Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.182
      1 /*	$NetBSD: vfs_bio.c,v 1.182 2007/12/24 15:00:20 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1994 Christopher G. Demetriou
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     71  */
     72 
     73 /*
     74  * Some references:
     75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     77  *		UNIX Operating System (Addison Welley, 1989)
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.182 2007/12/24 15:00:20 ad Exp $");
     82 
     83 #include "fs_ffs.h"
     84 #include "opt_bufcache.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 #include <sys/vnode.h>
     92 #include <sys/mount.h>
     93 #include <sys/malloc.h>
     94 #include <sys/resourcevar.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/conf.h>
     97 #include <sys/kauth.h>
     98 
     99 #include <uvm/uvm.h>
    100 
    101 #include <miscfs/specfs/specdev.h>
    102 
    103 #ifndef	BUFPAGES
    104 # define BUFPAGES 0
    105 #endif
    106 
    107 #ifdef BUFCACHE
    108 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    109 #  error BUFCACHE is not between 5 and 95
    110 # endif
    111 #else
    112 # define BUFCACHE 15
    113 #endif
    114 
    115 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    116 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    117 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    118 
    119 /* Function prototypes */
    120 struct bqueue;
    121 
    122 static void buf_setwm(void);
    123 static int buf_trim(void);
    124 static void *bufpool_page_alloc(struct pool *, int);
    125 static void bufpool_page_free(struct pool *, void *);
    126 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
    127     kauth_cred_t, int);
    128 static struct buf *getnewbuf(int, int, int);
    129 static int buf_lotsfree(void);
    130 static int buf_canrelease(void);
    131 static inline u_long buf_mempoolidx(u_long);
    132 static inline u_long buf_roundsize(u_long);
    133 static inline void *buf_malloc(size_t);
    134 static void buf_mrelease(void *, size_t);
    135 static inline void binsheadfree(struct buf *, struct bqueue *);
    136 static inline void binstailfree(struct buf *, struct bqueue *);
    137 int count_lock_queue(void); /* XXX */
    138 #ifdef DEBUG
    139 static int checkfreelist(struct buf *, struct bqueue *);
    140 #endif
    141 
    142 /*
    143  * Definitions for the buffer hash lists.
    144  */
    145 #define	BUFHASH(dvp, lbn)	\
    146 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    147 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    148 u_long	bufhash;
    149 
    150 struct bio_ops *bioopsp;	/* can be overriden by ffs_softdep */
    151 
    152 /*
    153  * Insq/Remq for the buffer hash lists.
    154  */
    155 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
    156 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
    157 
    158 /*
    159  * Definitions for the buffer free lists.
    160  */
    161 #define	BQUEUES		3		/* number of free buffer queues */
    162 
    163 #define	BQ_LOCKED	0		/* super-blocks &c */
    164 #define	BQ_LRU		1		/* lru, useful buffers */
    165 #define	BQ_AGE		2		/* rubbish */
    166 
    167 struct bqueue {
    168 	TAILQ_HEAD(, buf) bq_queue;
    169 	uint64_t bq_bytes;
    170 } bufqueues[BQUEUES];
    171 int needbuffer;
    172 
    173 /*
    174  * Buffer queue lock.
    175  * Take this lock first if also taking some buffer's b_interlock.
    176  */
    177 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
    178 
    179 /*
    180  * Buffer pools for I/O buffers.
    181  */
    182 static struct pool bufpool;
    183 static struct pool bufiopool;
    184 
    185 
    186 /* XXX - somewhat gross.. */
    187 #if MAXBSIZE == 0x2000
    188 #define NMEMPOOLS 5
    189 #elif MAXBSIZE == 0x4000
    190 #define NMEMPOOLS 6
    191 #elif MAXBSIZE == 0x8000
    192 #define NMEMPOOLS 7
    193 #else
    194 #define NMEMPOOLS 8
    195 #endif
    196 
    197 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    198 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    199 #error update vfs_bio buffer memory parameters
    200 #endif
    201 
    202 /* Buffer memory pools */
    203 static struct pool bmempools[NMEMPOOLS];
    204 
    205 struct vm_map *buf_map;
    206 
    207 /*
    208  * Buffer memory pool allocator.
    209  */
    210 static void *
    211 bufpool_page_alloc(struct pool *pp, int flags)
    212 {
    213 
    214 	return (void *)uvm_km_alloc(buf_map,
    215 	    MAXBSIZE, MAXBSIZE,
    216 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    217 	    | UVM_KMF_WIRED);
    218 }
    219 
    220 static void
    221 bufpool_page_free(struct pool *pp, void *v)
    222 {
    223 
    224 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    225 }
    226 
    227 static struct pool_allocator bufmempool_allocator = {
    228 	.pa_alloc = bufpool_page_alloc,
    229 	.pa_free = bufpool_page_free,
    230 	.pa_pagesz = MAXBSIZE,
    231 };
    232 
    233 /* Buffer memory management variables */
    234 uint64_t bufmem_valimit;
    235 uint64_t bufmem_hiwater;
    236 uint64_t bufmem_lowater;
    237 uint64_t bufmem;
    238 
    239 /*
    240  * MD code can call this to set a hard limit on the amount
    241  * of virtual memory used by the buffer cache.
    242  */
    243 int
    244 buf_setvalimit(vsize_t sz)
    245 {
    246 
    247 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    248 	if (sz < NMEMPOOLS * MAXBSIZE)
    249 		return EINVAL;
    250 
    251 	bufmem_valimit = sz;
    252 	return 0;
    253 }
    254 
    255 static void
    256 buf_setwm(void)
    257 {
    258 
    259 	bufmem_hiwater = buf_memcalc();
    260 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    261 #define	BUFMEM_WMSHIFT	3
    262 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    263 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    264 		/* Ensure a reasonable minimum value */
    265 		bufmem_hiwater = BUFMEM_HIWMMIN;
    266 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    267 }
    268 
    269 #ifdef DEBUG
    270 int debug_verify_freelist = 0;
    271 static int
    272 checkfreelist(struct buf *bp, struct bqueue *dp)
    273 {
    274 	struct buf *b;
    275 
    276 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    277 		if (b == bp)
    278 			return 1;
    279 	}
    280 	return 0;
    281 }
    282 #endif
    283 
    284 /*
    285  * Insq/Remq for the buffer hash lists.
    286  * Call with buffer queue locked.
    287  */
    288 static inline void
    289 binsheadfree(struct buf *bp, struct bqueue *dp)
    290 {
    291 
    292 	KASSERT(bp->b_freelistindex == -1);
    293 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    294 	dp->bq_bytes += bp->b_bufsize;
    295 	bp->b_freelistindex = dp - bufqueues;
    296 }
    297 
    298 static inline void
    299 binstailfree(struct buf *bp, struct bqueue *dp)
    300 {
    301 
    302 	KASSERT(bp->b_freelistindex == -1);
    303 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    304 	dp->bq_bytes += bp->b_bufsize;
    305 	bp->b_freelistindex = dp - bufqueues;
    306 }
    307 
    308 void
    309 bremfree(struct buf *bp)
    310 {
    311 	struct bqueue *dp;
    312 	int bqidx = bp->b_freelistindex;
    313 
    314 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    315 
    316 	KASSERT(bqidx != -1);
    317 	dp = &bufqueues[bqidx];
    318 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
    319 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    320 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    321 	dp->bq_bytes -= bp->b_bufsize;
    322 #if defined(DIAGNOSTIC)
    323 	bp->b_freelistindex = -1;
    324 #endif /* defined(DIAGNOSTIC) */
    325 }
    326 
    327 u_long
    328 buf_memcalc(void)
    329 {
    330 	u_long n;
    331 
    332 	/*
    333 	 * Determine the upper bound of memory to use for buffers.
    334 	 *
    335 	 *	- If bufpages is specified, use that as the number
    336 	 *	  pages.
    337 	 *
    338 	 *	- Otherwise, use bufcache as the percentage of
    339 	 *	  physical memory.
    340 	 */
    341 	if (bufpages != 0) {
    342 		n = bufpages;
    343 	} else {
    344 		if (bufcache < 5) {
    345 			printf("forcing bufcache %d -> 5", bufcache);
    346 			bufcache = 5;
    347 		}
    348 		if (bufcache > 95) {
    349 			printf("forcing bufcache %d -> 95", bufcache);
    350 			bufcache = 95;
    351 		}
    352 		n = physmem / 100 * bufcache;
    353 	}
    354 
    355 	n <<= PAGE_SHIFT;
    356 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    357 		n = bufmem_valimit;
    358 
    359 	return (n);
    360 }
    361 
    362 /*
    363  * Initialize buffers and hash links for buffers.
    364  */
    365 void
    366 bufinit(void)
    367 {
    368 	struct bqueue *dp;
    369 	int use_std;
    370 	u_int i;
    371 
    372 	/*
    373 	 * Initialize buffer cache memory parameters.
    374 	 */
    375 	bufmem = 0;
    376 	buf_setwm();
    377 
    378 	if (bufmem_valimit != 0) {
    379 		vaddr_t minaddr = 0, maxaddr;
    380 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    381 					  bufmem_valimit, 0, false, 0);
    382 		if (buf_map == NULL)
    383 			panic("bufinit: cannot allocate submap");
    384 	} else
    385 		buf_map = kernel_map;
    386 
    387 	/* On "small" machines use small pool page sizes where possible */
    388 	use_std = (physmem < atop(16*1024*1024));
    389 
    390 	/*
    391 	 * Also use them on systems that can map the pool pages using
    392 	 * a direct-mapped segment.
    393 	 */
    394 #ifdef PMAP_MAP_POOLPAGE
    395 	use_std = 1;
    396 #endif
    397 
    398 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
    399 	    &pool_allocator_nointr, IPL_NONE);
    400 	pool_init(&bufiopool, sizeof(struct buf), 0, 0, 0, "biopl",
    401 	    NULL, IPL_BIO);
    402 
    403 	bufmempool_allocator.pa_backingmap = buf_map;
    404 	for (i = 0; i < NMEMPOOLS; i++) {
    405 		struct pool_allocator *pa;
    406 		struct pool *pp = &bmempools[i];
    407 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    408 		char *name = malloc(8, M_TEMP, M_WAITOK);
    409 		if (__predict_true(size >= 1024))
    410 			(void)snprintf(name, 8, "buf%dk", size / 1024);
    411 		else
    412 			(void)snprintf(name, 8, "buf%db", size);
    413 		pa = (size <= PAGE_SIZE && use_std)
    414 			? &pool_allocator_nointr
    415 			: &bufmempool_allocator;
    416 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    417 		pool_setlowat(pp, 1);
    418 		pool_sethiwat(pp, 1);
    419 	}
    420 
    421 	/* Initialize the buffer queues */
    422 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    423 		TAILQ_INIT(&dp->bq_queue);
    424 		dp->bq_bytes = 0;
    425 	}
    426 
    427 	/*
    428 	 * Estimate hash table size based on the amount of memory we
    429 	 * intend to use for the buffer cache. The average buffer
    430 	 * size is dependent on our clients (i.e. filesystems).
    431 	 *
    432 	 * For now, use an empirical 3K per buffer.
    433 	 */
    434 	nbuf = (bufmem_hiwater / 1024) / 3;
    435 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    436 }
    437 
    438 static int
    439 buf_lotsfree(void)
    440 {
    441 	int try, thresh;
    442 
    443 	/* Always allocate if doing copy on write */
    444 	if (curlwp->l_pflag & LP_UFSCOW)
    445 		return 1;
    446 
    447 	/* Always allocate if less than the low water mark. */
    448 	if (bufmem < bufmem_lowater)
    449 		return 1;
    450 
    451 	/* Never allocate if greater than the high water mark. */
    452 	if (bufmem > bufmem_hiwater)
    453 		return 0;
    454 
    455 	/* If there's anything on the AGE list, it should be eaten. */
    456 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    457 		return 0;
    458 
    459 	/*
    460 	 * The probabily of getting a new allocation is inversely
    461 	 * proportional to the current size of the cache, using
    462 	 * a granularity of 16 steps.
    463 	 */
    464 	try = random() & 0x0000000fL;
    465 
    466 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    467 	thresh = (bufmem - bufmem_lowater) /
    468 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    469 
    470 	if (try >= thresh)
    471 		return 1;
    472 
    473 	/* Otherwise don't allocate. */
    474 	return 0;
    475 }
    476 
    477 /*
    478  * Return estimate of bytes we think need to be
    479  * released to help resolve low memory conditions.
    480  *
    481  * => called at splbio.
    482  * => called with bqueue_slock held.
    483  */
    484 static int
    485 buf_canrelease(void)
    486 {
    487 	int pagedemand, ninvalid = 0;
    488 
    489 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
    490 
    491 	if (bufmem < bufmem_lowater)
    492 		return 0;
    493 
    494 	if (bufmem > bufmem_hiwater)
    495 		return bufmem - bufmem_hiwater;
    496 
    497 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    498 
    499 	pagedemand = uvmexp.freetarg - uvmexp.free;
    500 	if (pagedemand < 0)
    501 		return ninvalid;
    502 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    503 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    504 }
    505 
    506 /*
    507  * Buffer memory allocation helper functions
    508  */
    509 static inline u_long
    510 buf_mempoolidx(u_long size)
    511 {
    512 	u_int n = 0;
    513 
    514 	size -= 1;
    515 	size >>= MEMPOOL_INDEX_OFFSET;
    516 	while (size) {
    517 		size >>= 1;
    518 		n += 1;
    519 	}
    520 	if (n >= NMEMPOOLS)
    521 		panic("buf mem pool index %d", n);
    522 	return n;
    523 }
    524 
    525 static inline u_long
    526 buf_roundsize(u_long size)
    527 {
    528 	/* Round up to nearest power of 2 */
    529 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    530 }
    531 
    532 static inline void *
    533 buf_malloc(size_t size)
    534 {
    535 	u_int n = buf_mempoolidx(size);
    536 	void *addr;
    537 	int s;
    538 
    539 	while (1) {
    540 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    541 		if (addr != NULL)
    542 			break;
    543 
    544 		/* No memory, see if we can free some. If so, try again */
    545 		if (buf_drain(1) > 0)
    546 			continue;
    547 
    548 		/* Wait for buffers to arrive on the LRU queue */
    549 		s = splbio();
    550 		simple_lock(&bqueue_slock);
    551 		needbuffer = 1;
    552 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
    553 			"buf_malloc", 0, &bqueue_slock);
    554 		splx(s);
    555 	}
    556 
    557 	return addr;
    558 }
    559 
    560 static void
    561 buf_mrelease(void *addr, size_t size)
    562 {
    563 
    564 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    565 }
    566 
    567 /*
    568  * bread()/breadn() helper.
    569  */
    570 static inline struct buf *
    571 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    572     int async)
    573 {
    574 	struct buf *bp;
    575 	struct mount *mp;
    576 
    577 	bp = getblk(vp, blkno, size, 0, 0);
    578 
    579 #ifdef DIAGNOSTIC
    580 	if (bp == NULL) {
    581 		panic("bio_doread: no such buf");
    582 	}
    583 #endif
    584 
    585 	/*
    586 	 * If buffer does not have data valid, start a read.
    587 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    588 	 * Therefore, it's valid if its I/O has completed or been delayed.
    589 	 */
    590 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    591 		/* Start I/O for the buffer. */
    592 		SET(bp->b_flags, B_READ | async);
    593 		if (async)
    594 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    595 		else
    596 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    597 		VOP_STRATEGY(vp, bp);
    598 
    599 		/* Pay for the read. */
    600 		curproc->p_stats->p_ru.ru_inblock++;
    601 	} else if (async) {
    602 		brelse(bp, 0);
    603 	}
    604 
    605 	if (vp->v_type == VBLK)
    606 		mp = vp->v_specmountpoint;
    607 	else
    608 		mp = vp->v_mount;
    609 
    610 	/*
    611 	 * Collect statistics on synchronous and asynchronous reads.
    612 	 * Reads from block devices are charged to their associated
    613 	 * filesystem (if any).
    614 	 */
    615 	if (mp != NULL) {
    616 		if (async == 0)
    617 			mp->mnt_stat.f_syncreads++;
    618 		else
    619 			mp->mnt_stat.f_asyncreads++;
    620 	}
    621 
    622 	return (bp);
    623 }
    624 
    625 /*
    626  * Read a disk block.
    627  * This algorithm described in Bach (p.54).
    628  */
    629 int
    630 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    631     struct buf **bpp)
    632 {
    633 	struct buf *bp;
    634 
    635 	/* Get buffer for block. */
    636 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    637 
    638 	/* Wait for the read to complete, and return result. */
    639 	return (biowait(bp));
    640 }
    641 
    642 /*
    643  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    644  * Trivial modification to the breada algorithm presented in Bach (p.55).
    645  */
    646 int
    647 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    648     int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
    649 {
    650 	struct buf *bp;
    651 	int i;
    652 
    653 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    654 
    655 	/*
    656 	 * For each of the read-ahead blocks, start a read, if necessary.
    657 	 */
    658 	for (i = 0; i < nrablks; i++) {
    659 		/* If it's in the cache, just go on to next one. */
    660 		if (incore(vp, rablks[i]))
    661 			continue;
    662 
    663 		/* Get a buffer for the read-ahead block */
    664 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    665 	}
    666 
    667 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    668 	return (biowait(bp));
    669 }
    670 
    671 /*
    672  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    673  * implemented as a call to breadn().
    674  * XXX for compatibility with old file systems.
    675  */
    676 int
    677 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    678     int rabsize, kauth_cred_t cred, struct buf **bpp)
    679 {
    680 
    681 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    682 }
    683 
    684 /*
    685  * Block write.  Described in Bach (p.56)
    686  */
    687 int
    688 bwrite(struct buf *bp)
    689 {
    690 	int rv, sync, wasdelayed, s;
    691 	struct vnode *vp;
    692 	struct mount *mp;
    693 
    694 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    695 
    696 	vp = bp->b_vp;
    697 	if (vp != NULL) {
    698 		if (vp->v_type == VBLK)
    699 			mp = vp->v_specmountpoint;
    700 		else
    701 			mp = vp->v_mount;
    702 	} else {
    703 		mp = NULL;
    704 	}
    705 
    706 	/*
    707 	 * Remember buffer type, to switch on it later.  If the write was
    708 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    709 	 * convert it to a delayed write.
    710 	 * XXX note that this relies on delayed tape writes being converted
    711 	 * to async, not sync writes (which is safe, but ugly).
    712 	 */
    713 	sync = !ISSET(bp->b_flags, B_ASYNC);
    714 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    715 		bdwrite(bp);
    716 		return (0);
    717 	}
    718 
    719 	/*
    720 	 * Collect statistics on synchronous and asynchronous writes.
    721 	 * Writes to block devices are charged to their associated
    722 	 * filesystem (if any).
    723 	 */
    724 	if (mp != NULL) {
    725 		if (sync)
    726 			mp->mnt_stat.f_syncwrites++;
    727 		else
    728 			mp->mnt_stat.f_asyncwrites++;
    729 	}
    730 
    731 	s = splbio();
    732 	simple_lock(&bp->b_interlock);
    733 
    734 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    735 
    736 	CLR(bp->b_flags, (B_READ | B_DONE | B_DELWRI));
    737 	bp->b_error = 0;
    738 
    739 	/*
    740 	 * Pay for the I/O operation and make sure the buf is on the correct
    741 	 * vnode queue.
    742 	 */
    743 	if (wasdelayed)
    744 		reassignbuf(bp, bp->b_vp);
    745 	else
    746 		curproc->p_stats->p_ru.ru_oublock++;
    747 
    748 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    749 	V_INCR_NUMOUTPUT(bp->b_vp);
    750 	simple_unlock(&bp->b_interlock);
    751 	splx(s);
    752 
    753 	if (sync)
    754 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    755 	else
    756 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    757 
    758 	VOP_STRATEGY(vp, bp);
    759 
    760 	if (sync) {
    761 		/* If I/O was synchronous, wait for it to complete. */
    762 		rv = biowait(bp);
    763 
    764 		/* Release the buffer. */
    765 		brelse(bp, 0);
    766 
    767 		return (rv);
    768 	} else {
    769 		return (0);
    770 	}
    771 }
    772 
    773 int
    774 vn_bwrite(void *v)
    775 {
    776 	struct vop_bwrite_args *ap = v;
    777 
    778 	return (bwrite(ap->a_bp));
    779 }
    780 
    781 /*
    782  * Delayed write.
    783  *
    784  * The buffer is marked dirty, but is not queued for I/O.
    785  * This routine should be used when the buffer is expected
    786  * to be modified again soon, typically a small write that
    787  * partially fills a buffer.
    788  *
    789  * NB: magnetic tapes cannot be delayed; they must be
    790  * written in the order that the writes are requested.
    791  *
    792  * Described in Leffler, et al. (pp. 208-213).
    793  */
    794 void
    795 bdwrite(struct buf *bp)
    796 {
    797 	int s;
    798 
    799 	/* If this is a tape block, write the block now. */
    800 	if (bdev_type(bp->b_dev) == D_TAPE) {
    801 		bawrite(bp);
    802 		return;
    803 	}
    804 
    805 	/*
    806 	 * If the block hasn't been seen before:
    807 	 *	(1) Mark it as having been seen,
    808 	 *	(2) Charge for the write,
    809 	 *	(3) Make sure it's on its vnode's correct block list.
    810 	 */
    811 	s = splbio();
    812 	simple_lock(&bp->b_interlock);
    813 
    814 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    815 
    816 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    817 		SET(bp->b_flags, B_DELWRI);
    818 		curproc->p_stats->p_ru.ru_oublock++;
    819 		reassignbuf(bp, bp->b_vp);
    820 	}
    821 
    822 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    823 	CLR(bp->b_flags, B_DONE);
    824 	simple_unlock(&bp->b_interlock);
    825 	splx(s);
    826 
    827 	brelse(bp, 0);
    828 }
    829 
    830 /*
    831  * Asynchronous block write; just an asynchronous bwrite().
    832  */
    833 void
    834 bawrite(struct buf *bp)
    835 {
    836 	int s;
    837 
    838 	s = splbio();
    839 	simple_lock(&bp->b_interlock);
    840 
    841 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    842 
    843 	SET(bp->b_flags, B_ASYNC);
    844 	simple_unlock(&bp->b_interlock);
    845 	splx(s);
    846 	VOP_BWRITE(bp);
    847 }
    848 
    849 /*
    850  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    851  * Call at splbio() and with the buffer interlock locked.
    852  * Note: called only from biodone() through ffs softdep's bioopsp->io_complete()
    853  */
    854 void
    855 bdirty(struct buf *bp)
    856 {
    857 
    858 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
    859 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    860 
    861 	CLR(bp->b_flags, B_AGE);
    862 
    863 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    864 		SET(bp->b_flags, B_DELWRI);
    865 		curproc->p_stats->p_ru.ru_oublock++;
    866 		reassignbuf(bp, bp->b_vp);
    867 	}
    868 }
    869 
    870 /*
    871  * Release a buffer on to the free lists.
    872  * Described in Bach (p. 46).
    873  */
    874 void
    875 brelse(struct buf *bp, int set)
    876 {
    877 	struct bqueue *bufq;
    878 	int s;
    879 
    880 	/* Block disk interrupts. */
    881 	s = splbio();
    882 	simple_lock(&bqueue_slock);
    883 	simple_lock(&bp->b_interlock);
    884 
    885 	bp->b_flags |= set;
    886 
    887 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    888 	KASSERT(!ISSET(bp->b_flags, B_CALL));
    889 
    890 	/* Wake up any processes waiting for any buffer to become free. */
    891 	if (needbuffer) {
    892 		needbuffer = 0;
    893 		wakeup(&needbuffer);
    894 	}
    895 
    896 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    897 	if (ISSET(bp->b_flags, B_WANTED)) {
    898 		CLR(bp->b_flags, B_WANTED|B_AGE);
    899 		wakeup(bp);
    900 	}
    901 
    902 	/*
    903 	 * Determine which queue the buffer should be on, then put it there.
    904 	 */
    905 
    906 	/* If it's locked, don't report an error; try again later. */
    907 	if (ISSET(bp->b_flags, B_LOCKED) && bp->b_error != 0)
    908 		bp->b_error = 0;
    909 
    910 	/* If it's not cacheable, or an error, mark it invalid. */
    911 	if (ISSET(bp->b_flags, B_NOCACHE) || bp->b_error != 0)
    912 		SET(bp->b_flags, B_INVAL);
    913 
    914 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    915 		/*
    916 		 * This is a delayed write buffer that was just flushed to
    917 		 * disk.  It is still on the LRU queue.  If it's become
    918 		 * invalid, then we need to move it to a different queue;
    919 		 * otherwise leave it in its current position.
    920 		 */
    921 		CLR(bp->b_flags, B_VFLUSH);
    922 		if (!ISSET(bp->b_flags, B_INVAL|B_LOCKED|B_AGE) &&
    923 		    bp->b_error == 0) {
    924 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
    925 			goto already_queued;
    926 		} else {
    927 			bremfree(bp);
    928 		}
    929 	}
    930 
    931   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
    932   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
    933   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
    934 
    935 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    936 		/*
    937 		 * If it's invalid or empty, dissociate it from its vnode
    938 		 * and put on the head of the appropriate queue.
    939 		 */
    940 		if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
    941 			bioopsp->io_deallocate(bp);
    942 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    943 		if (bp->b_vp) {
    944 			reassignbuf(bp, bp->b_vp);
    945 			brelvp(bp);
    946 		}
    947 		if (bp->b_bufsize <= 0)
    948 			/* no data */
    949 			goto already_queued;
    950 		else
    951 			/* invalid data */
    952 			bufq = &bufqueues[BQ_AGE];
    953 		binsheadfree(bp, bufq);
    954 	} else {
    955 		/*
    956 		 * It has valid data.  Put it on the end of the appropriate
    957 		 * queue, so that it'll stick around for as long as possible.
    958 		 * If buf is AGE, but has dependencies, must put it on last
    959 		 * bufqueue to be scanned, ie LRU. This protects against the
    960 		 * livelock where BQ_AGE only has buffers with dependencies,
    961 		 * and we thus never get to the dependent buffers in BQ_LRU.
    962 		 */
    963 		if (ISSET(bp->b_flags, B_LOCKED))
    964 			/* locked in core */
    965 			bufq = &bufqueues[BQ_LOCKED];
    966 		else if (!ISSET(bp->b_flags, B_AGE))
    967 			/* valid data */
    968 			bufq = &bufqueues[BQ_LRU];
    969 		else {
    970 			/* stale but valid data */
    971 			int has_deps;
    972 
    973 			if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
    974 				has_deps = bioopsp->io_countdeps(bp, 0);
    975 			else
    976 				has_deps = 0;
    977 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    978 			    &bufqueues[BQ_AGE];
    979 		}
    980 		binstailfree(bp, bufq);
    981 	}
    982 
    983 already_queued:
    984 	/* Unlock the buffer. */
    985 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
    986 	SET(bp->b_flags, B_CACHE);
    987 
    988 	/* Allow disk interrupts. */
    989 	simple_unlock(&bp->b_interlock);
    990 	simple_unlock(&bqueue_slock);
    991 	splx(s);
    992 	if (bp->b_bufsize <= 0) {
    993 #ifdef DEBUG
    994 		memset((char *)bp, 0, sizeof(*bp));
    995 #endif
    996 		pool_put(&bufpool, bp);
    997 	}
    998 }
    999 
   1000 /*
   1001  * Determine if a block is in the cache.
   1002  * Just look on what would be its hash chain.  If it's there, return
   1003  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1004  * we normally don't return the buffer, unless the caller explicitly
   1005  * wants us to.
   1006  */
   1007 struct buf *
   1008 incore(struct vnode *vp, daddr_t blkno)
   1009 {
   1010 	struct buf *bp;
   1011 
   1012 	/* Search hash chain */
   1013 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1014 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1015 		    !ISSET(bp->b_flags, B_INVAL))
   1016 		return (bp);
   1017 	}
   1018 
   1019 	return (NULL);
   1020 }
   1021 
   1022 /*
   1023  * Get a block of requested size that is associated with
   1024  * a given vnode and block offset. If it is found in the
   1025  * block cache, mark it as having been found, make it busy
   1026  * and return it. Otherwise, return an empty block of the
   1027  * correct size. It is up to the caller to insure that the
   1028  * cached blocks be of the correct size.
   1029  */
   1030 struct buf *
   1031 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1032 {
   1033 	struct buf *bp;
   1034 	int s, err;
   1035 	int preserve;
   1036 
   1037 start:
   1038 	s = splbio();
   1039 	simple_lock(&bqueue_slock);
   1040 	bp = incore(vp, blkno);
   1041 	if (bp != NULL) {
   1042 		simple_lock(&bp->b_interlock);
   1043 		if (ISSET(bp->b_flags, B_BUSY)) {
   1044 			simple_unlock(&bqueue_slock);
   1045 			if (curlwp == uvm.pagedaemon_lwp) {
   1046 				simple_unlock(&bp->b_interlock);
   1047 				splx(s);
   1048 				return NULL;
   1049 			}
   1050 			SET(bp->b_flags, B_WANTED);
   1051 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
   1052 					"getblk", slptimeo, &bp->b_interlock);
   1053 			splx(s);
   1054 			if (err)
   1055 				return (NULL);
   1056 			goto start;
   1057 		}
   1058 #ifdef DIAGNOSTIC
   1059 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
   1060 		    bp->b_bcount < size && vp->v_type != VBLK)
   1061 			panic("getblk: block size invariant failed");
   1062 #endif
   1063 		SET(bp->b_flags, B_BUSY);
   1064 		bremfree(bp);
   1065 		preserve = 1;
   1066 	} else {
   1067 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
   1068 			simple_unlock(&bqueue_slock);
   1069 			splx(s);
   1070 			goto start;
   1071 		}
   1072 
   1073 		binshash(bp, BUFHASH(vp, blkno));
   1074 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1075 		bgetvp(vp, bp);
   1076 		preserve = 0;
   1077 	}
   1078 	simple_unlock(&bp->b_interlock);
   1079 	simple_unlock(&bqueue_slock);
   1080 	splx(s);
   1081 	/*
   1082 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1083 	 * if we re-size buffers here.
   1084 	 */
   1085 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1086 		KASSERT(bp->b_bufsize >= size);
   1087 	} else {
   1088 		allocbuf(bp, size, preserve);
   1089 	}
   1090 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1091 	return (bp);
   1092 }
   1093 
   1094 /*
   1095  * Get an empty, disassociated buffer of given size.
   1096  */
   1097 struct buf *
   1098 geteblk(int size)
   1099 {
   1100 	struct buf *bp;
   1101 	int s;
   1102 
   1103 	s = splbio();
   1104 	simple_lock(&bqueue_slock);
   1105 	while ((bp = getnewbuf(0, 0, 0)) == 0)
   1106 		;
   1107 
   1108 	SET(bp->b_flags, B_INVAL);
   1109 	binshash(bp, &invalhash);
   1110 	simple_unlock(&bqueue_slock);
   1111 	simple_unlock(&bp->b_interlock);
   1112 	splx(s);
   1113 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1114 	allocbuf(bp, size, 0);
   1115 	return (bp);
   1116 }
   1117 
   1118 /*
   1119  * Expand or contract the actual memory allocated to a buffer.
   1120  *
   1121  * If the buffer shrinks, data is lost, so it's up to the
   1122  * caller to have written it out *first*; this routine will not
   1123  * start a write.  If the buffer grows, it's the callers
   1124  * responsibility to fill out the buffer's additional contents.
   1125  */
   1126 void
   1127 allocbuf(struct buf *bp, int size, int preserve)
   1128 {
   1129 	vsize_t oldsize, desired_size;
   1130 	void *addr;
   1131 	int s, delta;
   1132 
   1133 	desired_size = buf_roundsize(size);
   1134 	if (desired_size > MAXBSIZE)
   1135 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1136 
   1137 	bp->b_bcount = size;
   1138 
   1139 	oldsize = bp->b_bufsize;
   1140 	if (oldsize == desired_size)
   1141 		return;
   1142 
   1143 	/*
   1144 	 * If we want a buffer of a different size, re-allocate the
   1145 	 * buffer's memory; copy old content only if needed.
   1146 	 */
   1147 	addr = buf_malloc(desired_size);
   1148 	if (preserve)
   1149 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1150 	if (bp->b_data != NULL)
   1151 		buf_mrelease(bp->b_data, oldsize);
   1152 	bp->b_data = addr;
   1153 	bp->b_bufsize = desired_size;
   1154 
   1155 	/*
   1156 	 * Update overall buffer memory counter (protected by bqueue_slock)
   1157 	 */
   1158 	delta = (long)desired_size - (long)oldsize;
   1159 
   1160 	s = splbio();
   1161 	simple_lock(&bqueue_slock);
   1162 	if ((bufmem += delta) > bufmem_hiwater) {
   1163 		/*
   1164 		 * Need to trim overall memory usage.
   1165 		 */
   1166 		while (buf_canrelease()) {
   1167 			if (curcpu()->ci_schedstate.spc_flags &
   1168 			    SPCF_SHOULDYIELD) {
   1169 				simple_unlock(&bqueue_slock);
   1170 				splx(s);
   1171 				preempt();
   1172 				s = splbio();
   1173 				simple_lock(&bqueue_slock);
   1174 			}
   1175 
   1176 			if (buf_trim() == 0)
   1177 				break;
   1178 		}
   1179 	}
   1180 
   1181 	simple_unlock(&bqueue_slock);
   1182 	splx(s);
   1183 }
   1184 
   1185 /*
   1186  * Find a buffer which is available for use.
   1187  * Select something from a free list.
   1188  * Preference is to AGE list, then LRU list.
   1189  *
   1190  * Called at splbio and with buffer queues locked.
   1191  * Return buffer locked.
   1192  */
   1193 struct buf *
   1194 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1195 {
   1196 	struct buf *bp;
   1197 
   1198 start:
   1199 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
   1200 
   1201 	/*
   1202 	 * Get a new buffer from the pool; but use NOWAIT because
   1203 	 * we have the buffer queues locked.
   1204 	 */
   1205 	if (!from_bufq && buf_lotsfree() &&
   1206 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
   1207 		memset((char *)bp, 0, sizeof(*bp));
   1208 		BUF_INIT(bp);
   1209 		bp->b_dev = NODEV;
   1210 		bp->b_vnbufs.le_next = NOLIST;
   1211 		bp->b_flags = B_BUSY;
   1212 		simple_lock(&bp->b_interlock);
   1213 #if defined(DIAGNOSTIC)
   1214 		bp->b_freelistindex = -1;
   1215 #endif /* defined(DIAGNOSTIC) */
   1216 		return (bp);
   1217 	}
   1218 
   1219 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1220 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1221 		simple_lock(&bp->b_interlock);
   1222 		bremfree(bp);
   1223 	} else {
   1224 		/*
   1225 		 * XXX: !from_bufq should be removed.
   1226 		 */
   1227 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1228 			/* wait for a free buffer of any kind */
   1229 			needbuffer = 1;
   1230 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
   1231 			    "getnewbuf", slptimeo, &bqueue_slock);
   1232 		}
   1233 		return (NULL);
   1234 	}
   1235 
   1236 #ifdef DIAGNOSTIC
   1237 	if (bp->b_bufsize <= 0)
   1238 		panic("buffer %p: on queue but empty", bp);
   1239 #endif
   1240 
   1241 	if (ISSET(bp->b_flags, B_VFLUSH)) {
   1242 		/*
   1243 		 * This is a delayed write buffer being flushed to disk.  Make
   1244 		 * sure it gets aged out of the queue when it's finished, and
   1245 		 * leave it off the LRU queue.
   1246 		 */
   1247 		CLR(bp->b_flags, B_VFLUSH);
   1248 		SET(bp->b_flags, B_AGE);
   1249 		simple_unlock(&bp->b_interlock);
   1250 		goto start;
   1251 	}
   1252 
   1253 	/* Buffer is no longer on free lists. */
   1254 	SET(bp->b_flags, B_BUSY);
   1255 
   1256 	/*
   1257 	 * If buffer was a delayed write, start it and return NULL
   1258 	 * (since we might sleep while starting the write).
   1259 	 */
   1260 	if (ISSET(bp->b_flags, B_DELWRI)) {
   1261 		/*
   1262 		 * This buffer has gone through the LRU, so make sure it gets
   1263 		 * reused ASAP.
   1264 		 */
   1265 		SET(bp->b_flags, B_AGE);
   1266 		simple_unlock(&bp->b_interlock);
   1267 		simple_unlock(&bqueue_slock);
   1268 		bawrite(bp);
   1269 		simple_lock(&bqueue_slock);
   1270 		return (NULL);
   1271 	}
   1272 
   1273 	/* disassociate us from our vnode, if we had one... */
   1274 	if (bp->b_vp)
   1275 		brelvp(bp);
   1276 
   1277 	if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
   1278 		bioopsp->io_deallocate(bp);
   1279 
   1280 	/* clear out various other fields */
   1281 	bp->b_flags = B_BUSY;
   1282 	bp->b_dev = NODEV;
   1283 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
   1284 	bp->b_iodone = 0;
   1285 	bp->b_error = 0;
   1286 	bp->b_resid = 0;
   1287 	bp->b_bcount = 0;
   1288 
   1289 	bremhash(bp);
   1290 	return (bp);
   1291 }
   1292 
   1293 /*
   1294  * Attempt to free an aged buffer off the queues.
   1295  * Called at splbio and with queue lock held.
   1296  * Returns the amount of buffer memory freed.
   1297  */
   1298 static int
   1299 buf_trim(void)
   1300 {
   1301 	struct buf *bp;
   1302 	long size = 0;
   1303 
   1304 	/* Instruct getnewbuf() to get buffers off the queues */
   1305 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1306 		return 0;
   1307 
   1308 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
   1309 	simple_unlock(&bp->b_interlock);
   1310 	size = bp->b_bufsize;
   1311 	bufmem -= size;
   1312 	simple_unlock(&bqueue_slock);
   1313 	if (size > 0) {
   1314 		buf_mrelease(bp->b_data, size);
   1315 		bp->b_bcount = bp->b_bufsize = 0;
   1316 	}
   1317 	/* brelse() will return the buffer to the global buffer pool */
   1318 	brelse(bp, 0);
   1319 	simple_lock(&bqueue_slock);
   1320 	return size;
   1321 }
   1322 
   1323 int
   1324 buf_drain(int n)
   1325 {
   1326 	int s, size = 0, sz;
   1327 
   1328 	s = splbio();
   1329 	simple_lock(&bqueue_slock);
   1330 
   1331 	while (size < n && bufmem > bufmem_lowater) {
   1332 		sz = buf_trim();
   1333 		if (sz <= 0)
   1334 			break;
   1335 		size += sz;
   1336 	}
   1337 
   1338 	simple_unlock(&bqueue_slock);
   1339 	splx(s);
   1340 	return size;
   1341 }
   1342 
   1343 /*
   1344  * Wait for operations on the buffer to complete.
   1345  * When they do, extract and return the I/O's error value.
   1346  */
   1347 int
   1348 biowait(struct buf *bp)
   1349 {
   1350 	int s, error;
   1351 
   1352 	s = splbio();
   1353 	simple_lock(&bp->b_interlock);
   1354 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
   1355 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
   1356 	error = bp->b_error;
   1357 	simple_unlock(&bp->b_interlock);
   1358 	splx(s);
   1359 	return (error);
   1360 }
   1361 
   1362 /*
   1363  * Mark I/O complete on a buffer.
   1364  *
   1365  * If a callback has been requested, e.g. the pageout
   1366  * daemon, do so. Otherwise, awaken waiting processes.
   1367  *
   1368  * [ Leffler, et al., says on p.247:
   1369  *	"This routine wakes up the blocked process, frees the buffer
   1370  *	for an asynchronous write, or, for a request by the pagedaemon
   1371  *	process, invokes a procedure specified in the buffer structure" ]
   1372  *
   1373  * In real life, the pagedaemon (or other system processes) wants
   1374  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1375  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1376  * for the vn device, that puts malloc'd buffers on the free lists!)
   1377  */
   1378 void
   1379 biodone(struct buf *bp)
   1380 {
   1381 	int s = splbio();
   1382 
   1383 	simple_lock(&bp->b_interlock);
   1384 	if (ISSET(bp->b_flags, B_DONE))
   1385 		panic("biodone already");
   1386 	CLR(bp->b_flags, B_COWDONE);
   1387 	SET(bp->b_flags, B_DONE);		/* note that it's done */
   1388 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1389 
   1390 	if (LIST_FIRST(&bp->b_dep) != NULL && bioopsp)
   1391 		bioopsp->io_complete(bp);
   1392 
   1393 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
   1394 		vwakeup(bp);
   1395 
   1396 	/*
   1397 	 * If necessary, call out.  Unlock the buffer before calling
   1398 	 * iodone() as the buffer isn't valid any more when it return.
   1399 	 */
   1400 	if (ISSET(bp->b_flags, B_CALL)) {
   1401 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
   1402 		simple_unlock(&bp->b_interlock);
   1403 		(*bp->b_iodone)(bp);
   1404 	} else {
   1405 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
   1406 			simple_unlock(&bp->b_interlock);
   1407 			brelse(bp, 0);
   1408 		} else {			/* or just wakeup the buffer */
   1409 			CLR(bp->b_flags, B_WANTED);
   1410 			wakeup(bp);
   1411 			simple_unlock(&bp->b_interlock);
   1412 		}
   1413 	}
   1414 
   1415 	splx(s);
   1416 }
   1417 
   1418 /*
   1419  * Return a count of buffers on the "locked" queue.
   1420  */
   1421 int
   1422 count_lock_queue(void)
   1423 {
   1424 	struct buf *bp;
   1425 	int n = 0;
   1426 
   1427 	simple_lock(&bqueue_slock);
   1428 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1429 		n++;
   1430 	simple_unlock(&bqueue_slock);
   1431 	return (n);
   1432 }
   1433 
   1434 /*
   1435  * Wait for all buffers to complete I/O
   1436  * Return the number of "stuck" buffers.
   1437  */
   1438 int
   1439 buf_syncwait(void)
   1440 {
   1441 	struct buf *bp;
   1442 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
   1443 
   1444 	dcount = 10000;
   1445 	for (iter = 0; iter < 20;) {
   1446 		s = splbio();
   1447 		simple_lock(&bqueue_slock);
   1448 		nbusy = 0;
   1449 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1450 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1451 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1452 				nbusy++;
   1453 			/*
   1454 			 * With soft updates, some buffers that are
   1455 			 * written will be remarked as dirty until other
   1456 			 * buffers are written.
   1457 			 */
   1458 			if (bp->b_vp && bp->b_vp->v_mount
   1459 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1460 			    && (bp->b_flags & B_DELWRI)) {
   1461 				simple_lock(&bp->b_interlock);
   1462 				bremfree(bp);
   1463 				bp->b_flags |= B_BUSY;
   1464 				nbusy++;
   1465 				simple_unlock(&bp->b_interlock);
   1466 				simple_unlock(&bqueue_slock);
   1467 				bawrite(bp);
   1468 				if (dcount-- <= 0) {
   1469 					printf("softdep ");
   1470 					splx(s);
   1471 					goto fail;
   1472 				}
   1473 				simple_lock(&bqueue_slock);
   1474 			}
   1475 		    }
   1476 		}
   1477 
   1478 		simple_unlock(&bqueue_slock);
   1479 		splx(s);
   1480 
   1481 		if (nbusy == 0)
   1482 			break;
   1483 		if (nbusy_prev == 0)
   1484 			nbusy_prev = nbusy;
   1485 		printf("%d ", nbusy);
   1486 		tsleep(&nbusy, PRIBIO, "bflush",
   1487 		    (iter == 0) ? 1 : hz / 25 * iter);
   1488 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1489 			iter++;
   1490 		else
   1491 			nbusy_prev = nbusy;
   1492 	}
   1493 
   1494 	if (nbusy) {
   1495 fail:;
   1496 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1497 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1498 		s = splbio();
   1499 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1500 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1501 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
   1502 				vprint(NULL, bp->b_vp);
   1503 		    }
   1504 		}
   1505 		splx(s);
   1506 #endif
   1507 	}
   1508 
   1509 	return nbusy;
   1510 }
   1511 
   1512 static void
   1513 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
   1514 {
   1515 
   1516 	o->b_flags = i->b_flags;
   1517 	o->b_error = i->b_error;
   1518 	o->b_prio = i->b_prio;
   1519 	o->b_dev = i->b_dev;
   1520 	o->b_bufsize = i->b_bufsize;
   1521 	o->b_bcount = i->b_bcount;
   1522 	o->b_resid = i->b_resid;
   1523 	o->b_addr = PTRTOUINT64(i->b_data);
   1524 	o->b_blkno = i->b_blkno;
   1525 	o->b_rawblkno = i->b_rawblkno;
   1526 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1527 	o->b_proc = PTRTOUINT64(i->b_proc);
   1528 	o->b_vp = PTRTOUINT64(i->b_vp);
   1529 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1530 	o->b_lblkno = i->b_lblkno;
   1531 }
   1532 
   1533 #define KERN_BUFSLOP 20
   1534 static int
   1535 sysctl_dobuf(SYSCTLFN_ARGS)
   1536 {
   1537 	struct buf *bp;
   1538 	struct buf_sysctl bs;
   1539 	char *dp;
   1540 	u_int i, op, arg;
   1541 	size_t len, needed, elem_size, out_size;
   1542 	int error, s, elem_count;
   1543 
   1544 	if (namelen == 1 && name[0] == CTL_QUERY)
   1545 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1546 
   1547 	if (namelen != 4)
   1548 		return (EINVAL);
   1549 
   1550 	dp = oldp;
   1551 	len = (oldp != NULL) ? *oldlenp : 0;
   1552 	op = name[0];
   1553 	arg = name[1];
   1554 	elem_size = name[2];
   1555 	elem_count = name[3];
   1556 	out_size = MIN(sizeof(bs), elem_size);
   1557 
   1558 	/*
   1559 	 * at the moment, these are just "placeholders" to make the
   1560 	 * API for retrieving kern.buf data more extensible in the
   1561 	 * future.
   1562 	 *
   1563 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1564 	 * these will be resolved at a later point.
   1565 	 */
   1566 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1567 	    elem_size < 1 || elem_count < 0)
   1568 		return (EINVAL);
   1569 
   1570 	error = 0;
   1571 	needed = 0;
   1572 	s = splbio();
   1573 	simple_lock(&bqueue_slock);
   1574 	for (i = 0; i < BQUEUES; i++) {
   1575 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
   1576 			if (len >= elem_size && elem_count > 0) {
   1577 				sysctl_fillbuf(bp, &bs);
   1578 				error = copyout(&bs, dp, out_size);
   1579 				if (error)
   1580 					goto cleanup;
   1581 				dp += elem_size;
   1582 				len -= elem_size;
   1583 			}
   1584 			if (elem_count > 0) {
   1585 				needed += elem_size;
   1586 				if (elem_count != INT_MAX)
   1587 					elem_count--;
   1588 			}
   1589 		}
   1590 	}
   1591 cleanup:
   1592 	simple_unlock(&bqueue_slock);
   1593 	splx(s);
   1594 
   1595 	*oldlenp = needed;
   1596 	if (oldp == NULL)
   1597 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
   1598 
   1599 	return (error);
   1600 }
   1601 
   1602 static void
   1603 sysctl_bufvm_common(void)
   1604 {
   1605 	int64_t t;
   1606 
   1607 	/* Drain until below new high water mark */
   1608 	while ((t = (int64_t)bufmem - (int64_t)bufmem_hiwater) >= 0) {
   1609 		if (buf_drain(t / (2 * 1024)) <= 0)
   1610 			break;
   1611 	}
   1612 }
   1613 
   1614 static int
   1615 sysctl_bufcache_update(SYSCTLFN_ARGS)
   1616 {
   1617 	int t, error;
   1618 	struct sysctlnode node;
   1619 
   1620 	node = *rnode;
   1621 	node.sysctl_data = &t;
   1622 	t = *(int *)rnode->sysctl_data;
   1623 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1624 	if (error || newp == NULL)
   1625 		return (error);
   1626 
   1627 	if (t < 0 || t > 100)
   1628 		return EINVAL;
   1629 	bufcache = t;
   1630 	buf_setwm();
   1631 
   1632 	sysctl_bufvm_common();
   1633 	return 0;
   1634 }
   1635 
   1636 static int
   1637 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1638 {
   1639 	int64_t t;
   1640 	int error;
   1641 	struct sysctlnode node;
   1642 
   1643 	node = *rnode;
   1644 	node.sysctl_data = &t;
   1645 	t = *(int64_t *)rnode->sysctl_data;
   1646 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1647 	if (error || newp == NULL)
   1648 		return (error);
   1649 
   1650 	if (t < 0)
   1651 		return EINVAL;
   1652 	if (rnode->sysctl_data == &bufmem_lowater) {
   1653 		if (bufmem_hiwater - t < 16)
   1654 			return (EINVAL);
   1655 		bufmem_lowater = t;
   1656 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1657 		if (t - bufmem_lowater < 16)
   1658 			return (EINVAL);
   1659 		bufmem_hiwater = t;
   1660 	} else
   1661 		return (EINVAL);
   1662 
   1663 	sysctl_bufvm_common();
   1664 
   1665 	return 0;
   1666 }
   1667 
   1668 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1669 {
   1670 
   1671 	sysctl_createv(clog, 0, NULL, NULL,
   1672 		       CTLFLAG_PERMANENT,
   1673 		       CTLTYPE_NODE, "kern", NULL,
   1674 		       NULL, 0, NULL, 0,
   1675 		       CTL_KERN, CTL_EOL);
   1676 	sysctl_createv(clog, 0, NULL, NULL,
   1677 		       CTLFLAG_PERMANENT,
   1678 		       CTLTYPE_NODE, "buf",
   1679 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1680 		       sysctl_dobuf, 0, NULL, 0,
   1681 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1682 }
   1683 
   1684 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1685 {
   1686 
   1687 	sysctl_createv(clog, 0, NULL, NULL,
   1688 		       CTLFLAG_PERMANENT,
   1689 		       CTLTYPE_NODE, "vm", NULL,
   1690 		       NULL, 0, NULL, 0,
   1691 		       CTL_VM, CTL_EOL);
   1692 
   1693 	sysctl_createv(clog, 0, NULL, NULL,
   1694 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1695 		       CTLTYPE_INT, "bufcache",
   1696 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1697 				    "buffer cache"),
   1698 		       sysctl_bufcache_update, 0, &bufcache, 0,
   1699 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1700 	sysctl_createv(clog, 0, NULL, NULL,
   1701 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1702 		       CTLTYPE_QUAD, "bufmem",
   1703 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1704 				    "cache"),
   1705 		       NULL, 0, &bufmem, 0,
   1706 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1707 	sysctl_createv(clog, 0, NULL, NULL,
   1708 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1709 		       CTLTYPE_QUAD, "bufmem_lowater",
   1710 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1711 				    "reserve for buffer cache"),
   1712 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1713 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1714 	sysctl_createv(clog, 0, NULL, NULL,
   1715 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1716 		       CTLTYPE_QUAD, "bufmem_hiwater",
   1717 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1718 				    "for buffer cache"),
   1719 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1720 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1721 }
   1722 
   1723 #ifdef DEBUG
   1724 /*
   1725  * Print out statistics on the current allocation of the buffer pool.
   1726  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1727  * in vfs_syscalls.c using sysctl.
   1728  */
   1729 void
   1730 vfs_bufstats(void)
   1731 {
   1732 	int s, i, j, count;
   1733 	struct buf *bp;
   1734 	struct bqueue *dp;
   1735 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1736 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1737 
   1738 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1739 		count = 0;
   1740 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1741 			counts[j] = 0;
   1742 		s = splbio();
   1743 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1744 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1745 			count++;
   1746 		}
   1747 		splx(s);
   1748 		printf("%s: total-%d", bname[i], count);
   1749 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1750 			if (counts[j] != 0)
   1751 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1752 		printf("\n");
   1753 	}
   1754 }
   1755 #endif /* DEBUG */
   1756 
   1757 /* ------------------------------ */
   1758 
   1759 static struct buf *
   1760 getiobuf1(int prflags)
   1761 {
   1762 	struct buf *bp;
   1763 	int s;
   1764 
   1765 	s = splbio();
   1766 	bp = pool_get(&bufiopool, prflags);
   1767 	splx(s);
   1768 	if (bp != NULL) {
   1769 		BUF_INIT(bp);
   1770 	}
   1771 	return bp;
   1772 }
   1773 
   1774 struct buf *
   1775 getiobuf(void)
   1776 {
   1777 
   1778 	return getiobuf1(PR_WAITOK);
   1779 }
   1780 
   1781 struct buf *
   1782 getiobuf_nowait(void)
   1783 {
   1784 
   1785 	return getiobuf1(PR_NOWAIT);
   1786 }
   1787 
   1788 void
   1789 putiobuf(struct buf *bp)
   1790 {
   1791 	int s;
   1792 
   1793 	s = splbio();
   1794 	pool_put(&bufiopool, bp);
   1795 	splx(s);
   1796 }
   1797 
   1798 /*
   1799  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1800  */
   1801 
   1802 void
   1803 nestiobuf_iodone(struct buf *bp)
   1804 {
   1805 	struct buf *mbp = bp->b_private;
   1806 	int error;
   1807 	int donebytes;
   1808 
   1809 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1810 	KASSERT(mbp != bp);
   1811 
   1812 	error = 0;
   1813 	if (bp->b_error != 0) {
   1814 		error = bp->b_error;
   1815 	} else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
   1816 		/*
   1817 		 * Not all got transfered, raise an error. We have no way to
   1818 		 * propagate these conditions to mbp.
   1819 		 */
   1820 		error = EIO;
   1821 	}
   1822 
   1823 	donebytes = bp->b_bufsize;
   1824 
   1825 	putiobuf(bp);
   1826 	nestiobuf_done(mbp, donebytes, error);
   1827 }
   1828 
   1829 /*
   1830  * nestiobuf_setup: setup a "nested" buffer.
   1831  *
   1832  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1833  * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
   1834  * => 'offset' is a byte offset in the master buffer.
   1835  * => 'size' is a size in bytes of this nested buffer.
   1836  */
   1837 
   1838 void
   1839 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
   1840 {
   1841 	const int b_read = mbp->b_flags & B_READ;
   1842 	struct vnode *vp = mbp->b_vp;
   1843 
   1844 	KASSERT(mbp->b_bcount >= offset + size);
   1845 	bp->b_vp = vp;
   1846 	bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
   1847 	bp->b_iodone = nestiobuf_iodone;
   1848 	bp->b_data = (char *)mbp->b_data + offset;
   1849 	bp->b_resid = bp->b_bcount = size;
   1850 	bp->b_bufsize = bp->b_bcount;
   1851 	bp->b_private = mbp;
   1852 	BIO_COPYPRIO(bp, mbp);
   1853 	if (!b_read && vp != NULL) {
   1854 		int s;
   1855 
   1856 		s = splbio();
   1857 		V_INCR_NUMOUTPUT(vp);
   1858 		splx(s);
   1859 	}
   1860 }
   1861 
   1862 /*
   1863  * nestiobuf_done: propagate completion to the master buffer.
   1864  *
   1865  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1866  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1867  */
   1868 
   1869 void
   1870 nestiobuf_done(struct buf *mbp, int donebytes, int error)
   1871 {
   1872 	int s;
   1873 
   1874 	if (donebytes == 0) {
   1875 		return;
   1876 	}
   1877 	s = splbio();
   1878 	KASSERT(mbp->b_resid >= donebytes);
   1879 	if (error) {
   1880 		mbp->b_error = error;
   1881 	}
   1882 	mbp->b_resid -= donebytes;
   1883 	if (mbp->b_resid == 0) {
   1884 		if (mbp->b_error != 0) {
   1885 			mbp->b_resid = mbp->b_bcount; /* be conservative */
   1886 		}
   1887 		biodone(mbp);
   1888 	}
   1889 	splx(s);
   1890 }
   1891