vfs_bio.c revision 1.201 1 /* $NetBSD: vfs_bio.c,v 1.201 2008/05/31 13:41:44 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * Some references:
104 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
105 * Leffler, et al.: The Design and Implementation of the 4.3BSD
106 * UNIX Operating System (Addison Welley, 1989)
107 */
108
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.201 2008/05/31 13:41:44 ad Exp $");
111
112 #include "fs_ffs.h"
113 #include "opt_bufcache.h"
114
115 #include <sys/param.h>
116 #include <sys/systm.h>
117 #include <sys/kernel.h>
118 #include <sys/proc.h>
119 #include <sys/buf.h>
120 #include <sys/vnode.h>
121 #include <sys/mount.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sysctl.h>
124 #include <sys/conf.h>
125 #include <sys/kauth.h>
126 #include <sys/fstrans.h>
127 #include <sys/intr.h>
128 #include <sys/cpu.h>
129
130 #include <uvm/uvm.h>
131
132 #include <miscfs/specfs/specdev.h>
133
134 #ifndef BUFPAGES
135 # define BUFPAGES 0
136 #endif
137
138 #ifdef BUFCACHE
139 # if (BUFCACHE < 5) || (BUFCACHE > 95)
140 # error BUFCACHE is not between 5 and 95
141 # endif
142 #else
143 # define BUFCACHE 15
144 #endif
145
146 u_int nbuf; /* XXX - for softdep_lockedbufs */
147 u_int bufpages = BUFPAGES; /* optional hardwired count */
148 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
149
150 /* Function prototypes */
151 struct bqueue;
152
153 static void buf_setwm(void);
154 static int buf_trim(void);
155 static void *bufpool_page_alloc(struct pool *, int);
156 static void bufpool_page_free(struct pool *, void *);
157 static buf_t *bio_doread(struct vnode *, daddr_t, int,
158 kauth_cred_t, int);
159 static buf_t *getnewbuf(int, int, int);
160 static int buf_lotsfree(void);
161 static int buf_canrelease(void);
162 static u_long buf_mempoolidx(u_long);
163 static u_long buf_roundsize(u_long);
164 static void *buf_malloc(size_t);
165 static void buf_mrelease(void *, size_t);
166 static void binsheadfree(buf_t *, struct bqueue *);
167 static void binstailfree(buf_t *, struct bqueue *);
168 int count_lock_queue(void); /* XXX */
169 #ifdef DEBUG
170 static int checkfreelist(buf_t *, struct bqueue *);
171 #endif
172 static void biointr(void *);
173 static void biodone2(buf_t *);
174 static void bref(buf_t *);
175 static void brele(buf_t *);
176
177 /*
178 * Definitions for the buffer hash lists.
179 */
180 #define BUFHASH(dvp, lbn) \
181 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
182 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
183 u_long bufhash;
184 struct bqueue bufqueues[BQUEUES];
185 const struct bio_ops *bioopsp; /* I/O operation notification */
186
187 static kcondvar_t needbuffer_cv;
188
189 /*
190 * Buffer queue lock.
191 */
192 kmutex_t bufcache_lock;
193 kmutex_t buffer_lock;
194
195 /* Software ISR for completed transfers. */
196 static void *biodone_sih;
197
198 /* Buffer pool for I/O buffers. */
199 static pool_cache_t buf_cache;
200 static pool_cache_t bufio_cache;
201
202 /* XXX - somewhat gross.. */
203 #if MAXBSIZE == 0x2000
204 #define NMEMPOOLS 5
205 #elif MAXBSIZE == 0x4000
206 #define NMEMPOOLS 6
207 #elif MAXBSIZE == 0x8000
208 #define NMEMPOOLS 7
209 #else
210 #define NMEMPOOLS 8
211 #endif
212
213 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
214 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
215 #error update vfs_bio buffer memory parameters
216 #endif
217
218 /* Buffer memory pools */
219 static struct pool bmempools[NMEMPOOLS];
220
221 static struct vm_map *buf_map;
222
223 /*
224 * Buffer memory pool allocator.
225 */
226 static void *
227 bufpool_page_alloc(struct pool *pp, int flags)
228 {
229
230 return (void *)uvm_km_alloc(buf_map,
231 MAXBSIZE, MAXBSIZE,
232 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
233 | UVM_KMF_WIRED);
234 }
235
236 static void
237 bufpool_page_free(struct pool *pp, void *v)
238 {
239
240 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
241 }
242
243 static struct pool_allocator bufmempool_allocator = {
244 .pa_alloc = bufpool_page_alloc,
245 .pa_free = bufpool_page_free,
246 .pa_pagesz = MAXBSIZE,
247 };
248
249 /* Buffer memory management variables */
250 u_long bufmem_valimit;
251 u_long bufmem_hiwater;
252 u_long bufmem_lowater;
253 u_long bufmem;
254
255 /*
256 * MD code can call this to set a hard limit on the amount
257 * of virtual memory used by the buffer cache.
258 */
259 int
260 buf_setvalimit(vsize_t sz)
261 {
262
263 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
264 if (sz < NMEMPOOLS * MAXBSIZE)
265 return EINVAL;
266
267 bufmem_valimit = sz;
268 return 0;
269 }
270
271 static void
272 buf_setwm(void)
273 {
274
275 bufmem_hiwater = buf_memcalc();
276 /* lowater is approx. 2% of memory (with bufcache = 15) */
277 #define BUFMEM_WMSHIFT 3
278 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
279 if (bufmem_hiwater < BUFMEM_HIWMMIN)
280 /* Ensure a reasonable minimum value */
281 bufmem_hiwater = BUFMEM_HIWMMIN;
282 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
283 }
284
285 #ifdef DEBUG
286 int debug_verify_freelist = 0;
287 static int
288 checkfreelist(buf_t *bp, struct bqueue *dp)
289 {
290 buf_t *b;
291
292 if (!debug_verify_freelist)
293 return 1;
294
295 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
296 if (b == bp)
297 return 1;
298 }
299
300 return 0;
301 }
302 #endif
303
304 /*
305 * Insq/Remq for the buffer hash lists.
306 * Call with buffer queue locked.
307 */
308 static void
309 binsheadfree(buf_t *bp, struct bqueue *dp)
310 {
311
312 KASSERT(bp->b_freelistindex == -1);
313 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
314 dp->bq_bytes += bp->b_bufsize;
315 bp->b_freelistindex = dp - bufqueues;
316 }
317
318 static void
319 binstailfree(buf_t *bp, struct bqueue *dp)
320 {
321
322 KASSERT(bp->b_freelistindex == -1);
323 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
324 dp->bq_bytes += bp->b_bufsize;
325 bp->b_freelistindex = dp - bufqueues;
326 }
327
328 void
329 bremfree(buf_t *bp)
330 {
331 struct bqueue *dp;
332 int bqidx = bp->b_freelistindex;
333
334 KASSERT(mutex_owned(&bufcache_lock));
335
336 KASSERT(bqidx != -1);
337 dp = &bufqueues[bqidx];
338 KDASSERT(checkfreelist(bp, dp));
339 KASSERT(dp->bq_bytes >= bp->b_bufsize);
340 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
341 dp->bq_bytes -= bp->b_bufsize;
342
343 /* For the sysctl helper. */
344 if (bp == dp->bq_marker)
345 dp->bq_marker = NULL;
346
347 #if defined(DIAGNOSTIC)
348 bp->b_freelistindex = -1;
349 #endif /* defined(DIAGNOSTIC) */
350 }
351
352 /*
353 * Add a reference to an buffer structure that came from buf_cache.
354 */
355 static inline void
356 bref(buf_t *bp)
357 {
358
359 KASSERT(mutex_owned(&bufcache_lock));
360 KASSERT(bp->b_refcnt > 0);
361
362 bp->b_refcnt++;
363 }
364
365 /*
366 * Free an unused buffer structure that came from buf_cache.
367 */
368 static inline void
369 brele(buf_t *bp)
370 {
371
372 KASSERT(mutex_owned(&bufcache_lock));
373 KASSERT(bp->b_refcnt > 0);
374
375 if (bp->b_refcnt-- == 1) {
376 buf_destroy(bp);
377 #ifdef DEBUG
378 memset((char *)bp, 0, sizeof(*bp));
379 #endif
380 pool_cache_put(buf_cache, bp);
381 }
382 }
383
384 /*
385 * note that for some ports this is used by pmap bootstrap code to
386 * determine kva size.
387 */
388 u_long
389 buf_memcalc(void)
390 {
391 u_long n;
392
393 /*
394 * Determine the upper bound of memory to use for buffers.
395 *
396 * - If bufpages is specified, use that as the number
397 * pages.
398 *
399 * - Otherwise, use bufcache as the percentage of
400 * physical memory.
401 */
402 if (bufpages != 0) {
403 n = bufpages;
404 } else {
405 if (bufcache < 5) {
406 printf("forcing bufcache %d -> 5", bufcache);
407 bufcache = 5;
408 }
409 if (bufcache > 95) {
410 printf("forcing bufcache %d -> 95", bufcache);
411 bufcache = 95;
412 }
413 n = calc_cache_size(buf_map, bufcache,
414 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
415 / PAGE_SIZE;
416 }
417
418 n <<= PAGE_SHIFT;
419 if (bufmem_valimit != 0 && n > bufmem_valimit)
420 n = bufmem_valimit;
421
422 return (n);
423 }
424
425 /*
426 * Initialize buffers and hash links for buffers.
427 */
428 void
429 bufinit(void)
430 {
431 struct bqueue *dp;
432 int use_std;
433 u_int i;
434
435 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
436 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
437 cv_init(&needbuffer_cv, "needbuf");
438
439 if (bufmem_valimit != 0) {
440 vaddr_t minaddr = 0, maxaddr;
441 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
442 bufmem_valimit, 0, false, 0);
443 if (buf_map == NULL)
444 panic("bufinit: cannot allocate submap");
445 } else
446 buf_map = kernel_map;
447
448 /*
449 * Initialize buffer cache memory parameters.
450 */
451 bufmem = 0;
452 buf_setwm();
453
454 /* On "small" machines use small pool page sizes where possible */
455 use_std = (physmem < atop(16*1024*1024));
456
457 /*
458 * Also use them on systems that can map the pool pages using
459 * a direct-mapped segment.
460 */
461 #ifdef PMAP_MAP_POOLPAGE
462 use_std = 1;
463 #endif
464
465 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
466 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
467 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
468 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
469
470 bufmempool_allocator.pa_backingmap = buf_map;
471 for (i = 0; i < NMEMPOOLS; i++) {
472 struct pool_allocator *pa;
473 struct pool *pp = &bmempools[i];
474 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
475 char *name = kmem_alloc(8, KM_SLEEP);
476 if (__predict_true(size >= 1024))
477 (void)snprintf(name, 8, "buf%dk", size / 1024);
478 else
479 (void)snprintf(name, 8, "buf%db", size);
480 pa = (size <= PAGE_SIZE && use_std)
481 ? &pool_allocator_nointr
482 : &bufmempool_allocator;
483 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
484 pool_setlowat(pp, 1);
485 pool_sethiwat(pp, 1);
486 }
487
488 /* Initialize the buffer queues */
489 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
490 TAILQ_INIT(&dp->bq_queue);
491 dp->bq_bytes = 0;
492 }
493
494 /*
495 * Estimate hash table size based on the amount of memory we
496 * intend to use for the buffer cache. The average buffer
497 * size is dependent on our clients (i.e. filesystems).
498 *
499 * For now, use an empirical 3K per buffer.
500 */
501 nbuf = (bufmem_hiwater / 1024) / 3;
502 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
503 }
504
505 void
506 bufinit2(void)
507 {
508
509 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
510 NULL);
511 if (biodone_sih == NULL)
512 panic("bufinit2: can't establish soft interrupt");
513 }
514
515 static int
516 buf_lotsfree(void)
517 {
518 int try, thresh;
519
520 /* Always allocate if less than the low water mark. */
521 if (bufmem < bufmem_lowater)
522 return 1;
523
524 /* Never allocate if greater than the high water mark. */
525 if (bufmem > bufmem_hiwater)
526 return 0;
527
528 /* If there's anything on the AGE list, it should be eaten. */
529 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
530 return 0;
531
532 /*
533 * The probabily of getting a new allocation is inversely
534 * proportional to the current size of the cache, using
535 * a granularity of 16 steps.
536 */
537 try = random() & 0x0000000fL;
538
539 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
540 thresh = (bufmem - bufmem_lowater) /
541 ((bufmem_hiwater - bufmem_lowater) / 16);
542
543 if (try >= thresh)
544 return 1;
545
546 /* Otherwise don't allocate. */
547 return 0;
548 }
549
550 /*
551 * Return estimate of bytes we think need to be
552 * released to help resolve low memory conditions.
553 *
554 * => called with bufcache_lock held.
555 */
556 static int
557 buf_canrelease(void)
558 {
559 int pagedemand, ninvalid = 0;
560
561 KASSERT(mutex_owned(&bufcache_lock));
562
563 if (bufmem < bufmem_lowater)
564 return 0;
565
566 if (bufmem > bufmem_hiwater)
567 return bufmem - bufmem_hiwater;
568
569 ninvalid += bufqueues[BQ_AGE].bq_bytes;
570
571 pagedemand = uvmexp.freetarg - uvmexp.free;
572 if (pagedemand < 0)
573 return ninvalid;
574 return MAX(ninvalid, MIN(2 * MAXBSIZE,
575 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
576 }
577
578 /*
579 * Buffer memory allocation helper functions
580 */
581 static u_long
582 buf_mempoolidx(u_long size)
583 {
584 u_int n = 0;
585
586 size -= 1;
587 size >>= MEMPOOL_INDEX_OFFSET;
588 while (size) {
589 size >>= 1;
590 n += 1;
591 }
592 if (n >= NMEMPOOLS)
593 panic("buf mem pool index %d", n);
594 return n;
595 }
596
597 static u_long
598 buf_roundsize(u_long size)
599 {
600 /* Round up to nearest power of 2 */
601 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
602 }
603
604 static void *
605 buf_malloc(size_t size)
606 {
607 u_int n = buf_mempoolidx(size);
608 void *addr;
609
610 while (1) {
611 addr = pool_get(&bmempools[n], PR_NOWAIT);
612 if (addr != NULL)
613 break;
614
615 /* No memory, see if we can free some. If so, try again */
616 mutex_enter(&bufcache_lock);
617 if (buf_drain(1) > 0) {
618 mutex_exit(&bufcache_lock);
619 continue;
620 }
621
622 if (curlwp == uvm.pagedaemon_lwp) {
623 mutex_exit(&bufcache_lock);
624 return NULL;
625 }
626
627 /* Wait for buffers to arrive on the LRU queue */
628 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
629 mutex_exit(&bufcache_lock);
630 }
631
632 return addr;
633 }
634
635 static void
636 buf_mrelease(void *addr, size_t size)
637 {
638
639 pool_put(&bmempools[buf_mempoolidx(size)], addr);
640 }
641
642 /*
643 * bread()/breadn() helper.
644 */
645 static buf_t *
646 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
647 int async)
648 {
649 buf_t *bp;
650 struct mount *mp;
651
652 bp = getblk(vp, blkno, size, 0, 0);
653
654 #ifdef DIAGNOSTIC
655 if (bp == NULL) {
656 panic("bio_doread: no such buf");
657 }
658 #endif
659
660 /*
661 * If buffer does not have data valid, start a read.
662 * Note that if buffer is BC_INVAL, getblk() won't return it.
663 * Therefore, it's valid if its I/O has completed or been delayed.
664 */
665 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
666 /* Start I/O for the buffer. */
667 SET(bp->b_flags, B_READ | async);
668 if (async)
669 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
670 else
671 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
672 VOP_STRATEGY(vp, bp);
673
674 /* Pay for the read. */
675 curlwp->l_ru.ru_inblock++;
676 } else if (async)
677 brelse(bp, 0);
678
679 if (vp->v_type == VBLK)
680 mp = vp->v_specmountpoint;
681 else
682 mp = vp->v_mount;
683
684 /*
685 * Collect statistics on synchronous and asynchronous reads.
686 * Reads from block devices are charged to their associated
687 * filesystem (if any).
688 */
689 if (mp != NULL) {
690 if (async == 0)
691 mp->mnt_stat.f_syncreads++;
692 else
693 mp->mnt_stat.f_asyncreads++;
694 }
695
696 return (bp);
697 }
698
699 /*
700 * Read a disk block.
701 * This algorithm described in Bach (p.54).
702 */
703 int
704 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
705 int flags, buf_t **bpp)
706 {
707 buf_t *bp;
708 int error;
709
710 /* Get buffer for block. */
711 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
712
713 /* Wait for the read to complete, and return result. */
714 error = biowait(bp);
715 if (error == 0 && (flags & B_MODIFY) != 0)
716 error = fscow_run(bp, true);
717 return error;
718 }
719
720 /*
721 * Read-ahead multiple disk blocks. The first is sync, the rest async.
722 * Trivial modification to the breada algorithm presented in Bach (p.55).
723 */
724 int
725 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
726 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
727 {
728 buf_t *bp;
729 int error, i;
730
731 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
732
733 /*
734 * For each of the read-ahead blocks, start a read, if necessary.
735 */
736 mutex_enter(&bufcache_lock);
737 for (i = 0; i < nrablks; i++) {
738 /* If it's in the cache, just go on to next one. */
739 if (incore(vp, rablks[i]))
740 continue;
741
742 /* Get a buffer for the read-ahead block */
743 mutex_exit(&bufcache_lock);
744 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
745 mutex_enter(&bufcache_lock);
746 }
747 mutex_exit(&bufcache_lock);
748
749 /* Otherwise, we had to start a read for it; wait until it's valid. */
750 error = biowait(bp);
751 if (error == 0 && (flags & B_MODIFY) != 0)
752 error = fscow_run(bp, true);
753 return error;
754 }
755
756 /*
757 * Read with single-block read-ahead. Defined in Bach (p.55), but
758 * implemented as a call to breadn().
759 * XXX for compatibility with old file systems.
760 */
761 int
762 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
763 int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
764 {
765
766 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
767 cred, flags, bpp));
768 }
769
770 /*
771 * Block write. Described in Bach (p.56)
772 */
773 int
774 bwrite(buf_t *bp)
775 {
776 int rv, sync, wasdelayed;
777 struct vnode *vp;
778 struct mount *mp;
779
780 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
781
782 vp = bp->b_vp;
783 if (vp != NULL) {
784 KASSERT(bp->b_objlock == &vp->v_interlock);
785 if (vp->v_type == VBLK)
786 mp = vp->v_specmountpoint;
787 else
788 mp = vp->v_mount;
789 } else {
790 mp = NULL;
791 }
792
793 /*
794 * Remember buffer type, to switch on it later. If the write was
795 * synchronous, but the file system was mounted with MNT_ASYNC,
796 * convert it to a delayed write.
797 * XXX note that this relies on delayed tape writes being converted
798 * to async, not sync writes (which is safe, but ugly).
799 */
800 sync = !ISSET(bp->b_flags, B_ASYNC);
801 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
802 bdwrite(bp);
803 return (0);
804 }
805
806 /*
807 * Collect statistics on synchronous and asynchronous writes.
808 * Writes to block devices are charged to their associated
809 * filesystem (if any).
810 */
811 if (mp != NULL) {
812 if (sync)
813 mp->mnt_stat.f_syncwrites++;
814 else
815 mp->mnt_stat.f_asyncwrites++;
816 }
817
818 /*
819 * Pay for the I/O operation and make sure the buf is on the correct
820 * vnode queue.
821 */
822 bp->b_error = 0;
823 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
824 CLR(bp->b_flags, B_READ);
825 if (wasdelayed) {
826 mutex_enter(&bufcache_lock);
827 mutex_enter(bp->b_objlock);
828 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
829 reassignbuf(bp, bp->b_vp);
830 mutex_exit(&bufcache_lock);
831 } else {
832 curlwp->l_ru.ru_oublock++;
833 mutex_enter(bp->b_objlock);
834 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
835 }
836 if (vp != NULL)
837 vp->v_numoutput++;
838 mutex_exit(bp->b_objlock);
839
840 /* Initiate disk write. */
841 if (sync)
842 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
843 else
844 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
845
846 VOP_STRATEGY(vp, bp);
847
848 if (sync) {
849 /* If I/O was synchronous, wait for it to complete. */
850 rv = biowait(bp);
851
852 /* Release the buffer. */
853 brelse(bp, 0);
854
855 return (rv);
856 } else {
857 return (0);
858 }
859 }
860
861 int
862 vn_bwrite(void *v)
863 {
864 struct vop_bwrite_args *ap = v;
865
866 return (bwrite(ap->a_bp));
867 }
868
869 /*
870 * Delayed write.
871 *
872 * The buffer is marked dirty, but is not queued for I/O.
873 * This routine should be used when the buffer is expected
874 * to be modified again soon, typically a small write that
875 * partially fills a buffer.
876 *
877 * NB: magnetic tapes cannot be delayed; they must be
878 * written in the order that the writes are requested.
879 *
880 * Described in Leffler, et al. (pp. 208-213).
881 */
882 void
883 bdwrite(buf_t *bp)
884 {
885
886 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
887 ISSET(bp->b_flags, B_COWDONE));
888
889 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
890
891 /* If this is a tape block, write the block now. */
892 if (bdev_type(bp->b_dev) == D_TAPE) {
893 bawrite(bp);
894 return;
895 }
896
897 /*
898 * If the block hasn't been seen before:
899 * (1) Mark it as having been seen,
900 * (2) Charge for the write,
901 * (3) Make sure it's on its vnode's correct block list.
902 */
903 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
904
905 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
906 mutex_enter(&bufcache_lock);
907 mutex_enter(bp->b_objlock);
908 SET(bp->b_oflags, BO_DELWRI);
909 curlwp->l_ru.ru_oublock++;
910 reassignbuf(bp, bp->b_vp);
911 mutex_exit(&bufcache_lock);
912 } else {
913 mutex_enter(bp->b_objlock);
914 }
915 /* Otherwise, the "write" is done, so mark and release the buffer. */
916 CLR(bp->b_oflags, BO_DONE);
917 mutex_exit(bp->b_objlock);
918
919 brelse(bp, 0);
920 }
921
922 /*
923 * Asynchronous block write; just an asynchronous bwrite().
924 */
925 void
926 bawrite(buf_t *bp)
927 {
928
929 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
930
931 SET(bp->b_flags, B_ASYNC);
932 VOP_BWRITE(bp);
933 }
934
935 /*
936 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
937 * Call with the buffer interlock held.
938 *
939 * Note: called only from biodone() through ffs softdep's io_complete()
940 */
941 void
942 bdirty(buf_t *bp)
943 {
944
945 KASSERT(mutex_owned(&bufcache_lock));
946 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
947 KASSERT(mutex_owned(bp->b_objlock));
948 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
949
950 CLR(bp->b_cflags, BC_AGE);
951
952 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
953 SET(bp->b_oflags, BO_DELWRI);
954 curlwp->l_ru.ru_oublock++;
955 reassignbuf(bp, bp->b_vp);
956 }
957 }
958
959
960 /*
961 * Release a buffer on to the free lists.
962 * Described in Bach (p. 46).
963 */
964 void
965 brelsel(buf_t *bp, int set)
966 {
967 struct bqueue *bufq;
968 struct vnode *vp;
969
970 KASSERT(mutex_owned(&bufcache_lock));
971
972 SET(bp->b_cflags, set);
973
974 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
975 KASSERT(bp->b_iodone == NULL);
976
977 /* Wake up any processes waiting for any buffer to become free. */
978 cv_signal(&needbuffer_cv);
979
980 /* Wake up any proceeses waiting for _this_ buffer to become */
981 if (ISSET(bp->b_cflags, BC_WANTED))
982 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
983
984 /*
985 * Determine which queue the buffer should be on, then put it there.
986 */
987
988 /* If it's locked, don't report an error; try again later. */
989 if (ISSET(bp->b_flags, B_LOCKED))
990 bp->b_error = 0;
991
992 /* If it's not cacheable, or an error, mark it invalid. */
993 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
994 SET(bp->b_cflags, BC_INVAL);
995
996 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
997 /*
998 * This is a delayed write buffer that was just flushed to
999 * disk. It is still on the LRU queue. If it's become
1000 * invalid, then we need to move it to a different queue;
1001 * otherwise leave it in its current position.
1002 */
1003 CLR(bp->b_cflags, BC_VFLUSH);
1004 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1005 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1006 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1007 goto already_queued;
1008 } else {
1009 bremfree(bp);
1010 }
1011 }
1012
1013 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1014 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1015 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1016
1017 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1018 /*
1019 * If it's invalid or empty, dissociate it from its vnode
1020 * and put on the head of the appropriate queue.
1021 */
1022 if (bioopsp != NULL)
1023 (*bioopsp->io_deallocate)(bp);
1024
1025 mutex_enter(bp->b_objlock);
1026 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1027 if ((vp = bp->b_vp) != NULL) {
1028 KASSERT(bp->b_objlock == &vp->v_interlock);
1029 reassignbuf(bp, bp->b_vp);
1030 brelvp(bp);
1031 mutex_exit(&vp->v_interlock);
1032 } else {
1033 KASSERT(bp->b_objlock == &buffer_lock);
1034 mutex_exit(bp->b_objlock);
1035 }
1036
1037 if (bp->b_bufsize <= 0)
1038 /* no data */
1039 goto already_queued;
1040 else
1041 /* invalid data */
1042 bufq = &bufqueues[BQ_AGE];
1043 binsheadfree(bp, bufq);
1044 } else {
1045 /*
1046 * It has valid data. Put it on the end of the appropriate
1047 * queue, so that it'll stick around for as long as possible.
1048 * If buf is AGE, but has dependencies, must put it on last
1049 * bufqueue to be scanned, ie LRU. This protects against the
1050 * livelock where BQ_AGE only has buffers with dependencies,
1051 * and we thus never get to the dependent buffers in BQ_LRU.
1052 */
1053 if (ISSET(bp->b_flags, B_LOCKED)) {
1054 /* locked in core */
1055 bufq = &bufqueues[BQ_LOCKED];
1056 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1057 /* valid data */
1058 bufq = &bufqueues[BQ_LRU];
1059 } else {
1060 /* stale but valid data */
1061 int has_deps;
1062
1063 if (bioopsp != NULL)
1064 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1065 else
1066 has_deps = 0;
1067 bufq = has_deps ? &bufqueues[BQ_LRU] :
1068 &bufqueues[BQ_AGE];
1069 }
1070 binstailfree(bp, bufq);
1071 }
1072 already_queued:
1073 /* Unlock the buffer. */
1074 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1075 CLR(bp->b_flags, B_ASYNC);
1076 cv_broadcast(&bp->b_busy);
1077
1078 if (bp->b_bufsize <= 0)
1079 brele(bp);
1080 }
1081
1082 void
1083 brelse(buf_t *bp, int set)
1084 {
1085
1086 mutex_enter(&bufcache_lock);
1087 brelsel(bp, set);
1088 mutex_exit(&bufcache_lock);
1089 }
1090
1091 /*
1092 * Determine if a block is in the cache.
1093 * Just look on what would be its hash chain. If it's there, return
1094 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1095 * we normally don't return the buffer, unless the caller explicitly
1096 * wants us to.
1097 */
1098 buf_t *
1099 incore(struct vnode *vp, daddr_t blkno)
1100 {
1101 buf_t *bp;
1102
1103 KASSERT(mutex_owned(&bufcache_lock));
1104
1105 /* Search hash chain */
1106 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1107 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1108 !ISSET(bp->b_cflags, BC_INVAL)) {
1109 KASSERT(bp->b_objlock == &vp->v_interlock);
1110 return (bp);
1111 }
1112 }
1113
1114 return (NULL);
1115 }
1116
1117 /*
1118 * Get a block of requested size that is associated with
1119 * a given vnode and block offset. If it is found in the
1120 * block cache, mark it as having been found, make it busy
1121 * and return it. Otherwise, return an empty block of the
1122 * correct size. It is up to the caller to insure that the
1123 * cached blocks be of the correct size.
1124 */
1125 buf_t *
1126 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1127 {
1128 int err, preserve;
1129 buf_t *bp;
1130
1131 mutex_enter(&bufcache_lock);
1132 loop:
1133 bp = incore(vp, blkno);
1134 if (bp != NULL) {
1135 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1136 if (err != 0) {
1137 if (err == EPASSTHROUGH)
1138 goto loop;
1139 mutex_exit(&bufcache_lock);
1140 return (NULL);
1141 }
1142 #ifdef DIAGNOSTIC
1143 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1144 bp->b_bcount < size && vp->v_type != VBLK)
1145 panic("getblk: block size invariant failed");
1146 #endif
1147 bremfree(bp);
1148 preserve = 1;
1149 } else {
1150 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1151 goto loop;
1152
1153 if (incore(vp, blkno) != NULL) {
1154 /* The block has come into memory in the meantime. */
1155 brelsel(bp, 0);
1156 goto loop;
1157 }
1158
1159 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1160 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1161 mutex_enter(&vp->v_interlock);
1162 bgetvp(vp, bp);
1163 mutex_exit(&vp->v_interlock);
1164 preserve = 0;
1165 }
1166 mutex_exit(&bufcache_lock);
1167
1168 /*
1169 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1170 * if we re-size buffers here.
1171 */
1172 if (ISSET(bp->b_flags, B_LOCKED)) {
1173 KASSERT(bp->b_bufsize >= size);
1174 } else {
1175 if (allocbuf(bp, size, preserve)) {
1176 mutex_enter(&bufcache_lock);
1177 LIST_REMOVE(bp, b_hash);
1178 mutex_exit(&bufcache_lock);
1179 brelse(bp, BC_INVAL);
1180 return NULL;
1181 }
1182 }
1183 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1184 return (bp);
1185 }
1186
1187 /*
1188 * Get an empty, disassociated buffer of given size.
1189 */
1190 buf_t *
1191 geteblk(int size)
1192 {
1193 buf_t *bp;
1194 int error;
1195
1196 mutex_enter(&bufcache_lock);
1197 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1198 ;
1199
1200 SET(bp->b_cflags, BC_INVAL);
1201 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1202 mutex_exit(&bufcache_lock);
1203 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1204 error = allocbuf(bp, size, 0);
1205 KASSERT(error == 0);
1206 return (bp);
1207 }
1208
1209 /*
1210 * Expand or contract the actual memory allocated to a buffer.
1211 *
1212 * If the buffer shrinks, data is lost, so it's up to the
1213 * caller to have written it out *first*; this routine will not
1214 * start a write. If the buffer grows, it's the callers
1215 * responsibility to fill out the buffer's additional contents.
1216 */
1217 int
1218 allocbuf(buf_t *bp, int size, int preserve)
1219 {
1220 vsize_t oldsize, desired_size;
1221 void *addr;
1222 int delta;
1223
1224 desired_size = buf_roundsize(size);
1225 if (desired_size > MAXBSIZE)
1226 printf("allocbuf: buffer larger than MAXBSIZE requested");
1227
1228 bp->b_bcount = size;
1229
1230 oldsize = bp->b_bufsize;
1231 if (oldsize == desired_size)
1232 return 0;
1233
1234 /*
1235 * If we want a buffer of a different size, re-allocate the
1236 * buffer's memory; copy old content only if needed.
1237 */
1238 addr = buf_malloc(desired_size);
1239 if (addr == NULL)
1240 return ENOMEM;
1241 if (preserve)
1242 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1243 if (bp->b_data != NULL)
1244 buf_mrelease(bp->b_data, oldsize);
1245 bp->b_data = addr;
1246 bp->b_bufsize = desired_size;
1247
1248 /*
1249 * Update overall buffer memory counter (protected by bufcache_lock)
1250 */
1251 delta = (long)desired_size - (long)oldsize;
1252
1253 mutex_enter(&bufcache_lock);
1254 if ((bufmem += delta) > bufmem_hiwater) {
1255 /*
1256 * Need to trim overall memory usage.
1257 */
1258 while (buf_canrelease()) {
1259 if (curcpu()->ci_schedstate.spc_flags &
1260 SPCF_SHOULDYIELD) {
1261 mutex_exit(&bufcache_lock);
1262 preempt();
1263 mutex_enter(&bufcache_lock);
1264 }
1265 if (buf_trim() == 0)
1266 break;
1267 }
1268 }
1269 mutex_exit(&bufcache_lock);
1270 return 0;
1271 }
1272
1273 /*
1274 * Find a buffer which is available for use.
1275 * Select something from a free list.
1276 * Preference is to AGE list, then LRU list.
1277 *
1278 * Called with the buffer queues locked.
1279 * Return buffer locked.
1280 */
1281 buf_t *
1282 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1283 {
1284 buf_t *bp;
1285 struct vnode *vp;
1286
1287 start:
1288 KASSERT(mutex_owned(&bufcache_lock));
1289
1290 /*
1291 * Get a new buffer from the pool.
1292 */
1293 if (!from_bufq && buf_lotsfree()) {
1294 mutex_exit(&bufcache_lock);
1295 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1296 if (bp != NULL) {
1297 memset((char *)bp, 0, sizeof(*bp));
1298 buf_init(bp);
1299 bp->b_dev = NODEV;
1300 bp->b_vnbufs.le_next = NOLIST;
1301 bp->b_cflags = BC_BUSY;
1302 bp->b_refcnt = 1;
1303 mutex_enter(&bufcache_lock);
1304 #if defined(DIAGNOSTIC)
1305 bp->b_freelistindex = -1;
1306 #endif /* defined(DIAGNOSTIC) */
1307 return (bp);
1308 }
1309 mutex_enter(&bufcache_lock);
1310 }
1311
1312 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1313 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1314 bremfree(bp);
1315 } else {
1316 /*
1317 * XXX: !from_bufq should be removed.
1318 */
1319 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1320 /* wait for a free buffer of any kind */
1321 if ((slpflag & PCATCH) != 0)
1322 (void)cv_timedwait_sig(&needbuffer_cv,
1323 &bufcache_lock, slptimeo);
1324 else
1325 (void)cv_timedwait(&needbuffer_cv,
1326 &bufcache_lock, slptimeo);
1327 }
1328 return (NULL);
1329 }
1330
1331 #ifdef DIAGNOSTIC
1332 if (bp->b_bufsize <= 0)
1333 panic("buffer %p: on queue but empty", bp);
1334 #endif
1335
1336 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1337 /*
1338 * This is a delayed write buffer being flushed to disk. Make
1339 * sure it gets aged out of the queue when it's finished, and
1340 * leave it off the LRU queue.
1341 */
1342 CLR(bp->b_cflags, BC_VFLUSH);
1343 SET(bp->b_cflags, BC_AGE);
1344 goto start;
1345 }
1346
1347 /* Buffer is no longer on free lists. */
1348 SET(bp->b_cflags, BC_BUSY);
1349
1350 /*
1351 * If buffer was a delayed write, start it and return NULL
1352 * (since we might sleep while starting the write).
1353 */
1354 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1355 /*
1356 * This buffer has gone through the LRU, so make sure it gets
1357 * reused ASAP.
1358 */
1359 SET(bp->b_cflags, BC_AGE);
1360 mutex_exit(&bufcache_lock);
1361 bawrite(bp);
1362 mutex_enter(&bufcache_lock);
1363 return (NULL);
1364 }
1365
1366 vp = bp->b_vp;
1367 if (bioopsp != NULL)
1368 (*bioopsp->io_deallocate)(bp);
1369
1370 /* clear out various other fields */
1371 bp->b_cflags = BC_BUSY;
1372 bp->b_oflags = 0;
1373 bp->b_flags = 0;
1374 bp->b_dev = NODEV;
1375 bp->b_blkno = 0;
1376 bp->b_lblkno = 0;
1377 bp->b_rawblkno = 0;
1378 bp->b_iodone = 0;
1379 bp->b_error = 0;
1380 bp->b_resid = 0;
1381 bp->b_bcount = 0;
1382
1383 LIST_REMOVE(bp, b_hash);
1384
1385 /* Disassociate us from our vnode, if we had one... */
1386 if (vp != NULL) {
1387 mutex_enter(&vp->v_interlock);
1388 brelvp(bp);
1389 mutex_exit(&vp->v_interlock);
1390 }
1391
1392 return (bp);
1393 }
1394
1395 /*
1396 * Attempt to free an aged buffer off the queues.
1397 * Called with queue lock held.
1398 * Returns the amount of buffer memory freed.
1399 */
1400 static int
1401 buf_trim(void)
1402 {
1403 buf_t *bp;
1404 long size = 0;
1405
1406 KASSERT(mutex_owned(&bufcache_lock));
1407
1408 /* Instruct getnewbuf() to get buffers off the queues */
1409 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1410 return 0;
1411
1412 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1413 size = bp->b_bufsize;
1414 bufmem -= size;
1415 if (size > 0) {
1416 buf_mrelease(bp->b_data, size);
1417 bp->b_bcount = bp->b_bufsize = 0;
1418 }
1419 /* brelse() will return the buffer to the global buffer pool */
1420 brelsel(bp, 0);
1421 return size;
1422 }
1423
1424 int
1425 buf_drain(int n)
1426 {
1427 int size = 0, sz;
1428
1429 KASSERT(mutex_owned(&bufcache_lock));
1430
1431 while (size < n && bufmem > bufmem_lowater) {
1432 sz = buf_trim();
1433 if (sz <= 0)
1434 break;
1435 size += sz;
1436 }
1437
1438 return size;
1439 }
1440
1441 /*
1442 * Wait for operations on the buffer to complete.
1443 * When they do, extract and return the I/O's error value.
1444 */
1445 int
1446 biowait(buf_t *bp)
1447 {
1448
1449 mutex_enter(bp->b_objlock);
1450 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1451 cv_wait(&bp->b_done, bp->b_objlock);
1452 mutex_exit(bp->b_objlock);
1453
1454 return bp->b_error;
1455 }
1456
1457 /*
1458 * Mark I/O complete on a buffer.
1459 *
1460 * If a callback has been requested, e.g. the pageout
1461 * daemon, do so. Otherwise, awaken waiting processes.
1462 *
1463 * [ Leffler, et al., says on p.247:
1464 * "This routine wakes up the blocked process, frees the buffer
1465 * for an asynchronous write, or, for a request by the pagedaemon
1466 * process, invokes a procedure specified in the buffer structure" ]
1467 *
1468 * In real life, the pagedaemon (or other system processes) wants
1469 * to do async stuff to, and doesn't want the buffer brelse()'d.
1470 * (for swap pager, that puts swap buffers on the free lists (!!!),
1471 * for the vn device, that puts malloc'd buffers on the free lists!)
1472 */
1473 void
1474 biodone(buf_t *bp)
1475 {
1476 int s;
1477
1478 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1479
1480 if (cpu_intr_p()) {
1481 /* From interrupt mode: defer to a soft interrupt. */
1482 s = splvm();
1483 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1484 softint_schedule(biodone_sih);
1485 splx(s);
1486 } else {
1487 /* Process now - the buffer may be freed soon. */
1488 biodone2(bp);
1489 }
1490 }
1491
1492 static void
1493 biodone2(buf_t *bp)
1494 {
1495 void (*callout)(buf_t *);
1496
1497 if (bioopsp != NULL)
1498 (*bioopsp->io_complete)(bp);
1499
1500 mutex_enter(bp->b_objlock);
1501 /* Note that the transfer is done. */
1502 if (ISSET(bp->b_oflags, BO_DONE))
1503 panic("biodone2 already");
1504 CLR(bp->b_flags, B_COWDONE);
1505 SET(bp->b_oflags, BO_DONE);
1506 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1507
1508 /* Wake up waiting writers. */
1509 if (!ISSET(bp->b_flags, B_READ))
1510 vwakeup(bp);
1511
1512 if ((callout = bp->b_iodone) != NULL) {
1513 /* Note callout done, then call out. */
1514 KASSERT(!cv_has_waiters(&bp->b_done));
1515 KERNEL_LOCK(1, NULL); /* XXXSMP */
1516 bp->b_iodone = NULL;
1517 mutex_exit(bp->b_objlock);
1518 (*callout)(bp);
1519 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1520 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1521 /* If async, release. */
1522 KASSERT(!cv_has_waiters(&bp->b_done));
1523 mutex_exit(bp->b_objlock);
1524 brelse(bp, 0);
1525 } else {
1526 /* Otherwise just wake up waiters in biowait(). */
1527 cv_broadcast(&bp->b_done);
1528 mutex_exit(bp->b_objlock);
1529 }
1530 }
1531
1532 static void
1533 biointr(void *cookie)
1534 {
1535 struct cpu_info *ci;
1536 buf_t *bp;
1537 int s;
1538
1539 ci = curcpu();
1540
1541 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1542 KASSERT(curcpu() == ci);
1543
1544 s = splvm();
1545 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1546 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1547 splx(s);
1548
1549 biodone2(bp);
1550 }
1551 }
1552
1553 /*
1554 * Return a count of buffers on the "locked" queue.
1555 */
1556 int
1557 count_lock_queue(void)
1558 {
1559 buf_t *bp;
1560 int n = 0;
1561
1562 mutex_enter(&bufcache_lock);
1563 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1564 n++;
1565 mutex_exit(&bufcache_lock);
1566 return (n);
1567 }
1568
1569 /*
1570 * Wait for all buffers to complete I/O
1571 * Return the number of "stuck" buffers.
1572 */
1573 int
1574 buf_syncwait(void)
1575 {
1576 buf_t *bp;
1577 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1578
1579 dcount = 10000;
1580 for (iter = 0; iter < 20;) {
1581 mutex_enter(&bufcache_lock);
1582 nbusy = 0;
1583 for (ihash = 0; ihash < bufhash+1; ihash++) {
1584 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1585 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1586 nbusy += ((bp->b_flags & B_READ) == 0);
1587 /*
1588 * With soft updates, some buffers that are
1589 * written will be remarked as dirty until other
1590 * buffers are written.
1591 */
1592 if (bp->b_vp && bp->b_vp->v_mount
1593 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1594 && (bp->b_oflags & BO_DELWRI)) {
1595 bremfree(bp);
1596 bp->b_cflags |= BC_BUSY;
1597 nbusy++;
1598 mutex_exit(&bufcache_lock);
1599 bawrite(bp);
1600 if (dcount-- <= 0) {
1601 printf("softdep ");
1602 goto fail;
1603 }
1604 mutex_enter(&bufcache_lock);
1605 }
1606 }
1607 }
1608 mutex_exit(&bufcache_lock);
1609
1610 if (nbusy == 0)
1611 break;
1612 if (nbusy_prev == 0)
1613 nbusy_prev = nbusy;
1614 printf("%d ", nbusy);
1615 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1616 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1617 iter++;
1618 else
1619 nbusy_prev = nbusy;
1620 }
1621
1622 if (nbusy) {
1623 fail:;
1624 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1625 printf("giving up\nPrinting vnodes for busy buffers\n");
1626 for (ihash = 0; ihash < bufhash+1; ihash++) {
1627 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1628 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1629 (bp->b_flags & B_READ) == 0)
1630 vprint(NULL, bp->b_vp);
1631 }
1632 }
1633 #endif
1634 }
1635
1636 return nbusy;
1637 }
1638
1639 static void
1640 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1641 {
1642
1643 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1644 o->b_error = i->b_error;
1645 o->b_prio = i->b_prio;
1646 o->b_dev = i->b_dev;
1647 o->b_bufsize = i->b_bufsize;
1648 o->b_bcount = i->b_bcount;
1649 o->b_resid = i->b_resid;
1650 o->b_addr = PTRTOUINT64(i->b_data);
1651 o->b_blkno = i->b_blkno;
1652 o->b_rawblkno = i->b_rawblkno;
1653 o->b_iodone = PTRTOUINT64(i->b_iodone);
1654 o->b_proc = PTRTOUINT64(i->b_proc);
1655 o->b_vp = PTRTOUINT64(i->b_vp);
1656 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1657 o->b_lblkno = i->b_lblkno;
1658 }
1659
1660 #define KERN_BUFSLOP 20
1661 static int
1662 sysctl_dobuf(SYSCTLFN_ARGS)
1663 {
1664 buf_t *bp;
1665 struct buf_sysctl bs;
1666 struct bqueue *bq;
1667 char *dp;
1668 u_int i, op, arg;
1669 size_t len, needed, elem_size, out_size;
1670 int error, elem_count, retries;
1671
1672 if (namelen == 1 && name[0] == CTL_QUERY)
1673 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1674
1675 if (namelen != 4)
1676 return (EINVAL);
1677
1678 retries = 100;
1679 retry:
1680 dp = oldp;
1681 len = (oldp != NULL) ? *oldlenp : 0;
1682 op = name[0];
1683 arg = name[1];
1684 elem_size = name[2];
1685 elem_count = name[3];
1686 out_size = MIN(sizeof(bs), elem_size);
1687
1688 /*
1689 * at the moment, these are just "placeholders" to make the
1690 * API for retrieving kern.buf data more extensible in the
1691 * future.
1692 *
1693 * XXX kern.buf currently has "netbsd32" issues. hopefully
1694 * these will be resolved at a later point.
1695 */
1696 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1697 elem_size < 1 || elem_count < 0)
1698 return (EINVAL);
1699
1700 error = 0;
1701 needed = 0;
1702 sysctl_unlock();
1703 mutex_enter(&bufcache_lock);
1704 for (i = 0; i < BQUEUES; i++) {
1705 bq = &bufqueues[i];
1706 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1707 bq->bq_marker = bp;
1708 if (len >= elem_size && elem_count > 0) {
1709 sysctl_fillbuf(bp, &bs);
1710 mutex_exit(&bufcache_lock);
1711 error = copyout(&bs, dp, out_size);
1712 mutex_enter(&bufcache_lock);
1713 if (error)
1714 break;
1715 if (bq->bq_marker != bp) {
1716 /*
1717 * This sysctl node is only for
1718 * statistics. Retry; if the
1719 * queue keeps changing, then
1720 * bail out.
1721 */
1722 if (retries-- == 0) {
1723 error = EAGAIN;
1724 break;
1725 }
1726 mutex_exit(&bufcache_lock);
1727 goto retry;
1728 }
1729 dp += elem_size;
1730 len -= elem_size;
1731 }
1732 if (elem_count > 0) {
1733 needed += elem_size;
1734 if (elem_count != INT_MAX)
1735 elem_count--;
1736 }
1737 }
1738 if (error != 0)
1739 break;
1740 }
1741 mutex_exit(&bufcache_lock);
1742 sysctl_relock();
1743
1744 *oldlenp = needed;
1745 if (oldp == NULL)
1746 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1747
1748 return (error);
1749 }
1750
1751 static int
1752 sysctl_bufvm_update(SYSCTLFN_ARGS)
1753 {
1754 int t, error, rv;
1755 struct sysctlnode node;
1756
1757 node = *rnode;
1758 node.sysctl_data = &t;
1759 t = *(int *)rnode->sysctl_data;
1760 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1761 if (error || newp == NULL)
1762 return (error);
1763
1764 if (t < 0)
1765 return EINVAL;
1766 if (rnode->sysctl_data == &bufcache) {
1767 if (t > 100)
1768 return (EINVAL);
1769 bufcache = t;
1770 buf_setwm();
1771 } else if (rnode->sysctl_data == &bufmem_lowater) {
1772 if (bufmem_hiwater - t < 16)
1773 return (EINVAL);
1774 bufmem_lowater = t;
1775 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1776 if (t - bufmem_lowater < 16)
1777 return (EINVAL);
1778 bufmem_hiwater = t;
1779 } else
1780 return (EINVAL);
1781
1782 /* Drain until below new high water mark */
1783 sysctl_unlock();
1784 mutex_enter(&bufcache_lock);
1785 while ((t = bufmem - bufmem_hiwater) >= 0) {
1786 rv = buf_drain(t / (2 * 1024));
1787 if (rv <= 0)
1788 break;
1789 }
1790 mutex_exit(&bufcache_lock);
1791 sysctl_relock();
1792
1793 return 0;
1794 }
1795
1796 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1797 {
1798
1799 sysctl_createv(clog, 0, NULL, NULL,
1800 CTLFLAG_PERMANENT,
1801 CTLTYPE_NODE, "kern", NULL,
1802 NULL, 0, NULL, 0,
1803 CTL_KERN, CTL_EOL);
1804 sysctl_createv(clog, 0, NULL, NULL,
1805 CTLFLAG_PERMANENT,
1806 CTLTYPE_NODE, "buf",
1807 SYSCTL_DESCR("Kernel buffer cache information"),
1808 sysctl_dobuf, 0, NULL, 0,
1809 CTL_KERN, KERN_BUF, CTL_EOL);
1810 }
1811
1812 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1813 {
1814
1815 sysctl_createv(clog, 0, NULL, NULL,
1816 CTLFLAG_PERMANENT,
1817 CTLTYPE_NODE, "vm", NULL,
1818 NULL, 0, NULL, 0,
1819 CTL_VM, CTL_EOL);
1820
1821 sysctl_createv(clog, 0, NULL, NULL,
1822 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 CTLTYPE_INT, "bufcache",
1824 SYSCTL_DESCR("Percentage of physical memory to use for "
1825 "buffer cache"),
1826 sysctl_bufvm_update, 0, &bufcache, 0,
1827 CTL_VM, CTL_CREATE, CTL_EOL);
1828 sysctl_createv(clog, 0, NULL, NULL,
1829 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830 CTLTYPE_INT, "bufmem",
1831 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832 "cache"),
1833 NULL, 0, &bufmem, 0,
1834 CTL_VM, CTL_CREATE, CTL_EOL);
1835 sysctl_createv(clog, 0, NULL, NULL,
1836 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 CTLTYPE_INT, "bufmem_lowater",
1838 SYSCTL_DESCR("Minimum amount of kernel memory to "
1839 "reserve for buffer cache"),
1840 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841 CTL_VM, CTL_CREATE, CTL_EOL);
1842 sysctl_createv(clog, 0, NULL, NULL,
1843 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844 CTLTYPE_INT, "bufmem_hiwater",
1845 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846 "for buffer cache"),
1847 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848 CTL_VM, CTL_CREATE, CTL_EOL);
1849 }
1850
1851 #ifdef DEBUG
1852 /*
1853 * Print out statistics on the current allocation of the buffer pool.
1854 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855 * in vfs_syscalls.c using sysctl.
1856 */
1857 void
1858 vfs_bufstats(void)
1859 {
1860 int i, j, count;
1861 buf_t *bp;
1862 struct bqueue *dp;
1863 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1865
1866 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867 count = 0;
1868 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869 counts[j] = 0;
1870 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871 counts[bp->b_bufsize/PAGE_SIZE]++;
1872 count++;
1873 }
1874 printf("%s: total-%d", bname[i], count);
1875 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876 if (counts[j] != 0)
1877 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878 printf("\n");
1879 }
1880 }
1881 #endif /* DEBUG */
1882
1883 /* ------------------------------ */
1884
1885 buf_t *
1886 getiobuf(struct vnode *vp, bool waitok)
1887 {
1888 buf_t *bp;
1889
1890 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891 if (bp == NULL)
1892 return bp;
1893
1894 buf_init(bp);
1895
1896 if ((bp->b_vp = vp) == NULL)
1897 bp->b_objlock = &buffer_lock;
1898 else
1899 bp->b_objlock = &vp->v_interlock;
1900
1901 return bp;
1902 }
1903
1904 void
1905 putiobuf(buf_t *bp)
1906 {
1907
1908 buf_destroy(bp);
1909 pool_cache_put(bufio_cache, bp);
1910 }
1911
1912 /*
1913 * nestiobuf_iodone: b_iodone callback for nested buffers.
1914 */
1915
1916 void
1917 nestiobuf_iodone(buf_t *bp)
1918 {
1919 buf_t *mbp = bp->b_private;
1920 int error;
1921 int donebytes;
1922
1923 KASSERT(bp->b_bcount <= bp->b_bufsize);
1924 KASSERT(mbp != bp);
1925
1926 error = bp->b_error;
1927 if (bp->b_error == 0 &&
1928 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1929 /*
1930 * Not all got transfered, raise an error. We have no way to
1931 * propagate these conditions to mbp.
1932 */
1933 error = EIO;
1934 }
1935
1936 donebytes = bp->b_bufsize;
1937
1938 putiobuf(bp);
1939 nestiobuf_done(mbp, donebytes, error);
1940 }
1941
1942 /*
1943 * nestiobuf_setup: setup a "nested" buffer.
1944 *
1945 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946 * => 'bp' should be a buffer allocated by getiobuf.
1947 * => 'offset' is a byte offset in the master buffer.
1948 * => 'size' is a size in bytes of this nested buffer.
1949 */
1950
1951 void
1952 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1953 {
1954 const int b_read = mbp->b_flags & B_READ;
1955 struct vnode *vp = mbp->b_vp;
1956
1957 KASSERT(mbp->b_bcount >= offset + size);
1958 bp->b_vp = vp;
1959 bp->b_objlock = mbp->b_objlock;
1960 bp->b_cflags = BC_BUSY;
1961 bp->b_flags = B_ASYNC | b_read;
1962 bp->b_iodone = nestiobuf_iodone;
1963 bp->b_data = (char *)mbp->b_data + offset;
1964 bp->b_resid = bp->b_bcount = size;
1965 bp->b_bufsize = bp->b_bcount;
1966 bp->b_private = mbp;
1967 BIO_COPYPRIO(bp, mbp);
1968 if (!b_read && vp != NULL) {
1969 mutex_enter(&vp->v_interlock);
1970 vp->v_numoutput++;
1971 mutex_exit(&vp->v_interlock);
1972 }
1973 }
1974
1975 /*
1976 * nestiobuf_done: propagate completion to the master buffer.
1977 *
1978 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1979 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1980 */
1981
1982 void
1983 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1984 {
1985
1986 if (donebytes == 0) {
1987 return;
1988 }
1989 mutex_enter(mbp->b_objlock);
1990 KASSERT(mbp->b_resid >= donebytes);
1991 mbp->b_resid -= donebytes;
1992 if (error)
1993 mbp->b_error = error;
1994 if (mbp->b_resid == 0) {
1995 mutex_exit(mbp->b_objlock);
1996 biodone(mbp);
1997 } else
1998 mutex_exit(mbp->b_objlock);
1999 }
2000
2001 void
2002 buf_init(buf_t *bp)
2003 {
2004
2005 LIST_INIT(&bp->b_dep);
2006 cv_init(&bp->b_busy, "biolock");
2007 cv_init(&bp->b_done, "biowait");
2008 bp->b_dev = NODEV;
2009 bp->b_error = 0;
2010 bp->b_flags = 0;
2011 bp->b_cflags = 0;
2012 bp->b_oflags = 0;
2013 bp->b_objlock = &buffer_lock;
2014 bp->b_iodone = NULL;
2015 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2016 }
2017
2018 void
2019 buf_destroy(buf_t *bp)
2020 {
2021
2022 cv_destroy(&bp->b_done);
2023 cv_destroy(&bp->b_busy);
2024 }
2025
2026 int
2027 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2028 {
2029 int error;
2030
2031 KASSERT(mutex_owned(&bufcache_lock));
2032
2033 if ((bp->b_cflags & BC_BUSY) != 0) {
2034 if (curlwp == uvm.pagedaemon_lwp)
2035 return EDEADLK;
2036 bp->b_cflags |= BC_WANTED;
2037 bref(bp);
2038 if (interlock != NULL)
2039 mutex_exit(interlock);
2040 if (intr) {
2041 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2042 timo);
2043 } else {
2044 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2045 timo);
2046 }
2047 brele(bp);
2048 if (interlock != NULL)
2049 mutex_enter(interlock);
2050 if (error != 0)
2051 return error;
2052 return EPASSTHROUGH;
2053 }
2054 bp->b_cflags |= BC_BUSY;
2055
2056 return 0;
2057 }
2058