vfs_bio.c revision 1.197 1 /* $NetBSD: vfs_bio.c,v 1.197 2008/05/05 17:11:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * Some references:
104 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
105 * Leffler, et al.: The Design and Implementation of the 4.3BSD
106 * UNIX Operating System (Addison Welley, 1989)
107 */
108
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.197 2008/05/05 17:11:17 ad Exp $");
111
112 #include "fs_ffs.h"
113 #include "opt_bufcache.h"
114
115 #include <sys/param.h>
116 #include <sys/systm.h>
117 #include <sys/kernel.h>
118 #include <sys/proc.h>
119 #include <sys/buf.h>
120 #include <sys/vnode.h>
121 #include <sys/mount.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sysctl.h>
124 #include <sys/conf.h>
125 #include <sys/kauth.h>
126 #include <sys/intr.h>
127 #include <sys/cpu.h>
128
129 #include <uvm/uvm.h>
130
131 #include <miscfs/specfs/specdev.h>
132
133 #ifndef BUFPAGES
134 # define BUFPAGES 0
135 #endif
136
137 #ifdef BUFCACHE
138 # if (BUFCACHE < 5) || (BUFCACHE > 95)
139 # error BUFCACHE is not between 5 and 95
140 # endif
141 #else
142 # define BUFCACHE 15
143 #endif
144
145 u_int nbuf; /* XXX - for softdep_lockedbufs */
146 u_int bufpages = BUFPAGES; /* optional hardwired count */
147 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
148
149 /* Function prototypes */
150 struct bqueue;
151
152 static void buf_setwm(void);
153 static int buf_trim(void);
154 static void *bufpool_page_alloc(struct pool *, int);
155 static void bufpool_page_free(struct pool *, void *);
156 static buf_t *bio_doread(struct vnode *, daddr_t, int,
157 kauth_cred_t, int);
158 static buf_t *getnewbuf(int, int, int);
159 static int buf_lotsfree(void);
160 static int buf_canrelease(void);
161 static u_long buf_mempoolidx(u_long);
162 static u_long buf_roundsize(u_long);
163 static void *buf_malloc(size_t);
164 static void buf_mrelease(void *, size_t);
165 static void binsheadfree(buf_t *, struct bqueue *);
166 static void binstailfree(buf_t *, struct bqueue *);
167 int count_lock_queue(void); /* XXX */
168 #ifdef DEBUG
169 static int checkfreelist(buf_t *, struct bqueue *);
170 #endif
171 static void biointr(void *);
172 static void biodone2(buf_t *);
173 static void bref(buf_t *);
174 static void brele(buf_t *);
175
176 /*
177 * Definitions for the buffer hash lists.
178 */
179 #define BUFHASH(dvp, lbn) \
180 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
181 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
182 u_long bufhash;
183 struct bqueue bufqueues[BQUEUES];
184 const struct bio_ops *bioopsp; /* I/O operation notification */
185
186 static kcondvar_t needbuffer_cv;
187
188 /*
189 * Buffer queue lock.
190 */
191 kmutex_t bufcache_lock;
192 kmutex_t buffer_lock;
193
194 /* Software ISR for completed transfers. */
195 static void *biodone_sih;
196
197 /* Buffer pool for I/O buffers. */
198 static pool_cache_t buf_cache;
199 static pool_cache_t bufio_cache;
200
201 /* XXX - somewhat gross.. */
202 #if MAXBSIZE == 0x2000
203 #define NMEMPOOLS 5
204 #elif MAXBSIZE == 0x4000
205 #define NMEMPOOLS 6
206 #elif MAXBSIZE == 0x8000
207 #define NMEMPOOLS 7
208 #else
209 #define NMEMPOOLS 8
210 #endif
211
212 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
213 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
214 #error update vfs_bio buffer memory parameters
215 #endif
216
217 /* Buffer memory pools */
218 static struct pool bmempools[NMEMPOOLS];
219
220 static struct vm_map *buf_map;
221
222 /*
223 * Buffer memory pool allocator.
224 */
225 static void *
226 bufpool_page_alloc(struct pool *pp, int flags)
227 {
228
229 return (void *)uvm_km_alloc(buf_map,
230 MAXBSIZE, MAXBSIZE,
231 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
232 | UVM_KMF_WIRED);
233 }
234
235 static void
236 bufpool_page_free(struct pool *pp, void *v)
237 {
238
239 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
240 }
241
242 static struct pool_allocator bufmempool_allocator = {
243 .pa_alloc = bufpool_page_alloc,
244 .pa_free = bufpool_page_free,
245 .pa_pagesz = MAXBSIZE,
246 };
247
248 /* Buffer memory management variables */
249 u_long bufmem_valimit;
250 u_long bufmem_hiwater;
251 u_long bufmem_lowater;
252 u_long bufmem;
253
254 /*
255 * MD code can call this to set a hard limit on the amount
256 * of virtual memory used by the buffer cache.
257 */
258 int
259 buf_setvalimit(vsize_t sz)
260 {
261
262 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
263 if (sz < NMEMPOOLS * MAXBSIZE)
264 return EINVAL;
265
266 bufmem_valimit = sz;
267 return 0;
268 }
269
270 static void
271 buf_setwm(void)
272 {
273
274 bufmem_hiwater = buf_memcalc();
275 /* lowater is approx. 2% of memory (with bufcache = 15) */
276 #define BUFMEM_WMSHIFT 3
277 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
278 if (bufmem_hiwater < BUFMEM_HIWMMIN)
279 /* Ensure a reasonable minimum value */
280 bufmem_hiwater = BUFMEM_HIWMMIN;
281 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
282 }
283
284 #ifdef DEBUG
285 int debug_verify_freelist = 0;
286 static int
287 checkfreelist(buf_t *bp, struct bqueue *dp)
288 {
289 buf_t *b;
290
291 if (!debug_verify_freelist)
292 return 1;
293
294 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
295 if (b == bp)
296 return 1;
297 }
298
299 return 0;
300 }
301 #endif
302
303 /*
304 * Insq/Remq for the buffer hash lists.
305 * Call with buffer queue locked.
306 */
307 static void
308 binsheadfree(buf_t *bp, struct bqueue *dp)
309 {
310
311 KASSERT(bp->b_freelistindex == -1);
312 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
313 dp->bq_bytes += bp->b_bufsize;
314 bp->b_freelistindex = dp - bufqueues;
315 }
316
317 static void
318 binstailfree(buf_t *bp, struct bqueue *dp)
319 {
320
321 KASSERT(bp->b_freelistindex == -1);
322 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
323 dp->bq_bytes += bp->b_bufsize;
324 bp->b_freelistindex = dp - bufqueues;
325 }
326
327 void
328 bremfree(buf_t *bp)
329 {
330 struct bqueue *dp;
331 int bqidx = bp->b_freelistindex;
332
333 KASSERT(mutex_owned(&bufcache_lock));
334
335 KASSERT(bqidx != -1);
336 dp = &bufqueues[bqidx];
337 KDASSERT(checkfreelist(bp, dp));
338 KASSERT(dp->bq_bytes >= bp->b_bufsize);
339 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
340 dp->bq_bytes -= bp->b_bufsize;
341
342 /* For the sysctl helper. */
343 if (bp == dp->bq_marker)
344 dp->bq_marker = NULL;
345
346 #if defined(DIAGNOSTIC)
347 bp->b_freelistindex = -1;
348 #endif /* defined(DIAGNOSTIC) */
349 }
350
351 /*
352 * Add a reference to an buffer structure that came from buf_cache.
353 */
354 static inline void
355 bref(buf_t *bp)
356 {
357
358 KASSERT(mutex_owned(&bufcache_lock));
359 KASSERT(bp->b_refcnt > 0);
360
361 bp->b_refcnt++;
362 }
363
364 /*
365 * Free an unused buffer structure that came from buf_cache.
366 */
367 static inline void
368 brele(buf_t *bp)
369 {
370
371 KASSERT(mutex_owned(&bufcache_lock));
372 KASSERT(bp->b_refcnt > 0);
373
374 if (bp->b_refcnt-- == 1) {
375 buf_destroy(bp);
376 #ifdef DEBUG
377 memset((char *)bp, 0, sizeof(*bp));
378 #endif
379 pool_cache_put(buf_cache, bp);
380 }
381 }
382
383 /*
384 * note that for some ports this is used by pmap bootstrap code to
385 * determine kva size.
386 */
387 u_long
388 buf_memcalc(void)
389 {
390 u_long n;
391
392 /*
393 * Determine the upper bound of memory to use for buffers.
394 *
395 * - If bufpages is specified, use that as the number
396 * pages.
397 *
398 * - Otherwise, use bufcache as the percentage of
399 * physical memory.
400 */
401 if (bufpages != 0) {
402 n = bufpages;
403 } else {
404 if (bufcache < 5) {
405 printf("forcing bufcache %d -> 5", bufcache);
406 bufcache = 5;
407 }
408 if (bufcache > 95) {
409 printf("forcing bufcache %d -> 95", bufcache);
410 bufcache = 95;
411 }
412 n = calc_cache_size(buf_map, bufcache,
413 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
414 / PAGE_SIZE;
415 }
416
417 n <<= PAGE_SHIFT;
418 if (bufmem_valimit != 0 && n > bufmem_valimit)
419 n = bufmem_valimit;
420
421 return (n);
422 }
423
424 /*
425 * Initialize buffers and hash links for buffers.
426 */
427 void
428 bufinit(void)
429 {
430 struct bqueue *dp;
431 int use_std;
432 u_int i;
433
434 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
435 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
436 cv_init(&needbuffer_cv, "needbuf");
437
438 if (bufmem_valimit != 0) {
439 vaddr_t minaddr = 0, maxaddr;
440 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
441 bufmem_valimit, 0, false, 0);
442 if (buf_map == NULL)
443 panic("bufinit: cannot allocate submap");
444 } else
445 buf_map = kernel_map;
446
447 /*
448 * Initialize buffer cache memory parameters.
449 */
450 bufmem = 0;
451 buf_setwm();
452
453 /* On "small" machines use small pool page sizes where possible */
454 use_std = (physmem < atop(16*1024*1024));
455
456 /*
457 * Also use them on systems that can map the pool pages using
458 * a direct-mapped segment.
459 */
460 #ifdef PMAP_MAP_POOLPAGE
461 use_std = 1;
462 #endif
463
464 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
465 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
466 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
467 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
468
469 bufmempool_allocator.pa_backingmap = buf_map;
470 for (i = 0; i < NMEMPOOLS; i++) {
471 struct pool_allocator *pa;
472 struct pool *pp = &bmempools[i];
473 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
474 char *name = kmem_alloc(8, KM_SLEEP);
475 if (__predict_true(size >= 1024))
476 (void)snprintf(name, 8, "buf%dk", size / 1024);
477 else
478 (void)snprintf(name, 8, "buf%db", size);
479 pa = (size <= PAGE_SIZE && use_std)
480 ? &pool_allocator_nointr
481 : &bufmempool_allocator;
482 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
483 pool_setlowat(pp, 1);
484 pool_sethiwat(pp, 1);
485 }
486
487 /* Initialize the buffer queues */
488 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
489 TAILQ_INIT(&dp->bq_queue);
490 dp->bq_bytes = 0;
491 }
492
493 /*
494 * Estimate hash table size based on the amount of memory we
495 * intend to use for the buffer cache. The average buffer
496 * size is dependent on our clients (i.e. filesystems).
497 *
498 * For now, use an empirical 3K per buffer.
499 */
500 nbuf = (bufmem_hiwater / 1024) / 3;
501 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
502 }
503
504 void
505 bufinit2(void)
506 {
507
508 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
509 NULL);
510 if (biodone_sih == NULL)
511 panic("bufinit2: can't establish soft interrupt");
512 }
513
514 static int
515 buf_lotsfree(void)
516 {
517 int try, thresh;
518
519 /* Always allocate if doing copy on write */
520 if (curlwp->l_pflag & LP_UFSCOW)
521 return 1;
522
523 /* Always allocate if less than the low water mark. */
524 if (bufmem < bufmem_lowater)
525 return 1;
526
527 /* Never allocate if greater than the high water mark. */
528 if (bufmem > bufmem_hiwater)
529 return 0;
530
531 /* If there's anything on the AGE list, it should be eaten. */
532 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
533 return 0;
534
535 /*
536 * The probabily of getting a new allocation is inversely
537 * proportional to the current size of the cache, using
538 * a granularity of 16 steps.
539 */
540 try = random() & 0x0000000fL;
541
542 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
543 thresh = (bufmem - bufmem_lowater) /
544 ((bufmem_hiwater - bufmem_lowater) / 16);
545
546 if (try >= thresh)
547 return 1;
548
549 /* Otherwise don't allocate. */
550 return 0;
551 }
552
553 /*
554 * Return estimate of bytes we think need to be
555 * released to help resolve low memory conditions.
556 *
557 * => called with bufcache_lock held.
558 */
559 static int
560 buf_canrelease(void)
561 {
562 int pagedemand, ninvalid = 0;
563
564 KASSERT(mutex_owned(&bufcache_lock));
565
566 if (bufmem < bufmem_lowater)
567 return 0;
568
569 if (bufmem > bufmem_hiwater)
570 return bufmem - bufmem_hiwater;
571
572 ninvalid += bufqueues[BQ_AGE].bq_bytes;
573
574 pagedemand = uvmexp.freetarg - uvmexp.free;
575 if (pagedemand < 0)
576 return ninvalid;
577 return MAX(ninvalid, MIN(2 * MAXBSIZE,
578 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
579 }
580
581 /*
582 * Buffer memory allocation helper functions
583 */
584 static u_long
585 buf_mempoolidx(u_long size)
586 {
587 u_int n = 0;
588
589 size -= 1;
590 size >>= MEMPOOL_INDEX_OFFSET;
591 while (size) {
592 size >>= 1;
593 n += 1;
594 }
595 if (n >= NMEMPOOLS)
596 panic("buf mem pool index %d", n);
597 return n;
598 }
599
600 static u_long
601 buf_roundsize(u_long size)
602 {
603 /* Round up to nearest power of 2 */
604 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
605 }
606
607 static void *
608 buf_malloc(size_t size)
609 {
610 u_int n = buf_mempoolidx(size);
611 void *addr;
612
613 while (1) {
614 addr = pool_get(&bmempools[n], PR_NOWAIT);
615 if (addr != NULL)
616 break;
617
618 /* No memory, see if we can free some. If so, try again */
619 mutex_enter(&bufcache_lock);
620 if (buf_drain(1) > 0) {
621 mutex_exit(&bufcache_lock);
622 continue;
623 }
624
625 if (curlwp == uvm.pagedaemon_lwp) {
626 mutex_exit(&bufcache_lock);
627 return NULL;
628 }
629
630 /* Wait for buffers to arrive on the LRU queue */
631 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
632 mutex_exit(&bufcache_lock);
633 }
634
635 return addr;
636 }
637
638 static void
639 buf_mrelease(void *addr, size_t size)
640 {
641
642 pool_put(&bmempools[buf_mempoolidx(size)], addr);
643 }
644
645 /*
646 * bread()/breadn() helper.
647 */
648 static buf_t *
649 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
650 int async)
651 {
652 buf_t *bp;
653 struct mount *mp;
654
655 bp = getblk(vp, blkno, size, 0, 0);
656
657 #ifdef DIAGNOSTIC
658 if (bp == NULL) {
659 panic("bio_doread: no such buf");
660 }
661 #endif
662
663 /*
664 * If buffer does not have data valid, start a read.
665 * Note that if buffer is BC_INVAL, getblk() won't return it.
666 * Therefore, it's valid if its I/O has completed or been delayed.
667 */
668 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
669 /* Start I/O for the buffer. */
670 SET(bp->b_flags, B_READ | async);
671 if (async)
672 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
673 else
674 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
675 VOP_STRATEGY(vp, bp);
676
677 /* Pay for the read. */
678 curlwp->l_ru.ru_inblock++;
679 } else if (async)
680 brelse(bp, 0);
681
682 if (vp->v_type == VBLK)
683 mp = vp->v_specmountpoint;
684 else
685 mp = vp->v_mount;
686
687 /*
688 * Collect statistics on synchronous and asynchronous reads.
689 * Reads from block devices are charged to their associated
690 * filesystem (if any).
691 */
692 if (mp != NULL) {
693 if (async == 0)
694 mp->mnt_stat.f_syncreads++;
695 else
696 mp->mnt_stat.f_asyncreads++;
697 }
698
699 return (bp);
700 }
701
702 /*
703 * Read a disk block.
704 * This algorithm described in Bach (p.54).
705 */
706 int
707 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
708 buf_t **bpp)
709 {
710 buf_t *bp;
711
712 /* Get buffer for block. */
713 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
714
715 /* Wait for the read to complete, and return result. */
716 return (biowait(bp));
717 }
718
719 /*
720 * Read-ahead multiple disk blocks. The first is sync, the rest async.
721 * Trivial modification to the breada algorithm presented in Bach (p.55).
722 */
723 int
724 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
725 int *rasizes, int nrablks, kauth_cred_t cred, buf_t **bpp)
726 {
727 buf_t *bp;
728 int i;
729
730 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
731
732 /*
733 * For each of the read-ahead blocks, start a read, if necessary.
734 */
735 mutex_enter(&bufcache_lock);
736 for (i = 0; i < nrablks; i++) {
737 /* If it's in the cache, just go on to next one. */
738 if (incore(vp, rablks[i]))
739 continue;
740
741 /* Get a buffer for the read-ahead block */
742 mutex_exit(&bufcache_lock);
743 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
744 mutex_enter(&bufcache_lock);
745 }
746 mutex_exit(&bufcache_lock);
747
748 /* Otherwise, we had to start a read for it; wait until it's valid. */
749 return (biowait(bp));
750 }
751
752 /*
753 * Read with single-block read-ahead. Defined in Bach (p.55), but
754 * implemented as a call to breadn().
755 * XXX for compatibility with old file systems.
756 */
757 int
758 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
759 int rabsize, kauth_cred_t cred, buf_t **bpp)
760 {
761
762 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
763 }
764
765 /*
766 * Block write. Described in Bach (p.56)
767 */
768 int
769 bwrite(buf_t *bp)
770 {
771 int rv, sync, wasdelayed;
772 struct vnode *vp;
773 struct mount *mp;
774
775 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
776
777 vp = bp->b_vp;
778 if (vp != NULL) {
779 KASSERT(bp->b_objlock == &vp->v_interlock);
780 if (vp->v_type == VBLK)
781 mp = vp->v_specmountpoint;
782 else
783 mp = vp->v_mount;
784 } else {
785 mp = NULL;
786 }
787
788 /*
789 * Remember buffer type, to switch on it later. If the write was
790 * synchronous, but the file system was mounted with MNT_ASYNC,
791 * convert it to a delayed write.
792 * XXX note that this relies on delayed tape writes being converted
793 * to async, not sync writes (which is safe, but ugly).
794 */
795 sync = !ISSET(bp->b_flags, B_ASYNC);
796 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
797 bdwrite(bp);
798 return (0);
799 }
800
801 /*
802 * Collect statistics on synchronous and asynchronous writes.
803 * Writes to block devices are charged to their associated
804 * filesystem (if any).
805 */
806 if (mp != NULL) {
807 if (sync)
808 mp->mnt_stat.f_syncwrites++;
809 else
810 mp->mnt_stat.f_asyncwrites++;
811 }
812
813 /*
814 * Pay for the I/O operation and make sure the buf is on the correct
815 * vnode queue.
816 */
817 bp->b_error = 0;
818 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
819 CLR(bp->b_flags, B_READ);
820 if (wasdelayed) {
821 mutex_enter(&bufcache_lock);
822 mutex_enter(bp->b_objlock);
823 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
824 reassignbuf(bp, bp->b_vp);
825 mutex_exit(&bufcache_lock);
826 } else {
827 curlwp->l_ru.ru_oublock++;
828 mutex_enter(bp->b_objlock);
829 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
830 }
831 if (vp != NULL)
832 vp->v_numoutput++;
833 mutex_exit(bp->b_objlock);
834
835 /* Initiate disk write. */
836 if (sync)
837 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
838 else
839 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
840
841 VOP_STRATEGY(vp, bp);
842
843 if (sync) {
844 /* If I/O was synchronous, wait for it to complete. */
845 rv = biowait(bp);
846
847 /* Release the buffer. */
848 brelse(bp, 0);
849
850 return (rv);
851 } else {
852 return (0);
853 }
854 }
855
856 int
857 vn_bwrite(void *v)
858 {
859 struct vop_bwrite_args *ap = v;
860
861 return (bwrite(ap->a_bp));
862 }
863
864 /*
865 * Delayed write.
866 *
867 * The buffer is marked dirty, but is not queued for I/O.
868 * This routine should be used when the buffer is expected
869 * to be modified again soon, typically a small write that
870 * partially fills a buffer.
871 *
872 * NB: magnetic tapes cannot be delayed; they must be
873 * written in the order that the writes are requested.
874 *
875 * Described in Leffler, et al. (pp. 208-213).
876 */
877 void
878 bdwrite(buf_t *bp)
879 {
880
881 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
882
883 /* If this is a tape block, write the block now. */
884 if (bdev_type(bp->b_dev) == D_TAPE) {
885 bawrite(bp);
886 return;
887 }
888
889 /*
890 * If the block hasn't been seen before:
891 * (1) Mark it as having been seen,
892 * (2) Charge for the write,
893 * (3) Make sure it's on its vnode's correct block list.
894 */
895 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
896
897 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
898 mutex_enter(&bufcache_lock);
899 mutex_enter(bp->b_objlock);
900 SET(bp->b_oflags, BO_DELWRI);
901 curlwp->l_ru.ru_oublock++;
902 reassignbuf(bp, bp->b_vp);
903 mutex_exit(&bufcache_lock);
904 } else {
905 mutex_enter(bp->b_objlock);
906 }
907 /* Otherwise, the "write" is done, so mark and release the buffer. */
908 CLR(bp->b_oflags, BO_DONE);
909 mutex_exit(bp->b_objlock);
910
911 brelse(bp, 0);
912 }
913
914 /*
915 * Asynchronous block write; just an asynchronous bwrite().
916 */
917 void
918 bawrite(buf_t *bp)
919 {
920
921 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
922
923 SET(bp->b_flags, B_ASYNC);
924 VOP_BWRITE(bp);
925 }
926
927 /*
928 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
929 * Call with the buffer interlock held.
930 *
931 * Note: called only from biodone() through ffs softdep's io_complete()
932 */
933 void
934 bdirty(buf_t *bp)
935 {
936
937 KASSERT(mutex_owned(&bufcache_lock));
938 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
939 KASSERT(mutex_owned(bp->b_objlock));
940 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
941
942 CLR(bp->b_cflags, BC_AGE);
943
944 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
945 SET(bp->b_oflags, BO_DELWRI);
946 curlwp->l_ru.ru_oublock++;
947 reassignbuf(bp, bp->b_vp);
948 }
949 }
950
951
952 /*
953 * Release a buffer on to the free lists.
954 * Described in Bach (p. 46).
955 */
956 void
957 brelsel(buf_t *bp, int set)
958 {
959 struct bqueue *bufq;
960 struct vnode *vp;
961
962 KASSERT(mutex_owned(&bufcache_lock));
963
964 SET(bp->b_cflags, set);
965
966 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
967 KASSERT(bp->b_iodone == NULL);
968
969 /* Wake up any processes waiting for any buffer to become free. */
970 cv_signal(&needbuffer_cv);
971
972 /* Wake up any proceeses waiting for _this_ buffer to become */
973 if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
974 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
975 cv_broadcast(&bp->b_busy);
976 }
977
978 /*
979 * Determine which queue the buffer should be on, then put it there.
980 */
981
982 /* If it's locked, don't report an error; try again later. */
983 if (ISSET(bp->b_flags, B_LOCKED))
984 bp->b_error = 0;
985
986 /* If it's not cacheable, or an error, mark it invalid. */
987 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
988 SET(bp->b_cflags, BC_INVAL);
989
990 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
991 /*
992 * This is a delayed write buffer that was just flushed to
993 * disk. It is still on the LRU queue. If it's become
994 * invalid, then we need to move it to a different queue;
995 * otherwise leave it in its current position.
996 */
997 CLR(bp->b_cflags, BC_VFLUSH);
998 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
999 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1000 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1001 goto already_queued;
1002 } else {
1003 bremfree(bp);
1004 }
1005 }
1006
1007 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1008 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1009 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1010
1011 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1012 /*
1013 * If it's invalid or empty, dissociate it from its vnode
1014 * and put on the head of the appropriate queue.
1015 */
1016 if (bioopsp != NULL)
1017 (*bioopsp->io_deallocate)(bp);
1018
1019 mutex_enter(bp->b_objlock);
1020 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1021 if ((vp = bp->b_vp) != NULL) {
1022 KASSERT(bp->b_objlock == &vp->v_interlock);
1023 reassignbuf(bp, bp->b_vp);
1024 brelvp(bp);
1025 mutex_exit(&vp->v_interlock);
1026 } else {
1027 KASSERT(bp->b_objlock == &buffer_lock);
1028 mutex_exit(bp->b_objlock);
1029 }
1030
1031 if (bp->b_bufsize <= 0)
1032 /* no data */
1033 goto already_queued;
1034 else
1035 /* invalid data */
1036 bufq = &bufqueues[BQ_AGE];
1037 binsheadfree(bp, bufq);
1038 } else {
1039 /*
1040 * It has valid data. Put it on the end of the appropriate
1041 * queue, so that it'll stick around for as long as possible.
1042 * If buf is AGE, but has dependencies, must put it on last
1043 * bufqueue to be scanned, ie LRU. This protects against the
1044 * livelock where BQ_AGE only has buffers with dependencies,
1045 * and we thus never get to the dependent buffers in BQ_LRU.
1046 */
1047 if (ISSET(bp->b_flags, B_LOCKED)) {
1048 /* locked in core */
1049 bufq = &bufqueues[BQ_LOCKED];
1050 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1051 /* valid data */
1052 bufq = &bufqueues[BQ_LRU];
1053 } else {
1054 /* stale but valid data */
1055 int has_deps;
1056
1057 if (bioopsp != NULL)
1058 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1059 else
1060 has_deps = 0;
1061 bufq = has_deps ? &bufqueues[BQ_LRU] :
1062 &bufqueues[BQ_AGE];
1063 }
1064 binstailfree(bp, bufq);
1065 }
1066 already_queued:
1067 /* Unlock the buffer. */
1068 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1069 CLR(bp->b_flags, B_ASYNC);
1070
1071 if (bp->b_bufsize <= 0)
1072 brele(bp);
1073 }
1074
1075 void
1076 brelse(buf_t *bp, int set)
1077 {
1078
1079 mutex_enter(&bufcache_lock);
1080 brelsel(bp, set);
1081 mutex_exit(&bufcache_lock);
1082 }
1083
1084 /*
1085 * Determine if a block is in the cache.
1086 * Just look on what would be its hash chain. If it's there, return
1087 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1088 * we normally don't return the buffer, unless the caller explicitly
1089 * wants us to.
1090 */
1091 buf_t *
1092 incore(struct vnode *vp, daddr_t blkno)
1093 {
1094 buf_t *bp;
1095
1096 KASSERT(mutex_owned(&bufcache_lock));
1097
1098 /* Search hash chain */
1099 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1100 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1101 !ISSET(bp->b_cflags, BC_INVAL)) {
1102 KASSERT(bp->b_objlock == &vp->v_interlock);
1103 return (bp);
1104 }
1105 }
1106
1107 return (NULL);
1108 }
1109
1110 /*
1111 * Get a block of requested size that is associated with
1112 * a given vnode and block offset. If it is found in the
1113 * block cache, mark it as having been found, make it busy
1114 * and return it. Otherwise, return an empty block of the
1115 * correct size. It is up to the caller to insure that the
1116 * cached blocks be of the correct size.
1117 */
1118 buf_t *
1119 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1120 {
1121 int err, preserve;
1122 buf_t *bp;
1123
1124 mutex_enter(&bufcache_lock);
1125 loop:
1126 bp = incore(vp, blkno);
1127 if (bp != NULL) {
1128 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1129 if (err != 0) {
1130 if (err == EPASSTHROUGH)
1131 goto loop;
1132 mutex_exit(&bufcache_lock);
1133 return (NULL);
1134 }
1135 #ifdef DIAGNOSTIC
1136 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1137 bp->b_bcount < size && vp->v_type != VBLK)
1138 panic("getblk: block size invariant failed");
1139 #endif
1140 bremfree(bp);
1141 preserve = 1;
1142 } else {
1143 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1144 goto loop;
1145
1146 if (incore(vp, blkno) != NULL) {
1147 /* The block has come into memory in the meantime. */
1148 brelsel(bp, 0);
1149 goto loop;
1150 }
1151
1152 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1153 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1154 mutex_enter(&vp->v_interlock);
1155 bgetvp(vp, bp);
1156 mutex_exit(&vp->v_interlock);
1157 preserve = 0;
1158 }
1159 mutex_exit(&bufcache_lock);
1160
1161 /*
1162 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1163 * if we re-size buffers here.
1164 */
1165 if (ISSET(bp->b_flags, B_LOCKED)) {
1166 KASSERT(bp->b_bufsize >= size);
1167 } else {
1168 if (allocbuf(bp, size, preserve)) {
1169 mutex_enter(&bufcache_lock);
1170 LIST_REMOVE(bp, b_hash);
1171 mutex_exit(&bufcache_lock);
1172 brelse(bp, BC_INVAL);
1173 return NULL;
1174 }
1175 }
1176 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1177 return (bp);
1178 }
1179
1180 /*
1181 * Get an empty, disassociated buffer of given size.
1182 */
1183 buf_t *
1184 geteblk(int size)
1185 {
1186 buf_t *bp;
1187 int error;
1188
1189 mutex_enter(&bufcache_lock);
1190 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1191 ;
1192
1193 SET(bp->b_cflags, BC_INVAL);
1194 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1195 mutex_exit(&bufcache_lock);
1196 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1197 error = allocbuf(bp, size, 0);
1198 KASSERT(error == 0);
1199 return (bp);
1200 }
1201
1202 /*
1203 * Expand or contract the actual memory allocated to a buffer.
1204 *
1205 * If the buffer shrinks, data is lost, so it's up to the
1206 * caller to have written it out *first*; this routine will not
1207 * start a write. If the buffer grows, it's the callers
1208 * responsibility to fill out the buffer's additional contents.
1209 */
1210 int
1211 allocbuf(buf_t *bp, int size, int preserve)
1212 {
1213 vsize_t oldsize, desired_size;
1214 void *addr;
1215 int delta;
1216
1217 desired_size = buf_roundsize(size);
1218 if (desired_size > MAXBSIZE)
1219 printf("allocbuf: buffer larger than MAXBSIZE requested");
1220
1221 bp->b_bcount = size;
1222
1223 oldsize = bp->b_bufsize;
1224 if (oldsize == desired_size)
1225 return 0;
1226
1227 /*
1228 * If we want a buffer of a different size, re-allocate the
1229 * buffer's memory; copy old content only if needed.
1230 */
1231 addr = buf_malloc(desired_size);
1232 if (addr == NULL)
1233 return ENOMEM;
1234 if (preserve)
1235 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1236 if (bp->b_data != NULL)
1237 buf_mrelease(bp->b_data, oldsize);
1238 bp->b_data = addr;
1239 bp->b_bufsize = desired_size;
1240
1241 /*
1242 * Update overall buffer memory counter (protected by bufcache_lock)
1243 */
1244 delta = (long)desired_size - (long)oldsize;
1245
1246 mutex_enter(&bufcache_lock);
1247 if ((bufmem += delta) > bufmem_hiwater) {
1248 /*
1249 * Need to trim overall memory usage.
1250 */
1251 while (buf_canrelease()) {
1252 if (curcpu()->ci_schedstate.spc_flags &
1253 SPCF_SHOULDYIELD) {
1254 mutex_exit(&bufcache_lock);
1255 preempt();
1256 mutex_enter(&bufcache_lock);
1257 }
1258 if (buf_trim() == 0)
1259 break;
1260 }
1261 }
1262 mutex_exit(&bufcache_lock);
1263 return 0;
1264 }
1265
1266 /*
1267 * Find a buffer which is available for use.
1268 * Select something from a free list.
1269 * Preference is to AGE list, then LRU list.
1270 *
1271 * Called with the buffer queues locked.
1272 * Return buffer locked.
1273 */
1274 buf_t *
1275 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1276 {
1277 buf_t *bp;
1278 struct vnode *vp;
1279
1280 start:
1281 KASSERT(mutex_owned(&bufcache_lock));
1282
1283 /*
1284 * Get a new buffer from the pool.
1285 */
1286 if (!from_bufq && buf_lotsfree()) {
1287 mutex_exit(&bufcache_lock);
1288 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1289 if (bp != NULL) {
1290 memset((char *)bp, 0, sizeof(*bp));
1291 buf_init(bp);
1292 bp->b_dev = NODEV;
1293 bp->b_vnbufs.le_next = NOLIST;
1294 bp->b_cflags = BC_BUSY;
1295 bp->b_refcnt = 1;
1296 mutex_enter(&bufcache_lock);
1297 #if defined(DIAGNOSTIC)
1298 bp->b_freelistindex = -1;
1299 #endif /* defined(DIAGNOSTIC) */
1300 return (bp);
1301 }
1302 mutex_enter(&bufcache_lock);
1303 }
1304
1305 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1306 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1307 bremfree(bp);
1308 } else {
1309 /*
1310 * XXX: !from_bufq should be removed.
1311 */
1312 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1313 /* wait for a free buffer of any kind */
1314 if ((slpflag & PCATCH) != 0)
1315 (void)cv_timedwait_sig(&needbuffer_cv,
1316 &bufcache_lock, slptimeo);
1317 else
1318 (void)cv_timedwait(&needbuffer_cv,
1319 &bufcache_lock, slptimeo);
1320 }
1321 return (NULL);
1322 }
1323
1324 #ifdef DIAGNOSTIC
1325 if (bp->b_bufsize <= 0)
1326 panic("buffer %p: on queue but empty", bp);
1327 #endif
1328
1329 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1330 /*
1331 * This is a delayed write buffer being flushed to disk. Make
1332 * sure it gets aged out of the queue when it's finished, and
1333 * leave it off the LRU queue.
1334 */
1335 CLR(bp->b_cflags, BC_VFLUSH);
1336 SET(bp->b_cflags, BC_AGE);
1337 goto start;
1338 }
1339
1340 /* Buffer is no longer on free lists. */
1341 SET(bp->b_cflags, BC_BUSY);
1342
1343 /*
1344 * If buffer was a delayed write, start it and return NULL
1345 * (since we might sleep while starting the write).
1346 */
1347 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1348 /*
1349 * This buffer has gone through the LRU, so make sure it gets
1350 * reused ASAP.
1351 */
1352 SET(bp->b_cflags, BC_AGE);
1353 mutex_exit(&bufcache_lock);
1354 bawrite(bp);
1355 mutex_enter(&bufcache_lock);
1356 return (NULL);
1357 }
1358
1359 vp = bp->b_vp;
1360 if (bioopsp != NULL)
1361 (*bioopsp->io_deallocate)(bp);
1362
1363 /* clear out various other fields */
1364 bp->b_cflags = BC_BUSY;
1365 bp->b_oflags = 0;
1366 bp->b_flags = 0;
1367 bp->b_dev = NODEV;
1368 bp->b_blkno = 0;
1369 bp->b_lblkno = 0;
1370 bp->b_rawblkno = 0;
1371 bp->b_iodone = 0;
1372 bp->b_error = 0;
1373 bp->b_resid = 0;
1374 bp->b_bcount = 0;
1375
1376 LIST_REMOVE(bp, b_hash);
1377
1378 /* Disassociate us from our vnode, if we had one... */
1379 if (vp != NULL) {
1380 mutex_enter(&vp->v_interlock);
1381 brelvp(bp);
1382 mutex_exit(&vp->v_interlock);
1383 }
1384
1385 return (bp);
1386 }
1387
1388 /*
1389 * Attempt to free an aged buffer off the queues.
1390 * Called with queue lock held.
1391 * Returns the amount of buffer memory freed.
1392 */
1393 static int
1394 buf_trim(void)
1395 {
1396 buf_t *bp;
1397 long size = 0;
1398
1399 KASSERT(mutex_owned(&bufcache_lock));
1400
1401 /* Instruct getnewbuf() to get buffers off the queues */
1402 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1403 return 0;
1404
1405 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1406 size = bp->b_bufsize;
1407 bufmem -= size;
1408 if (size > 0) {
1409 buf_mrelease(bp->b_data, size);
1410 bp->b_bcount = bp->b_bufsize = 0;
1411 }
1412 /* brelse() will return the buffer to the global buffer pool */
1413 brelsel(bp, 0);
1414 return size;
1415 }
1416
1417 int
1418 buf_drain(int n)
1419 {
1420 int size = 0, sz;
1421
1422 KASSERT(mutex_owned(&bufcache_lock));
1423
1424 while (size < n && bufmem > bufmem_lowater) {
1425 sz = buf_trim();
1426 if (sz <= 0)
1427 break;
1428 size += sz;
1429 }
1430
1431 return size;
1432 }
1433
1434 /*
1435 * Wait for operations on the buffer to complete.
1436 * When they do, extract and return the I/O's error value.
1437 */
1438 int
1439 biowait(buf_t *bp)
1440 {
1441
1442 mutex_enter(bp->b_objlock);
1443 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1444 cv_wait(&bp->b_done, bp->b_objlock);
1445 mutex_exit(bp->b_objlock);
1446
1447 return bp->b_error;
1448 }
1449
1450 /*
1451 * Mark I/O complete on a buffer.
1452 *
1453 * If a callback has been requested, e.g. the pageout
1454 * daemon, do so. Otherwise, awaken waiting processes.
1455 *
1456 * [ Leffler, et al., says on p.247:
1457 * "This routine wakes up the blocked process, frees the buffer
1458 * for an asynchronous write, or, for a request by the pagedaemon
1459 * process, invokes a procedure specified in the buffer structure" ]
1460 *
1461 * In real life, the pagedaemon (or other system processes) wants
1462 * to do async stuff to, and doesn't want the buffer brelse()'d.
1463 * (for swap pager, that puts swap buffers on the free lists (!!!),
1464 * for the vn device, that puts malloc'd buffers on the free lists!)
1465 */
1466 void
1467 biodone(buf_t *bp)
1468 {
1469 int s;
1470
1471 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1472
1473 if (cpu_intr_p()) {
1474 /* From interrupt mode: defer to a soft interrupt. */
1475 s = splvm();
1476 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1477 softint_schedule(biodone_sih);
1478 splx(s);
1479 } else {
1480 /* Process now - the buffer may be freed soon. */
1481 biodone2(bp);
1482 }
1483 }
1484
1485 static void
1486 biodone2(buf_t *bp)
1487 {
1488 void (*callout)(buf_t *);
1489
1490 if (bioopsp != NULL)
1491 (*bioopsp->io_complete)(bp);
1492
1493 mutex_enter(bp->b_objlock);
1494 /* Note that the transfer is done. */
1495 if (ISSET(bp->b_oflags, BO_DONE))
1496 panic("biodone2 already");
1497 CLR(bp->b_flags, B_COWDONE);
1498 SET(bp->b_oflags, BO_DONE);
1499 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1500
1501 /* Wake up waiting writers. */
1502 if (!ISSET(bp->b_flags, B_READ))
1503 vwakeup(bp);
1504
1505 if ((callout = bp->b_iodone) != NULL) {
1506 /* Note callout done, then call out. */
1507 KERNEL_LOCK(1, NULL); /* XXXSMP */
1508 bp->b_iodone = NULL;
1509 mutex_exit(bp->b_objlock);
1510 (*callout)(bp);
1511 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1512 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1513 /* If async, release. */
1514 mutex_exit(bp->b_objlock);
1515 brelse(bp, 0);
1516 } else {
1517 /* Otherwise just wake up waiters in biowait(). */
1518 cv_broadcast(&bp->b_done);
1519 mutex_exit(bp->b_objlock);
1520 }
1521 }
1522
1523 static void
1524 biointr(void *cookie)
1525 {
1526 struct cpu_info *ci;
1527 buf_t *bp;
1528 int s;
1529
1530 ci = curcpu();
1531
1532 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1533 KASSERT(curcpu() == ci);
1534
1535 s = splvm();
1536 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1537 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1538 splx(s);
1539
1540 biodone2(bp);
1541 }
1542 }
1543
1544 /*
1545 * Return a count of buffers on the "locked" queue.
1546 */
1547 int
1548 count_lock_queue(void)
1549 {
1550 buf_t *bp;
1551 int n = 0;
1552
1553 mutex_enter(&bufcache_lock);
1554 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1555 n++;
1556 mutex_exit(&bufcache_lock);
1557 return (n);
1558 }
1559
1560 /*
1561 * Wait for all buffers to complete I/O
1562 * Return the number of "stuck" buffers.
1563 */
1564 int
1565 buf_syncwait(void)
1566 {
1567 buf_t *bp;
1568 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1569
1570 dcount = 10000;
1571 for (iter = 0; iter < 20;) {
1572 mutex_enter(&bufcache_lock);
1573 nbusy = 0;
1574 for (ihash = 0; ihash < bufhash+1; ihash++) {
1575 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1576 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1577 nbusy += ((bp->b_flags & B_READ) == 0);
1578 /*
1579 * With soft updates, some buffers that are
1580 * written will be remarked as dirty until other
1581 * buffers are written.
1582 */
1583 if (bp->b_vp && bp->b_vp->v_mount
1584 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1585 && (bp->b_oflags & BO_DELWRI)) {
1586 bremfree(bp);
1587 bp->b_cflags |= BC_BUSY;
1588 nbusy++;
1589 mutex_exit(&bufcache_lock);
1590 bawrite(bp);
1591 if (dcount-- <= 0) {
1592 printf("softdep ");
1593 goto fail;
1594 }
1595 mutex_enter(&bufcache_lock);
1596 }
1597 }
1598 }
1599 mutex_exit(&bufcache_lock);
1600
1601 if (nbusy == 0)
1602 break;
1603 if (nbusy_prev == 0)
1604 nbusy_prev = nbusy;
1605 printf("%d ", nbusy);
1606 tsleep(&nbusy, PRIBIO, "bflush",
1607 (iter == 0) ? 1 : hz / 25 * iter);
1608 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1609 iter++;
1610 else
1611 nbusy_prev = nbusy;
1612 }
1613
1614 if (nbusy) {
1615 fail:;
1616 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1617 printf("giving up\nPrinting vnodes for busy buffers\n");
1618 for (ihash = 0; ihash < bufhash+1; ihash++) {
1619 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1620 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1621 (bp->b_flags & B_READ) == 0)
1622 vprint(NULL, bp->b_vp);
1623 }
1624 }
1625 #endif
1626 }
1627
1628 return nbusy;
1629 }
1630
1631 static void
1632 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1633 {
1634
1635 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1636 o->b_error = i->b_error;
1637 o->b_prio = i->b_prio;
1638 o->b_dev = i->b_dev;
1639 o->b_bufsize = i->b_bufsize;
1640 o->b_bcount = i->b_bcount;
1641 o->b_resid = i->b_resid;
1642 o->b_addr = PTRTOUINT64(i->b_data);
1643 o->b_blkno = i->b_blkno;
1644 o->b_rawblkno = i->b_rawblkno;
1645 o->b_iodone = PTRTOUINT64(i->b_iodone);
1646 o->b_proc = PTRTOUINT64(i->b_proc);
1647 o->b_vp = PTRTOUINT64(i->b_vp);
1648 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1649 o->b_lblkno = i->b_lblkno;
1650 }
1651
1652 #define KERN_BUFSLOP 20
1653 static int
1654 sysctl_dobuf(SYSCTLFN_ARGS)
1655 {
1656 buf_t *bp;
1657 struct buf_sysctl bs;
1658 struct bqueue *bq;
1659 char *dp;
1660 u_int i, op, arg;
1661 size_t len, needed, elem_size, out_size;
1662 int error, elem_count, retries;
1663
1664 if (namelen == 1 && name[0] == CTL_QUERY)
1665 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1666
1667 if (namelen != 4)
1668 return (EINVAL);
1669
1670 retries = 100;
1671 retry:
1672 dp = oldp;
1673 len = (oldp != NULL) ? *oldlenp : 0;
1674 op = name[0];
1675 arg = name[1];
1676 elem_size = name[2];
1677 elem_count = name[3];
1678 out_size = MIN(sizeof(bs), elem_size);
1679
1680 /*
1681 * at the moment, these are just "placeholders" to make the
1682 * API for retrieving kern.buf data more extensible in the
1683 * future.
1684 *
1685 * XXX kern.buf currently has "netbsd32" issues. hopefully
1686 * these will be resolved at a later point.
1687 */
1688 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1689 elem_size < 1 || elem_count < 0)
1690 return (EINVAL);
1691
1692 error = 0;
1693 needed = 0;
1694 sysctl_unlock();
1695 mutex_enter(&bufcache_lock);
1696 for (i = 0; i < BQUEUES; i++) {
1697 bq = &bufqueues[i];
1698 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1699 bq->bq_marker = bp;
1700 if (len >= elem_size && elem_count > 0) {
1701 sysctl_fillbuf(bp, &bs);
1702 mutex_exit(&bufcache_lock);
1703 error = copyout(&bs, dp, out_size);
1704 mutex_enter(&bufcache_lock);
1705 if (error)
1706 break;
1707 if (bq->bq_marker != bp) {
1708 /*
1709 * This sysctl node is only for
1710 * statistics. Retry; if the
1711 * queue keeps changing, then
1712 * bail out.
1713 */
1714 if (retries-- == 0) {
1715 error = EAGAIN;
1716 break;
1717 }
1718 mutex_exit(&bufcache_lock);
1719 goto retry;
1720 }
1721 dp += elem_size;
1722 len -= elem_size;
1723 }
1724 if (elem_count > 0) {
1725 needed += elem_size;
1726 if (elem_count != INT_MAX)
1727 elem_count--;
1728 }
1729 }
1730 if (error != 0)
1731 break;
1732 }
1733 mutex_exit(&bufcache_lock);
1734 sysctl_relock();
1735
1736 *oldlenp = needed;
1737 if (oldp == NULL)
1738 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1739
1740 return (error);
1741 }
1742
1743 static int
1744 sysctl_bufvm_update(SYSCTLFN_ARGS)
1745 {
1746 int t, error, rv;
1747 struct sysctlnode node;
1748
1749 node = *rnode;
1750 node.sysctl_data = &t;
1751 t = *(int *)rnode->sysctl_data;
1752 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1753 if (error || newp == NULL)
1754 return (error);
1755
1756 if (t < 0)
1757 return EINVAL;
1758 if (rnode->sysctl_data == &bufcache) {
1759 if (t > 100)
1760 return (EINVAL);
1761 bufcache = t;
1762 buf_setwm();
1763 } else if (rnode->sysctl_data == &bufmem_lowater) {
1764 if (bufmem_hiwater - t < 16)
1765 return (EINVAL);
1766 bufmem_lowater = t;
1767 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1768 if (t - bufmem_lowater < 16)
1769 return (EINVAL);
1770 bufmem_hiwater = t;
1771 } else
1772 return (EINVAL);
1773
1774 /* Drain until below new high water mark */
1775 sysctl_unlock();
1776 mutex_enter(&bufcache_lock);
1777 while ((t = bufmem - bufmem_hiwater) >= 0) {
1778 rv = buf_drain(t / (2 * 1024));
1779 if (rv <= 0)
1780 break;
1781 }
1782 mutex_exit(&bufcache_lock);
1783 sysctl_relock();
1784
1785 return 0;
1786 }
1787
1788 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1789 {
1790
1791 sysctl_createv(clog, 0, NULL, NULL,
1792 CTLFLAG_PERMANENT,
1793 CTLTYPE_NODE, "kern", NULL,
1794 NULL, 0, NULL, 0,
1795 CTL_KERN, CTL_EOL);
1796 sysctl_createv(clog, 0, NULL, NULL,
1797 CTLFLAG_PERMANENT,
1798 CTLTYPE_NODE, "buf",
1799 SYSCTL_DESCR("Kernel buffer cache information"),
1800 sysctl_dobuf, 0, NULL, 0,
1801 CTL_KERN, KERN_BUF, CTL_EOL);
1802 }
1803
1804 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1805 {
1806
1807 sysctl_createv(clog, 0, NULL, NULL,
1808 CTLFLAG_PERMANENT,
1809 CTLTYPE_NODE, "vm", NULL,
1810 NULL, 0, NULL, 0,
1811 CTL_VM, CTL_EOL);
1812
1813 sysctl_createv(clog, 0, NULL, NULL,
1814 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1815 CTLTYPE_INT, "bufcache",
1816 SYSCTL_DESCR("Percentage of physical memory to use for "
1817 "buffer cache"),
1818 sysctl_bufvm_update, 0, &bufcache, 0,
1819 CTL_VM, CTL_CREATE, CTL_EOL);
1820 sysctl_createv(clog, 0, NULL, NULL,
1821 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1822 CTLTYPE_INT, "bufmem",
1823 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1824 "cache"),
1825 NULL, 0, &bufmem, 0,
1826 CTL_VM, CTL_CREATE, CTL_EOL);
1827 sysctl_createv(clog, 0, NULL, NULL,
1828 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1829 CTLTYPE_INT, "bufmem_lowater",
1830 SYSCTL_DESCR("Minimum amount of kernel memory to "
1831 "reserve for buffer cache"),
1832 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1833 CTL_VM, CTL_CREATE, CTL_EOL);
1834 sysctl_createv(clog, 0, NULL, NULL,
1835 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1836 CTLTYPE_INT, "bufmem_hiwater",
1837 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1838 "for buffer cache"),
1839 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1840 CTL_VM, CTL_CREATE, CTL_EOL);
1841 }
1842
1843 #ifdef DEBUG
1844 /*
1845 * Print out statistics on the current allocation of the buffer pool.
1846 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1847 * in vfs_syscalls.c using sysctl.
1848 */
1849 void
1850 vfs_bufstats(void)
1851 {
1852 int i, j, count;
1853 buf_t *bp;
1854 struct bqueue *dp;
1855 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1856 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1857
1858 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1859 count = 0;
1860 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1861 counts[j] = 0;
1862 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1863 counts[bp->b_bufsize/PAGE_SIZE]++;
1864 count++;
1865 }
1866 printf("%s: total-%d", bname[i], count);
1867 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1868 if (counts[j] != 0)
1869 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1870 printf("\n");
1871 }
1872 }
1873 #endif /* DEBUG */
1874
1875 /* ------------------------------ */
1876
1877 buf_t *
1878 getiobuf(struct vnode *vp, bool waitok)
1879 {
1880 buf_t *bp;
1881
1882 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1883 if (bp == NULL)
1884 return bp;
1885
1886 buf_init(bp);
1887
1888 if ((bp->b_vp = vp) == NULL)
1889 bp->b_objlock = &buffer_lock;
1890 else
1891 bp->b_objlock = &vp->v_interlock;
1892
1893 return bp;
1894 }
1895
1896 void
1897 putiobuf(buf_t *bp)
1898 {
1899
1900 buf_destroy(bp);
1901 pool_cache_put(bufio_cache, bp);
1902 }
1903
1904 /*
1905 * nestiobuf_iodone: b_iodone callback for nested buffers.
1906 */
1907
1908 void
1909 nestiobuf_iodone(buf_t *bp)
1910 {
1911 buf_t *mbp = bp->b_private;
1912 int error;
1913 int donebytes;
1914
1915 KASSERT(bp->b_bcount <= bp->b_bufsize);
1916 KASSERT(mbp != bp);
1917
1918 error = bp->b_error;
1919 if (bp->b_error == 0 &&
1920 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1921 /*
1922 * Not all got transfered, raise an error. We have no way to
1923 * propagate these conditions to mbp.
1924 */
1925 error = EIO;
1926 }
1927
1928 donebytes = bp->b_bufsize;
1929
1930 putiobuf(bp);
1931 nestiobuf_done(mbp, donebytes, error);
1932 }
1933
1934 /*
1935 * nestiobuf_setup: setup a "nested" buffer.
1936 *
1937 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1938 * => 'bp' should be a buffer allocated by getiobuf.
1939 * => 'offset' is a byte offset in the master buffer.
1940 * => 'size' is a size in bytes of this nested buffer.
1941 */
1942
1943 void
1944 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1945 {
1946 const int b_read = mbp->b_flags & B_READ;
1947 struct vnode *vp = mbp->b_vp;
1948
1949 KASSERT(mbp->b_bcount >= offset + size);
1950 bp->b_vp = vp;
1951 bp->b_objlock = mbp->b_objlock;
1952 bp->b_cflags = BC_BUSY;
1953 bp->b_flags = B_ASYNC | b_read;
1954 bp->b_iodone = nestiobuf_iodone;
1955 bp->b_data = (char *)mbp->b_data + offset;
1956 bp->b_resid = bp->b_bcount = size;
1957 bp->b_bufsize = bp->b_bcount;
1958 bp->b_private = mbp;
1959 BIO_COPYPRIO(bp, mbp);
1960 if (!b_read && vp != NULL) {
1961 mutex_enter(&vp->v_interlock);
1962 vp->v_numoutput++;
1963 mutex_exit(&vp->v_interlock);
1964 }
1965 }
1966
1967 /*
1968 * nestiobuf_done: propagate completion to the master buffer.
1969 *
1970 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1971 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1972 */
1973
1974 void
1975 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1976 {
1977
1978 if (donebytes == 0) {
1979 return;
1980 }
1981 mutex_enter(mbp->b_objlock);
1982 KASSERT(mbp->b_resid >= donebytes);
1983 mbp->b_resid -= donebytes;
1984 if (error)
1985 mbp->b_error = error;
1986 if (mbp->b_resid == 0) {
1987 mutex_exit(mbp->b_objlock);
1988 biodone(mbp);
1989 } else
1990 mutex_exit(mbp->b_objlock);
1991 }
1992
1993 void
1994 buf_init(buf_t *bp)
1995 {
1996
1997 LIST_INIT(&bp->b_dep);
1998 cv_init(&bp->b_busy, "biolock");
1999 cv_init(&bp->b_done, "biowait");
2000 bp->b_dev = NODEV;
2001 bp->b_error = 0;
2002 bp->b_flags = 0;
2003 bp->b_cflags = 0;
2004 bp->b_oflags = 0;
2005 bp->b_objlock = &buffer_lock;
2006 bp->b_iodone = NULL;
2007 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2008 }
2009
2010 void
2011 buf_destroy(buf_t *bp)
2012 {
2013
2014 cv_destroy(&bp->b_done);
2015 cv_destroy(&bp->b_busy);
2016 }
2017
2018 int
2019 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2020 {
2021 int error;
2022
2023 KASSERT(mutex_owned(&bufcache_lock));
2024
2025 if ((bp->b_cflags & BC_BUSY) != 0) {
2026 if (curlwp == uvm.pagedaemon_lwp)
2027 return EDEADLK;
2028 bp->b_cflags |= BC_WANTED;
2029 bref(bp);
2030 if (interlock != NULL)
2031 mutex_exit(interlock);
2032 if (intr) {
2033 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2034 timo);
2035 } else {
2036 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2037 timo);
2038 }
2039 brele(bp);
2040 if (interlock != NULL)
2041 mutex_enter(interlock);
2042 if (error != 0)
2043 return error;
2044 return EPASSTHROUGH;
2045 }
2046 bp->b_cflags |= BC_BUSY;
2047
2048 return 0;
2049 }
2050