 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1719 CTL_VM, CTL_CREATE, CTL_EOL);
1720 }
1721
1722 #ifdef DEBUG
1723 /*
1724 * Print out statistics on the current allocation of the buffer pool.
1725 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1726 * in vfs_syscalls.c using sysctl.
1727 */
1728 void
1729 vfs_bufstats(void)
1730 {
1731 int s, i, j, count;
1732 struct buf *bp;
1733 struct bqueue *dp;
1734 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1735 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1736
1737 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1738 count = 0;
1739 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1740 counts[j] = 0;
1741 s = splbio();
1742 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1743 counts[bp->b_bufsize/PAGE_SIZE]++;
1744 count++;
1745 }
1746 splx(s);
1747 printf("%s: total-%d", bname[i], count);
1748 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1749 if (counts[j] != 0)
1750 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1751 printf("\n");
1752 }
1753 }
1754 #endif /* DEBUG */
1755
1756 /* ------------------------------ */
1757
1758 static struct buf *
1759 getiobuf1(int prflags)
1760 {
1761 struct buf *bp;
1762 int s;
1763
1764 s = splbio();
1765 bp = pool_get(&bufiopool, prflags);
1766 splx(s);
1767 if (bp != NULL) {
1768 BUF_INIT(bp);
1769 }
1770 return bp;
1771 }
1772
1773 struct buf *
1774 getiobuf(void)
1775 {
1776
1777 return getiobuf1(PR_WAITOK);
1778 }
1779
1780 struct buf *
1781 getiobuf_nowait(void)
1782 {
1783
1784 return getiobuf1(PR_NOWAIT);
1785 }
1786
1787 void
1788 putiobuf(struct buf *bp)
1789 {
1790 int s;
1791
1792 s = splbio();
1793 pool_put(&bufiopool, bp);
1794 splx(s);
1795 }
1796
1797 /*
1798 * nestiobuf_iodone: b_iodone callback for nested buffers.
1799 */
1800
1801 void
1802 nestiobuf_iodone(struct buf *bp)
1803 {
1804 struct buf *mbp = bp->b_private;
1805 int error;
1806 int donebytes;
1807
1808 KASSERT(bp->b_bcount <= bp->b_bufsize);
1809 KASSERT(mbp != bp);
1810
1811 error = 0;
1812 if (bp->b_error != 0) {
1813 error = bp->b_error;
1814 } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
1815 /*
1816 * Not all got transfered, raise an error. We have no way to
1817 * propagate these conditions to mbp.
1818 */
1819 error = EIO;
1820 }
1821
1822 donebytes = bp->b_bufsize;
1823
1824 putiobuf(bp);
1825 nestiobuf_done(mbp, donebytes, error);
1826 }
1827
1828 /*
1829 * nestiobuf_setup: setup a "nested" buffer.
1830 *
1831 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1832 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1833 * => 'offset' is a byte offset in the master buffer.
1834 * => 'size' is a size in bytes of this nested buffer.
1835 */
1836
1837 void
1838 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
1839 {
1840 const int b_read = mbp->b_flags & B_READ;
1841 struct vnode *vp = mbp->b_vp;
1842
1843 KASSERT(mbp->b_bcount >= offset + size);
1844 bp->b_vp = vp;
1845 bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
1846 bp->b_iodone = nestiobuf_iodone;
1847 bp->b_data = (char *)mbp->b_data + offset;
1848 bp->b_resid = bp->b_bcount = size;
1849 bp->b_bufsize = bp->b_bcount;
1850 bp->b_private = mbp;
1851 BIO_COPYPRIO(bp, mbp);
1852 if (!b_read && vp != NULL) {
1853 int s;
1854
1855 s = splbio();
1856 V_INCR_NUMOUTPUT(vp);
1857 splx(s);
1858 }
1859 }
1860
1861 /*
1862 * nestiobuf_done: propagate completion to the master buffer.
1863 *
1864 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1865 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1866 */
1867
1868 void
1869 nestiobuf_done(struct buf *mbp, int donebytes, int error)
1870 {
1871 int s;
1872
1873 if (donebytes == 0) {
1874 return;
1875 }
1876 s = splbio();
1877 KASSERT(mbp->b_resid >= donebytes);
1878 if (error) {
1879 mbp->b_error = error;
1880 }
1881 mbp->b_resid -= donebytes;
1882 if (mbp->b_resid == 0) {
1883 if (mbp->b_error != 0) {
1884 mbp->b_resid = mbp->b_bcount; /* be conservative */
1885 }
1886 biodone(mbp);
1887 }
1888 splx(s);
1889 }
1890