vfs_bio.c revision 1.185 1 /* $NetBSD: vfs_bio.c,v 1.185 2008/01/07 16:12:55 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
73 */
74
75 /*-
76 * Copyright (c) 1994 Christopher G. Demetriou
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by the University of
89 * California, Berkeley and its contributors.
90 * 4. Neither the name of the University nor the names of its contributors
91 * may be used to endorse or promote products derived from this software
92 * without specific prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
107 */
108
109 /*
110 * Some references:
111 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
112 * Leffler, et al.: The Design and Implementation of the 4.3BSD
113 * UNIX Operating System (Addison Welley, 1989)
114 */
115
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.185 2008/01/07 16:12:55 ad Exp $");
118
119 #include "fs_ffs.h"
120 #include "opt_bufcache.h"
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/kernel.h>
125 #include <sys/proc.h>
126 #include <sys/buf.h>
127 #include <sys/vnode.h>
128 #include <sys/mount.h>
129 #include <sys/malloc.h>
130 #include <sys/resourcevar.h>
131 #include <sys/sysctl.h>
132 #include <sys/conf.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/cpu.h>
136
137 #include <uvm/uvm.h>
138
139 #include <miscfs/specfs/specdev.h>
140
141 #ifndef BUFPAGES
142 # define BUFPAGES 0
143 #endif
144
145 #ifdef BUFCACHE
146 # if (BUFCACHE < 5) || (BUFCACHE > 95)
147 # error BUFCACHE is not between 5 and 95
148 # endif
149 #else
150 # define BUFCACHE 15
151 #endif
152
153 u_int nbuf; /* XXX - for softdep_lockedbufs */
154 u_int bufpages = BUFPAGES; /* optional hardwired count */
155 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
156
157 /* Function prototypes */
158 struct bqueue;
159
160 static void buf_setwm(void);
161 static int buf_trim(void);
162 static void *bufpool_page_alloc(struct pool *, int);
163 static void bufpool_page_free(struct pool *, void *);
164 static buf_t *bio_doread(struct vnode *, daddr_t, int,
165 kauth_cred_t, int);
166 static buf_t *getnewbuf(int, int, int);
167 static int buf_lotsfree(void);
168 static int buf_canrelease(void);
169 static u_long buf_mempoolidx(u_long);
170 static u_long buf_roundsize(u_long);
171 static void *buf_malloc(size_t);
172 static void buf_mrelease(void *, size_t);
173 static void binsheadfree(buf_t *, struct bqueue *);
174 static void binstailfree(buf_t *, struct bqueue *);
175 int count_lock_queue(void); /* XXX */
176 #ifdef DEBUG
177 static int checkfreelist(buf_t *, struct bqueue *);
178 #endif
179 static void biointr(void *);
180 static void biodone2(buf_t *);
181 static void bref(buf_t *);
182 static void brele(buf_t *);
183
184 /*
185 * Definitions for the buffer hash lists.
186 */
187 #define BUFHASH(dvp, lbn) \
188 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
189 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
190 u_long bufhash;
191 struct bio_ops *bioopsp; /* I/O operation notification */
192
193 /*
194 * Definitions for the buffer free lists.
195 */
196 #define BQUEUES 3 /* number of free buffer queues */
197
198 #define BQ_LOCKED 0 /* super-blocks &c */
199 #define BQ_LRU 1 /* lru, useful buffers */
200 #define BQ_AGE 2 /* rubbish */
201
202 struct bqueue {
203 TAILQ_HEAD(, buf) bq_queue;
204 uint64_t bq_bytes;
205 buf_t *bq_marker;
206 } bufqueues[BQUEUES];
207
208 static kcondvar_t needbuffer_cv;
209
210 /*
211 * Buffer queue lock.
212 */
213 kmutex_t bufcache_lock;
214 kmutex_t buffer_lock;
215
216 /* Software ISR for completed transfers. */
217 static void *biodone_sih;
218
219 /* Buffer pool for I/O buffers. */
220 static pool_cache_t buf_cache;
221 static pool_cache_t bufio_cache;
222
223 /* XXX - somewhat gross.. */
224 #if MAXBSIZE == 0x2000
225 #define NMEMPOOLS 5
226 #elif MAXBSIZE == 0x4000
227 #define NMEMPOOLS 6
228 #elif MAXBSIZE == 0x8000
229 #define NMEMPOOLS 7
230 #else
231 #define NMEMPOOLS 8
232 #endif
233
234 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
235 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
236 #error update vfs_bio buffer memory parameters
237 #endif
238
239 /* Buffer memory pools */
240 static struct pool bmempools[NMEMPOOLS];
241
242 struct vm_map *buf_map;
243
244 /*
245 * Buffer memory pool allocator.
246 */
247 static void *
248 bufpool_page_alloc(struct pool *pp, int flags)
249 {
250
251 return (void *)uvm_km_alloc(buf_map,
252 MAXBSIZE, MAXBSIZE,
253 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
254 | UVM_KMF_WIRED);
255 }
256
257 static void
258 bufpool_page_free(struct pool *pp, void *v)
259 {
260
261 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
262 }
263
264 static struct pool_allocator bufmempool_allocator = {
265 .pa_alloc = bufpool_page_alloc,
266 .pa_free = bufpool_page_free,
267 .pa_pagesz = MAXBSIZE,
268 };
269
270 /* Buffer memory management variables */
271 u_long bufmem_valimit;
272 u_long bufmem_hiwater;
273 u_long bufmem_lowater;
274 u_long bufmem;
275
276 /*
277 * MD code can call this to set a hard limit on the amount
278 * of virtual memory used by the buffer cache.
279 */
280 int
281 buf_setvalimit(vsize_t sz)
282 {
283
284 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
285 if (sz < NMEMPOOLS * MAXBSIZE)
286 return EINVAL;
287
288 bufmem_valimit = sz;
289 return 0;
290 }
291
292 static void
293 buf_setwm(void)
294 {
295
296 bufmem_hiwater = buf_memcalc();
297 /* lowater is approx. 2% of memory (with bufcache = 15) */
298 #define BUFMEM_WMSHIFT 3
299 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
300 if (bufmem_hiwater < BUFMEM_HIWMMIN)
301 /* Ensure a reasonable minimum value */
302 bufmem_hiwater = BUFMEM_HIWMMIN;
303 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
304 }
305
306 #ifdef DEBUG
307 int debug_verify_freelist = 0;
308 static int
309 checkfreelist(buf_t *bp, struct bqueue *dp)
310 {
311 buf_t *b;
312
313 if (!debug_verify_freelist)
314 return 1;
315
316 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
317 if (b == bp)
318 return 1;
319 }
320
321 return 0;
322 }
323 #endif
324
325 /*
326 * Insq/Remq for the buffer hash lists.
327 * Call with buffer queue locked.
328 */
329 static void
330 binsheadfree(buf_t *bp, struct bqueue *dp)
331 {
332
333 KASSERT(bp->b_freelistindex == -1);
334 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
335 dp->bq_bytes += bp->b_bufsize;
336 bp->b_freelistindex = dp - bufqueues;
337 }
338
339 static void
340 binstailfree(buf_t *bp, struct bqueue *dp)
341 {
342
343 KASSERT(bp->b_freelistindex == -1);
344 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
345 dp->bq_bytes += bp->b_bufsize;
346 bp->b_freelistindex = dp - bufqueues;
347 }
348
349 void
350 bremfree(buf_t *bp)
351 {
352 struct bqueue *dp;
353 int bqidx = bp->b_freelistindex;
354
355 KASSERT(mutex_owned(&bufcache_lock));
356
357 KASSERT(bqidx != -1);
358 dp = &bufqueues[bqidx];
359 KDASSERT(checkfreelist(bp, dp));
360 KASSERT(dp->bq_bytes >= bp->b_bufsize);
361 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
362 dp->bq_bytes -= bp->b_bufsize;
363
364 /* For the sysctl helper. */
365 if (bp == dp->bq_marker)
366 dp->bq_marker = NULL;
367
368 #if defined(DIAGNOSTIC)
369 bp->b_freelistindex = -1;
370 #endif /* defined(DIAGNOSTIC) */
371 }
372
373 /*
374 * Add a reference to an buffer structure that came from buf_cache.
375 */
376 static inline void
377 bref(buf_t *bp)
378 {
379
380 KASSERT(mutex_owned(&bufcache_lock));
381 KASSERT(bp->b_refcnt > 0);
382
383 bp->b_refcnt++;
384 }
385
386 /*
387 * Free an unused buffer structure that came from buf_cache.
388 */
389 static inline void
390 brele(buf_t *bp)
391 {
392
393 KASSERT(mutex_owned(&bufcache_lock));
394 KASSERT(bp->b_refcnt > 0);
395
396 if (bp->b_refcnt-- == 1) {
397 buf_destroy(bp);
398 #ifdef DEBUG
399 memset((char *)bp, 0, sizeof(*bp));
400 #endif
401 pool_cache_put(buf_cache, bp);
402 }
403 }
404
405 u_long
406 buf_memcalc(void)
407 {
408 u_long n;
409
410 /*
411 * Determine the upper bound of memory to use for buffers.
412 *
413 * - If bufpages is specified, use that as the number
414 * pages.
415 *
416 * - Otherwise, use bufcache as the percentage of
417 * physical memory.
418 */
419 if (bufpages != 0) {
420 n = bufpages;
421 } else {
422 if (bufcache < 5) {
423 printf("forcing bufcache %d -> 5", bufcache);
424 bufcache = 5;
425 }
426 if (bufcache > 95) {
427 printf("forcing bufcache %d -> 95", bufcache);
428 bufcache = 95;
429 }
430 n = physmem / 100 * bufcache;
431 }
432
433 n <<= PAGE_SHIFT;
434 if (bufmem_valimit != 0 && n > bufmem_valimit)
435 n = bufmem_valimit;
436
437 return (n);
438 }
439
440 /*
441 * Initialize buffers and hash links for buffers.
442 */
443 void
444 bufinit(void)
445 {
446 struct bqueue *dp;
447 int use_std;
448 u_int i;
449
450 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
451 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
452 cv_init(&needbuffer_cv, "needbuf");
453
454 /*
455 * Initialize buffer cache memory parameters.
456 */
457 bufmem = 0;
458 buf_setwm();
459
460 if (bufmem_valimit != 0) {
461 vaddr_t minaddr = 0, maxaddr;
462 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
463 bufmem_valimit, 0, false, 0);
464 if (buf_map == NULL)
465 panic("bufinit: cannot allocate submap");
466 } else
467 buf_map = kernel_map;
468
469 /* On "small" machines use small pool page sizes where possible */
470 use_std = (physmem < atop(16*1024*1024));
471
472 /*
473 * Also use them on systems that can map the pool pages using
474 * a direct-mapped segment.
475 */
476 #ifdef PMAP_MAP_POOLPAGE
477 use_std = 1;
478 #endif
479
480 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
481 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
482 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
483 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
484
485 bufmempool_allocator.pa_backingmap = buf_map;
486 for (i = 0; i < NMEMPOOLS; i++) {
487 struct pool_allocator *pa;
488 struct pool *pp = &bmempools[i];
489 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
490 char *name = malloc(8, M_TEMP, M_WAITOK);
491 if (__predict_true(size >= 1024))
492 (void)snprintf(name, 8, "buf%dk", size / 1024);
493 else
494 (void)snprintf(name, 8, "buf%db", size);
495 pa = (size <= PAGE_SIZE && use_std)
496 ? &pool_allocator_nointr
497 : &bufmempool_allocator;
498 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
499 pool_setlowat(pp, 1);
500 pool_sethiwat(pp, 1);
501 }
502
503 /* Initialize the buffer queues */
504 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
505 TAILQ_INIT(&dp->bq_queue);
506 dp->bq_bytes = 0;
507 }
508
509 /*
510 * Estimate hash table size based on the amount of memory we
511 * intend to use for the buffer cache. The average buffer
512 * size is dependent on our clients (i.e. filesystems).
513 *
514 * For now, use an empirical 3K per buffer.
515 */
516 nbuf = (bufmem_hiwater / 1024) / 3;
517 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
518 }
519
520 void
521 bufinit2(void)
522 {
523
524 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
525 NULL);
526 if (biodone_sih == NULL)
527 panic("bufinit2: can't establish soft interrupt");
528 }
529
530 static int
531 buf_lotsfree(void)
532 {
533 int try, thresh;
534
535 /* Always allocate if doing copy on write */
536 if (curlwp->l_pflag & LP_UFSCOW)
537 return 1;
538
539 /* Always allocate if less than the low water mark. */
540 if (bufmem < bufmem_lowater)
541 return 1;
542
543 /* Never allocate if greater than the high water mark. */
544 if (bufmem > bufmem_hiwater)
545 return 0;
546
547 /* If there's anything on the AGE list, it should be eaten. */
548 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
549 return 0;
550
551 /*
552 * The probabily of getting a new allocation is inversely
553 * proportional to the current size of the cache, using
554 * a granularity of 16 steps.
555 */
556 try = random() & 0x0000000fL;
557
558 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
559 thresh = (bufmem - bufmem_lowater) /
560 ((bufmem_hiwater - bufmem_lowater) / 16);
561
562 if (try >= thresh)
563 return 1;
564
565 /* Otherwise don't allocate. */
566 return 0;
567 }
568
569 /*
570 * Return estimate of bytes we think need to be
571 * released to help resolve low memory conditions.
572 *
573 * => called with bufcache_lock held.
574 */
575 static int
576 buf_canrelease(void)
577 {
578 int pagedemand, ninvalid = 0;
579
580 KASSERT(mutex_owned(&bufcache_lock));
581
582 if (bufmem < bufmem_lowater)
583 return 0;
584
585 if (bufmem > bufmem_hiwater)
586 return bufmem - bufmem_hiwater;
587
588 ninvalid += bufqueues[BQ_AGE].bq_bytes;
589
590 pagedemand = uvmexp.freetarg - uvmexp.free;
591 if (pagedemand < 0)
592 return ninvalid;
593 return MAX(ninvalid, MIN(2 * MAXBSIZE,
594 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
595 }
596
597 /*
598 * Buffer memory allocation helper functions
599 */
600 static u_long
601 buf_mempoolidx(u_long size)
602 {
603 u_int n = 0;
604
605 size -= 1;
606 size >>= MEMPOOL_INDEX_OFFSET;
607 while (size) {
608 size >>= 1;
609 n += 1;
610 }
611 if (n >= NMEMPOOLS)
612 panic("buf mem pool index %d", n);
613 return n;
614 }
615
616 static u_long
617 buf_roundsize(u_long size)
618 {
619 /* Round up to nearest power of 2 */
620 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
621 }
622
623 static void *
624 buf_malloc(size_t size)
625 {
626 u_int n = buf_mempoolidx(size);
627 void *addr;
628
629 while (1) {
630 addr = pool_get(&bmempools[n], PR_NOWAIT);
631 if (addr != NULL)
632 break;
633
634 /* No memory, see if we can free some. If so, try again */
635 mutex_enter(&bufcache_lock);
636 if (buf_drain(1) > 0) {
637 mutex_exit(&bufcache_lock);
638 continue;
639 }
640
641 if (curlwp == uvm.pagedaemon_lwp) {
642 mutex_exit(&bufcache_lock);
643 return NULL;
644 }
645
646 /* Wait for buffers to arrive on the LRU queue */
647 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
648 mutex_exit(&bufcache_lock);
649 }
650
651 return addr;
652 }
653
654 static void
655 buf_mrelease(void *addr, size_t size)
656 {
657
658 pool_put(&bmempools[buf_mempoolidx(size)], addr);
659 }
660
661 /*
662 * bread()/breadn() helper.
663 */
664 static buf_t *
665 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
666 int async)
667 {
668 buf_t *bp;
669 struct mount *mp;
670
671 bp = getblk(vp, blkno, size, 0, 0);
672
673 #ifdef DIAGNOSTIC
674 if (bp == NULL) {
675 panic("bio_doread: no such buf");
676 }
677 #endif
678
679 /*
680 * If buffer does not have data valid, start a read.
681 * Note that if buffer is BC_INVAL, getblk() won't return it.
682 * Therefore, it's valid if its I/O has completed or been delayed.
683 */
684 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
685 /* Start I/O for the buffer. */
686 SET(bp->b_flags, B_READ | async);
687 if (async)
688 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
689 else
690 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
691 VOP_STRATEGY(vp, bp);
692
693 /* Pay for the read. */
694 curproc->p_stats->p_ru.ru_inblock++;
695 } else if (async)
696 brelse(bp, 0);
697
698 if (vp->v_type == VBLK)
699 mp = vp->v_specmountpoint;
700 else
701 mp = vp->v_mount;
702
703 /*
704 * Collect statistics on synchronous and asynchronous reads.
705 * Reads from block devices are charged to their associated
706 * filesystem (if any).
707 */
708 if (mp != NULL) {
709 if (async == 0)
710 mp->mnt_stat.f_syncreads++;
711 else
712 mp->mnt_stat.f_asyncreads++;
713 }
714
715 return (bp);
716 }
717
718 /*
719 * Read a disk block.
720 * This algorithm described in Bach (p.54).
721 */
722 int
723 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
724 buf_t **bpp)
725 {
726 buf_t *bp;
727
728 /* Get buffer for block. */
729 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
730
731 /* Wait for the read to complete, and return result. */
732 return (biowait(bp));
733 }
734
735 /*
736 * Read-ahead multiple disk blocks. The first is sync, the rest async.
737 * Trivial modification to the breada algorithm presented in Bach (p.55).
738 */
739 int
740 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
741 int *rasizes, int nrablks, kauth_cred_t cred, buf_t **bpp)
742 {
743 buf_t *bp;
744 int i;
745
746 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
747
748 /*
749 * For each of the read-ahead blocks, start a read, if necessary.
750 */
751 mutex_enter(&bufcache_lock);
752 for (i = 0; i < nrablks; i++) {
753 /* If it's in the cache, just go on to next one. */
754 if (incore(vp, rablks[i]))
755 continue;
756
757 /* Get a buffer for the read-ahead block */
758 mutex_exit(&bufcache_lock);
759 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
760 mutex_enter(&bufcache_lock);
761 }
762 mutex_exit(&bufcache_lock);
763
764 /* Otherwise, we had to start a read for it; wait until it's valid. */
765 return (biowait(bp));
766 }
767
768 /*
769 * Read with single-block read-ahead. Defined in Bach (p.55), but
770 * implemented as a call to breadn().
771 * XXX for compatibility with old file systems.
772 */
773 int
774 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
775 int rabsize, kauth_cred_t cred, buf_t **bpp)
776 {
777
778 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
779 }
780
781 /*
782 * Block write. Described in Bach (p.56)
783 */
784 int
785 bwrite(buf_t *bp)
786 {
787 int rv, sync, wasdelayed;
788 struct vnode *vp;
789 struct mount *mp;
790
791 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
792
793 vp = bp->b_vp;
794 if (vp != NULL) {
795 KASSERT(bp->b_objlock == &vp->v_interlock);
796 if (vp->v_type == VBLK)
797 mp = vp->v_specmountpoint;
798 else
799 mp = vp->v_mount;
800 } else {
801 mp = NULL;
802 }
803
804 /*
805 * Remember buffer type, to switch on it later. If the write was
806 * synchronous, but the file system was mounted with MNT_ASYNC,
807 * convert it to a delayed write.
808 * XXX note that this relies on delayed tape writes being converted
809 * to async, not sync writes (which is safe, but ugly).
810 */
811 sync = !ISSET(bp->b_flags, B_ASYNC);
812 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
813 bdwrite(bp);
814 return (0);
815 }
816
817 /*
818 * Collect statistics on synchronous and asynchronous writes.
819 * Writes to block devices are charged to their associated
820 * filesystem (if any).
821 */
822 if (mp != NULL) {
823 if (sync)
824 mp->mnt_stat.f_syncwrites++;
825 else
826 mp->mnt_stat.f_asyncwrites++;
827 }
828
829 /*
830 * Pay for the I/O operation and make sure the buf is on the correct
831 * vnode queue.
832 */
833 bp->b_error = 0;
834 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
835 CLR(bp->b_flags, B_READ);
836 if (wasdelayed) {
837 mutex_enter(&bufcache_lock);
838 mutex_enter(bp->b_objlock);
839 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
840 reassignbuf(bp, bp->b_vp);
841 mutex_exit(&bufcache_lock);
842 } else {
843 curproc->p_stats->p_ru.ru_oublock++;
844 mutex_enter(bp->b_objlock);
845 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
846 }
847 if (vp != NULL)
848 vp->v_numoutput++;
849 mutex_exit(bp->b_objlock);
850
851 /* Initiate disk write. */
852 if (sync)
853 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
854 else
855 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
856
857 VOP_STRATEGY(vp, bp);
858
859 if (sync) {
860 /* If I/O was synchronous, wait for it to complete. */
861 rv = biowait(bp);
862
863 /* Release the buffer. */
864 brelse(bp, 0);
865
866 return (rv);
867 } else {
868 return (0);
869 }
870 }
871
872 int
873 vn_bwrite(void *v)
874 {
875 struct vop_bwrite_args *ap = v;
876
877 return (bwrite(ap->a_bp));
878 }
879
880 /*
881 * Delayed write.
882 *
883 * The buffer is marked dirty, but is not queued for I/O.
884 * This routine should be used when the buffer is expected
885 * to be modified again soon, typically a small write that
886 * partially fills a buffer.
887 *
888 * NB: magnetic tapes cannot be delayed; they must be
889 * written in the order that the writes are requested.
890 *
891 * Described in Leffler, et al. (pp. 208-213).
892 */
893 void
894 bdwrite(buf_t *bp)
895 {
896
897 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
898
899 /* If this is a tape block, write the block now. */
900 if (bdev_type(bp->b_dev) == D_TAPE) {
901 bawrite(bp);
902 return;
903 }
904
905 /*
906 * If the block hasn't been seen before:
907 * (1) Mark it as having been seen,
908 * (2) Charge for the write,
909 * (3) Make sure it's on its vnode's correct block list.
910 */
911 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
912
913 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
914 mutex_enter(&bufcache_lock);
915 mutex_enter(bp->b_objlock);
916 SET(bp->b_oflags, BO_DELWRI);
917 curproc->p_stats->p_ru.ru_oublock++;
918 reassignbuf(bp, bp->b_vp);
919 mutex_exit(&bufcache_lock);
920 } else {
921 mutex_enter(bp->b_objlock);
922 }
923 /* Otherwise, the "write" is done, so mark and release the buffer. */
924 CLR(bp->b_oflags, BO_DONE);
925 mutex_exit(bp->b_objlock);
926
927 brelse(bp, 0);
928 }
929
930 /*
931 * Asynchronous block write; just an asynchronous bwrite().
932 */
933 void
934 bawrite(buf_t *bp)
935 {
936
937 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
938
939 SET(bp->b_flags, B_ASYNC);
940 VOP_BWRITE(bp);
941 }
942
943 /*
944 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
945 * Call with the buffer interlock held.
946 *
947 * Note: called only from biodone() through ffs softdep's io_complete()
948 */
949 void
950 bdirty(buf_t *bp)
951 {
952
953 KASSERT(mutex_owned(&bufcache_lock));
954 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
955 KASSERT(mutex_owned(bp->b_objlock));
956 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
957
958 CLR(bp->b_cflags, BC_AGE);
959
960 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
961 SET(bp->b_oflags, BO_DELWRI);
962 curproc->p_stats->p_ru.ru_oublock++;
963 reassignbuf(bp, bp->b_vp);
964 }
965 }
966
967
968 /*
969 * Release a buffer on to the free lists.
970 * Described in Bach (p. 46).
971 */
972 void
973 brelsel(buf_t *bp, int set)
974 {
975 struct bqueue *bufq;
976 struct vnode *vp;
977
978 KASSERT(mutex_owned(&bufcache_lock));
979
980 SET(bp->b_cflags, set);
981
982 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
983 KASSERT(bp->b_iodone == NULL);
984
985 /* Wake up any processes waiting for any buffer to become free. */
986 cv_signal(&needbuffer_cv);
987
988 /* Wake up any proceeses waiting for _this_ buffer to become */
989 if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
990 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
991 cv_broadcast(&bp->b_busy);
992 }
993
994 /*
995 * Determine which queue the buffer should be on, then put it there.
996 */
997
998 /* If it's locked, don't report an error; try again later. */
999 if (ISSET(bp->b_cflags, BC_LOCKED))
1000 bp->b_error = 0;
1001
1002 /* If it's not cacheable, or an error, mark it invalid. */
1003 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1004 SET(bp->b_cflags, BC_INVAL);
1005
1006 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1007 /*
1008 * This is a delayed write buffer that was just flushed to
1009 * disk. It is still on the LRU queue. If it's become
1010 * invalid, then we need to move it to a different queue;
1011 * otherwise leave it in its current position.
1012 */
1013 CLR(bp->b_cflags, BC_VFLUSH);
1014 if (!ISSET(bp->b_cflags, BC_INVAL|BC_LOCKED|BC_AGE) &&
1015 bp->b_error == 0) {
1016 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1017 goto already_queued;
1018 } else {
1019 bremfree(bp);
1020 }
1021 }
1022
1023 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1024 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1025 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1026
1027 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1028 /*
1029 * If it's invalid or empty, dissociate it from its vnode
1030 * and put on the head of the appropriate queue.
1031 */
1032 if (bioopsp != NULL)
1033 (*bioopsp->io_deallocate)(bp);
1034
1035 mutex_enter(bp->b_objlock);
1036 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1037 if ((vp = bp->b_vp) != NULL) {
1038 KASSERT(bp->b_objlock == &vp->v_interlock);
1039 reassignbuf(bp, bp->b_vp);
1040 brelvp(bp);
1041 mutex_exit(&vp->v_interlock);
1042 } else {
1043 KASSERT(bp->b_objlock == &buffer_lock);
1044 mutex_exit(bp->b_objlock);
1045 }
1046
1047 if (bp->b_bufsize <= 0)
1048 /* no data */
1049 goto already_queued;
1050 else
1051 /* invalid data */
1052 bufq = &bufqueues[BQ_AGE];
1053 binsheadfree(bp, bufq);
1054 } else {
1055 /*
1056 * It has valid data. Put it on the end of the appropriate
1057 * queue, so that it'll stick around for as long as possible.
1058 * If buf is AGE, but has dependencies, must put it on last
1059 * bufqueue to be scanned, ie LRU. This protects against the
1060 * livelock where BQ_AGE only has buffers with dependencies,
1061 * and we thus never get to the dependent buffers in BQ_LRU.
1062 */
1063 if (ISSET(bp->b_cflags, BC_LOCKED)) {
1064 /* locked in core */
1065 bufq = &bufqueues[BQ_LOCKED];
1066 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1067 /* valid data */
1068 bufq = &bufqueues[BQ_LRU];
1069 } else {
1070 /* stale but valid data */
1071 int has_deps;
1072
1073 if (bioopsp != NULL)
1074 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1075 else
1076 has_deps = 0;
1077 bufq = has_deps ? &bufqueues[BQ_LRU] :
1078 &bufqueues[BQ_AGE];
1079 }
1080 binstailfree(bp, bufq);
1081 }
1082 already_queued:
1083 /* Unlock the buffer. */
1084 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1085 CLR(bp->b_flags, B_ASYNC);
1086
1087 if (bp->b_bufsize <= 0)
1088 brele(bp);
1089 }
1090
1091 void
1092 brelse(buf_t *bp, int set)
1093 {
1094
1095 mutex_enter(&bufcache_lock);
1096 brelsel(bp, set);
1097 mutex_exit(&bufcache_lock);
1098 }
1099
1100 /*
1101 * Determine if a block is in the cache.
1102 * Just look on what would be its hash chain. If it's there, return
1103 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1104 * we normally don't return the buffer, unless the caller explicitly
1105 * wants us to.
1106 */
1107 buf_t *
1108 incore(struct vnode *vp, daddr_t blkno)
1109 {
1110 buf_t *bp;
1111
1112 KASSERT(mutex_owned(&bufcache_lock));
1113
1114 /* Search hash chain */
1115 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1116 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1117 !ISSET(bp->b_cflags, BC_INVAL)) {
1118 KASSERT(bp->b_objlock == &vp->v_interlock);
1119 return (bp);
1120 }
1121 }
1122
1123 return (NULL);
1124 }
1125
1126 /*
1127 * Get a block of requested size that is associated with
1128 * a given vnode and block offset. If it is found in the
1129 * block cache, mark it as having been found, make it busy
1130 * and return it. Otherwise, return an empty block of the
1131 * correct size. It is up to the caller to insure that the
1132 * cached blocks be of the correct size.
1133 */
1134 buf_t *
1135 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1136 {
1137 int err, preserve;
1138 buf_t *bp;
1139
1140 mutex_enter(&bufcache_lock);
1141 loop:
1142 bp = incore(vp, blkno);
1143 if (bp != NULL) {
1144 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo);
1145 if (err != 0) {
1146 if (err == EPASSTHROUGH)
1147 goto loop;
1148 mutex_exit(&bufcache_lock);
1149 return (NULL);
1150 }
1151 #ifdef DIAGNOSTIC
1152 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1153 bp->b_bcount < size && vp->v_type != VBLK)
1154 panic("getblk: block size invariant failed");
1155 #endif
1156 bremfree(bp);
1157 preserve = 1;
1158 } else {
1159 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1160 goto loop;
1161
1162 if (incore(vp, blkno) != NULL) {
1163 /* The block has come into memory in the meantime. */
1164 brelsel(bp, 0);
1165 goto loop;
1166 }
1167
1168 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1169 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1170 mutex_enter(&vp->v_interlock);
1171 bgetvp(vp, bp);
1172 mutex_exit(&vp->v_interlock);
1173 preserve = 0;
1174 }
1175 mutex_exit(&bufcache_lock);
1176
1177 /*
1178 * LFS can't track total size of BC_LOCKED buffer (locked_queue_bytes)
1179 * if we re-size buffers here.
1180 */
1181 if (ISSET(bp->b_cflags, BC_LOCKED)) {
1182 KASSERT(bp->b_bufsize >= size);
1183 } else {
1184 if (allocbuf(bp, size, preserve)) {
1185 mutex_enter(&bufcache_lock);
1186 LIST_REMOVE(bp, b_hash);
1187 mutex_exit(&bufcache_lock);
1188 brelse(bp, BC_INVAL);
1189 return NULL;
1190 }
1191 }
1192 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1193 return (bp);
1194 }
1195
1196 /*
1197 * Get an empty, disassociated buffer of given size.
1198 */
1199 buf_t *
1200 geteblk(int size)
1201 {
1202 buf_t *bp;
1203 int error;
1204
1205 mutex_enter(&bufcache_lock);
1206 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1207 ;
1208
1209 SET(bp->b_cflags, BC_INVAL);
1210 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1211 mutex_exit(&bufcache_lock);
1212 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1213 error = allocbuf(bp, size, 0);
1214 KASSERT(error == 0);
1215 return (bp);
1216 }
1217
1218 /*
1219 * Expand or contract the actual memory allocated to a buffer.
1220 *
1221 * If the buffer shrinks, data is lost, so it's up to the
1222 * caller to have written it out *first*; this routine will not
1223 * start a write. If the buffer grows, it's the callers
1224 * responsibility to fill out the buffer's additional contents.
1225 */
1226 int
1227 allocbuf(buf_t *bp, int size, int preserve)
1228 {
1229 vsize_t oldsize, desired_size;
1230 void *addr;
1231 int delta;
1232
1233 desired_size = buf_roundsize(size);
1234 if (desired_size > MAXBSIZE)
1235 printf("allocbuf: buffer larger than MAXBSIZE requested");
1236
1237 bp->b_bcount = size;
1238
1239 oldsize = bp->b_bufsize;
1240 if (oldsize == desired_size)
1241 return 0;
1242
1243 /*
1244 * If we want a buffer of a different size, re-allocate the
1245 * buffer's memory; copy old content only if needed.
1246 */
1247 addr = buf_malloc(desired_size);
1248 if (addr == NULL)
1249 return ENOMEM;
1250 if (preserve)
1251 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1252 if (bp->b_data != NULL)
1253 buf_mrelease(bp->b_data, oldsize);
1254 bp->b_data = addr;
1255 bp->b_bufsize = desired_size;
1256
1257 /*
1258 * Update overall buffer memory counter (protected by bufcache_lock)
1259 */
1260 delta = (long)desired_size - (long)oldsize;
1261
1262 mutex_enter(&bufcache_lock);
1263 if ((bufmem += delta) > bufmem_hiwater) {
1264 /*
1265 * Need to trim overall memory usage.
1266 */
1267 while (buf_canrelease()) {
1268 if (curcpu()->ci_schedstate.spc_flags &
1269 SPCF_SHOULDYIELD) {
1270 mutex_exit(&bufcache_lock);
1271 preempt();
1272 mutex_enter(&bufcache_lock);
1273 }
1274 if (buf_trim() == 0)
1275 break;
1276 }
1277 }
1278 mutex_exit(&bufcache_lock);
1279 return 0;
1280 }
1281
1282 /*
1283 * Find a buffer which is available for use.
1284 * Select something from a free list.
1285 * Preference is to AGE list, then LRU list.
1286 *
1287 * Called with the buffer queues locked.
1288 * Return buffer locked.
1289 */
1290 buf_t *
1291 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1292 {
1293 buf_t *bp;
1294 struct vnode *vp;
1295
1296 start:
1297 KASSERT(mutex_owned(&bufcache_lock));
1298
1299 /*
1300 * Get a new buffer from the pool.
1301 */
1302 if (!from_bufq && buf_lotsfree()) {
1303 mutex_exit(&bufcache_lock);
1304 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1305 if (bp != NULL) {
1306 memset((char *)bp, 0, sizeof(*bp));
1307 buf_init(bp);
1308 bp->b_dev = NODEV;
1309 bp->b_vnbufs.le_next = NOLIST;
1310 bp->b_cflags = BC_BUSY;
1311 bp->b_refcnt = 1;
1312 mutex_enter(&bufcache_lock);
1313 #if defined(DIAGNOSTIC)
1314 bp->b_freelistindex = -1;
1315 #endif /* defined(DIAGNOSTIC) */
1316 return (bp);
1317 }
1318 mutex_enter(&bufcache_lock);
1319 }
1320
1321 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1322 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1323 bremfree(bp);
1324 } else {
1325 /*
1326 * XXX: !from_bufq should be removed.
1327 */
1328 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1329 /* wait for a free buffer of any kind */
1330 if ((slpflag & PCATCH) != 0)
1331 (void)cv_timedwait_sig(&needbuffer_cv,
1332 &bufcache_lock, slptimeo);
1333 else
1334 (void)cv_timedwait(&needbuffer_cv,
1335 &bufcache_lock, slptimeo);
1336 }
1337 return (NULL);
1338 }
1339
1340 #ifdef DIAGNOSTIC
1341 if (bp->b_bufsize <= 0)
1342 panic("buffer %p: on queue but empty", bp);
1343 #endif
1344
1345 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1346 /*
1347 * This is a delayed write buffer being flushed to disk. Make
1348 * sure it gets aged out of the queue when it's finished, and
1349 * leave it off the LRU queue.
1350 */
1351 CLR(bp->b_cflags, BC_VFLUSH);
1352 SET(bp->b_cflags, BC_AGE);
1353 goto start;
1354 }
1355
1356 /* Buffer is no longer on free lists. */
1357 SET(bp->b_cflags, BC_BUSY);
1358
1359 /*
1360 * If buffer was a delayed write, start it and return NULL
1361 * (since we might sleep while starting the write).
1362 */
1363 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1364 /*
1365 * This buffer has gone through the LRU, so make sure it gets
1366 * reused ASAP.
1367 */
1368 SET(bp->b_cflags, BC_AGE);
1369 mutex_exit(&bufcache_lock);
1370 bawrite(bp);
1371 mutex_enter(&bufcache_lock);
1372 return (NULL);
1373 }
1374
1375 vp = bp->b_vp;
1376 if (bioopsp != NULL)
1377 (*bioopsp->io_deallocate)(bp);
1378
1379 /* clear out various other fields */
1380 bp->b_cflags = BC_BUSY;
1381 bp->b_oflags = 0;
1382 bp->b_flags = 0;
1383 bp->b_dev = NODEV;
1384 bp->b_blkno = 0;
1385 bp->b_lblkno = 0;
1386 bp->b_rawblkno = 0;
1387 bp->b_iodone = 0;
1388 bp->b_error = 0;
1389 bp->b_resid = 0;
1390 bp->b_bcount = 0;
1391
1392 LIST_REMOVE(bp, b_hash);
1393
1394 /* Disassociate us from our vnode, if we had one... */
1395 if (vp != NULL) {
1396 mutex_enter(&vp->v_interlock);
1397 brelvp(bp);
1398 mutex_exit(&vp->v_interlock);
1399 }
1400
1401 return (bp);
1402 }
1403
1404 /*
1405 * Attempt to free an aged buffer off the queues.
1406 * Called with queue lock held.
1407 * Returns the amount of buffer memory freed.
1408 */
1409 static int
1410 buf_trim(void)
1411 {
1412 buf_t *bp;
1413 long size = 0;
1414
1415 KASSERT(mutex_owned(&bufcache_lock));
1416
1417 /* Instruct getnewbuf() to get buffers off the queues */
1418 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1419 return 0;
1420
1421 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1422 size = bp->b_bufsize;
1423 bufmem -= size;
1424 if (size > 0) {
1425 buf_mrelease(bp->b_data, size);
1426 bp->b_bcount = bp->b_bufsize = 0;
1427 }
1428 /* brelse() will return the buffer to the global buffer pool */
1429 brelsel(bp, 0);
1430 return size;
1431 }
1432
1433 int
1434 buf_drain(int n)
1435 {
1436 int size = 0, sz;
1437
1438 KASSERT(mutex_owned(&bufcache_lock));
1439
1440 while (size < n && bufmem > bufmem_lowater) {
1441 sz = buf_trim();
1442 if (sz <= 0)
1443 break;
1444 size += sz;
1445 }
1446
1447 return size;
1448 }
1449
1450 /*
1451 * Wait for operations on the buffer to complete.
1452 * When they do, extract and return the I/O's error value.
1453 */
1454 int
1455 biowait(buf_t *bp)
1456 {
1457
1458 mutex_enter(bp->b_objlock);
1459 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1460 cv_wait(&bp->b_done, bp->b_objlock);
1461 mutex_exit(bp->b_objlock);
1462
1463 return bp->b_error;
1464 }
1465
1466 /*
1467 * Mark I/O complete on a buffer.
1468 *
1469 * If a callback has been requested, e.g. the pageout
1470 * daemon, do so. Otherwise, awaken waiting processes.
1471 *
1472 * [ Leffler, et al., says on p.247:
1473 * "This routine wakes up the blocked process, frees the buffer
1474 * for an asynchronous write, or, for a request by the pagedaemon
1475 * process, invokes a procedure specified in the buffer structure" ]
1476 *
1477 * In real life, the pagedaemon (or other system processes) wants
1478 * to do async stuff to, and doesn't want the buffer brelse()'d.
1479 * (for swap pager, that puts swap buffers on the free lists (!!!),
1480 * for the vn device, that puts malloc'd buffers on the free lists!)
1481 */
1482 void
1483 biodone(buf_t *bp)
1484 {
1485 int s;
1486
1487 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1488
1489 if (cpu_intr_p()) {
1490 /* From interrupt mode: defer to a soft interrupt. */
1491 s = splvm();
1492 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1493 softint_schedule(biodone_sih);
1494 splx(s);
1495 } else {
1496 /* Process now - the buffer may be freed soon. */
1497 biodone2(bp);
1498 }
1499 }
1500
1501 static void
1502 biodone2(buf_t *bp)
1503 {
1504 void (*callout)(buf_t *);
1505
1506 if (bioopsp != NULL)
1507 (*bioopsp->io_complete)(bp);
1508
1509 mutex_enter(bp->b_objlock);
1510 /* Note that the transfer is done. */
1511 if (ISSET(bp->b_oflags, BO_DONE))
1512 panic("biodone2 already");
1513 CLR(bp->b_oflags, BO_COWDONE);
1514 SET(bp->b_oflags, BO_DONE);
1515 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1516
1517 /* Wake up waiting writers. */
1518 if (!ISSET(bp->b_flags, B_READ))
1519 vwakeup(bp);
1520
1521 if ((callout = bp->b_iodone) != NULL) {
1522 /* Note callout done, then call out. */
1523 KERNEL_LOCK(1, NULL); /* XXXSMP */
1524 bp->b_iodone = NULL;
1525 mutex_exit(bp->b_objlock);
1526 (*callout)(bp);
1527 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1528 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1529 /* If async, release. */
1530 mutex_exit(bp->b_objlock);
1531 brelse(bp, 0);
1532 } else {
1533 /* Otherwise just wake up waiters in biowait(). */
1534 cv_broadcast(&bp->b_done);
1535 mutex_exit(bp->b_objlock);
1536 }
1537 }
1538
1539 static void
1540 biointr(void *cookie)
1541 {
1542 struct cpu_info *ci;
1543 buf_t *bp;
1544 int s;
1545
1546 ci = curcpu();
1547
1548 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1549 KASSERT(curcpu() == ci);
1550
1551 s = splvm();
1552 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1553 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1554 splx(s);
1555
1556 biodone2(bp);
1557 }
1558 }
1559
1560 /*
1561 * Return a count of buffers on the "locked" queue.
1562 */
1563 int
1564 count_lock_queue(void)
1565 {
1566 buf_t *bp;
1567 int n = 0;
1568
1569 mutex_enter(&bufcache_lock);
1570 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1571 n++;
1572 mutex_exit(&bufcache_lock);
1573 return (n);
1574 }
1575
1576 /*
1577 * Wait for all buffers to complete I/O
1578 * Return the number of "stuck" buffers.
1579 */
1580 int
1581 buf_syncwait(void)
1582 {
1583 buf_t *bp;
1584 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1585
1586 dcount = 10000;
1587 for (iter = 0; iter < 20;) {
1588 mutex_enter(&bufcache_lock);
1589 nbusy = 0;
1590 for (ihash = 0; ihash < bufhash+1; ihash++) {
1591 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1592 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1593 nbusy += ((bp->b_flags & B_READ) == 0);
1594 /*
1595 * With soft updates, some buffers that are
1596 * written will be remarked as dirty until other
1597 * buffers are written.
1598 */
1599 if (bp->b_vp && bp->b_vp->v_mount
1600 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1601 && (bp->b_oflags & BO_DELWRI)) {
1602 bremfree(bp);
1603 bp->b_cflags |= BC_BUSY;
1604 nbusy++;
1605 mutex_exit(&bufcache_lock);
1606 bawrite(bp);
1607 if (dcount-- <= 0) {
1608 printf("softdep ");
1609 goto fail;
1610 }
1611 mutex_enter(&bufcache_lock);
1612 }
1613 }
1614 }
1615 mutex_exit(&bufcache_lock);
1616
1617 if (nbusy == 0)
1618 break;
1619 if (nbusy_prev == 0)
1620 nbusy_prev = nbusy;
1621 printf("%d ", nbusy);
1622 tsleep(&nbusy, PRIBIO, "bflush",
1623 (iter == 0) ? 1 : hz / 25 * iter);
1624 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1625 iter++;
1626 else
1627 nbusy_prev = nbusy;
1628 }
1629
1630 if (nbusy) {
1631 fail:;
1632 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1633 printf("giving up\nPrinting vnodes for busy buffers\n");
1634 for (ihash = 0; ihash < bufhash+1; ihash++) {
1635 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1636 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1637 (bp->b_flags & B_READ) == 0)
1638 vprint(NULL, bp->b_vp);
1639 }
1640 }
1641 #endif
1642 }
1643
1644 return nbusy;
1645 }
1646
1647 static void
1648 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1649 {
1650
1651 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1652 o->b_error = i->b_error;
1653 o->b_prio = i->b_prio;
1654 o->b_dev = i->b_dev;
1655 o->b_bufsize = i->b_bufsize;
1656 o->b_bcount = i->b_bcount;
1657 o->b_resid = i->b_resid;
1658 o->b_addr = PTRTOUINT64(i->b_data);
1659 o->b_blkno = i->b_blkno;
1660 o->b_rawblkno = i->b_rawblkno;
1661 o->b_iodone = PTRTOUINT64(i->b_iodone);
1662 o->b_proc = PTRTOUINT64(i->b_proc);
1663 o->b_vp = PTRTOUINT64(i->b_vp);
1664 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1665 o->b_lblkno = i->b_lblkno;
1666 }
1667
1668 #define KERN_BUFSLOP 20
1669 static int
1670 sysctl_dobuf(SYSCTLFN_ARGS)
1671 {
1672 buf_t *bp;
1673 struct buf_sysctl bs;
1674 struct bqueue *bq;
1675 char *dp;
1676 u_int i, op, arg;
1677 size_t len, needed, elem_size, out_size;
1678 int error, elem_count, retries;
1679
1680 if (namelen == 1 && name[0] == CTL_QUERY)
1681 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1682
1683 if (namelen != 4)
1684 return (EINVAL);
1685
1686 retries = 100;
1687 retry:
1688 dp = oldp;
1689 len = (oldp != NULL) ? *oldlenp : 0;
1690 op = name[0];
1691 arg = name[1];
1692 elem_size = name[2];
1693 elem_count = name[3];
1694 out_size = MIN(sizeof(bs), elem_size);
1695
1696 /*
1697 * at the moment, these are just "placeholders" to make the
1698 * API for retrieving kern.buf data more extensible in the
1699 * future.
1700 *
1701 * XXX kern.buf currently has "netbsd32" issues. hopefully
1702 * these will be resolved at a later point.
1703 */
1704 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1705 elem_size < 1 || elem_count < 0)
1706 return (EINVAL);
1707
1708 error = 0;
1709 needed = 0;
1710 sysctl_unlock();
1711 mutex_enter(&bufcache_lock);
1712 for (i = 0; i < BQUEUES; i++) {
1713 bq = &bufqueues[i];
1714 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1715 bq->bq_marker = bp;
1716 if (len >= elem_size && elem_count > 0) {
1717 sysctl_fillbuf(bp, &bs);
1718 mutex_exit(&bufcache_lock);
1719 error = copyout(&bs, dp, out_size);
1720 mutex_enter(&bufcache_lock);
1721 if (error)
1722 break;
1723 if (bq->bq_marker != bp) {
1724 /*
1725 * This sysctl node is only for
1726 * statistics. Retry; if the
1727 * queue keeps changing, then
1728 * bail out.
1729 */
1730 if (retries-- == 0) {
1731 error = EAGAIN;
1732 break;
1733 }
1734 mutex_exit(&bufcache_lock);
1735 goto retry;
1736 }
1737 dp += elem_size;
1738 len -= elem_size;
1739 }
1740 if (elem_count > 0) {
1741 needed += elem_size;
1742 if (elem_count != INT_MAX)
1743 elem_count--;
1744 }
1745 }
1746 if (error != 0)
1747 break;
1748 }
1749 mutex_exit(&bufcache_lock);
1750 sysctl_relock();
1751
1752 *oldlenp = needed;
1753 if (oldp == NULL)
1754 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1755
1756 return (error);
1757 }
1758
1759 static int
1760 sysctl_bufvm_update(SYSCTLFN_ARGS)
1761 {
1762 int t, error, rv;
1763 struct sysctlnode node;
1764
1765 node = *rnode;
1766 node.sysctl_data = &t;
1767 t = *(int *)rnode->sysctl_data;
1768 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1769 if (error || newp == NULL)
1770 return (error);
1771
1772 if (t < 0)
1773 return EINVAL;
1774 if (rnode->sysctl_data == &bufcache) {
1775 if (t > 100)
1776 return (EINVAL);
1777 bufcache = t;
1778 buf_setwm();
1779 } else if (rnode->sysctl_data == &bufmem_lowater) {
1780 if (bufmem_hiwater - t < 16)
1781 return (EINVAL);
1782 bufmem_lowater = t;
1783 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1784 if (t - bufmem_lowater < 16)
1785 return (EINVAL);
1786 bufmem_hiwater = t;
1787 } else
1788 return (EINVAL);
1789
1790 /* Drain until below new high water mark */
1791 sysctl_unlock();
1792 mutex_enter(&bufcache_lock);
1793 while ((t = bufmem - bufmem_hiwater) >= 0) {
1794 rv = buf_drain(t / (2 * 1024));
1795 if (rv <= 0)
1796 break;
1797 }
1798 mutex_exit(&bufcache_lock);
1799 sysctl_relock();
1800
1801 return 0;
1802 }
1803
1804 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1805 {
1806
1807 sysctl_createv(clog, 0, NULL, NULL,
1808 CTLFLAG_PERMANENT,
1809 CTLTYPE_NODE, "kern", NULL,
1810 NULL, 0, NULL, 0,
1811 CTL_KERN, CTL_EOL);
1812 sysctl_createv(clog, 0, NULL, NULL,
1813 CTLFLAG_PERMANENT,
1814 CTLTYPE_NODE, "buf",
1815 SYSCTL_DESCR("Kernel buffer cache information"),
1816 sysctl_dobuf, 0, NULL, 0,
1817 CTL_KERN, KERN_BUF, CTL_EOL);
1818 }
1819
1820 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1821 {
1822
1823 sysctl_createv(clog, 0, NULL, NULL,
1824 CTLFLAG_PERMANENT,
1825 CTLTYPE_NODE, "vm", NULL,
1826 NULL, 0, NULL, 0,
1827 CTL_VM, CTL_EOL);
1828
1829 sysctl_createv(clog, 0, NULL, NULL,
1830 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1831 CTLTYPE_INT, "bufcache",
1832 SYSCTL_DESCR("Percentage of physical memory to use for "
1833 "buffer cache"),
1834 sysctl_bufvm_update, 0, &bufcache, 0,
1835 CTL_VM, CTL_CREATE, CTL_EOL);
1836 sysctl_createv(clog, 0, NULL, NULL,
1837 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1838 CTLTYPE_INT, "bufmem",
1839 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1840 "cache"),
1841 NULL, 0, &bufmem, 0,
1842 CTL_VM, CTL_CREATE, CTL_EOL);
1843 sysctl_createv(clog, 0, NULL, NULL,
1844 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1845 CTLTYPE_INT, "bufmem_lowater",
1846 SYSCTL_DESCR("Minimum amount of kernel memory to "
1847 "reserve for buffer cache"),
1848 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1849 CTL_VM, CTL_CREATE, CTL_EOL);
1850 sysctl_createv(clog, 0, NULL, NULL,
1851 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1852 CTLTYPE_INT, "bufmem_hiwater",
1853 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1854 "for buffer cache"),
1855 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1856 CTL_VM, CTL_CREATE, CTL_EOL);
1857 }
1858
1859 #ifdef DEBUG
1860 /*
1861 * Print out statistics on the current allocation of the buffer pool.
1862 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1863 * in vfs_syscalls.c using sysctl.
1864 */
1865 void
1866 vfs_bufstats(void)
1867 {
1868 int i, j, count;
1869 buf_t *bp;
1870 struct bqueue *dp;
1871 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1872 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1873
1874 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1875 count = 0;
1876 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1877 counts[j] = 0;
1878 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1879 counts[bp->b_bufsize/PAGE_SIZE]++;
1880 count++;
1881 }
1882 printf("%s: total-%d", bname[i], count);
1883 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1884 if (counts[j] != 0)
1885 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1886 printf("\n");
1887 }
1888 }
1889 #endif /* DEBUG */
1890
1891 /* ------------------------------ */
1892
1893 buf_t *
1894 getiobuf(struct vnode *vp, bool waitok)
1895 {
1896 buf_t *bp;
1897
1898 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1899 if (bp == NULL)
1900 return bp;
1901
1902 buf_init(bp);
1903
1904 if ((bp->b_vp = vp) == NULL)
1905 bp->b_objlock = &buffer_lock;
1906 else
1907 bp->b_objlock = &vp->v_interlock;
1908
1909 return bp;
1910 }
1911
1912 void
1913 putiobuf(buf_t *bp)
1914 {
1915
1916 buf_destroy(bp);
1917 pool_cache_put(bufio_cache, bp);
1918 }
1919
1920 /*
1921 * nestiobuf_iodone: b_iodone callback for nested buffers.
1922 */
1923
1924 void
1925 nestiobuf_iodone(buf_t *bp)
1926 {
1927 buf_t *mbp = bp->b_private;
1928 int error;
1929 int donebytes;
1930
1931 KASSERT(bp->b_bcount <= bp->b_bufsize);
1932 KASSERT(mbp != bp);
1933
1934 error = 0;
1935 if (bp->b_error == 0 &&
1936 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1937 /*
1938 * Not all got transfered, raise an error. We have no way to
1939 * propagate these conditions to mbp.
1940 */
1941 error = EIO;
1942 }
1943
1944 donebytes = bp->b_bufsize;
1945
1946 putiobuf(bp);
1947 nestiobuf_done(mbp, donebytes, error);
1948 }
1949
1950 /*
1951 * nestiobuf_setup: setup a "nested" buffer.
1952 *
1953 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1954 * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
1955 * => 'offset' is a byte offset in the master buffer.
1956 * => 'size' is a size in bytes of this nested buffer.
1957 */
1958
1959 void
1960 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1961 {
1962 const int b_read = mbp->b_flags & B_READ;
1963 struct vnode *vp = mbp->b_vp;
1964
1965 KASSERT(mbp->b_bcount >= offset + size);
1966 bp->b_vp = vp;
1967 bp->b_objlock = mbp->b_objlock;
1968 bp->b_cflags = BC_BUSY;
1969 bp->b_flags = B_ASYNC | b_read;
1970 bp->b_iodone = nestiobuf_iodone;
1971 bp->b_data = (char *)mbp->b_data + offset;
1972 bp->b_resid = bp->b_bcount = size;
1973 bp->b_bufsize = bp->b_bcount;
1974 bp->b_private = mbp;
1975 BIO_COPYPRIO(bp, mbp);
1976 if (!b_read && vp != NULL) {
1977 mutex_enter(&vp->v_interlock);
1978 vp->v_numoutput++;
1979 mutex_exit(&vp->v_interlock);
1980 }
1981 }
1982
1983 /*
1984 * nestiobuf_done: propagate completion to the master buffer.
1985 *
1986 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1987 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1988 */
1989
1990 void
1991 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1992 {
1993
1994 if (donebytes == 0) {
1995 return;
1996 }
1997 mutex_enter(mbp->b_objlock);
1998 KASSERT(mbp->b_resid >= donebytes);
1999 mbp->b_resid -= donebytes;
2000 mbp->b_error = error;
2001 if (mbp->b_resid == 0) {
2002 mutex_exit(mbp->b_objlock);
2003 biodone(mbp);
2004 } else
2005 mutex_exit(mbp->b_objlock);
2006 }
2007
2008 void
2009 buf_init(buf_t *bp)
2010 {
2011
2012 LIST_INIT(&bp->b_dep);
2013 cv_init(&bp->b_busy, "biolock");
2014 cv_init(&bp->b_done, "biowait");
2015 bp->b_dev = NODEV;
2016 bp->b_error = 0;
2017 bp->b_flags = 0;
2018 bp->b_cflags = 0;
2019 bp->b_oflags = 0;
2020 bp->b_objlock = &buffer_lock;
2021 bp->b_iodone = NULL;
2022 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2023 }
2024
2025 void
2026 buf_destroy(buf_t *bp)
2027 {
2028
2029 cv_destroy(&bp->b_done);
2030 cv_destroy(&bp->b_busy);
2031 }
2032
2033 int
2034 bbusy(buf_t *bp, bool intr, int timo)
2035 {
2036 int error;
2037
2038 KASSERT(mutex_owned(&bufcache_lock));
2039
2040 if ((bp->b_cflags & BC_BUSY) != 0) {
2041 if (curlwp == uvm.pagedaemon_lwp)
2042 return EDEADLK;
2043 bp->b_cflags |= BC_WANTED;
2044 bref(bp);
2045 if (intr) {
2046 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2047 timo);
2048 } else {
2049 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2050 timo);
2051 }
2052 brele(bp);
2053 if (error != 0)
2054 return error;
2055 return EPASSTHROUGH;
2056 }
2057 bp->b_cflags |= BC_BUSY;
2058
2059 return 0;
2060 }
2061