vfs_bio.c revision 1.194 1 /* $NetBSD: vfs_bio.c,v 1.194 2008/03/27 19:06:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
73 */
74
75 /*-
76 * Copyright (c) 1994 Christopher G. Demetriou
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by the University of
89 * California, Berkeley and its contributors.
90 * 4. Neither the name of the University nor the names of its contributors
91 * may be used to endorse or promote products derived from this software
92 * without specific prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
107 */
108
109 /*
110 * Some references:
111 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
112 * Leffler, et al.: The Design and Implementation of the 4.3BSD
113 * UNIX Operating System (Addison Welley, 1989)
114 */
115
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.194 2008/03/27 19:06:52 ad Exp $");
118
119 #include "fs_ffs.h"
120 #include "opt_bufcache.h"
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/kernel.h>
125 #include <sys/proc.h>
126 #include <sys/buf.h>
127 #include <sys/vnode.h>
128 #include <sys/mount.h>
129 #include <sys/malloc.h>
130 #include <sys/resourcevar.h>
131 #include <sys/sysctl.h>
132 #include <sys/conf.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/cpu.h>
136
137 #include <uvm/uvm.h>
138
139 #include <miscfs/specfs/specdev.h>
140
141 #ifndef BUFPAGES
142 # define BUFPAGES 0
143 #endif
144
145 #ifdef BUFCACHE
146 # if (BUFCACHE < 5) || (BUFCACHE > 95)
147 # error BUFCACHE is not between 5 and 95
148 # endif
149 #else
150 # define BUFCACHE 15
151 #endif
152
153 u_int nbuf; /* XXX - for softdep_lockedbufs */
154 u_int bufpages = BUFPAGES; /* optional hardwired count */
155 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
156
157 /* Function prototypes */
158 struct bqueue;
159
160 static void buf_setwm(void);
161 static int buf_trim(void);
162 static void *bufpool_page_alloc(struct pool *, int);
163 static void bufpool_page_free(struct pool *, void *);
164 static buf_t *bio_doread(struct vnode *, daddr_t, int,
165 kauth_cred_t, int);
166 static buf_t *getnewbuf(int, int, int);
167 static int buf_lotsfree(void);
168 static int buf_canrelease(void);
169 static u_long buf_mempoolidx(u_long);
170 static u_long buf_roundsize(u_long);
171 static void *buf_malloc(size_t);
172 static void buf_mrelease(void *, size_t);
173 static void binsheadfree(buf_t *, struct bqueue *);
174 static void binstailfree(buf_t *, struct bqueue *);
175 int count_lock_queue(void); /* XXX */
176 #ifdef DEBUG
177 static int checkfreelist(buf_t *, struct bqueue *);
178 #endif
179 static void biointr(void *);
180 static void biodone2(buf_t *);
181 static void bref(buf_t *);
182 static void brele(buf_t *);
183
184 /*
185 * Definitions for the buffer hash lists.
186 */
187 #define BUFHASH(dvp, lbn) \
188 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
189 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
190 u_long bufhash;
191 struct bqueue bufqueues[BQUEUES];
192 const struct bio_ops *bioopsp; /* I/O operation notification */
193
194 static kcondvar_t needbuffer_cv;
195
196 /*
197 * Buffer queue lock.
198 */
199 kmutex_t bufcache_lock;
200 kmutex_t buffer_lock;
201
202 /* Software ISR for completed transfers. */
203 static void *biodone_sih;
204
205 /* Buffer pool for I/O buffers. */
206 static pool_cache_t buf_cache;
207 static pool_cache_t bufio_cache;
208
209 /* XXX - somewhat gross.. */
210 #if MAXBSIZE == 0x2000
211 #define NMEMPOOLS 5
212 #elif MAXBSIZE == 0x4000
213 #define NMEMPOOLS 6
214 #elif MAXBSIZE == 0x8000
215 #define NMEMPOOLS 7
216 #else
217 #define NMEMPOOLS 8
218 #endif
219
220 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
221 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
222 #error update vfs_bio buffer memory parameters
223 #endif
224
225 /* Buffer memory pools */
226 static struct pool bmempools[NMEMPOOLS];
227
228 static struct vm_map *buf_map;
229
230 /*
231 * Buffer memory pool allocator.
232 */
233 static void *
234 bufpool_page_alloc(struct pool *pp, int flags)
235 {
236
237 return (void *)uvm_km_alloc(buf_map,
238 MAXBSIZE, MAXBSIZE,
239 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
240 | UVM_KMF_WIRED);
241 }
242
243 static void
244 bufpool_page_free(struct pool *pp, void *v)
245 {
246
247 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
248 }
249
250 static struct pool_allocator bufmempool_allocator = {
251 .pa_alloc = bufpool_page_alloc,
252 .pa_free = bufpool_page_free,
253 .pa_pagesz = MAXBSIZE,
254 };
255
256 /* Buffer memory management variables */
257 u_long bufmem_valimit;
258 u_long bufmem_hiwater;
259 u_long bufmem_lowater;
260 u_long bufmem;
261
262 /*
263 * MD code can call this to set a hard limit on the amount
264 * of virtual memory used by the buffer cache.
265 */
266 int
267 buf_setvalimit(vsize_t sz)
268 {
269
270 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
271 if (sz < NMEMPOOLS * MAXBSIZE)
272 return EINVAL;
273
274 bufmem_valimit = sz;
275 return 0;
276 }
277
278 static void
279 buf_setwm(void)
280 {
281
282 bufmem_hiwater = buf_memcalc();
283 /* lowater is approx. 2% of memory (with bufcache = 15) */
284 #define BUFMEM_WMSHIFT 3
285 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
286 if (bufmem_hiwater < BUFMEM_HIWMMIN)
287 /* Ensure a reasonable minimum value */
288 bufmem_hiwater = BUFMEM_HIWMMIN;
289 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
290 }
291
292 #ifdef DEBUG
293 int debug_verify_freelist = 0;
294 static int
295 checkfreelist(buf_t *bp, struct bqueue *dp)
296 {
297 buf_t *b;
298
299 if (!debug_verify_freelist)
300 return 1;
301
302 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
303 if (b == bp)
304 return 1;
305 }
306
307 return 0;
308 }
309 #endif
310
311 /*
312 * Insq/Remq for the buffer hash lists.
313 * Call with buffer queue locked.
314 */
315 static void
316 binsheadfree(buf_t *bp, struct bqueue *dp)
317 {
318
319 KASSERT(bp->b_freelistindex == -1);
320 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
321 dp->bq_bytes += bp->b_bufsize;
322 bp->b_freelistindex = dp - bufqueues;
323 }
324
325 static void
326 binstailfree(buf_t *bp, struct bqueue *dp)
327 {
328
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399
400 /*
401 * Determine the upper bound of memory to use for buffers.
402 *
403 * - If bufpages is specified, use that as the number
404 * pages.
405 *
406 * - Otherwise, use bufcache as the percentage of
407 * physical memory.
408 */
409 if (bufpages != 0) {
410 n = bufpages;
411 } else {
412 if (bufcache < 5) {
413 printf("forcing bufcache %d -> 5", bufcache);
414 bufcache = 5;
415 }
416 if (bufcache > 95) {
417 printf("forcing bufcache %d -> 95", bufcache);
418 bufcache = 95;
419 }
420 n = calc_cache_size(buf_map, bufcache,
421 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
422 / PAGE_SIZE;
423 }
424
425 n <<= PAGE_SHIFT;
426 if (bufmem_valimit != 0 && n > bufmem_valimit)
427 n = bufmem_valimit;
428
429 return (n);
430 }
431
432 /*
433 * Initialize buffers and hash links for buffers.
434 */
435 void
436 bufinit(void)
437 {
438 struct bqueue *dp;
439 int use_std;
440 u_int i;
441
442 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
443 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
444 cv_init(&needbuffer_cv, "needbuf");
445
446 if (bufmem_valimit != 0) {
447 vaddr_t minaddr = 0, maxaddr;
448 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 bufmem_valimit, 0, false, 0);
450 if (buf_map == NULL)
451 panic("bufinit: cannot allocate submap");
452 } else
453 buf_map = kernel_map;
454
455 /*
456 * Initialize buffer cache memory parameters.
457 */
458 bufmem = 0;
459 buf_setwm();
460
461 /* On "small" machines use small pool page sizes where possible */
462 use_std = (physmem < atop(16*1024*1024));
463
464 /*
465 * Also use them on systems that can map the pool pages using
466 * a direct-mapped segment.
467 */
468 #ifdef PMAP_MAP_POOLPAGE
469 use_std = 1;
470 #endif
471
472 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
473 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
474 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
475 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
476
477 bufmempool_allocator.pa_backingmap = buf_map;
478 for (i = 0; i < NMEMPOOLS; i++) {
479 struct pool_allocator *pa;
480 struct pool *pp = &bmempools[i];
481 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
482 char *name = malloc(8, M_TEMP, M_WAITOK);
483 if (__predict_true(size >= 1024))
484 (void)snprintf(name, 8, "buf%dk", size / 1024);
485 else
486 (void)snprintf(name, 8, "buf%db", size);
487 pa = (size <= PAGE_SIZE && use_std)
488 ? &pool_allocator_nointr
489 : &bufmempool_allocator;
490 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
491 pool_setlowat(pp, 1);
492 pool_sethiwat(pp, 1);
493 }
494
495 /* Initialize the buffer queues */
496 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
497 TAILQ_INIT(&dp->bq_queue);
498 dp->bq_bytes = 0;
499 }
500
501 /*
502 * Estimate hash table size based on the amount of memory we
503 * intend to use for the buffer cache. The average buffer
504 * size is dependent on our clients (i.e. filesystems).
505 *
506 * For now, use an empirical 3K per buffer.
507 */
508 nbuf = (bufmem_hiwater / 1024) / 3;
509 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
510 }
511
512 void
513 bufinit2(void)
514 {
515
516 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
517 NULL);
518 if (biodone_sih == NULL)
519 panic("bufinit2: can't establish soft interrupt");
520 }
521
522 static int
523 buf_lotsfree(void)
524 {
525 int try, thresh;
526
527 /* Always allocate if doing copy on write */
528 if (curlwp->l_pflag & LP_UFSCOW)
529 return 1;
530
531 /* Always allocate if less than the low water mark. */
532 if (bufmem < bufmem_lowater)
533 return 1;
534
535 /* Never allocate if greater than the high water mark. */
536 if (bufmem > bufmem_hiwater)
537 return 0;
538
539 /* If there's anything on the AGE list, it should be eaten. */
540 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
541 return 0;
542
543 /*
544 * The probabily of getting a new allocation is inversely
545 * proportional to the current size of the cache, using
546 * a granularity of 16 steps.
547 */
548 try = random() & 0x0000000fL;
549
550 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
551 thresh = (bufmem - bufmem_lowater) /
552 ((bufmem_hiwater - bufmem_lowater) / 16);
553
554 if (try >= thresh)
555 return 1;
556
557 /* Otherwise don't allocate. */
558 return 0;
559 }
560
561 /*
562 * Return estimate of bytes we think need to be
563 * released to help resolve low memory conditions.
564 *
565 * => called with bufcache_lock held.
566 */
567 static int
568 buf_canrelease(void)
569 {
570 int pagedemand, ninvalid = 0;
571
572 KASSERT(mutex_owned(&bufcache_lock));
573
574 if (bufmem < bufmem_lowater)
575 return 0;
576
577 if (bufmem > bufmem_hiwater)
578 return bufmem - bufmem_hiwater;
579
580 ninvalid += bufqueues[BQ_AGE].bq_bytes;
581
582 pagedemand = uvmexp.freetarg - uvmexp.free;
583 if (pagedemand < 0)
584 return ninvalid;
585 return MAX(ninvalid, MIN(2 * MAXBSIZE,
586 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
587 }
588
589 /*
590 * Buffer memory allocation helper functions
591 */
592 static u_long
593 buf_mempoolidx(u_long size)
594 {
595 u_int n = 0;
596
597 size -= 1;
598 size >>= MEMPOOL_INDEX_OFFSET;
599 while (size) {
600 size >>= 1;
601 n += 1;
602 }
603 if (n >= NMEMPOOLS)
604 panic("buf mem pool index %d", n);
605 return n;
606 }
607
608 static u_long
609 buf_roundsize(u_long size)
610 {
611 /* Round up to nearest power of 2 */
612 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
613 }
614
615 static void *
616 buf_malloc(size_t size)
617 {
618 u_int n = buf_mempoolidx(size);
619 void *addr;
620
621 while (1) {
622 addr = pool_get(&bmempools[n], PR_NOWAIT);
623 if (addr != NULL)
624 break;
625
626 /* No memory, see if we can free some. If so, try again */
627 mutex_enter(&bufcache_lock);
628 if (buf_drain(1) > 0) {
629 mutex_exit(&bufcache_lock);
630 continue;
631 }
632
633 if (curlwp == uvm.pagedaemon_lwp) {
634 mutex_exit(&bufcache_lock);
635 return NULL;
636 }
637
638 /* Wait for buffers to arrive on the LRU queue */
639 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
640 mutex_exit(&bufcache_lock);
641 }
642
643 return addr;
644 }
645
646 static void
647 buf_mrelease(void *addr, size_t size)
648 {
649
650 pool_put(&bmempools[buf_mempoolidx(size)], addr);
651 }
652
653 /*
654 * bread()/breadn() helper.
655 */
656 static buf_t *
657 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
658 int async)
659 {
660 buf_t *bp;
661 struct mount *mp;
662
663 bp = getblk(vp, blkno, size, 0, 0);
664
665 #ifdef DIAGNOSTIC
666 if (bp == NULL) {
667 panic("bio_doread: no such buf");
668 }
669 #endif
670
671 /*
672 * If buffer does not have data valid, start a read.
673 * Note that if buffer is BC_INVAL, getblk() won't return it.
674 * Therefore, it's valid if its I/O has completed or been delayed.
675 */
676 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
677 /* Start I/O for the buffer. */
678 SET(bp->b_flags, B_READ | async);
679 if (async)
680 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
681 else
682 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
683 VOP_STRATEGY(vp, bp);
684
685 /* Pay for the read. */
686 curlwp->l_ru.ru_inblock++;
687 } else if (async)
688 brelse(bp, 0);
689
690 if (vp->v_type == VBLK)
691 mp = vp->v_specmountpoint;
692 else
693 mp = vp->v_mount;
694
695 /*
696 * Collect statistics on synchronous and asynchronous reads.
697 * Reads from block devices are charged to their associated
698 * filesystem (if any).
699 */
700 if (mp != NULL) {
701 if (async == 0)
702 mp->mnt_stat.f_syncreads++;
703 else
704 mp->mnt_stat.f_asyncreads++;
705 }
706
707 return (bp);
708 }
709
710 /*
711 * Read a disk block.
712 * This algorithm described in Bach (p.54).
713 */
714 int
715 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
716 buf_t **bpp)
717 {
718 buf_t *bp;
719
720 /* Get buffer for block. */
721 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
722
723 /* Wait for the read to complete, and return result. */
724 return (biowait(bp));
725 }
726
727 /*
728 * Read-ahead multiple disk blocks. The first is sync, the rest async.
729 * Trivial modification to the breada algorithm presented in Bach (p.55).
730 */
731 int
732 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
733 int *rasizes, int nrablks, kauth_cred_t cred, buf_t **bpp)
734 {
735 buf_t *bp;
736 int i;
737
738 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
739
740 /*
741 * For each of the read-ahead blocks, start a read, if necessary.
742 */
743 mutex_enter(&bufcache_lock);
744 for (i = 0; i < nrablks; i++) {
745 /* If it's in the cache, just go on to next one. */
746 if (incore(vp, rablks[i]))
747 continue;
748
749 /* Get a buffer for the read-ahead block */
750 mutex_exit(&bufcache_lock);
751 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
752 mutex_enter(&bufcache_lock);
753 }
754 mutex_exit(&bufcache_lock);
755
756 /* Otherwise, we had to start a read for it; wait until it's valid. */
757 return (biowait(bp));
758 }
759
760 /*
761 * Read with single-block read-ahead. Defined in Bach (p.55), but
762 * implemented as a call to breadn().
763 * XXX for compatibility with old file systems.
764 */
765 int
766 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
767 int rabsize, kauth_cred_t cred, buf_t **bpp)
768 {
769
770 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
771 }
772
773 /*
774 * Block write. Described in Bach (p.56)
775 */
776 int
777 bwrite(buf_t *bp)
778 {
779 int rv, sync, wasdelayed;
780 struct vnode *vp;
781 struct mount *mp;
782
783 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
784
785 vp = bp->b_vp;
786 if (vp != NULL) {
787 KASSERT(bp->b_objlock == &vp->v_interlock);
788 if (vp->v_type == VBLK)
789 mp = vp->v_specmountpoint;
790 else
791 mp = vp->v_mount;
792 } else {
793 mp = NULL;
794 }
795
796 /*
797 * Remember buffer type, to switch on it later. If the write was
798 * synchronous, but the file system was mounted with MNT_ASYNC,
799 * convert it to a delayed write.
800 * XXX note that this relies on delayed tape writes being converted
801 * to async, not sync writes (which is safe, but ugly).
802 */
803 sync = !ISSET(bp->b_flags, B_ASYNC);
804 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
805 bdwrite(bp);
806 return (0);
807 }
808
809 /*
810 * Collect statistics on synchronous and asynchronous writes.
811 * Writes to block devices are charged to their associated
812 * filesystem (if any).
813 */
814 if (mp != NULL) {
815 if (sync)
816 mp->mnt_stat.f_syncwrites++;
817 else
818 mp->mnt_stat.f_asyncwrites++;
819 }
820
821 /*
822 * Pay for the I/O operation and make sure the buf is on the correct
823 * vnode queue.
824 */
825 bp->b_error = 0;
826 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
827 CLR(bp->b_flags, B_READ);
828 if (wasdelayed) {
829 mutex_enter(&bufcache_lock);
830 mutex_enter(bp->b_objlock);
831 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
832 reassignbuf(bp, bp->b_vp);
833 mutex_exit(&bufcache_lock);
834 } else {
835 curlwp->l_ru.ru_oublock++;
836 mutex_enter(bp->b_objlock);
837 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
838 }
839 if (vp != NULL)
840 vp->v_numoutput++;
841 mutex_exit(bp->b_objlock);
842
843 /* Initiate disk write. */
844 if (sync)
845 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
846 else
847 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
848
849 VOP_STRATEGY(vp, bp);
850
851 if (sync) {
852 /* If I/O was synchronous, wait for it to complete. */
853 rv = biowait(bp);
854
855 /* Release the buffer. */
856 brelse(bp, 0);
857
858 return (rv);
859 } else {
860 return (0);
861 }
862 }
863
864 int
865 vn_bwrite(void *v)
866 {
867 struct vop_bwrite_args *ap = v;
868
869 return (bwrite(ap->a_bp));
870 }
871
872 /*
873 * Delayed write.
874 *
875 * The buffer is marked dirty, but is not queued for I/O.
876 * This routine should be used when the buffer is expected
877 * to be modified again soon, typically a small write that
878 * partially fills a buffer.
879 *
880 * NB: magnetic tapes cannot be delayed; they must be
881 * written in the order that the writes are requested.
882 *
883 * Described in Leffler, et al. (pp. 208-213).
884 */
885 void
886 bdwrite(buf_t *bp)
887 {
888
889 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
890
891 /* If this is a tape block, write the block now. */
892 if (bdev_type(bp->b_dev) == D_TAPE) {
893 bawrite(bp);
894 return;
895 }
896
897 /*
898 * If the block hasn't been seen before:
899 * (1) Mark it as having been seen,
900 * (2) Charge for the write,
901 * (3) Make sure it's on its vnode's correct block list.
902 */
903 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
904
905 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
906 mutex_enter(&bufcache_lock);
907 mutex_enter(bp->b_objlock);
908 SET(bp->b_oflags, BO_DELWRI);
909 curlwp->l_ru.ru_oublock++;
910 reassignbuf(bp, bp->b_vp);
911 mutex_exit(&bufcache_lock);
912 } else {
913 mutex_enter(bp->b_objlock);
914 }
915 /* Otherwise, the "write" is done, so mark and release the buffer. */
916 CLR(bp->b_oflags, BO_DONE);
917 mutex_exit(bp->b_objlock);
918
919 brelse(bp, 0);
920 }
921
922 /*
923 * Asynchronous block write; just an asynchronous bwrite().
924 */
925 void
926 bawrite(buf_t *bp)
927 {
928
929 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
930
931 SET(bp->b_flags, B_ASYNC);
932 VOP_BWRITE(bp);
933 }
934
935 /*
936 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
937 * Call with the buffer interlock held.
938 *
939 * Note: called only from biodone() through ffs softdep's io_complete()
940 */
941 void
942 bdirty(buf_t *bp)
943 {
944
945 KASSERT(mutex_owned(&bufcache_lock));
946 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
947 KASSERT(mutex_owned(bp->b_objlock));
948 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
949
950 CLR(bp->b_cflags, BC_AGE);
951
952 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
953 SET(bp->b_oflags, BO_DELWRI);
954 curlwp->l_ru.ru_oublock++;
955 reassignbuf(bp, bp->b_vp);
956 }
957 }
958
959
960 /*
961 * Release a buffer on to the free lists.
962 * Described in Bach (p. 46).
963 */
964 void
965 brelsel(buf_t *bp, int set)
966 {
967 struct bqueue *bufq;
968 struct vnode *vp;
969
970 KASSERT(mutex_owned(&bufcache_lock));
971
972 SET(bp->b_cflags, set);
973
974 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
975 KASSERT(bp->b_iodone == NULL);
976
977 /* Wake up any processes waiting for any buffer to become free. */
978 cv_signal(&needbuffer_cv);
979
980 /* Wake up any proceeses waiting for _this_ buffer to become */
981 if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
982 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
983 cv_broadcast(&bp->b_busy);
984 }
985
986 /*
987 * Determine which queue the buffer should be on, then put it there.
988 */
989
990 /* If it's locked, don't report an error; try again later. */
991 if (ISSET(bp->b_flags, B_LOCKED))
992 bp->b_error = 0;
993
994 /* If it's not cacheable, or an error, mark it invalid. */
995 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
996 SET(bp->b_cflags, BC_INVAL);
997
998 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
999 /*
1000 * This is a delayed write buffer that was just flushed to
1001 * disk. It is still on the LRU queue. If it's become
1002 * invalid, then we need to move it to a different queue;
1003 * otherwise leave it in its current position.
1004 */
1005 CLR(bp->b_cflags, BC_VFLUSH);
1006 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1007 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1008 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1009 goto already_queued;
1010 } else {
1011 bremfree(bp);
1012 }
1013 }
1014
1015 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1016 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1017 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1018
1019 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1020 /*
1021 * If it's invalid or empty, dissociate it from its vnode
1022 * and put on the head of the appropriate queue.
1023 */
1024 if (bioopsp != NULL)
1025 (*bioopsp->io_deallocate)(bp);
1026
1027 mutex_enter(bp->b_objlock);
1028 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1029 if ((vp = bp->b_vp) != NULL) {
1030 KASSERT(bp->b_objlock == &vp->v_interlock);
1031 reassignbuf(bp, bp->b_vp);
1032 brelvp(bp);
1033 mutex_exit(&vp->v_interlock);
1034 } else {
1035 KASSERT(bp->b_objlock == &buffer_lock);
1036 mutex_exit(bp->b_objlock);
1037 }
1038
1039 if (bp->b_bufsize <= 0)
1040 /* no data */
1041 goto already_queued;
1042 else
1043 /* invalid data */
1044 bufq = &bufqueues[BQ_AGE];
1045 binsheadfree(bp, bufq);
1046 } else {
1047 /*
1048 * It has valid data. Put it on the end of the appropriate
1049 * queue, so that it'll stick around for as long as possible.
1050 * If buf is AGE, but has dependencies, must put it on last
1051 * bufqueue to be scanned, ie LRU. This protects against the
1052 * livelock where BQ_AGE only has buffers with dependencies,
1053 * and we thus never get to the dependent buffers in BQ_LRU.
1054 */
1055 if (ISSET(bp->b_flags, B_LOCKED)) {
1056 /* locked in core */
1057 bufq = &bufqueues[BQ_LOCKED];
1058 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1059 /* valid data */
1060 bufq = &bufqueues[BQ_LRU];
1061 } else {
1062 /* stale but valid data */
1063 int has_deps;
1064
1065 if (bioopsp != NULL)
1066 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1067 else
1068 has_deps = 0;
1069 bufq = has_deps ? &bufqueues[BQ_LRU] :
1070 &bufqueues[BQ_AGE];
1071 }
1072 binstailfree(bp, bufq);
1073 }
1074 already_queued:
1075 /* Unlock the buffer. */
1076 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1077 CLR(bp->b_flags, B_ASYNC);
1078
1079 if (bp->b_bufsize <= 0)
1080 brele(bp);
1081 }
1082
1083 void
1084 brelse(buf_t *bp, int set)
1085 {
1086
1087 mutex_enter(&bufcache_lock);
1088 brelsel(bp, set);
1089 mutex_exit(&bufcache_lock);
1090 }
1091
1092 /*
1093 * Determine if a block is in the cache.
1094 * Just look on what would be its hash chain. If it's there, return
1095 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1096 * we normally don't return the buffer, unless the caller explicitly
1097 * wants us to.
1098 */
1099 buf_t *
1100 incore(struct vnode *vp, daddr_t blkno)
1101 {
1102 buf_t *bp;
1103
1104 KASSERT(mutex_owned(&bufcache_lock));
1105
1106 /* Search hash chain */
1107 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1108 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1109 !ISSET(bp->b_cflags, BC_INVAL)) {
1110 KASSERT(bp->b_objlock == &vp->v_interlock);
1111 return (bp);
1112 }
1113 }
1114
1115 return (NULL);
1116 }
1117
1118 /*
1119 * Get a block of requested size that is associated with
1120 * a given vnode and block offset. If it is found in the
1121 * block cache, mark it as having been found, make it busy
1122 * and return it. Otherwise, return an empty block of the
1123 * correct size. It is up to the caller to insure that the
1124 * cached blocks be of the correct size.
1125 */
1126 buf_t *
1127 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1128 {
1129 int err, preserve;
1130 buf_t *bp;
1131
1132 mutex_enter(&bufcache_lock);
1133 loop:
1134 bp = incore(vp, blkno);
1135 if (bp != NULL) {
1136 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1137 if (err != 0) {
1138 if (err == EPASSTHROUGH)
1139 goto loop;
1140 mutex_exit(&bufcache_lock);
1141 return (NULL);
1142 }
1143 #ifdef DIAGNOSTIC
1144 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1145 bp->b_bcount < size && vp->v_type != VBLK)
1146 panic("getblk: block size invariant failed");
1147 #endif
1148 bremfree(bp);
1149 preserve = 1;
1150 } else {
1151 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1152 goto loop;
1153
1154 if (incore(vp, blkno) != NULL) {
1155 /* The block has come into memory in the meantime. */
1156 brelsel(bp, 0);
1157 goto loop;
1158 }
1159
1160 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1161 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1162 mutex_enter(&vp->v_interlock);
1163 bgetvp(vp, bp);
1164 mutex_exit(&vp->v_interlock);
1165 preserve = 0;
1166 }
1167 mutex_exit(&bufcache_lock);
1168
1169 /*
1170 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1171 * if we re-size buffers here.
1172 */
1173 if (ISSET(bp->b_flags, B_LOCKED)) {
1174 KASSERT(bp->b_bufsize >= size);
1175 } else {
1176 if (allocbuf(bp, size, preserve)) {
1177 mutex_enter(&bufcache_lock);
1178 LIST_REMOVE(bp, b_hash);
1179 mutex_exit(&bufcache_lock);
1180 brelse(bp, BC_INVAL);
1181 return NULL;
1182 }
1183 }
1184 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1185 return (bp);
1186 }
1187
1188 /*
1189 * Get an empty, disassociated buffer of given size.
1190 */
1191 buf_t *
1192 geteblk(int size)
1193 {
1194 buf_t *bp;
1195 int error;
1196
1197 mutex_enter(&bufcache_lock);
1198 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1199 ;
1200
1201 SET(bp->b_cflags, BC_INVAL);
1202 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1203 mutex_exit(&bufcache_lock);
1204 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1205 error = allocbuf(bp, size, 0);
1206 KASSERT(error == 0);
1207 return (bp);
1208 }
1209
1210 /*
1211 * Expand or contract the actual memory allocated to a buffer.
1212 *
1213 * If the buffer shrinks, data is lost, so it's up to the
1214 * caller to have written it out *first*; this routine will not
1215 * start a write. If the buffer grows, it's the callers
1216 * responsibility to fill out the buffer's additional contents.
1217 */
1218 int
1219 allocbuf(buf_t *bp, int size, int preserve)
1220 {
1221 vsize_t oldsize, desired_size;
1222 void *addr;
1223 int delta;
1224
1225 desired_size = buf_roundsize(size);
1226 if (desired_size > MAXBSIZE)
1227 printf("allocbuf: buffer larger than MAXBSIZE requested");
1228
1229 bp->b_bcount = size;
1230
1231 oldsize = bp->b_bufsize;
1232 if (oldsize == desired_size)
1233 return 0;
1234
1235 /*
1236 * If we want a buffer of a different size, re-allocate the
1237 * buffer's memory; copy old content only if needed.
1238 */
1239 addr = buf_malloc(desired_size);
1240 if (addr == NULL)
1241 return ENOMEM;
1242 if (preserve)
1243 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1244 if (bp->b_data != NULL)
1245 buf_mrelease(bp->b_data, oldsize);
1246 bp->b_data = addr;
1247 bp->b_bufsize = desired_size;
1248
1249 /*
1250 * Update overall buffer memory counter (protected by bufcache_lock)
1251 */
1252 delta = (long)desired_size - (long)oldsize;
1253
1254 mutex_enter(&bufcache_lock);
1255 if ((bufmem += delta) > bufmem_hiwater) {
1256 /*
1257 * Need to trim overall memory usage.
1258 */
1259 while (buf_canrelease()) {
1260 if (curcpu()->ci_schedstate.spc_flags &
1261 SPCF_SHOULDYIELD) {
1262 mutex_exit(&bufcache_lock);
1263 preempt();
1264 mutex_enter(&bufcache_lock);
1265 }
1266 if (buf_trim() == 0)
1267 break;
1268 }
1269 }
1270 mutex_exit(&bufcache_lock);
1271 return 0;
1272 }
1273
1274 /*
1275 * Find a buffer which is available for use.
1276 * Select something from a free list.
1277 * Preference is to AGE list, then LRU list.
1278 *
1279 * Called with the buffer queues locked.
1280 * Return buffer locked.
1281 */
1282 buf_t *
1283 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1284 {
1285 buf_t *bp;
1286 struct vnode *vp;
1287
1288 start:
1289 KASSERT(mutex_owned(&bufcache_lock));
1290
1291 /*
1292 * Get a new buffer from the pool.
1293 */
1294 if (!from_bufq && buf_lotsfree()) {
1295 mutex_exit(&bufcache_lock);
1296 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1297 if (bp != NULL) {
1298 memset((char *)bp, 0, sizeof(*bp));
1299 buf_init(bp);
1300 bp->b_dev = NODEV;
1301 bp->b_vnbufs.le_next = NOLIST;
1302 bp->b_cflags = BC_BUSY;
1303 bp->b_refcnt = 1;
1304 mutex_enter(&bufcache_lock);
1305 #if defined(DIAGNOSTIC)
1306 bp->b_freelistindex = -1;
1307 #endif /* defined(DIAGNOSTIC) */
1308 return (bp);
1309 }
1310 mutex_enter(&bufcache_lock);
1311 }
1312
1313 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1314 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1315 bremfree(bp);
1316 } else {
1317 /*
1318 * XXX: !from_bufq should be removed.
1319 */
1320 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1321 /* wait for a free buffer of any kind */
1322 if ((slpflag & PCATCH) != 0)
1323 (void)cv_timedwait_sig(&needbuffer_cv,
1324 &bufcache_lock, slptimeo);
1325 else
1326 (void)cv_timedwait(&needbuffer_cv,
1327 &bufcache_lock, slptimeo);
1328 }
1329 return (NULL);
1330 }
1331
1332 #ifdef DIAGNOSTIC
1333 if (bp->b_bufsize <= 0)
1334 panic("buffer %p: on queue but empty", bp);
1335 #endif
1336
1337 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1338 /*
1339 * This is a delayed write buffer being flushed to disk. Make
1340 * sure it gets aged out of the queue when it's finished, and
1341 * leave it off the LRU queue.
1342 */
1343 CLR(bp->b_cflags, BC_VFLUSH);
1344 SET(bp->b_cflags, BC_AGE);
1345 goto start;
1346 }
1347
1348 /* Buffer is no longer on free lists. */
1349 SET(bp->b_cflags, BC_BUSY);
1350
1351 /*
1352 * If buffer was a delayed write, start it and return NULL
1353 * (since we might sleep while starting the write).
1354 */
1355 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1356 /*
1357 * This buffer has gone through the LRU, so make sure it gets
1358 * reused ASAP.
1359 */
1360 SET(bp->b_cflags, BC_AGE);
1361 mutex_exit(&bufcache_lock);
1362 bawrite(bp);
1363 mutex_enter(&bufcache_lock);
1364 return (NULL);
1365 }
1366
1367 vp = bp->b_vp;
1368 if (bioopsp != NULL)
1369 (*bioopsp->io_deallocate)(bp);
1370
1371 /* clear out various other fields */
1372 bp->b_cflags = BC_BUSY;
1373 bp->b_oflags = 0;
1374 bp->b_flags = 0;
1375 bp->b_dev = NODEV;
1376 bp->b_blkno = 0;
1377 bp->b_lblkno = 0;
1378 bp->b_rawblkno = 0;
1379 bp->b_iodone = 0;
1380 bp->b_error = 0;
1381 bp->b_resid = 0;
1382 bp->b_bcount = 0;
1383
1384 LIST_REMOVE(bp, b_hash);
1385
1386 /* Disassociate us from our vnode, if we had one... */
1387 if (vp != NULL) {
1388 mutex_enter(&vp->v_interlock);
1389 brelvp(bp);
1390 mutex_exit(&vp->v_interlock);
1391 }
1392
1393 return (bp);
1394 }
1395
1396 /*
1397 * Attempt to free an aged buffer off the queues.
1398 * Called with queue lock held.
1399 * Returns the amount of buffer memory freed.
1400 */
1401 static int
1402 buf_trim(void)
1403 {
1404 buf_t *bp;
1405 long size = 0;
1406
1407 KASSERT(mutex_owned(&bufcache_lock));
1408
1409 /* Instruct getnewbuf() to get buffers off the queues */
1410 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1411 return 0;
1412
1413 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1414 size = bp->b_bufsize;
1415 bufmem -= size;
1416 if (size > 0) {
1417 buf_mrelease(bp->b_data, size);
1418 bp->b_bcount = bp->b_bufsize = 0;
1419 }
1420 /* brelse() will return the buffer to the global buffer pool */
1421 brelsel(bp, 0);
1422 return size;
1423 }
1424
1425 int
1426 buf_drain(int n)
1427 {
1428 int size = 0, sz;
1429
1430 KASSERT(mutex_owned(&bufcache_lock));
1431
1432 while (size < n && bufmem > bufmem_lowater) {
1433 sz = buf_trim();
1434 if (sz <= 0)
1435 break;
1436 size += sz;
1437 }
1438
1439 return size;
1440 }
1441
1442 /*
1443 * Wait for operations on the buffer to complete.
1444 * When they do, extract and return the I/O's error value.
1445 */
1446 int
1447 biowait(buf_t *bp)
1448 {
1449
1450 mutex_enter(bp->b_objlock);
1451 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1452 cv_wait(&bp->b_done, bp->b_objlock);
1453 mutex_exit(bp->b_objlock);
1454
1455 return bp->b_error;
1456 }
1457
1458 /*
1459 * Mark I/O complete on a buffer.
1460 *
1461 * If a callback has been requested, e.g. the pageout
1462 * daemon, do so. Otherwise, awaken waiting processes.
1463 *
1464 * [ Leffler, et al., says on p.247:
1465 * "This routine wakes up the blocked process, frees the buffer
1466 * for an asynchronous write, or, for a request by the pagedaemon
1467 * process, invokes a procedure specified in the buffer structure" ]
1468 *
1469 * In real life, the pagedaemon (or other system processes) wants
1470 * to do async stuff to, and doesn't want the buffer brelse()'d.
1471 * (for swap pager, that puts swap buffers on the free lists (!!!),
1472 * for the vn device, that puts malloc'd buffers on the free lists!)
1473 */
1474 void
1475 biodone(buf_t *bp)
1476 {
1477 int s;
1478
1479 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1480
1481 if (cpu_intr_p()) {
1482 /* From interrupt mode: defer to a soft interrupt. */
1483 s = splvm();
1484 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1485 softint_schedule(biodone_sih);
1486 splx(s);
1487 } else {
1488 /* Process now - the buffer may be freed soon. */
1489 biodone2(bp);
1490 }
1491 }
1492
1493 static void
1494 biodone2(buf_t *bp)
1495 {
1496 void (*callout)(buf_t *);
1497
1498 if (bioopsp != NULL)
1499 (*bioopsp->io_complete)(bp);
1500
1501 mutex_enter(bp->b_objlock);
1502 /* Note that the transfer is done. */
1503 if (ISSET(bp->b_oflags, BO_DONE))
1504 panic("biodone2 already");
1505 CLR(bp->b_flags, B_COWDONE);
1506 SET(bp->b_oflags, BO_DONE);
1507 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1508
1509 /* Wake up waiting writers. */
1510 if (!ISSET(bp->b_flags, B_READ))
1511 vwakeup(bp);
1512
1513 if ((callout = bp->b_iodone) != NULL) {
1514 /* Note callout done, then call out. */
1515 KERNEL_LOCK(1, NULL); /* XXXSMP */
1516 bp->b_iodone = NULL;
1517 mutex_exit(bp->b_objlock);
1518 (*callout)(bp);
1519 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1520 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1521 /* If async, release. */
1522 mutex_exit(bp->b_objlock);
1523 brelse(bp, 0);
1524 } else {
1525 /* Otherwise just wake up waiters in biowait(). */
1526 cv_broadcast(&bp->b_done);
1527 mutex_exit(bp->b_objlock);
1528 }
1529 }
1530
1531 static void
1532 biointr(void *cookie)
1533 {
1534 struct cpu_info *ci;
1535 buf_t *bp;
1536 int s;
1537
1538 ci = curcpu();
1539
1540 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1541 KASSERT(curcpu() == ci);
1542
1543 s = splvm();
1544 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1545 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1546 splx(s);
1547
1548 biodone2(bp);
1549 }
1550 }
1551
1552 /*
1553 * Return a count of buffers on the "locked" queue.
1554 */
1555 int
1556 count_lock_queue(void)
1557 {
1558 buf_t *bp;
1559 int n = 0;
1560
1561 mutex_enter(&bufcache_lock);
1562 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1563 n++;
1564 mutex_exit(&bufcache_lock);
1565 return (n);
1566 }
1567
1568 /*
1569 * Wait for all buffers to complete I/O
1570 * Return the number of "stuck" buffers.
1571 */
1572 int
1573 buf_syncwait(void)
1574 {
1575 buf_t *bp;
1576 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1577
1578 dcount = 10000;
1579 for (iter = 0; iter < 20;) {
1580 mutex_enter(&bufcache_lock);
1581 nbusy = 0;
1582 for (ihash = 0; ihash < bufhash+1; ihash++) {
1583 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1584 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1585 nbusy += ((bp->b_flags & B_READ) == 0);
1586 /*
1587 * With soft updates, some buffers that are
1588 * written will be remarked as dirty until other
1589 * buffers are written.
1590 */
1591 if (bp->b_vp && bp->b_vp->v_mount
1592 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1593 && (bp->b_oflags & BO_DELWRI)) {
1594 bremfree(bp);
1595 bp->b_cflags |= BC_BUSY;
1596 nbusy++;
1597 mutex_exit(&bufcache_lock);
1598 bawrite(bp);
1599 if (dcount-- <= 0) {
1600 printf("softdep ");
1601 goto fail;
1602 }
1603 mutex_enter(&bufcache_lock);
1604 }
1605 }
1606 }
1607 mutex_exit(&bufcache_lock);
1608
1609 if (nbusy == 0)
1610 break;
1611 if (nbusy_prev == 0)
1612 nbusy_prev = nbusy;
1613 printf("%d ", nbusy);
1614 tsleep(&nbusy, PRIBIO, "bflush",
1615 (iter == 0) ? 1 : hz / 25 * iter);
1616 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1617 iter++;
1618 else
1619 nbusy_prev = nbusy;
1620 }
1621
1622 if (nbusy) {
1623 fail:;
1624 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1625 printf("giving up\nPrinting vnodes for busy buffers\n");
1626 for (ihash = 0; ihash < bufhash+1; ihash++) {
1627 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1628 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1629 (bp->b_flags & B_READ) == 0)
1630 vprint(NULL, bp->b_vp);
1631 }
1632 }
1633 #endif
1634 }
1635
1636 return nbusy;
1637 }
1638
1639 static void
1640 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1641 {
1642
1643 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1644 o->b_error = i->b_error;
1645 o->b_prio = i->b_prio;
1646 o->b_dev = i->b_dev;
1647 o->b_bufsize = i->b_bufsize;
1648 o->b_bcount = i->b_bcount;
1649 o->b_resid = i->b_resid;
1650 o->b_addr = PTRTOUINT64(i->b_data);
1651 o->b_blkno = i->b_blkno;
1652 o->b_rawblkno = i->b_rawblkno;
1653 o->b_iodone = PTRTOUINT64(i->b_iodone);
1654 o->b_proc = PTRTOUINT64(i->b_proc);
1655 o->b_vp = PTRTOUINT64(i->b_vp);
1656 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1657 o->b_lblkno = i->b_lblkno;
1658 }
1659
1660 #define KERN_BUFSLOP 20
1661 static int
1662 sysctl_dobuf(SYSCTLFN_ARGS)
1663 {
1664 buf_t *bp;
1665 struct buf_sysctl bs;
1666 struct bqueue *bq;
1667 char *dp;
1668 u_int i, op, arg;
1669 size_t len, needed, elem_size, out_size;
1670 int error, elem_count, retries;
1671
1672 if (namelen == 1 && name[0] == CTL_QUERY)
1673 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1674
1675 if (namelen != 4)
1676 return (EINVAL);
1677
1678 retries = 100;
1679 retry:
1680 dp = oldp;
1681 len = (oldp != NULL) ? *oldlenp : 0;
1682 op = name[0];
1683 arg = name[1];
1684 elem_size = name[2];
1685 elem_count = name[3];
1686 out_size = MIN(sizeof(bs), elem_size);
1687
1688 /*
1689 * at the moment, these are just "placeholders" to make the
1690 * API for retrieving kern.buf data more extensible in the
1691 * future.
1692 *
1693 * XXX kern.buf currently has "netbsd32" issues. hopefully
1694 * these will be resolved at a later point.
1695 */
1696 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1697 elem_size < 1 || elem_count < 0)
1698 return (EINVAL);
1699
1700 error = 0;
1701 needed = 0;
1702 sysctl_unlock();
1703 mutex_enter(&bufcache_lock);
1704 for (i = 0; i < BQUEUES; i++) {
1705 bq = &bufqueues[i];
1706 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1707 bq->bq_marker = bp;
1708 if (len >= elem_size && elem_count > 0) {
1709 sysctl_fillbuf(bp, &bs);
1710 mutex_exit(&bufcache_lock);
1711 error = copyout(&bs, dp, out_size);
1712 mutex_enter(&bufcache_lock);
1713 if (error)
1714 break;
1715 if (bq->bq_marker != bp) {
1716 /*
1717 * This sysctl node is only for
1718 * statistics. Retry; if the
1719 * queue keeps changing, then
1720 * bail out.
1721 */
1722 if (retries-- == 0) {
1723 error = EAGAIN;
1724 break;
1725 }
1726 mutex_exit(&bufcache_lock);
1727 goto retry;
1728 }
1729 dp += elem_size;
1730 len -= elem_size;
1731 }
1732 if (elem_count > 0) {
1733 needed += elem_size;
1734 if (elem_count != INT_MAX)
1735 elem_count--;
1736 }
1737 }
1738 if (error != 0)
1739 break;
1740 }
1741 mutex_exit(&bufcache_lock);
1742 sysctl_relock();
1743
1744 *oldlenp = needed;
1745 if (oldp == NULL)
1746 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1747
1748 return (error);
1749 }
1750
1751 static int
1752 sysctl_bufvm_update(SYSCTLFN_ARGS)
1753 {
1754 int t, error, rv;
1755 struct sysctlnode node;
1756
1757 node = *rnode;
1758 node.sysctl_data = &t;
1759 t = *(int *)rnode->sysctl_data;
1760 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1761 if (error || newp == NULL)
1762 return (error);
1763
1764 if (t < 0)
1765 return EINVAL;
1766 if (rnode->sysctl_data == &bufcache) {
1767 if (t > 100)
1768 return (EINVAL);
1769 bufcache = t;
1770 buf_setwm();
1771 } else if (rnode->sysctl_data == &bufmem_lowater) {
1772 if (bufmem_hiwater - t < 16)
1773 return (EINVAL);
1774 bufmem_lowater = t;
1775 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1776 if (t - bufmem_lowater < 16)
1777 return (EINVAL);
1778 bufmem_hiwater = t;
1779 } else
1780 return (EINVAL);
1781
1782 /* Drain until below new high water mark */
1783 sysctl_unlock();
1784 mutex_enter(&bufcache_lock);
1785 while ((t = bufmem - bufmem_hiwater) >= 0) {
1786 rv = buf_drain(t / (2 * 1024));
1787 if (rv <= 0)
1788 break;
1789 }
1790 mutex_exit(&bufcache_lock);
1791 sysctl_relock();
1792
1793 return 0;
1794 }
1795
1796 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1797 {
1798
1799 sysctl_createv(clog, 0, NULL, NULL,
1800 CTLFLAG_PERMANENT,
1801 CTLTYPE_NODE, "kern", NULL,
1802 NULL, 0, NULL, 0,
1803 CTL_KERN, CTL_EOL);
1804 sysctl_createv(clog, 0, NULL, NULL,
1805 CTLFLAG_PERMANENT,
1806 CTLTYPE_NODE, "buf",
1807 SYSCTL_DESCR("Kernel buffer cache information"),
1808 sysctl_dobuf, 0, NULL, 0,
1809 CTL_KERN, KERN_BUF, CTL_EOL);
1810 }
1811
1812 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1813 {
1814
1815 sysctl_createv(clog, 0, NULL, NULL,
1816 CTLFLAG_PERMANENT,
1817 CTLTYPE_NODE, "vm", NULL,
1818 NULL, 0, NULL, 0,
1819 CTL_VM, CTL_EOL);
1820
1821 sysctl_createv(clog, 0, NULL, NULL,
1822 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 CTLTYPE_INT, "bufcache",
1824 SYSCTL_DESCR("Percentage of physical memory to use for "
1825 "buffer cache"),
1826 sysctl_bufvm_update, 0, &bufcache, 0,
1827 CTL_VM, CTL_CREATE, CTL_EOL);
1828 sysctl_createv(clog, 0, NULL, NULL,
1829 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830 CTLTYPE_INT, "bufmem",
1831 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832 "cache"),
1833 NULL, 0, &bufmem, 0,
1834 CTL_VM, CTL_CREATE, CTL_EOL);
1835 sysctl_createv(clog, 0, NULL, NULL,
1836 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 CTLTYPE_INT, "bufmem_lowater",
1838 SYSCTL_DESCR("Minimum amount of kernel memory to "
1839 "reserve for buffer cache"),
1840 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841 CTL_VM, CTL_CREATE, CTL_EOL);
1842 sysctl_createv(clog, 0, NULL, NULL,
1843 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844 CTLTYPE_INT, "bufmem_hiwater",
1845 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846 "for buffer cache"),
1847 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848 CTL_VM, CTL_CREATE, CTL_EOL);
1849 }
1850
1851 #ifdef DEBUG
1852 /*
1853 * Print out statistics on the current allocation of the buffer pool.
1854 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855 * in vfs_syscalls.c using sysctl.
1856 */
1857 void
1858 vfs_bufstats(void)
1859 {
1860 int i, j, count;
1861 buf_t *bp;
1862 struct bqueue *dp;
1863 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1865
1866 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867 count = 0;
1868 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869 counts[j] = 0;
1870 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871 counts[bp->b_bufsize/PAGE_SIZE]++;
1872 count++;
1873 }
1874 printf("%s: total-%d", bname[i], count);
1875 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876 if (counts[j] != 0)
1877 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878 printf("\n");
1879 }
1880 }
1881 #endif /* DEBUG */
1882
1883 /* ------------------------------ */
1884
1885 buf_t *
1886 getiobuf(struct vnode *vp, bool waitok)
1887 {
1888 buf_t *bp;
1889
1890 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891 if (bp == NULL)
1892 return bp;
1893
1894 buf_init(bp);
1895
1896 if ((bp->b_vp = vp) == NULL)
1897 bp->b_objlock = &buffer_lock;
1898 else
1899 bp->b_objlock = &vp->v_interlock;
1900
1901 return bp;
1902 }
1903
1904 void
1905 putiobuf(buf_t *bp)
1906 {
1907
1908 buf_destroy(bp);
1909 pool_cache_put(bufio_cache, bp);
1910 }
1911
1912 /*
1913 * nestiobuf_iodone: b_iodone callback for nested buffers.
1914 */
1915
1916 void
1917 nestiobuf_iodone(buf_t *bp)
1918 {
1919 buf_t *mbp = bp->b_private;
1920 int error;
1921 int donebytes;
1922
1923 KASSERT(bp->b_bcount <= bp->b_bufsize);
1924 KASSERT(mbp != bp);
1925
1926 error = 0;
1927 if (bp->b_error == 0 &&
1928 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1929 /*
1930 * Not all got transfered, raise an error. We have no way to
1931 * propagate these conditions to mbp.
1932 */
1933 error = EIO;
1934 }
1935
1936 donebytes = bp->b_bufsize;
1937
1938 putiobuf(bp);
1939 nestiobuf_done(mbp, donebytes, error);
1940 }
1941
1942 /*
1943 * nestiobuf_setup: setup a "nested" buffer.
1944 *
1945 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946 * => 'bp' should be a buffer allocated by getiobuf.
1947 * => 'offset' is a byte offset in the master buffer.
1948 * => 'size' is a size in bytes of this nested buffer.
1949 */
1950
1951 void
1952 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1953 {
1954 const int b_read = mbp->b_flags & B_READ;
1955 struct vnode *vp = mbp->b_vp;
1956
1957 KASSERT(mbp->b_bcount >= offset + size);
1958 bp->b_vp = vp;
1959 bp->b_objlock = mbp->b_objlock;
1960 bp->b_cflags = BC_BUSY;
1961 bp->b_flags = B_ASYNC | b_read;
1962 bp->b_iodone = nestiobuf_iodone;
1963 bp->b_data = (char *)mbp->b_data + offset;
1964 bp->b_resid = bp->b_bcount = size;
1965 bp->b_bufsize = bp->b_bcount;
1966 bp->b_private = mbp;
1967 BIO_COPYPRIO(bp, mbp);
1968 if (!b_read && vp != NULL) {
1969 mutex_enter(&vp->v_interlock);
1970 vp->v_numoutput++;
1971 mutex_exit(&vp->v_interlock);
1972 }
1973 }
1974
1975 /*
1976 * nestiobuf_done: propagate completion to the master buffer.
1977 *
1978 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1979 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1980 */
1981
1982 void
1983 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1984 {
1985
1986 if (donebytes == 0) {
1987 return;
1988 }
1989 mutex_enter(mbp->b_objlock);
1990 KASSERT(mbp->b_resid >= donebytes);
1991 mbp->b_resid -= donebytes;
1992 mbp->b_error = error;
1993 if (mbp->b_resid == 0) {
1994 mutex_exit(mbp->b_objlock);
1995 biodone(mbp);
1996 } else
1997 mutex_exit(mbp->b_objlock);
1998 }
1999
2000 void
2001 buf_init(buf_t *bp)
2002 {
2003
2004 LIST_INIT(&bp->b_dep);
2005 cv_init(&bp->b_busy, "biolock");
2006 cv_init(&bp->b_done, "biowait");
2007 bp->b_dev = NODEV;
2008 bp->b_error = 0;
2009 bp->b_flags = 0;
2010 bp->b_cflags = 0;
2011 bp->b_oflags = 0;
2012 bp->b_objlock = &buffer_lock;
2013 bp->b_iodone = NULL;
2014 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2015 }
2016
2017 void
2018 buf_destroy(buf_t *bp)
2019 {
2020
2021 cv_destroy(&bp->b_done);
2022 cv_destroy(&bp->b_busy);
2023 }
2024
2025 int
2026 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2027 {
2028 int error;
2029
2030 KASSERT(mutex_owned(&bufcache_lock));
2031
2032 if ((bp->b_cflags & BC_BUSY) != 0) {
2033 if (curlwp == uvm.pagedaemon_lwp)
2034 return EDEADLK;
2035 bp->b_cflags |= BC_WANTED;
2036 bref(bp);
2037 if (interlock != NULL)
2038 mutex_exit(interlock);
2039 if (intr) {
2040 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2041 timo);
2042 } else {
2043 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2044 timo);
2045 }
2046 brele(bp);
2047 if (interlock != NULL)
2048 mutex_enter(interlock);
2049 if (error != 0)
2050 return error;
2051 return EPASSTHROUGH;
2052 }
2053 bp->b_cflags |= BC_BUSY;
2054
2055 return 0;
2056 }
2057