vfs_bio.c revision 1.190 1 /* $NetBSD: vfs_bio.c,v 1.190 2008/02/29 12:10:09 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
73 */
74
75 /*-
76 * Copyright (c) 1994 Christopher G. Demetriou
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by the University of
89 * California, Berkeley and its contributors.
90 * 4. Neither the name of the University nor the names of its contributors
91 * may be used to endorse or promote products derived from this software
92 * without specific prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
107 */
108
109 /*
110 * Some references:
111 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
112 * Leffler, et al.: The Design and Implementation of the 4.3BSD
113 * UNIX Operating System (Addison Welley, 1989)
114 */
115
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.190 2008/02/29 12:10:09 yamt Exp $");
118
119 #include "fs_ffs.h"
120 #include "opt_bufcache.h"
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/kernel.h>
125 #include <sys/proc.h>
126 #include <sys/buf.h>
127 #include <sys/vnode.h>
128 #include <sys/mount.h>
129 #include <sys/malloc.h>
130 #include <sys/resourcevar.h>
131 #include <sys/sysctl.h>
132 #include <sys/conf.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/cpu.h>
136
137 #include <uvm/uvm.h>
138
139 #include <miscfs/specfs/specdev.h>
140
141 #ifndef BUFPAGES
142 # define BUFPAGES 0
143 #endif
144
145 #ifdef BUFCACHE
146 # if (BUFCACHE < 5) || (BUFCACHE > 95)
147 # error BUFCACHE is not between 5 and 95
148 # endif
149 #else
150 # define BUFCACHE 15
151 #endif
152
153 u_int nbuf; /* XXX - for softdep_lockedbufs */
154 u_int bufpages = BUFPAGES; /* optional hardwired count */
155 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
156
157 /* Function prototypes */
158 struct bqueue;
159
160 static void buf_setwm(void);
161 static int buf_trim(void);
162 static void *bufpool_page_alloc(struct pool *, int);
163 static void bufpool_page_free(struct pool *, void *);
164 static buf_t *bio_doread(struct vnode *, daddr_t, int,
165 kauth_cred_t, int);
166 static buf_t *getnewbuf(int, int, int);
167 static int buf_lotsfree(void);
168 static int buf_canrelease(void);
169 static u_long buf_mempoolidx(u_long);
170 static u_long buf_roundsize(u_long);
171 static void *buf_malloc(size_t);
172 static void buf_mrelease(void *, size_t);
173 static void binsheadfree(buf_t *, struct bqueue *);
174 static void binstailfree(buf_t *, struct bqueue *);
175 int count_lock_queue(void); /* XXX */
176 #ifdef DEBUG
177 static int checkfreelist(buf_t *, struct bqueue *);
178 #endif
179 static void biointr(void *);
180 static void biodone2(buf_t *);
181 static void bref(buf_t *);
182 static void brele(buf_t *);
183
184 /*
185 * Definitions for the buffer hash lists.
186 */
187 #define BUFHASH(dvp, lbn) \
188 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
189 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
190 u_long bufhash;
191 struct bqueue bufqueues[BQUEUES];
192 const struct bio_ops *bioopsp; /* I/O operation notification */
193
194 static kcondvar_t needbuffer_cv;
195
196 /*
197 * Buffer queue lock.
198 */
199 kmutex_t bufcache_lock;
200 kmutex_t buffer_lock;
201
202 /* Software ISR for completed transfers. */
203 static void *biodone_sih;
204
205 /* Buffer pool for I/O buffers. */
206 static pool_cache_t buf_cache;
207 static pool_cache_t bufio_cache;
208
209 /* XXX - somewhat gross.. */
210 #if MAXBSIZE == 0x2000
211 #define NMEMPOOLS 5
212 #elif MAXBSIZE == 0x4000
213 #define NMEMPOOLS 6
214 #elif MAXBSIZE == 0x8000
215 #define NMEMPOOLS 7
216 #else
217 #define NMEMPOOLS 8
218 #endif
219
220 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
221 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
222 #error update vfs_bio buffer memory parameters
223 #endif
224
225 /* Buffer memory pools */
226 static struct pool bmempools[NMEMPOOLS];
227
228 struct vm_map *buf_map;
229
230 /*
231 * Buffer memory pool allocator.
232 */
233 static void *
234 bufpool_page_alloc(struct pool *pp, int flags)
235 {
236
237 return (void *)uvm_km_alloc(buf_map,
238 MAXBSIZE, MAXBSIZE,
239 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
240 | UVM_KMF_WIRED);
241 }
242
243 static void
244 bufpool_page_free(struct pool *pp, void *v)
245 {
246
247 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
248 }
249
250 static struct pool_allocator bufmempool_allocator = {
251 .pa_alloc = bufpool_page_alloc,
252 .pa_free = bufpool_page_free,
253 .pa_pagesz = MAXBSIZE,
254 };
255
256 /* Buffer memory management variables */
257 u_long bufmem_valimit;
258 u_long bufmem_hiwater;
259 u_long bufmem_lowater;
260 u_long bufmem;
261
262 /*
263 * MD code can call this to set a hard limit on the amount
264 * of virtual memory used by the buffer cache.
265 */
266 int
267 buf_setvalimit(vsize_t sz)
268 {
269
270 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
271 if (sz < NMEMPOOLS * MAXBSIZE)
272 return EINVAL;
273
274 bufmem_valimit = sz;
275 return 0;
276 }
277
278 static void
279 buf_setwm(void)
280 {
281
282 bufmem_hiwater = buf_memcalc();
283 /* lowater is approx. 2% of memory (with bufcache = 15) */
284 #define BUFMEM_WMSHIFT 3
285 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
286 if (bufmem_hiwater < BUFMEM_HIWMMIN)
287 /* Ensure a reasonable minimum value */
288 bufmem_hiwater = BUFMEM_HIWMMIN;
289 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
290 }
291
292 #ifdef DEBUG
293 int debug_verify_freelist = 0;
294 static int
295 checkfreelist(buf_t *bp, struct bqueue *dp)
296 {
297 buf_t *b;
298
299 if (!debug_verify_freelist)
300 return 1;
301
302 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
303 if (b == bp)
304 return 1;
305 }
306
307 return 0;
308 }
309 #endif
310
311 /*
312 * Insq/Remq for the buffer hash lists.
313 * Call with buffer queue locked.
314 */
315 static void
316 binsheadfree(buf_t *bp, struct bqueue *dp)
317 {
318
319 KASSERT(bp->b_freelistindex == -1);
320 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
321 dp->bq_bytes += bp->b_bufsize;
322 bp->b_freelistindex = dp - bufqueues;
323 }
324
325 static void
326 binstailfree(buf_t *bp, struct bqueue *dp)
327 {
328
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 u_long
392 buf_memcalc(void)
393 {
394 u_long n;
395
396 /*
397 * Determine the upper bound of memory to use for buffers.
398 *
399 * - If bufpages is specified, use that as the number
400 * pages.
401 *
402 * - Otherwise, use bufcache as the percentage of
403 * physical memory.
404 */
405 if (bufpages != 0) {
406 n = bufpages;
407 } else {
408 if (bufcache < 5) {
409 printf("forcing bufcache %d -> 5", bufcache);
410 bufcache = 5;
411 }
412 if (bufcache > 95) {
413 printf("forcing bufcache %d -> 95", bufcache);
414 bufcache = 95;
415 }
416 n = physmem / 100 * bufcache;
417 }
418
419 n <<= PAGE_SHIFT;
420 if (bufmem_valimit != 0 && n > bufmem_valimit)
421 n = bufmem_valimit;
422
423 return (n);
424 }
425
426 /*
427 * Initialize buffers and hash links for buffers.
428 */
429 void
430 bufinit(void)
431 {
432 struct bqueue *dp;
433 int use_std;
434 u_int i;
435
436 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
437 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
438 cv_init(&needbuffer_cv, "needbuf");
439
440 /*
441 * Initialize buffer cache memory parameters.
442 */
443 bufmem = 0;
444 buf_setwm();
445
446 if (bufmem_valimit != 0) {
447 vaddr_t minaddr = 0, maxaddr;
448 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 bufmem_valimit, 0, false, 0);
450 if (buf_map == NULL)
451 panic("bufinit: cannot allocate submap");
452 } else
453 buf_map = kernel_map;
454
455 /* On "small" machines use small pool page sizes where possible */
456 use_std = (physmem < atop(16*1024*1024));
457
458 /*
459 * Also use them on systems that can map the pool pages using
460 * a direct-mapped segment.
461 */
462 #ifdef PMAP_MAP_POOLPAGE
463 use_std = 1;
464 #endif
465
466 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
467 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
468 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
469 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
470
471 bufmempool_allocator.pa_backingmap = buf_map;
472 for (i = 0; i < NMEMPOOLS; i++) {
473 struct pool_allocator *pa;
474 struct pool *pp = &bmempools[i];
475 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
476 char *name = malloc(8, M_TEMP, M_WAITOK);
477 if (__predict_true(size >= 1024))
478 (void)snprintf(name, 8, "buf%dk", size / 1024);
479 else
480 (void)snprintf(name, 8, "buf%db", size);
481 pa = (size <= PAGE_SIZE && use_std)
482 ? &pool_allocator_nointr
483 : &bufmempool_allocator;
484 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
485 pool_setlowat(pp, 1);
486 pool_sethiwat(pp, 1);
487 }
488
489 /* Initialize the buffer queues */
490 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
491 TAILQ_INIT(&dp->bq_queue);
492 dp->bq_bytes = 0;
493 }
494
495 /*
496 * Estimate hash table size based on the amount of memory we
497 * intend to use for the buffer cache. The average buffer
498 * size is dependent on our clients (i.e. filesystems).
499 *
500 * For now, use an empirical 3K per buffer.
501 */
502 nbuf = (bufmem_hiwater / 1024) / 3;
503 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
504 }
505
506 void
507 bufinit2(void)
508 {
509
510 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
511 NULL);
512 if (biodone_sih == NULL)
513 panic("bufinit2: can't establish soft interrupt");
514 }
515
516 static int
517 buf_lotsfree(void)
518 {
519 int try, thresh;
520
521 /* Always allocate if doing copy on write */
522 if (curlwp->l_pflag & LP_UFSCOW)
523 return 1;
524
525 /* Always allocate if less than the low water mark. */
526 if (bufmem < bufmem_lowater)
527 return 1;
528
529 /* Never allocate if greater than the high water mark. */
530 if (bufmem > bufmem_hiwater)
531 return 0;
532
533 /* If there's anything on the AGE list, it should be eaten. */
534 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
535 return 0;
536
537 /*
538 * The probabily of getting a new allocation is inversely
539 * proportional to the current size of the cache, using
540 * a granularity of 16 steps.
541 */
542 try = random() & 0x0000000fL;
543
544 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
545 thresh = (bufmem - bufmem_lowater) /
546 ((bufmem_hiwater - bufmem_lowater) / 16);
547
548 if (try >= thresh)
549 return 1;
550
551 /* Otherwise don't allocate. */
552 return 0;
553 }
554
555 /*
556 * Return estimate of bytes we think need to be
557 * released to help resolve low memory conditions.
558 *
559 * => called with bufcache_lock held.
560 */
561 static int
562 buf_canrelease(void)
563 {
564 int pagedemand, ninvalid = 0;
565
566 KASSERT(mutex_owned(&bufcache_lock));
567
568 if (bufmem < bufmem_lowater)
569 return 0;
570
571 if (bufmem > bufmem_hiwater)
572 return bufmem - bufmem_hiwater;
573
574 ninvalid += bufqueues[BQ_AGE].bq_bytes;
575
576 pagedemand = uvmexp.freetarg - uvmexp.free;
577 if (pagedemand < 0)
578 return ninvalid;
579 return MAX(ninvalid, MIN(2 * MAXBSIZE,
580 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
581 }
582
583 /*
584 * Buffer memory allocation helper functions
585 */
586 static u_long
587 buf_mempoolidx(u_long size)
588 {
589 u_int n = 0;
590
591 size -= 1;
592 size >>= MEMPOOL_INDEX_OFFSET;
593 while (size) {
594 size >>= 1;
595 n += 1;
596 }
597 if (n >= NMEMPOOLS)
598 panic("buf mem pool index %d", n);
599 return n;
600 }
601
602 static u_long
603 buf_roundsize(u_long size)
604 {
605 /* Round up to nearest power of 2 */
606 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
607 }
608
609 static void *
610 buf_malloc(size_t size)
611 {
612 u_int n = buf_mempoolidx(size);
613 void *addr;
614
615 while (1) {
616 addr = pool_get(&bmempools[n], PR_NOWAIT);
617 if (addr != NULL)
618 break;
619
620 /* No memory, see if we can free some. If so, try again */
621 mutex_enter(&bufcache_lock);
622 if (buf_drain(1) > 0) {
623 mutex_exit(&bufcache_lock);
624 continue;
625 }
626
627 if (curlwp == uvm.pagedaemon_lwp) {
628 mutex_exit(&bufcache_lock);
629 return NULL;
630 }
631
632 /* Wait for buffers to arrive on the LRU queue */
633 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
634 mutex_exit(&bufcache_lock);
635 }
636
637 return addr;
638 }
639
640 static void
641 buf_mrelease(void *addr, size_t size)
642 {
643
644 pool_put(&bmempools[buf_mempoolidx(size)], addr);
645 }
646
647 /*
648 * bread()/breadn() helper.
649 */
650 static buf_t *
651 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
652 int async)
653 {
654 buf_t *bp;
655 struct mount *mp;
656
657 bp = getblk(vp, blkno, size, 0, 0);
658
659 #ifdef DIAGNOSTIC
660 if (bp == NULL) {
661 panic("bio_doread: no such buf");
662 }
663 #endif
664
665 /*
666 * If buffer does not have data valid, start a read.
667 * Note that if buffer is BC_INVAL, getblk() won't return it.
668 * Therefore, it's valid if its I/O has completed or been delayed.
669 */
670 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
671 /* Start I/O for the buffer. */
672 SET(bp->b_flags, B_READ | async);
673 if (async)
674 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
675 else
676 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
677 VOP_STRATEGY(vp, bp);
678
679 /* Pay for the read. */
680 curproc->p_stats->p_ru.ru_inblock++;
681 } else if (async)
682 brelse(bp, 0);
683
684 if (vp->v_type == VBLK)
685 mp = vp->v_specmountpoint;
686 else
687 mp = vp->v_mount;
688
689 /*
690 * Collect statistics on synchronous and asynchronous reads.
691 * Reads from block devices are charged to their associated
692 * filesystem (if any).
693 */
694 if (mp != NULL) {
695 if (async == 0)
696 mp->mnt_stat.f_syncreads++;
697 else
698 mp->mnt_stat.f_asyncreads++;
699 }
700
701 return (bp);
702 }
703
704 /*
705 * Read a disk block.
706 * This algorithm described in Bach (p.54).
707 */
708 int
709 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
710 buf_t **bpp)
711 {
712 buf_t *bp;
713
714 /* Get buffer for block. */
715 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
716
717 /* Wait for the read to complete, and return result. */
718 return (biowait(bp));
719 }
720
721 /*
722 * Read-ahead multiple disk blocks. The first is sync, the rest async.
723 * Trivial modification to the breada algorithm presented in Bach (p.55).
724 */
725 int
726 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
727 int *rasizes, int nrablks, kauth_cred_t cred, buf_t **bpp)
728 {
729 buf_t *bp;
730 int i;
731
732 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
733
734 /*
735 * For each of the read-ahead blocks, start a read, if necessary.
736 */
737 mutex_enter(&bufcache_lock);
738 for (i = 0; i < nrablks; i++) {
739 /* If it's in the cache, just go on to next one. */
740 if (incore(vp, rablks[i]))
741 continue;
742
743 /* Get a buffer for the read-ahead block */
744 mutex_exit(&bufcache_lock);
745 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
746 mutex_enter(&bufcache_lock);
747 }
748 mutex_exit(&bufcache_lock);
749
750 /* Otherwise, we had to start a read for it; wait until it's valid. */
751 return (biowait(bp));
752 }
753
754 /*
755 * Read with single-block read-ahead. Defined in Bach (p.55), but
756 * implemented as a call to breadn().
757 * XXX for compatibility with old file systems.
758 */
759 int
760 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
761 int rabsize, kauth_cred_t cred, buf_t **bpp)
762 {
763
764 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
765 }
766
767 /*
768 * Block write. Described in Bach (p.56)
769 */
770 int
771 bwrite(buf_t *bp)
772 {
773 int rv, sync, wasdelayed;
774 struct vnode *vp;
775 struct mount *mp;
776
777 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
778
779 vp = bp->b_vp;
780 if (vp != NULL) {
781 KASSERT(bp->b_objlock == &vp->v_interlock);
782 if (vp->v_type == VBLK)
783 mp = vp->v_specmountpoint;
784 else
785 mp = vp->v_mount;
786 } else {
787 mp = NULL;
788 }
789
790 /*
791 * Remember buffer type, to switch on it later. If the write was
792 * synchronous, but the file system was mounted with MNT_ASYNC,
793 * convert it to a delayed write.
794 * XXX note that this relies on delayed tape writes being converted
795 * to async, not sync writes (which is safe, but ugly).
796 */
797 sync = !ISSET(bp->b_flags, B_ASYNC);
798 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
799 bdwrite(bp);
800 return (0);
801 }
802
803 /*
804 * Collect statistics on synchronous and asynchronous writes.
805 * Writes to block devices are charged to their associated
806 * filesystem (if any).
807 */
808 if (mp != NULL) {
809 if (sync)
810 mp->mnt_stat.f_syncwrites++;
811 else
812 mp->mnt_stat.f_asyncwrites++;
813 }
814
815 /*
816 * Pay for the I/O operation and make sure the buf is on the correct
817 * vnode queue.
818 */
819 bp->b_error = 0;
820 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
821 CLR(bp->b_flags, B_READ);
822 if (wasdelayed) {
823 mutex_enter(&bufcache_lock);
824 mutex_enter(bp->b_objlock);
825 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
826 reassignbuf(bp, bp->b_vp);
827 mutex_exit(&bufcache_lock);
828 } else {
829 curproc->p_stats->p_ru.ru_oublock++;
830 mutex_enter(bp->b_objlock);
831 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
832 }
833 if (vp != NULL)
834 vp->v_numoutput++;
835 mutex_exit(bp->b_objlock);
836
837 /* Initiate disk write. */
838 if (sync)
839 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
840 else
841 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
842
843 VOP_STRATEGY(vp, bp);
844
845 if (sync) {
846 /* If I/O was synchronous, wait for it to complete. */
847 rv = biowait(bp);
848
849 /* Release the buffer. */
850 brelse(bp, 0);
851
852 return (rv);
853 } else {
854 return (0);
855 }
856 }
857
858 int
859 vn_bwrite(void *v)
860 {
861 struct vop_bwrite_args *ap = v;
862
863 return (bwrite(ap->a_bp));
864 }
865
866 /*
867 * Delayed write.
868 *
869 * The buffer is marked dirty, but is not queued for I/O.
870 * This routine should be used when the buffer is expected
871 * to be modified again soon, typically a small write that
872 * partially fills a buffer.
873 *
874 * NB: magnetic tapes cannot be delayed; they must be
875 * written in the order that the writes are requested.
876 *
877 * Described in Leffler, et al. (pp. 208-213).
878 */
879 void
880 bdwrite(buf_t *bp)
881 {
882
883 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
884
885 /* If this is a tape block, write the block now. */
886 if (bdev_type(bp->b_dev) == D_TAPE) {
887 bawrite(bp);
888 return;
889 }
890
891 /*
892 * If the block hasn't been seen before:
893 * (1) Mark it as having been seen,
894 * (2) Charge for the write,
895 * (3) Make sure it's on its vnode's correct block list.
896 */
897 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
898
899 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
900 mutex_enter(&bufcache_lock);
901 mutex_enter(bp->b_objlock);
902 SET(bp->b_oflags, BO_DELWRI);
903 curproc->p_stats->p_ru.ru_oublock++;
904 reassignbuf(bp, bp->b_vp);
905 mutex_exit(&bufcache_lock);
906 } else {
907 mutex_enter(bp->b_objlock);
908 }
909 /* Otherwise, the "write" is done, so mark and release the buffer. */
910 CLR(bp->b_oflags, BO_DONE);
911 mutex_exit(bp->b_objlock);
912
913 brelse(bp, 0);
914 }
915
916 /*
917 * Asynchronous block write; just an asynchronous bwrite().
918 */
919 void
920 bawrite(buf_t *bp)
921 {
922
923 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
924
925 SET(bp->b_flags, B_ASYNC);
926 VOP_BWRITE(bp);
927 }
928
929 /*
930 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
931 * Call with the buffer interlock held.
932 *
933 * Note: called only from biodone() through ffs softdep's io_complete()
934 */
935 void
936 bdirty(buf_t *bp)
937 {
938
939 KASSERT(mutex_owned(&bufcache_lock));
940 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
941 KASSERT(mutex_owned(bp->b_objlock));
942 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
943
944 CLR(bp->b_cflags, BC_AGE);
945
946 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
947 SET(bp->b_oflags, BO_DELWRI);
948 curproc->p_stats->p_ru.ru_oublock++;
949 reassignbuf(bp, bp->b_vp);
950 }
951 }
952
953
954 /*
955 * Release a buffer on to the free lists.
956 * Described in Bach (p. 46).
957 */
958 void
959 brelsel(buf_t *bp, int set)
960 {
961 struct bqueue *bufq;
962 struct vnode *vp;
963
964 KASSERT(mutex_owned(&bufcache_lock));
965
966 SET(bp->b_cflags, set);
967
968 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
969 KASSERT(bp->b_iodone == NULL);
970
971 /* Wake up any processes waiting for any buffer to become free. */
972 cv_signal(&needbuffer_cv);
973
974 /* Wake up any proceeses waiting for _this_ buffer to become */
975 if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
976 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
977 cv_broadcast(&bp->b_busy);
978 }
979
980 /*
981 * Determine which queue the buffer should be on, then put it there.
982 */
983
984 /* If it's locked, don't report an error; try again later. */
985 if (ISSET(bp->b_flags, B_LOCKED))
986 bp->b_error = 0;
987
988 /* If it's not cacheable, or an error, mark it invalid. */
989 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
990 SET(bp->b_cflags, BC_INVAL);
991
992 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
993 /*
994 * This is a delayed write buffer that was just flushed to
995 * disk. It is still on the LRU queue. If it's become
996 * invalid, then we need to move it to a different queue;
997 * otherwise leave it in its current position.
998 */
999 CLR(bp->b_cflags, BC_VFLUSH);
1000 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1001 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1002 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1003 goto already_queued;
1004 } else {
1005 bremfree(bp);
1006 }
1007 }
1008
1009 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1010 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1011 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1012
1013 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1014 /*
1015 * If it's invalid or empty, dissociate it from its vnode
1016 * and put on the head of the appropriate queue.
1017 */
1018 if (bioopsp != NULL)
1019 (*bioopsp->io_deallocate)(bp);
1020
1021 mutex_enter(bp->b_objlock);
1022 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1023 if ((vp = bp->b_vp) != NULL) {
1024 KASSERT(bp->b_objlock == &vp->v_interlock);
1025 reassignbuf(bp, bp->b_vp);
1026 brelvp(bp);
1027 mutex_exit(&vp->v_interlock);
1028 } else {
1029 KASSERT(bp->b_objlock == &buffer_lock);
1030 mutex_exit(bp->b_objlock);
1031 }
1032
1033 if (bp->b_bufsize <= 0)
1034 /* no data */
1035 goto already_queued;
1036 else
1037 /* invalid data */
1038 bufq = &bufqueues[BQ_AGE];
1039 binsheadfree(bp, bufq);
1040 } else {
1041 /*
1042 * It has valid data. Put it on the end of the appropriate
1043 * queue, so that it'll stick around for as long as possible.
1044 * If buf is AGE, but has dependencies, must put it on last
1045 * bufqueue to be scanned, ie LRU. This protects against the
1046 * livelock where BQ_AGE only has buffers with dependencies,
1047 * and we thus never get to the dependent buffers in BQ_LRU.
1048 */
1049 if (ISSET(bp->b_flags, B_LOCKED)) {
1050 /* locked in core */
1051 bufq = &bufqueues[BQ_LOCKED];
1052 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1053 /* valid data */
1054 bufq = &bufqueues[BQ_LRU];
1055 } else {
1056 /* stale but valid data */
1057 int has_deps;
1058
1059 if (bioopsp != NULL)
1060 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1061 else
1062 has_deps = 0;
1063 bufq = has_deps ? &bufqueues[BQ_LRU] :
1064 &bufqueues[BQ_AGE];
1065 }
1066 binstailfree(bp, bufq);
1067 }
1068 already_queued:
1069 /* Unlock the buffer. */
1070 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1071 CLR(bp->b_flags, B_ASYNC);
1072
1073 if (bp->b_bufsize <= 0)
1074 brele(bp);
1075 }
1076
1077 void
1078 brelse(buf_t *bp, int set)
1079 {
1080
1081 mutex_enter(&bufcache_lock);
1082 brelsel(bp, set);
1083 mutex_exit(&bufcache_lock);
1084 }
1085
1086 /*
1087 * Determine if a block is in the cache.
1088 * Just look on what would be its hash chain. If it's there, return
1089 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1090 * we normally don't return the buffer, unless the caller explicitly
1091 * wants us to.
1092 */
1093 buf_t *
1094 incore(struct vnode *vp, daddr_t blkno)
1095 {
1096 buf_t *bp;
1097
1098 KASSERT(mutex_owned(&bufcache_lock));
1099
1100 /* Search hash chain */
1101 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1102 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1103 !ISSET(bp->b_cflags, BC_INVAL)) {
1104 KASSERT(bp->b_objlock == &vp->v_interlock);
1105 return (bp);
1106 }
1107 }
1108
1109 return (NULL);
1110 }
1111
1112 /*
1113 * Get a block of requested size that is associated with
1114 * a given vnode and block offset. If it is found in the
1115 * block cache, mark it as having been found, make it busy
1116 * and return it. Otherwise, return an empty block of the
1117 * correct size. It is up to the caller to insure that the
1118 * cached blocks be of the correct size.
1119 */
1120 buf_t *
1121 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1122 {
1123 int err, preserve;
1124 buf_t *bp;
1125
1126 mutex_enter(&bufcache_lock);
1127 loop:
1128 bp = incore(vp, blkno);
1129 if (bp != NULL) {
1130 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1131 if (err != 0) {
1132 if (err == EPASSTHROUGH)
1133 goto loop;
1134 mutex_exit(&bufcache_lock);
1135 return (NULL);
1136 }
1137 #ifdef DIAGNOSTIC
1138 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1139 bp->b_bcount < size && vp->v_type != VBLK)
1140 panic("getblk: block size invariant failed");
1141 #endif
1142 bremfree(bp);
1143 preserve = 1;
1144 } else {
1145 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1146 goto loop;
1147
1148 if (incore(vp, blkno) != NULL) {
1149 /* The block has come into memory in the meantime. */
1150 brelsel(bp, 0);
1151 goto loop;
1152 }
1153
1154 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1155 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1156 mutex_enter(&vp->v_interlock);
1157 bgetvp(vp, bp);
1158 mutex_exit(&vp->v_interlock);
1159 preserve = 0;
1160 }
1161 mutex_exit(&bufcache_lock);
1162
1163 /*
1164 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1165 * if we re-size buffers here.
1166 */
1167 if (ISSET(bp->b_flags, B_LOCKED)) {
1168 KASSERT(bp->b_bufsize >= size);
1169 } else {
1170 if (allocbuf(bp, size, preserve)) {
1171 mutex_enter(&bufcache_lock);
1172 LIST_REMOVE(bp, b_hash);
1173 mutex_exit(&bufcache_lock);
1174 brelse(bp, BC_INVAL);
1175 return NULL;
1176 }
1177 }
1178 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1179 return (bp);
1180 }
1181
1182 /*
1183 * Get an empty, disassociated buffer of given size.
1184 */
1185 buf_t *
1186 geteblk(int size)
1187 {
1188 buf_t *bp;
1189 int error;
1190
1191 mutex_enter(&bufcache_lock);
1192 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1193 ;
1194
1195 SET(bp->b_cflags, BC_INVAL);
1196 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1197 mutex_exit(&bufcache_lock);
1198 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1199 error = allocbuf(bp, size, 0);
1200 KASSERT(error == 0);
1201 return (bp);
1202 }
1203
1204 /*
1205 * Expand or contract the actual memory allocated to a buffer.
1206 *
1207 * If the buffer shrinks, data is lost, so it's up to the
1208 * caller to have written it out *first*; this routine will not
1209 * start a write. If the buffer grows, it's the callers
1210 * responsibility to fill out the buffer's additional contents.
1211 */
1212 int
1213 allocbuf(buf_t *bp, int size, int preserve)
1214 {
1215 vsize_t oldsize, desired_size;
1216 void *addr;
1217 int delta;
1218
1219 desired_size = buf_roundsize(size);
1220 if (desired_size > MAXBSIZE)
1221 printf("allocbuf: buffer larger than MAXBSIZE requested");
1222
1223 bp->b_bcount = size;
1224
1225 oldsize = bp->b_bufsize;
1226 if (oldsize == desired_size)
1227 return 0;
1228
1229 /*
1230 * If we want a buffer of a different size, re-allocate the
1231 * buffer's memory; copy old content only if needed.
1232 */
1233 addr = buf_malloc(desired_size);
1234 if (addr == NULL)
1235 return ENOMEM;
1236 if (preserve)
1237 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1238 if (bp->b_data != NULL)
1239 buf_mrelease(bp->b_data, oldsize);
1240 bp->b_data = addr;
1241 bp->b_bufsize = desired_size;
1242
1243 /*
1244 * Update overall buffer memory counter (protected by bufcache_lock)
1245 */
1246 delta = (long)desired_size - (long)oldsize;
1247
1248 mutex_enter(&bufcache_lock);
1249 if ((bufmem += delta) > bufmem_hiwater) {
1250 /*
1251 * Need to trim overall memory usage.
1252 */
1253 while (buf_canrelease()) {
1254 if (curcpu()->ci_schedstate.spc_flags &
1255 SPCF_SHOULDYIELD) {
1256 mutex_exit(&bufcache_lock);
1257 preempt();
1258 mutex_enter(&bufcache_lock);
1259 }
1260 if (buf_trim() == 0)
1261 break;
1262 }
1263 }
1264 mutex_exit(&bufcache_lock);
1265 return 0;
1266 }
1267
1268 /*
1269 * Find a buffer which is available for use.
1270 * Select something from a free list.
1271 * Preference is to AGE list, then LRU list.
1272 *
1273 * Called with the buffer queues locked.
1274 * Return buffer locked.
1275 */
1276 buf_t *
1277 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1278 {
1279 buf_t *bp;
1280 struct vnode *vp;
1281
1282 start:
1283 KASSERT(mutex_owned(&bufcache_lock));
1284
1285 /*
1286 * Get a new buffer from the pool.
1287 */
1288 if (!from_bufq && buf_lotsfree()) {
1289 mutex_exit(&bufcache_lock);
1290 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1291 if (bp != NULL) {
1292 memset((char *)bp, 0, sizeof(*bp));
1293 buf_init(bp);
1294 bp->b_dev = NODEV;
1295 bp->b_vnbufs.le_next = NOLIST;
1296 bp->b_cflags = BC_BUSY;
1297 bp->b_refcnt = 1;
1298 mutex_enter(&bufcache_lock);
1299 #if defined(DIAGNOSTIC)
1300 bp->b_freelistindex = -1;
1301 #endif /* defined(DIAGNOSTIC) */
1302 return (bp);
1303 }
1304 mutex_enter(&bufcache_lock);
1305 }
1306
1307 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1308 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1309 bremfree(bp);
1310 } else {
1311 /*
1312 * XXX: !from_bufq should be removed.
1313 */
1314 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1315 /* wait for a free buffer of any kind */
1316 if ((slpflag & PCATCH) != 0)
1317 (void)cv_timedwait_sig(&needbuffer_cv,
1318 &bufcache_lock, slptimeo);
1319 else
1320 (void)cv_timedwait(&needbuffer_cv,
1321 &bufcache_lock, slptimeo);
1322 }
1323 return (NULL);
1324 }
1325
1326 #ifdef DIAGNOSTIC
1327 if (bp->b_bufsize <= 0)
1328 panic("buffer %p: on queue but empty", bp);
1329 #endif
1330
1331 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1332 /*
1333 * This is a delayed write buffer being flushed to disk. Make
1334 * sure it gets aged out of the queue when it's finished, and
1335 * leave it off the LRU queue.
1336 */
1337 CLR(bp->b_cflags, BC_VFLUSH);
1338 SET(bp->b_cflags, BC_AGE);
1339 goto start;
1340 }
1341
1342 /* Buffer is no longer on free lists. */
1343 SET(bp->b_cflags, BC_BUSY);
1344
1345 /*
1346 * If buffer was a delayed write, start it and return NULL
1347 * (since we might sleep while starting the write).
1348 */
1349 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1350 /*
1351 * This buffer has gone through the LRU, so make sure it gets
1352 * reused ASAP.
1353 */
1354 SET(bp->b_cflags, BC_AGE);
1355 mutex_exit(&bufcache_lock);
1356 bawrite(bp);
1357 mutex_enter(&bufcache_lock);
1358 return (NULL);
1359 }
1360
1361 vp = bp->b_vp;
1362 if (bioopsp != NULL)
1363 (*bioopsp->io_deallocate)(bp);
1364
1365 /* clear out various other fields */
1366 bp->b_cflags = BC_BUSY;
1367 bp->b_oflags = 0;
1368 bp->b_flags = 0;
1369 bp->b_dev = NODEV;
1370 bp->b_blkno = 0;
1371 bp->b_lblkno = 0;
1372 bp->b_rawblkno = 0;
1373 bp->b_iodone = 0;
1374 bp->b_error = 0;
1375 bp->b_resid = 0;
1376 bp->b_bcount = 0;
1377
1378 LIST_REMOVE(bp, b_hash);
1379
1380 /* Disassociate us from our vnode, if we had one... */
1381 if (vp != NULL) {
1382 mutex_enter(&vp->v_interlock);
1383 brelvp(bp);
1384 mutex_exit(&vp->v_interlock);
1385 }
1386
1387 return (bp);
1388 }
1389
1390 /*
1391 * Attempt to free an aged buffer off the queues.
1392 * Called with queue lock held.
1393 * Returns the amount of buffer memory freed.
1394 */
1395 static int
1396 buf_trim(void)
1397 {
1398 buf_t *bp;
1399 long size = 0;
1400
1401 KASSERT(mutex_owned(&bufcache_lock));
1402
1403 /* Instruct getnewbuf() to get buffers off the queues */
1404 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1405 return 0;
1406
1407 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1408 size = bp->b_bufsize;
1409 bufmem -= size;
1410 if (size > 0) {
1411 buf_mrelease(bp->b_data, size);
1412 bp->b_bcount = bp->b_bufsize = 0;
1413 }
1414 /* brelse() will return the buffer to the global buffer pool */
1415 brelsel(bp, 0);
1416 return size;
1417 }
1418
1419 int
1420 buf_drain(int n)
1421 {
1422 int size = 0, sz;
1423
1424 KASSERT(mutex_owned(&bufcache_lock));
1425
1426 while (size < n && bufmem > bufmem_lowater) {
1427 sz = buf_trim();
1428 if (sz <= 0)
1429 break;
1430 size += sz;
1431 }
1432
1433 return size;
1434 }
1435
1436 /*
1437 * Wait for operations on the buffer to complete.
1438 * When they do, extract and return the I/O's error value.
1439 */
1440 int
1441 biowait(buf_t *bp)
1442 {
1443
1444 mutex_enter(bp->b_objlock);
1445 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1446 cv_wait(&bp->b_done, bp->b_objlock);
1447 mutex_exit(bp->b_objlock);
1448
1449 return bp->b_error;
1450 }
1451
1452 /*
1453 * Mark I/O complete on a buffer.
1454 *
1455 * If a callback has been requested, e.g. the pageout
1456 * daemon, do so. Otherwise, awaken waiting processes.
1457 *
1458 * [ Leffler, et al., says on p.247:
1459 * "This routine wakes up the blocked process, frees the buffer
1460 * for an asynchronous write, or, for a request by the pagedaemon
1461 * process, invokes a procedure specified in the buffer structure" ]
1462 *
1463 * In real life, the pagedaemon (or other system processes) wants
1464 * to do async stuff to, and doesn't want the buffer brelse()'d.
1465 * (for swap pager, that puts swap buffers on the free lists (!!!),
1466 * for the vn device, that puts malloc'd buffers on the free lists!)
1467 */
1468 void
1469 biodone(buf_t *bp)
1470 {
1471 int s;
1472
1473 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1474
1475 if (cpu_intr_p()) {
1476 /* From interrupt mode: defer to a soft interrupt. */
1477 s = splvm();
1478 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1479 softint_schedule(biodone_sih);
1480 splx(s);
1481 } else {
1482 /* Process now - the buffer may be freed soon. */
1483 biodone2(bp);
1484 }
1485 }
1486
1487 static void
1488 biodone2(buf_t *bp)
1489 {
1490 void (*callout)(buf_t *);
1491
1492 if (bioopsp != NULL)
1493 (*bioopsp->io_complete)(bp);
1494
1495 mutex_enter(bp->b_objlock);
1496 /* Note that the transfer is done. */
1497 if (ISSET(bp->b_oflags, BO_DONE))
1498 panic("biodone2 already");
1499 CLR(bp->b_flags, B_COWDONE);
1500 SET(bp->b_oflags, BO_DONE);
1501 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1502
1503 /* Wake up waiting writers. */
1504 if (!ISSET(bp->b_flags, B_READ))
1505 vwakeup(bp);
1506
1507 if ((callout = bp->b_iodone) != NULL) {
1508 /* Note callout done, then call out. */
1509 KERNEL_LOCK(1, NULL); /* XXXSMP */
1510 bp->b_iodone = NULL;
1511 mutex_exit(bp->b_objlock);
1512 (*callout)(bp);
1513 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1514 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1515 /* If async, release. */
1516 mutex_exit(bp->b_objlock);
1517 brelse(bp, 0);
1518 } else {
1519 /* Otherwise just wake up waiters in biowait(). */
1520 cv_broadcast(&bp->b_done);
1521 mutex_exit(bp->b_objlock);
1522 }
1523 }
1524
1525 static void
1526 biointr(void *cookie)
1527 {
1528 struct cpu_info *ci;
1529 buf_t *bp;
1530 int s;
1531
1532 ci = curcpu();
1533
1534 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1535 KASSERT(curcpu() == ci);
1536
1537 s = splvm();
1538 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1539 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1540 splx(s);
1541
1542 biodone2(bp);
1543 }
1544 }
1545
1546 /*
1547 * Return a count of buffers on the "locked" queue.
1548 */
1549 int
1550 count_lock_queue(void)
1551 {
1552 buf_t *bp;
1553 int n = 0;
1554
1555 mutex_enter(&bufcache_lock);
1556 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1557 n++;
1558 mutex_exit(&bufcache_lock);
1559 return (n);
1560 }
1561
1562 /*
1563 * Wait for all buffers to complete I/O
1564 * Return the number of "stuck" buffers.
1565 */
1566 int
1567 buf_syncwait(void)
1568 {
1569 buf_t *bp;
1570 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1571
1572 dcount = 10000;
1573 for (iter = 0; iter < 20;) {
1574 mutex_enter(&bufcache_lock);
1575 nbusy = 0;
1576 for (ihash = 0; ihash < bufhash+1; ihash++) {
1577 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1578 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1579 nbusy += ((bp->b_flags & B_READ) == 0);
1580 /*
1581 * With soft updates, some buffers that are
1582 * written will be remarked as dirty until other
1583 * buffers are written.
1584 */
1585 if (bp->b_vp && bp->b_vp->v_mount
1586 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1587 && (bp->b_oflags & BO_DELWRI)) {
1588 bremfree(bp);
1589 bp->b_cflags |= BC_BUSY;
1590 nbusy++;
1591 mutex_exit(&bufcache_lock);
1592 bawrite(bp);
1593 if (dcount-- <= 0) {
1594 printf("softdep ");
1595 goto fail;
1596 }
1597 mutex_enter(&bufcache_lock);
1598 }
1599 }
1600 }
1601 mutex_exit(&bufcache_lock);
1602
1603 if (nbusy == 0)
1604 break;
1605 if (nbusy_prev == 0)
1606 nbusy_prev = nbusy;
1607 printf("%d ", nbusy);
1608 tsleep(&nbusy, PRIBIO, "bflush",
1609 (iter == 0) ? 1 : hz / 25 * iter);
1610 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1611 iter++;
1612 else
1613 nbusy_prev = nbusy;
1614 }
1615
1616 if (nbusy) {
1617 fail:;
1618 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1619 printf("giving up\nPrinting vnodes for busy buffers\n");
1620 for (ihash = 0; ihash < bufhash+1; ihash++) {
1621 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1622 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1623 (bp->b_flags & B_READ) == 0)
1624 vprint(NULL, bp->b_vp);
1625 }
1626 }
1627 #endif
1628 }
1629
1630 return nbusy;
1631 }
1632
1633 static void
1634 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1635 {
1636
1637 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1638 o->b_error = i->b_error;
1639 o->b_prio = i->b_prio;
1640 o->b_dev = i->b_dev;
1641 o->b_bufsize = i->b_bufsize;
1642 o->b_bcount = i->b_bcount;
1643 o->b_resid = i->b_resid;
1644 o->b_addr = PTRTOUINT64(i->b_data);
1645 o->b_blkno = i->b_blkno;
1646 o->b_rawblkno = i->b_rawblkno;
1647 o->b_iodone = PTRTOUINT64(i->b_iodone);
1648 o->b_proc = PTRTOUINT64(i->b_proc);
1649 o->b_vp = PTRTOUINT64(i->b_vp);
1650 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1651 o->b_lblkno = i->b_lblkno;
1652 }
1653
1654 #define KERN_BUFSLOP 20
1655 static int
1656 sysctl_dobuf(SYSCTLFN_ARGS)
1657 {
1658 buf_t *bp;
1659 struct buf_sysctl bs;
1660 struct bqueue *bq;
1661 char *dp;
1662 u_int i, op, arg;
1663 size_t len, needed, elem_size, out_size;
1664 int error, elem_count, retries;
1665
1666 if (namelen == 1 && name[0] == CTL_QUERY)
1667 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1668
1669 if (namelen != 4)
1670 return (EINVAL);
1671
1672 retries = 100;
1673 retry:
1674 dp = oldp;
1675 len = (oldp != NULL) ? *oldlenp : 0;
1676 op = name[0];
1677 arg = name[1];
1678 elem_size = name[2];
1679 elem_count = name[3];
1680 out_size = MIN(sizeof(bs), elem_size);
1681
1682 /*
1683 * at the moment, these are just "placeholders" to make the
1684 * API for retrieving kern.buf data more extensible in the
1685 * future.
1686 *
1687 * XXX kern.buf currently has "netbsd32" issues. hopefully
1688 * these will be resolved at a later point.
1689 */
1690 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1691 elem_size < 1 || elem_count < 0)
1692 return (EINVAL);
1693
1694 error = 0;
1695 needed = 0;
1696 sysctl_unlock();
1697 mutex_enter(&bufcache_lock);
1698 for (i = 0; i < BQUEUES; i++) {
1699 bq = &bufqueues[i];
1700 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1701 bq->bq_marker = bp;
1702 if (len >= elem_size && elem_count > 0) {
1703 sysctl_fillbuf(bp, &bs);
1704 mutex_exit(&bufcache_lock);
1705 error = copyout(&bs, dp, out_size);
1706 mutex_enter(&bufcache_lock);
1707 if (error)
1708 break;
1709 if (bq->bq_marker != bp) {
1710 /*
1711 * This sysctl node is only for
1712 * statistics. Retry; if the
1713 * queue keeps changing, then
1714 * bail out.
1715 */
1716 if (retries-- == 0) {
1717 error = EAGAIN;
1718 break;
1719 }
1720 mutex_exit(&bufcache_lock);
1721 goto retry;
1722 }
1723 dp += elem_size;
1724 len -= elem_size;
1725 }
1726 if (elem_count > 0) {
1727 needed += elem_size;
1728 if (elem_count != INT_MAX)
1729 elem_count--;
1730 }
1731 }
1732 if (error != 0)
1733 break;
1734 }
1735 mutex_exit(&bufcache_lock);
1736 sysctl_relock();
1737
1738 *oldlenp = needed;
1739 if (oldp == NULL)
1740 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1741
1742 return (error);
1743 }
1744
1745 static int
1746 sysctl_bufvm_update(SYSCTLFN_ARGS)
1747 {
1748 int t, error, rv;
1749 struct sysctlnode node;
1750
1751 node = *rnode;
1752 node.sysctl_data = &t;
1753 t = *(int *)rnode->sysctl_data;
1754 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1755 if (error || newp == NULL)
1756 return (error);
1757
1758 if (t < 0)
1759 return EINVAL;
1760 if (rnode->sysctl_data == &bufcache) {
1761 if (t > 100)
1762 return (EINVAL);
1763 bufcache = t;
1764 buf_setwm();
1765 } else if (rnode->sysctl_data == &bufmem_lowater) {
1766 if (bufmem_hiwater - t < 16)
1767 return (EINVAL);
1768 bufmem_lowater = t;
1769 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1770 if (t - bufmem_lowater < 16)
1771 return (EINVAL);
1772 bufmem_hiwater = t;
1773 } else
1774 return (EINVAL);
1775
1776 /* Drain until below new high water mark */
1777 sysctl_unlock();
1778 mutex_enter(&bufcache_lock);
1779 while ((t = bufmem - bufmem_hiwater) >= 0) {
1780 rv = buf_drain(t / (2 * 1024));
1781 if (rv <= 0)
1782 break;
1783 }
1784 mutex_exit(&bufcache_lock);
1785 sysctl_relock();
1786
1787 return 0;
1788 }
1789
1790 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1791 {
1792
1793 sysctl_createv(clog, 0, NULL, NULL,
1794 CTLFLAG_PERMANENT,
1795 CTLTYPE_NODE, "kern", NULL,
1796 NULL, 0, NULL, 0,
1797 CTL_KERN, CTL_EOL);
1798 sysctl_createv(clog, 0, NULL, NULL,
1799 CTLFLAG_PERMANENT,
1800 CTLTYPE_NODE, "buf",
1801 SYSCTL_DESCR("Kernel buffer cache information"),
1802 sysctl_dobuf, 0, NULL, 0,
1803 CTL_KERN, KERN_BUF, CTL_EOL);
1804 }
1805
1806 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1807 {
1808
1809 sysctl_createv(clog, 0, NULL, NULL,
1810 CTLFLAG_PERMANENT,
1811 CTLTYPE_NODE, "vm", NULL,
1812 NULL, 0, NULL, 0,
1813 CTL_VM, CTL_EOL);
1814
1815 sysctl_createv(clog, 0, NULL, NULL,
1816 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1817 CTLTYPE_INT, "bufcache",
1818 SYSCTL_DESCR("Percentage of physical memory to use for "
1819 "buffer cache"),
1820 sysctl_bufvm_update, 0, &bufcache, 0,
1821 CTL_VM, CTL_CREATE, CTL_EOL);
1822 sysctl_createv(clog, 0, NULL, NULL,
1823 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1824 CTLTYPE_INT, "bufmem",
1825 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1826 "cache"),
1827 NULL, 0, &bufmem, 0,
1828 CTL_VM, CTL_CREATE, CTL_EOL);
1829 sysctl_createv(clog, 0, NULL, NULL,
1830 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1831 CTLTYPE_INT, "bufmem_lowater",
1832 SYSCTL_DESCR("Minimum amount of kernel memory to "
1833 "reserve for buffer cache"),
1834 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1835 CTL_VM, CTL_CREATE, CTL_EOL);
1836 sysctl_createv(clog, 0, NULL, NULL,
1837 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1838 CTLTYPE_INT, "bufmem_hiwater",
1839 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1840 "for buffer cache"),
1841 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1842 CTL_VM, CTL_CREATE, CTL_EOL);
1843 }
1844
1845 #ifdef DEBUG
1846 /*
1847 * Print out statistics on the current allocation of the buffer pool.
1848 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1849 * in vfs_syscalls.c using sysctl.
1850 */
1851 void
1852 vfs_bufstats(void)
1853 {
1854 int i, j, count;
1855 buf_t *bp;
1856 struct bqueue *dp;
1857 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1858 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1859
1860 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1861 count = 0;
1862 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1863 counts[j] = 0;
1864 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1865 counts[bp->b_bufsize/PAGE_SIZE]++;
1866 count++;
1867 }
1868 printf("%s: total-%d", bname[i], count);
1869 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1870 if (counts[j] != 0)
1871 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1872 printf("\n");
1873 }
1874 }
1875 #endif /* DEBUG */
1876
1877 /* ------------------------------ */
1878
1879 buf_t *
1880 getiobuf(struct vnode *vp, bool waitok)
1881 {
1882 buf_t *bp;
1883
1884 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1885 if (bp == NULL)
1886 return bp;
1887
1888 buf_init(bp);
1889
1890 if ((bp->b_vp = vp) == NULL)
1891 bp->b_objlock = &buffer_lock;
1892 else
1893 bp->b_objlock = &vp->v_interlock;
1894
1895 return bp;
1896 }
1897
1898 void
1899 putiobuf(buf_t *bp)
1900 {
1901
1902 buf_destroy(bp);
1903 pool_cache_put(bufio_cache, bp);
1904 }
1905
1906 /*
1907 * nestiobuf_iodone: b_iodone callback for nested buffers.
1908 */
1909
1910 void
1911 nestiobuf_iodone(buf_t *bp)
1912 {
1913 buf_t *mbp = bp->b_private;
1914 int error;
1915 int donebytes;
1916
1917 KASSERT(bp->b_bcount <= bp->b_bufsize);
1918 KASSERT(mbp != bp);
1919
1920 error = 0;
1921 if (bp->b_error == 0 &&
1922 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1923 /*
1924 * Not all got transfered, raise an error. We have no way to
1925 * propagate these conditions to mbp.
1926 */
1927 error = EIO;
1928 }
1929
1930 donebytes = bp->b_bufsize;
1931
1932 putiobuf(bp);
1933 nestiobuf_done(mbp, donebytes, error);
1934 }
1935
1936 /*
1937 * nestiobuf_setup: setup a "nested" buffer.
1938 *
1939 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1940 * => 'bp' should be a buffer allocated by getiobuf.
1941 * => 'offset' is a byte offset in the master buffer.
1942 * => 'size' is a size in bytes of this nested buffer.
1943 */
1944
1945 void
1946 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1947 {
1948 const int b_read = mbp->b_flags & B_READ;
1949 struct vnode *vp = mbp->b_vp;
1950
1951 KASSERT(mbp->b_bcount >= offset + size);
1952 bp->b_vp = vp;
1953 bp->b_objlock = mbp->b_objlock;
1954 bp->b_cflags = BC_BUSY;
1955 bp->b_flags = B_ASYNC | b_read;
1956 bp->b_iodone = nestiobuf_iodone;
1957 bp->b_data = (char *)mbp->b_data + offset;
1958 bp->b_resid = bp->b_bcount = size;
1959 bp->b_bufsize = bp->b_bcount;
1960 bp->b_private = mbp;
1961 BIO_COPYPRIO(bp, mbp);
1962 if (!b_read && vp != NULL) {
1963 mutex_enter(&vp->v_interlock);
1964 vp->v_numoutput++;
1965 mutex_exit(&vp->v_interlock);
1966 }
1967 }
1968
1969 /*
1970 * nestiobuf_done: propagate completion to the master buffer.
1971 *
1972 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1973 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1974 */
1975
1976 void
1977 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1978 {
1979
1980 if (donebytes == 0) {
1981 return;
1982 }
1983 mutex_enter(mbp->b_objlock);
1984 KASSERT(mbp->b_resid >= donebytes);
1985 mbp->b_resid -= donebytes;
1986 mbp->b_error = error;
1987 if (mbp->b_resid == 0) {
1988 mutex_exit(mbp->b_objlock);
1989 biodone(mbp);
1990 } else
1991 mutex_exit(mbp->b_objlock);
1992 }
1993
1994 void
1995 buf_init(buf_t *bp)
1996 {
1997
1998 LIST_INIT(&bp->b_dep);
1999 cv_init(&bp->b_busy, "biolock");
2000 cv_init(&bp->b_done, "biowait");
2001 bp->b_dev = NODEV;
2002 bp->b_error = 0;
2003 bp->b_flags = 0;
2004 bp->b_cflags = 0;
2005 bp->b_oflags = 0;
2006 bp->b_objlock = &buffer_lock;
2007 bp->b_iodone = NULL;
2008 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2009 }
2010
2011 void
2012 buf_destroy(buf_t *bp)
2013 {
2014
2015 cv_destroy(&bp->b_done);
2016 cv_destroy(&bp->b_busy);
2017 }
2018
2019 int
2020 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2021 {
2022 int error;
2023
2024 KASSERT(mutex_owned(&bufcache_lock));
2025
2026 if ((bp->b_cflags & BC_BUSY) != 0) {
2027 if (curlwp == uvm.pagedaemon_lwp)
2028 return EDEADLK;
2029 bp->b_cflags |= BC_WANTED;
2030 bref(bp);
2031 if (interlock != NULL)
2032 mutex_exit(interlock);
2033 if (intr) {
2034 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2035 timo);
2036 } else {
2037 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2038 timo);
2039 }
2040 brele(bp);
2041 if (interlock != NULL)
2042 mutex_enter(interlock);
2043 if (error != 0)
2044 return error;
2045 return EPASSTHROUGH;
2046 }
2047 bp->b_cflags |= BC_BUSY;
2048
2049 return 0;
2050 }
2051