vfs_bio.c revision 1.206 1 /* $NetBSD: vfs_bio.c,v 1.206 2008/07/06 15:00:45 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * Some references:
104 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
105 * Leffler, et al.: The Design and Implementation of the 4.3BSD
106 * UNIX Operating System (Addison Welley, 1989)
107 */
108
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.206 2008/07/06 15:00:45 bouyer Exp $");
111
112 #include "fs_ffs.h"
113 #include "opt_bufcache.h"
114
115 #include <sys/param.h>
116 #include <sys/systm.h>
117 #include <sys/kernel.h>
118 #include <sys/proc.h>
119 #include <sys/buf.h>
120 #include <sys/vnode.h>
121 #include <sys/mount.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sysctl.h>
124 #include <sys/conf.h>
125 #include <sys/kauth.h>
126 #include <sys/fstrans.h>
127 #include <sys/intr.h>
128 #include <sys/cpu.h>
129
130 #include <uvm/uvm.h>
131
132 #include <miscfs/specfs/specdev.h>
133
134 #ifndef BUFPAGES
135 # define BUFPAGES 0
136 #endif
137
138 #ifdef BUFCACHE
139 # if (BUFCACHE < 5) || (BUFCACHE > 95)
140 # error BUFCACHE is not between 5 and 95
141 # endif
142 #else
143 # define BUFCACHE 15
144 #endif
145
146 u_int nbuf; /* XXX - for softdep_lockedbufs */
147 u_int bufpages = BUFPAGES; /* optional hardwired count */
148 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
149
150 /* Function prototypes */
151 struct bqueue;
152
153 static void buf_setwm(void);
154 static int buf_trim(void);
155 static void *bufpool_page_alloc(struct pool *, int);
156 static void bufpool_page_free(struct pool *, void *);
157 static buf_t *bio_doread(struct vnode *, daddr_t, int,
158 kauth_cred_t, int);
159 static buf_t *getnewbuf(int, int, int);
160 static int buf_lotsfree(void);
161 static int buf_canrelease(void);
162 static u_long buf_mempoolidx(u_long);
163 static u_long buf_roundsize(u_long);
164 static void *buf_malloc(size_t);
165 static void buf_mrelease(void *, size_t);
166 static void binsheadfree(buf_t *, struct bqueue *);
167 static void binstailfree(buf_t *, struct bqueue *);
168 int count_lock_queue(void); /* XXX */
169 #ifdef DEBUG
170 static int checkfreelist(buf_t *, struct bqueue *, int);
171 #endif
172 static void biointr(void *);
173 static void biodone2(buf_t *);
174 static void bref(buf_t *);
175 static void brele(buf_t *);
176
177 /*
178 * Definitions for the buffer hash lists.
179 */
180 #define BUFHASH(dvp, lbn) \
181 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
182 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
183 u_long bufhash;
184 struct bqueue bufqueues[BQUEUES];
185 const struct bio_ops *bioopsp; /* I/O operation notification */
186
187 static kcondvar_t needbuffer_cv;
188
189 /*
190 * Buffer queue lock.
191 */
192 kmutex_t bufcache_lock;
193 kmutex_t buffer_lock;
194
195 /* Software ISR for completed transfers. */
196 static void *biodone_sih;
197
198 /* Buffer pool for I/O buffers. */
199 static pool_cache_t buf_cache;
200 static pool_cache_t bufio_cache;
201
202 /* XXX - somewhat gross.. */
203 #if MAXBSIZE == 0x2000
204 #define NMEMPOOLS 5
205 #elif MAXBSIZE == 0x4000
206 #define NMEMPOOLS 6
207 #elif MAXBSIZE == 0x8000
208 #define NMEMPOOLS 7
209 #else
210 #define NMEMPOOLS 8
211 #endif
212
213 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
214 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
215 #error update vfs_bio buffer memory parameters
216 #endif
217
218 /* Buffer memory pools */
219 static struct pool bmempools[NMEMPOOLS];
220
221 static struct vm_map *buf_map;
222
223 /*
224 * Buffer memory pool allocator.
225 */
226 static void *
227 bufpool_page_alloc(struct pool *pp, int flags)
228 {
229
230 return (void *)uvm_km_alloc(buf_map,
231 MAXBSIZE, MAXBSIZE,
232 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
233 | UVM_KMF_WIRED);
234 }
235
236 static void
237 bufpool_page_free(struct pool *pp, void *v)
238 {
239
240 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
241 }
242
243 static struct pool_allocator bufmempool_allocator = {
244 .pa_alloc = bufpool_page_alloc,
245 .pa_free = bufpool_page_free,
246 .pa_pagesz = MAXBSIZE,
247 };
248
249 /* Buffer memory management variables */
250 u_long bufmem_valimit;
251 u_long bufmem_hiwater;
252 u_long bufmem_lowater;
253 u_long bufmem;
254
255 /*
256 * MD code can call this to set a hard limit on the amount
257 * of virtual memory used by the buffer cache.
258 */
259 int
260 buf_setvalimit(vsize_t sz)
261 {
262
263 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
264 if (sz < NMEMPOOLS * MAXBSIZE)
265 return EINVAL;
266
267 bufmem_valimit = sz;
268 return 0;
269 }
270
271 static void
272 buf_setwm(void)
273 {
274
275 bufmem_hiwater = buf_memcalc();
276 /* lowater is approx. 2% of memory (with bufcache = 15) */
277 #define BUFMEM_WMSHIFT 3
278 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
279 if (bufmem_hiwater < BUFMEM_HIWMMIN)
280 /* Ensure a reasonable minimum value */
281 bufmem_hiwater = BUFMEM_HIWMMIN;
282 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
283 }
284
285 #ifdef DEBUG
286 int debug_verify_freelist = 0;
287 static int
288 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
289 {
290 buf_t *b;
291
292 if (!debug_verify_freelist)
293 return 1;
294
295 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
296 if (b == bp)
297 return ison ? 1 : 0;
298 }
299
300 return ison ? 0 : 1;
301 }
302 #endif
303
304 /*
305 * Insq/Remq for the buffer hash lists.
306 * Call with buffer queue locked.
307 */
308 static void
309 binsheadfree(buf_t *bp, struct bqueue *dp)
310 {
311
312 KASSERT(mutex_owned(&bufcache_lock));
313 KASSERT(bp->b_freelistindex == -1);
314 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
315 dp->bq_bytes += bp->b_bufsize;
316 bp->b_freelistindex = dp - bufqueues;
317 }
318
319 static void
320 binstailfree(buf_t *bp, struct bqueue *dp)
321 {
322
323 KASSERT(mutex_owned(&bufcache_lock));
324 KASSERT(bp->b_freelistindex == -1);
325 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
326 dp->bq_bytes += bp->b_bufsize;
327 bp->b_freelistindex = dp - bufqueues;
328 }
329
330 void
331 bremfree(buf_t *bp)
332 {
333 struct bqueue *dp;
334 int bqidx = bp->b_freelistindex;
335
336 KASSERT(mutex_owned(&bufcache_lock));
337
338 KASSERT(bqidx != -1);
339 dp = &bufqueues[bqidx];
340 KDASSERT(checkfreelist(bp, dp, 1));
341 KASSERT(dp->bq_bytes >= bp->b_bufsize);
342 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
343 dp->bq_bytes -= bp->b_bufsize;
344
345 /* For the sysctl helper. */
346 if (bp == dp->bq_marker)
347 dp->bq_marker = NULL;
348
349 #if defined(DIAGNOSTIC)
350 bp->b_freelistindex = -1;
351 #endif /* defined(DIAGNOSTIC) */
352 }
353
354 /*
355 * Add a reference to an buffer structure that came from buf_cache.
356 */
357 static inline void
358 bref(buf_t *bp)
359 {
360
361 KASSERT(mutex_owned(&bufcache_lock));
362 KASSERT(bp->b_refcnt > 0);
363
364 bp->b_refcnt++;
365 }
366
367 /*
368 * Free an unused buffer structure that came from buf_cache.
369 */
370 static inline void
371 brele(buf_t *bp)
372 {
373
374 KASSERT(mutex_owned(&bufcache_lock));
375 KASSERT(bp->b_refcnt > 0);
376
377 if (bp->b_refcnt-- == 1) {
378 buf_destroy(bp);
379 #ifdef DEBUG
380 memset((char *)bp, 0, sizeof(*bp));
381 #endif
382 pool_cache_put(buf_cache, bp);
383 }
384 }
385
386 /*
387 * note that for some ports this is used by pmap bootstrap code to
388 * determine kva size.
389 */
390 u_long
391 buf_memcalc(void)
392 {
393 u_long n;
394
395 /*
396 * Determine the upper bound of memory to use for buffers.
397 *
398 * - If bufpages is specified, use that as the number
399 * pages.
400 *
401 * - Otherwise, use bufcache as the percentage of
402 * physical memory.
403 */
404 if (bufpages != 0) {
405 n = bufpages;
406 } else {
407 if (bufcache < 5) {
408 printf("forcing bufcache %d -> 5", bufcache);
409 bufcache = 5;
410 }
411 if (bufcache > 95) {
412 printf("forcing bufcache %d -> 95", bufcache);
413 bufcache = 95;
414 }
415 n = calc_cache_size(buf_map, bufcache,
416 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
417 / PAGE_SIZE;
418 }
419
420 n <<= PAGE_SHIFT;
421 if (bufmem_valimit != 0 && n > bufmem_valimit)
422 n = bufmem_valimit;
423
424 return (n);
425 }
426
427 /*
428 * Initialize buffers and hash links for buffers.
429 */
430 void
431 bufinit(void)
432 {
433 struct bqueue *dp;
434 int use_std;
435 u_int i;
436
437 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
438 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
439 cv_init(&needbuffer_cv, "needbuf");
440
441 if (bufmem_valimit != 0) {
442 vaddr_t minaddr = 0, maxaddr;
443 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
444 bufmem_valimit, 0, false, 0);
445 if (buf_map == NULL)
446 panic("bufinit: cannot allocate submap");
447 } else
448 buf_map = kernel_map;
449
450 /*
451 * Initialize buffer cache memory parameters.
452 */
453 bufmem = 0;
454 buf_setwm();
455
456 /* On "small" machines use small pool page sizes where possible */
457 use_std = (physmem < atop(16*1024*1024));
458
459 /*
460 * Also use them on systems that can map the pool pages using
461 * a direct-mapped segment.
462 */
463 #ifdef PMAP_MAP_POOLPAGE
464 use_std = 1;
465 #endif
466
467 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
468 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
469 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
470 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
471
472 bufmempool_allocator.pa_backingmap = buf_map;
473 for (i = 0; i < NMEMPOOLS; i++) {
474 struct pool_allocator *pa;
475 struct pool *pp = &bmempools[i];
476 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
477 char *name = kmem_alloc(8, KM_SLEEP);
478 if (__predict_true(size >= 1024))
479 (void)snprintf(name, 8, "buf%dk", size / 1024);
480 else
481 (void)snprintf(name, 8, "buf%db", size);
482 pa = (size <= PAGE_SIZE && use_std)
483 ? &pool_allocator_nointr
484 : &bufmempool_allocator;
485 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
486 pool_setlowat(pp, 1);
487 pool_sethiwat(pp, 1);
488 }
489
490 /* Initialize the buffer queues */
491 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
492 TAILQ_INIT(&dp->bq_queue);
493 dp->bq_bytes = 0;
494 }
495
496 /*
497 * Estimate hash table size based on the amount of memory we
498 * intend to use for the buffer cache. The average buffer
499 * size is dependent on our clients (i.e. filesystems).
500 *
501 * For now, use an empirical 3K per buffer.
502 */
503 nbuf = (bufmem_hiwater / 1024) / 3;
504 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
505 }
506
507 void
508 bufinit2(void)
509 {
510
511 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
512 NULL);
513 if (biodone_sih == NULL)
514 panic("bufinit2: can't establish soft interrupt");
515 }
516
517 static int
518 buf_lotsfree(void)
519 {
520 int try, thresh;
521
522 /* Always allocate if less than the low water mark. */
523 if (bufmem < bufmem_lowater)
524 return 1;
525
526 /* Never allocate if greater than the high water mark. */
527 if (bufmem > bufmem_hiwater)
528 return 0;
529
530 /* If there's anything on the AGE list, it should be eaten. */
531 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
532 return 0;
533
534 /*
535 * The probabily of getting a new allocation is inversely
536 * proportional to the current size of the cache, using
537 * a granularity of 16 steps.
538 */
539 try = random() & 0x0000000fL;
540
541 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
542 thresh = (bufmem - bufmem_lowater) /
543 ((bufmem_hiwater - bufmem_lowater) / 16);
544
545 if (try >= thresh)
546 return 1;
547
548 /* Otherwise don't allocate. */
549 return 0;
550 }
551
552 /*
553 * Return estimate of bytes we think need to be
554 * released to help resolve low memory conditions.
555 *
556 * => called with bufcache_lock held.
557 */
558 static int
559 buf_canrelease(void)
560 {
561 int pagedemand, ninvalid = 0;
562
563 KASSERT(mutex_owned(&bufcache_lock));
564
565 if (bufmem < bufmem_lowater)
566 return 0;
567
568 if (bufmem > bufmem_hiwater)
569 return bufmem - bufmem_hiwater;
570
571 ninvalid += bufqueues[BQ_AGE].bq_bytes;
572
573 pagedemand = uvmexp.freetarg - uvmexp.free;
574 if (pagedemand < 0)
575 return ninvalid;
576 return MAX(ninvalid, MIN(2 * MAXBSIZE,
577 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
578 }
579
580 /*
581 * Buffer memory allocation helper functions
582 */
583 static u_long
584 buf_mempoolidx(u_long size)
585 {
586 u_int n = 0;
587
588 size -= 1;
589 size >>= MEMPOOL_INDEX_OFFSET;
590 while (size) {
591 size >>= 1;
592 n += 1;
593 }
594 if (n >= NMEMPOOLS)
595 panic("buf mem pool index %d", n);
596 return n;
597 }
598
599 static u_long
600 buf_roundsize(u_long size)
601 {
602 /* Round up to nearest power of 2 */
603 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
604 }
605
606 static void *
607 buf_malloc(size_t size)
608 {
609 u_int n = buf_mempoolidx(size);
610 void *addr;
611
612 while (1) {
613 addr = pool_get(&bmempools[n], PR_NOWAIT);
614 if (addr != NULL)
615 break;
616
617 /* No memory, see if we can free some. If so, try again */
618 mutex_enter(&bufcache_lock);
619 if (buf_drain(1) > 0) {
620 mutex_exit(&bufcache_lock);
621 continue;
622 }
623
624 if (curlwp == uvm.pagedaemon_lwp) {
625 mutex_exit(&bufcache_lock);
626 return NULL;
627 }
628
629 /* Wait for buffers to arrive on the LRU queue */
630 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
631 mutex_exit(&bufcache_lock);
632 }
633
634 return addr;
635 }
636
637 static void
638 buf_mrelease(void *addr, size_t size)
639 {
640
641 pool_put(&bmempools[buf_mempoolidx(size)], addr);
642 }
643
644 /*
645 * bread()/breadn() helper.
646 */
647 static buf_t *
648 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
649 int async)
650 {
651 buf_t *bp;
652 struct mount *mp;
653
654 bp = getblk(vp, blkno, size, 0, 0);
655
656 #ifdef DIAGNOSTIC
657 if (bp == NULL) {
658 panic("bio_doread: no such buf");
659 }
660 #endif
661
662 /*
663 * If buffer does not have data valid, start a read.
664 * Note that if buffer is BC_INVAL, getblk() won't return it.
665 * Therefore, it's valid if its I/O has completed or been delayed.
666 */
667 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
668 /* Start I/O for the buffer. */
669 SET(bp->b_flags, B_READ | async);
670 if (async)
671 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
672 else
673 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
674 VOP_STRATEGY(vp, bp);
675
676 /* Pay for the read. */
677 curlwp->l_ru.ru_inblock++;
678 } else if (async)
679 brelse(bp, 0);
680
681 if (vp->v_type == VBLK)
682 mp = vp->v_specmountpoint;
683 else
684 mp = vp->v_mount;
685
686 /*
687 * Collect statistics on synchronous and asynchronous reads.
688 * Reads from block devices are charged to their associated
689 * filesystem (if any).
690 */
691 if (mp != NULL) {
692 if (async == 0)
693 mp->mnt_stat.f_syncreads++;
694 else
695 mp->mnt_stat.f_asyncreads++;
696 }
697
698 return (bp);
699 }
700
701 /*
702 * Read a disk block.
703 * This algorithm described in Bach (p.54).
704 */
705 int
706 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
707 int flags, buf_t **bpp)
708 {
709 buf_t *bp;
710 int error;
711
712 /* Get buffer for block. */
713 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
714
715 /* Wait for the read to complete, and return result. */
716 error = biowait(bp);
717 if (error == 0 && (flags & B_MODIFY) != 0)
718 error = fscow_run(bp, true);
719 return error;
720 }
721
722 /*
723 * Read-ahead multiple disk blocks. The first is sync, the rest async.
724 * Trivial modification to the breada algorithm presented in Bach (p.55).
725 */
726 int
727 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
728 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
729 {
730 buf_t *bp;
731 int error, i;
732
733 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
734
735 /*
736 * For each of the read-ahead blocks, start a read, if necessary.
737 */
738 mutex_enter(&bufcache_lock);
739 for (i = 0; i < nrablks; i++) {
740 /* If it's in the cache, just go on to next one. */
741 if (incore(vp, rablks[i]))
742 continue;
743
744 /* Get a buffer for the read-ahead block */
745 mutex_exit(&bufcache_lock);
746 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
747 mutex_enter(&bufcache_lock);
748 }
749 mutex_exit(&bufcache_lock);
750
751 /* Otherwise, we had to start a read for it; wait until it's valid. */
752 error = biowait(bp);
753 if (error == 0 && (flags & B_MODIFY) != 0)
754 error = fscow_run(bp, true);
755 return error;
756 }
757
758 /*
759 * Read with single-block read-ahead. Defined in Bach (p.55), but
760 * implemented as a call to breadn().
761 * XXX for compatibility with old file systems.
762 */
763 int
764 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
765 int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
766 {
767
768 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
769 cred, flags, bpp));
770 }
771
772 /*
773 * Block write. Described in Bach (p.56)
774 */
775 int
776 bwrite(buf_t *bp)
777 {
778 int rv, sync, wasdelayed;
779 struct vnode *vp;
780 struct mount *mp;
781
782 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
783 KASSERT(!cv_has_waiters(&bp->b_done));
784
785 vp = bp->b_vp;
786 if (vp != NULL) {
787 KASSERT(bp->b_objlock == &vp->v_interlock);
788 if (vp->v_type == VBLK)
789 mp = vp->v_specmountpoint;
790 else
791 mp = vp->v_mount;
792 } else {
793 mp = NULL;
794 }
795
796 /*
797 * Remember buffer type, to switch on it later. If the write was
798 * synchronous, but the file system was mounted with MNT_ASYNC,
799 * convert it to a delayed write.
800 * XXX note that this relies on delayed tape writes being converted
801 * to async, not sync writes (which is safe, but ugly).
802 */
803 sync = !ISSET(bp->b_flags, B_ASYNC);
804 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
805 bdwrite(bp);
806 return (0);
807 }
808
809 /*
810 * Collect statistics on synchronous and asynchronous writes.
811 * Writes to block devices are charged to their associated
812 * filesystem (if any).
813 */
814 if (mp != NULL) {
815 if (sync)
816 mp->mnt_stat.f_syncwrites++;
817 else
818 mp->mnt_stat.f_asyncwrites++;
819 }
820
821 /*
822 * Pay for the I/O operation and make sure the buf is on the correct
823 * vnode queue.
824 */
825 bp->b_error = 0;
826 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
827 CLR(bp->b_flags, B_READ);
828 if (wasdelayed) {
829 mutex_enter(&bufcache_lock);
830 mutex_enter(bp->b_objlock);
831 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
832 reassignbuf(bp, bp->b_vp);
833 mutex_exit(&bufcache_lock);
834 } else {
835 curlwp->l_ru.ru_oublock++;
836 mutex_enter(bp->b_objlock);
837 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
838 }
839 if (vp != NULL)
840 vp->v_numoutput++;
841 mutex_exit(bp->b_objlock);
842
843 /* Initiate disk write. */
844 if (sync)
845 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
846 else
847 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
848
849 VOP_STRATEGY(vp, bp);
850
851 if (sync) {
852 /* If I/O was synchronous, wait for it to complete. */
853 rv = biowait(bp);
854
855 /* Release the buffer. */
856 brelse(bp, 0);
857
858 return (rv);
859 } else {
860 return (0);
861 }
862 }
863
864 int
865 vn_bwrite(void *v)
866 {
867 struct vop_bwrite_args *ap = v;
868
869 return (bwrite(ap->a_bp));
870 }
871
872 /*
873 * Delayed write.
874 *
875 * The buffer is marked dirty, but is not queued for I/O.
876 * This routine should be used when the buffer is expected
877 * to be modified again soon, typically a small write that
878 * partially fills a buffer.
879 *
880 * NB: magnetic tapes cannot be delayed; they must be
881 * written in the order that the writes are requested.
882 *
883 * Described in Leffler, et al. (pp. 208-213).
884 */
885 void
886 bdwrite(buf_t *bp)
887 {
888
889 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
890 ISSET(bp->b_flags, B_COWDONE));
891 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
892 KASSERT(!cv_has_waiters(&bp->b_done));
893
894 /* If this is a tape block, write the block now. */
895 if (bdev_type(bp->b_dev) == D_TAPE) {
896 bawrite(bp);
897 return;
898 }
899
900 /*
901 * If the block hasn't been seen before:
902 * (1) Mark it as having been seen,
903 * (2) Charge for the write,
904 * (3) Make sure it's on its vnode's correct block list.
905 */
906 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
907
908 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
909 mutex_enter(&bufcache_lock);
910 mutex_enter(bp->b_objlock);
911 SET(bp->b_oflags, BO_DELWRI);
912 curlwp->l_ru.ru_oublock++;
913 reassignbuf(bp, bp->b_vp);
914 mutex_exit(&bufcache_lock);
915 } else {
916 mutex_enter(bp->b_objlock);
917 }
918 /* Otherwise, the "write" is done, so mark and release the buffer. */
919 CLR(bp->b_oflags, BO_DONE);
920 mutex_exit(bp->b_objlock);
921
922 brelse(bp, 0);
923 }
924
925 /*
926 * Asynchronous block write; just an asynchronous bwrite().
927 */
928 void
929 bawrite(buf_t *bp)
930 {
931
932 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
933
934 SET(bp->b_flags, B_ASYNC);
935 VOP_BWRITE(bp);
936 }
937
938 /*
939 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
940 * Call with the buffer interlock held.
941 *
942 * Note: called only from biodone() through ffs softdep's io_complete()
943 * Note2: smbfs also learned about bdirty().
944 */
945 void
946 bdirty(buf_t *bp)
947 {
948
949 KASSERT(mutex_owned(&bufcache_lock));
950 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
951 KASSERT(mutex_owned(bp->b_objlock));
952 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
953
954 CLR(bp->b_cflags, BC_AGE);
955
956 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
957 SET(bp->b_oflags, BO_DELWRI);
958 curlwp->l_ru.ru_oublock++;
959 reassignbuf(bp, bp->b_vp);
960 }
961 }
962
963
964 /*
965 * Release a buffer on to the free lists.
966 * Described in Bach (p. 46).
967 */
968 void
969 brelsel(buf_t *bp, int set)
970 {
971 struct bqueue *bufq;
972 struct vnode *vp;
973
974 KASSERT(mutex_owned(&bufcache_lock));
975 KASSERT(!cv_has_waiters(&bp->b_done));
976 KASSERT(bp->b_refcnt > 0);
977
978 SET(bp->b_cflags, set);
979
980 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
981 KASSERT(bp->b_iodone == NULL);
982
983 /* Wake up any processes waiting for any buffer to become free. */
984 cv_signal(&needbuffer_cv);
985
986 /* Wake up any proceeses waiting for _this_ buffer to become */
987 if (ISSET(bp->b_cflags, BC_WANTED))
988 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
989
990 /*
991 * Determine which queue the buffer should be on, then put it there.
992 */
993
994 /* If it's locked, don't report an error; try again later. */
995 if (ISSET(bp->b_flags, B_LOCKED))
996 bp->b_error = 0;
997
998 /* If it's not cacheable, or an error, mark it invalid. */
999 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1000 SET(bp->b_cflags, BC_INVAL);
1001
1002 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1003 /*
1004 * This is a delayed write buffer that was just flushed to
1005 * disk. It is still on the LRU queue. If it's become
1006 * invalid, then we need to move it to a different queue;
1007 * otherwise leave it in its current position.
1008 */
1009 CLR(bp->b_cflags, BC_VFLUSH);
1010 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1011 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1012 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1013 goto already_queued;
1014 } else {
1015 bremfree(bp);
1016 }
1017 }
1018
1019 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1020 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1021 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1022
1023 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1024 /*
1025 * If it's invalid or empty, dissociate it from its vnode
1026 * and put on the head of the appropriate queue.
1027 */
1028 if (bioopsp != NULL)
1029 (*bioopsp->io_deallocate)(bp);
1030
1031 mutex_enter(bp->b_objlock);
1032 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1033 if ((vp = bp->b_vp) != NULL) {
1034 KASSERT(bp->b_objlock == &vp->v_interlock);
1035 reassignbuf(bp, bp->b_vp);
1036 brelvp(bp);
1037 mutex_exit(&vp->v_interlock);
1038 } else {
1039 KASSERT(bp->b_objlock == &buffer_lock);
1040 mutex_exit(bp->b_objlock);
1041 }
1042
1043 if (bp->b_bufsize <= 0)
1044 /* no data */
1045 goto already_queued;
1046 else
1047 /* invalid data */
1048 bufq = &bufqueues[BQ_AGE];
1049 binsheadfree(bp, bufq);
1050 } else {
1051 /*
1052 * It has valid data. Put it on the end of the appropriate
1053 * queue, so that it'll stick around for as long as possible.
1054 * If buf is AGE, but has dependencies, must put it on last
1055 * bufqueue to be scanned, ie LRU. This protects against the
1056 * livelock where BQ_AGE only has buffers with dependencies,
1057 * and we thus never get to the dependent buffers in BQ_LRU.
1058 */
1059 if (ISSET(bp->b_flags, B_LOCKED)) {
1060 /* locked in core */
1061 bufq = &bufqueues[BQ_LOCKED];
1062 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1063 /* valid data */
1064 bufq = &bufqueues[BQ_LRU];
1065 } else {
1066 /* stale but valid data */
1067 int has_deps;
1068
1069 if (bioopsp != NULL)
1070 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1071 else
1072 has_deps = 0;
1073 bufq = has_deps ? &bufqueues[BQ_LRU] :
1074 &bufqueues[BQ_AGE];
1075 }
1076 binstailfree(bp, bufq);
1077 }
1078 already_queued:
1079 /* Unlock the buffer. */
1080 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1081 CLR(bp->b_flags, B_ASYNC);
1082 cv_broadcast(&bp->b_busy);
1083
1084 if (bp->b_bufsize <= 0)
1085 brele(bp);
1086 }
1087
1088 void
1089 brelse(buf_t *bp, int set)
1090 {
1091
1092 mutex_enter(&bufcache_lock);
1093 brelsel(bp, set);
1094 mutex_exit(&bufcache_lock);
1095 }
1096
1097 /*
1098 * Determine if a block is in the cache.
1099 * Just look on what would be its hash chain. If it's there, return
1100 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1101 * we normally don't return the buffer, unless the caller explicitly
1102 * wants us to.
1103 */
1104 buf_t *
1105 incore(struct vnode *vp, daddr_t blkno)
1106 {
1107 buf_t *bp;
1108
1109 KASSERT(mutex_owned(&bufcache_lock));
1110
1111 /* Search hash chain */
1112 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1113 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1114 !ISSET(bp->b_cflags, BC_INVAL)) {
1115 KASSERT(bp->b_objlock == &vp->v_interlock);
1116 return (bp);
1117 }
1118 }
1119
1120 return (NULL);
1121 }
1122
1123 /*
1124 * Get a block of requested size that is associated with
1125 * a given vnode and block offset. If it is found in the
1126 * block cache, mark it as having been found, make it busy
1127 * and return it. Otherwise, return an empty block of the
1128 * correct size. It is up to the caller to insure that the
1129 * cached blocks be of the correct size.
1130 */
1131 buf_t *
1132 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1133 {
1134 int err, preserve;
1135 buf_t *bp;
1136
1137 mutex_enter(&bufcache_lock);
1138 loop:
1139 bp = incore(vp, blkno);
1140 if (bp != NULL) {
1141 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1142 if (err != 0) {
1143 if (err == EPASSTHROUGH)
1144 goto loop;
1145 mutex_exit(&bufcache_lock);
1146 return (NULL);
1147 }
1148 KASSERT(!cv_has_waiters(&bp->b_done));
1149 #ifdef DIAGNOSTIC
1150 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1151 bp->b_bcount < size && vp->v_type != VBLK)
1152 panic("getblk: block size invariant failed");
1153 #endif
1154 bremfree(bp);
1155 preserve = 1;
1156 } else {
1157 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1158 goto loop;
1159
1160 if (incore(vp, blkno) != NULL) {
1161 /* The block has come into memory in the meantime. */
1162 brelsel(bp, 0);
1163 goto loop;
1164 }
1165
1166 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1167 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1168 mutex_enter(&vp->v_interlock);
1169 bgetvp(vp, bp);
1170 mutex_exit(&vp->v_interlock);
1171 preserve = 0;
1172 }
1173 mutex_exit(&bufcache_lock);
1174
1175 /*
1176 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1177 * if we re-size buffers here.
1178 */
1179 if (ISSET(bp->b_flags, B_LOCKED)) {
1180 KASSERT(bp->b_bufsize >= size);
1181 } else {
1182 if (allocbuf(bp, size, preserve)) {
1183 mutex_enter(&bufcache_lock);
1184 LIST_REMOVE(bp, b_hash);
1185 mutex_exit(&bufcache_lock);
1186 brelse(bp, BC_INVAL);
1187 return NULL;
1188 }
1189 }
1190 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1191 return (bp);
1192 }
1193
1194 /*
1195 * Get an empty, disassociated buffer of given size.
1196 */
1197 buf_t *
1198 geteblk(int size)
1199 {
1200 buf_t *bp;
1201 int error;
1202
1203 mutex_enter(&bufcache_lock);
1204 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1205 ;
1206
1207 SET(bp->b_cflags, BC_INVAL);
1208 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1209 mutex_exit(&bufcache_lock);
1210 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1211 error = allocbuf(bp, size, 0);
1212 KASSERT(error == 0);
1213 return (bp);
1214 }
1215
1216 /*
1217 * Expand or contract the actual memory allocated to a buffer.
1218 *
1219 * If the buffer shrinks, data is lost, so it's up to the
1220 * caller to have written it out *first*; this routine will not
1221 * start a write. If the buffer grows, it's the callers
1222 * responsibility to fill out the buffer's additional contents.
1223 */
1224 int
1225 allocbuf(buf_t *bp, int size, int preserve)
1226 {
1227 vsize_t oldsize, desired_size;
1228 void *addr;
1229 int delta;
1230
1231 desired_size = buf_roundsize(size);
1232 if (desired_size > MAXBSIZE)
1233 printf("allocbuf: buffer larger than MAXBSIZE requested");
1234
1235 bp->b_bcount = size;
1236
1237 oldsize = bp->b_bufsize;
1238 if (oldsize == desired_size)
1239 return 0;
1240
1241 /*
1242 * If we want a buffer of a different size, re-allocate the
1243 * buffer's memory; copy old content only if needed.
1244 */
1245 addr = buf_malloc(desired_size);
1246 if (addr == NULL)
1247 return ENOMEM;
1248 if (preserve)
1249 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1250 if (bp->b_data != NULL)
1251 buf_mrelease(bp->b_data, oldsize);
1252 bp->b_data = addr;
1253 bp->b_bufsize = desired_size;
1254
1255 /*
1256 * Update overall buffer memory counter (protected by bufcache_lock)
1257 */
1258 delta = (long)desired_size - (long)oldsize;
1259
1260 mutex_enter(&bufcache_lock);
1261 if ((bufmem += delta) > bufmem_hiwater) {
1262 /*
1263 * Need to trim overall memory usage.
1264 */
1265 while (buf_canrelease()) {
1266 if (curcpu()->ci_schedstate.spc_flags &
1267 SPCF_SHOULDYIELD) {
1268 mutex_exit(&bufcache_lock);
1269 preempt();
1270 mutex_enter(&bufcache_lock);
1271 }
1272 if (buf_trim() == 0)
1273 break;
1274 }
1275 }
1276 mutex_exit(&bufcache_lock);
1277 return 0;
1278 }
1279
1280 /*
1281 * Find a buffer which is available for use.
1282 * Select something from a free list.
1283 * Preference is to AGE list, then LRU list.
1284 *
1285 * Called with the buffer queues locked.
1286 * Return buffer locked.
1287 */
1288 buf_t *
1289 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1290 {
1291 buf_t *bp;
1292 struct vnode *vp;
1293
1294 start:
1295 KASSERT(mutex_owned(&bufcache_lock));
1296
1297 /*
1298 * Get a new buffer from the pool.
1299 */
1300 if (!from_bufq && buf_lotsfree()) {
1301 mutex_exit(&bufcache_lock);
1302 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1303 if (bp != NULL) {
1304 memset((char *)bp, 0, sizeof(*bp));
1305 buf_init(bp);
1306 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1307 mutex_enter(&bufcache_lock);
1308 #if defined(DIAGNOSTIC)
1309 bp->b_freelistindex = -1;
1310 #endif /* defined(DIAGNOSTIC) */
1311 return (bp);
1312 }
1313 mutex_enter(&bufcache_lock);
1314 }
1315
1316 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1317 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1318 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1319 bremfree(bp);
1320
1321 /* Buffer is no longer on free lists. */
1322 SET(bp->b_cflags, BC_BUSY);
1323 } else {
1324 /*
1325 * XXX: !from_bufq should be removed.
1326 */
1327 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1328 /* wait for a free buffer of any kind */
1329 if ((slpflag & PCATCH) != 0)
1330 (void)cv_timedwait_sig(&needbuffer_cv,
1331 &bufcache_lock, slptimeo);
1332 else
1333 (void)cv_timedwait(&needbuffer_cv,
1334 &bufcache_lock, slptimeo);
1335 }
1336 return (NULL);
1337 }
1338
1339 #ifdef DIAGNOSTIC
1340 if (bp->b_bufsize <= 0)
1341 panic("buffer %p: on queue but empty", bp);
1342 #endif
1343
1344 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1345 /*
1346 * This is a delayed write buffer being flushed to disk. Make
1347 * sure it gets aged out of the queue when it's finished, and
1348 * leave it off the LRU queue.
1349 */
1350 CLR(bp->b_cflags, BC_VFLUSH);
1351 SET(bp->b_cflags, BC_AGE);
1352 goto start;
1353 }
1354
1355 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1356 KASSERT(bp->b_refcnt > 0);
1357 KASSERT(!cv_has_waiters(&bp->b_done));
1358
1359 /*
1360 * If buffer was a delayed write, start it and return NULL
1361 * (since we might sleep while starting the write).
1362 */
1363 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1364 /*
1365 * This buffer has gone through the LRU, so make sure it gets
1366 * reused ASAP.
1367 */
1368 SET(bp->b_cflags, BC_AGE);
1369 mutex_exit(&bufcache_lock);
1370 bawrite(bp);
1371 mutex_enter(&bufcache_lock);
1372 return (NULL);
1373 }
1374
1375 vp = bp->b_vp;
1376 if (bioopsp != NULL)
1377 (*bioopsp->io_deallocate)(bp);
1378
1379 /* clear out various other fields */
1380 bp->b_cflags = BC_BUSY;
1381 bp->b_oflags = 0;
1382 bp->b_flags = 0;
1383 bp->b_dev = NODEV;
1384 bp->b_blkno = 0;
1385 bp->b_lblkno = 0;
1386 bp->b_rawblkno = 0;
1387 bp->b_iodone = 0;
1388 bp->b_error = 0;
1389 bp->b_resid = 0;
1390 bp->b_bcount = 0;
1391
1392 LIST_REMOVE(bp, b_hash);
1393
1394 /* Disassociate us from our vnode, if we had one... */
1395 if (vp != NULL) {
1396 mutex_enter(&vp->v_interlock);
1397 brelvp(bp);
1398 mutex_exit(&vp->v_interlock);
1399 }
1400
1401 return (bp);
1402 }
1403
1404 /*
1405 * Attempt to free an aged buffer off the queues.
1406 * Called with queue lock held.
1407 * Returns the amount of buffer memory freed.
1408 */
1409 static int
1410 buf_trim(void)
1411 {
1412 buf_t *bp;
1413 long size = 0;
1414
1415 KASSERT(mutex_owned(&bufcache_lock));
1416
1417 /* Instruct getnewbuf() to get buffers off the queues */
1418 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1419 return 0;
1420
1421 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1422 size = bp->b_bufsize;
1423 bufmem -= size;
1424 if (size > 0) {
1425 buf_mrelease(bp->b_data, size);
1426 bp->b_bcount = bp->b_bufsize = 0;
1427 }
1428 /* brelse() will return the buffer to the global buffer pool */
1429 brelsel(bp, 0);
1430 return size;
1431 }
1432
1433 int
1434 buf_drain(int n)
1435 {
1436 int size = 0, sz;
1437
1438 KASSERT(mutex_owned(&bufcache_lock));
1439
1440 while (size < n && bufmem > bufmem_lowater) {
1441 sz = buf_trim();
1442 if (sz <= 0)
1443 break;
1444 size += sz;
1445 }
1446
1447 return size;
1448 }
1449
1450 /*
1451 * Wait for operations on the buffer to complete.
1452 * When they do, extract and return the I/O's error value.
1453 */
1454 int
1455 biowait(buf_t *bp)
1456 {
1457
1458 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1459 KASSERT(bp->b_refcnt > 0);
1460
1461 mutex_enter(bp->b_objlock);
1462 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1463 cv_wait(&bp->b_done, bp->b_objlock);
1464 mutex_exit(bp->b_objlock);
1465
1466 return bp->b_error;
1467 }
1468
1469 /*
1470 * Mark I/O complete on a buffer.
1471 *
1472 * If a callback has been requested, e.g. the pageout
1473 * daemon, do so. Otherwise, awaken waiting processes.
1474 *
1475 * [ Leffler, et al., says on p.247:
1476 * "This routine wakes up the blocked process, frees the buffer
1477 * for an asynchronous write, or, for a request by the pagedaemon
1478 * process, invokes a procedure specified in the buffer structure" ]
1479 *
1480 * In real life, the pagedaemon (or other system processes) wants
1481 * to do async stuff to, and doesn't want the buffer brelse()'d.
1482 * (for swap pager, that puts swap buffers on the free lists (!!!),
1483 * for the vn device, that puts malloc'd buffers on the free lists!)
1484 */
1485 void
1486 biodone(buf_t *bp)
1487 {
1488 int s;
1489
1490 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1491
1492 if (cpu_intr_p()) {
1493 /* From interrupt mode: defer to a soft interrupt. */
1494 s = splvm();
1495 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1496 softint_schedule(biodone_sih);
1497 splx(s);
1498 } else {
1499 /* Process now - the buffer may be freed soon. */
1500 biodone2(bp);
1501 }
1502 }
1503
1504 static void
1505 biodone2(buf_t *bp)
1506 {
1507 void (*callout)(buf_t *);
1508
1509 if (bioopsp != NULL)
1510 (*bioopsp->io_complete)(bp);
1511
1512 mutex_enter(bp->b_objlock);
1513 /* Note that the transfer is done. */
1514 if (ISSET(bp->b_oflags, BO_DONE))
1515 panic("biodone2 already");
1516 CLR(bp->b_flags, B_COWDONE);
1517 SET(bp->b_oflags, BO_DONE);
1518 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1519
1520 /* Wake up waiting writers. */
1521 if (!ISSET(bp->b_flags, B_READ))
1522 vwakeup(bp);
1523
1524 if ((callout = bp->b_iodone) != NULL) {
1525 /* Note callout done, then call out. */
1526 KASSERT(!cv_has_waiters(&bp->b_done));
1527 KERNEL_LOCK(1, NULL); /* XXXSMP */
1528 bp->b_iodone = NULL;
1529 mutex_exit(bp->b_objlock);
1530 (*callout)(bp);
1531 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1532 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1533 /* If async, release. */
1534 KASSERT(!cv_has_waiters(&bp->b_done));
1535 mutex_exit(bp->b_objlock);
1536 brelse(bp, 0);
1537 } else {
1538 /* Otherwise just wake up waiters in biowait(). */
1539 cv_broadcast(&bp->b_done);
1540 mutex_exit(bp->b_objlock);
1541 }
1542 }
1543
1544 static void
1545 biointr(void *cookie)
1546 {
1547 struct cpu_info *ci;
1548 buf_t *bp;
1549 int s;
1550
1551 ci = curcpu();
1552
1553 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1554 KASSERT(curcpu() == ci);
1555
1556 s = splvm();
1557 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1558 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1559 splx(s);
1560
1561 biodone2(bp);
1562 }
1563 }
1564
1565 /*
1566 * Return a count of buffers on the "locked" queue.
1567 */
1568 int
1569 count_lock_queue(void)
1570 {
1571 buf_t *bp;
1572 int n = 0;
1573
1574 mutex_enter(&bufcache_lock);
1575 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1576 n++;
1577 mutex_exit(&bufcache_lock);
1578 return (n);
1579 }
1580
1581 /*
1582 * Wait for all buffers to complete I/O
1583 * Return the number of "stuck" buffers.
1584 */
1585 int
1586 buf_syncwait(void)
1587 {
1588 buf_t *bp;
1589 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1590
1591 dcount = 10000;
1592 for (iter = 0; iter < 20;) {
1593 mutex_enter(&bufcache_lock);
1594 nbusy = 0;
1595 for (ihash = 0; ihash < bufhash+1; ihash++) {
1596 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1597 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1598 nbusy += ((bp->b_flags & B_READ) == 0);
1599 /*
1600 * With soft updates, some buffers that are
1601 * written will be remarked as dirty until other
1602 * buffers are written.
1603 */
1604 if (bp->b_vp && bp->b_vp->v_mount
1605 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1606 && (bp->b_oflags & BO_DELWRI)) {
1607 bremfree(bp);
1608 bp->b_cflags |= BC_BUSY;
1609 nbusy++;
1610 mutex_exit(&bufcache_lock);
1611 bawrite(bp);
1612 if (dcount-- <= 0) {
1613 printf("softdep ");
1614 goto fail;
1615 }
1616 mutex_enter(&bufcache_lock);
1617 }
1618 }
1619 }
1620 mutex_exit(&bufcache_lock);
1621
1622 if (nbusy == 0)
1623 break;
1624 if (nbusy_prev == 0)
1625 nbusy_prev = nbusy;
1626 printf("%d ", nbusy);
1627 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1628 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1629 iter++;
1630 else
1631 nbusy_prev = nbusy;
1632 }
1633
1634 if (nbusy) {
1635 fail:;
1636 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1637 printf("giving up\nPrinting vnodes for busy buffers\n");
1638 for (ihash = 0; ihash < bufhash+1; ihash++) {
1639 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1640 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1641 (bp->b_flags & B_READ) == 0)
1642 vprint(NULL, bp->b_vp);
1643 }
1644 }
1645 #endif
1646 }
1647
1648 return nbusy;
1649 }
1650
1651 static void
1652 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1653 {
1654
1655 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1656 o->b_error = i->b_error;
1657 o->b_prio = i->b_prio;
1658 o->b_dev = i->b_dev;
1659 o->b_bufsize = i->b_bufsize;
1660 o->b_bcount = i->b_bcount;
1661 o->b_resid = i->b_resid;
1662 o->b_addr = PTRTOUINT64(i->b_data);
1663 o->b_blkno = i->b_blkno;
1664 o->b_rawblkno = i->b_rawblkno;
1665 o->b_iodone = PTRTOUINT64(i->b_iodone);
1666 o->b_proc = PTRTOUINT64(i->b_proc);
1667 o->b_vp = PTRTOUINT64(i->b_vp);
1668 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1669 o->b_lblkno = i->b_lblkno;
1670 }
1671
1672 #define KERN_BUFSLOP 20
1673 static int
1674 sysctl_dobuf(SYSCTLFN_ARGS)
1675 {
1676 buf_t *bp;
1677 struct buf_sysctl bs;
1678 struct bqueue *bq;
1679 char *dp;
1680 u_int i, op, arg;
1681 size_t len, needed, elem_size, out_size;
1682 int error, elem_count, retries;
1683
1684 if (namelen == 1 && name[0] == CTL_QUERY)
1685 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1686
1687 if (namelen != 4)
1688 return (EINVAL);
1689
1690 retries = 100;
1691 retry:
1692 dp = oldp;
1693 len = (oldp != NULL) ? *oldlenp : 0;
1694 op = name[0];
1695 arg = name[1];
1696 elem_size = name[2];
1697 elem_count = name[3];
1698 out_size = MIN(sizeof(bs), elem_size);
1699
1700 /*
1701 * at the moment, these are just "placeholders" to make the
1702 * API for retrieving kern.buf data more extensible in the
1703 * future.
1704 *
1705 * XXX kern.buf currently has "netbsd32" issues. hopefully
1706 * these will be resolved at a later point.
1707 */
1708 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1709 elem_size < 1 || elem_count < 0)
1710 return (EINVAL);
1711
1712 error = 0;
1713 needed = 0;
1714 sysctl_unlock();
1715 mutex_enter(&bufcache_lock);
1716 for (i = 0; i < BQUEUES; i++) {
1717 bq = &bufqueues[i];
1718 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1719 bq->bq_marker = bp;
1720 if (len >= elem_size && elem_count > 0) {
1721 sysctl_fillbuf(bp, &bs);
1722 mutex_exit(&bufcache_lock);
1723 error = copyout(&bs, dp, out_size);
1724 mutex_enter(&bufcache_lock);
1725 if (error)
1726 break;
1727 if (bq->bq_marker != bp) {
1728 /*
1729 * This sysctl node is only for
1730 * statistics. Retry; if the
1731 * queue keeps changing, then
1732 * bail out.
1733 */
1734 if (retries-- == 0) {
1735 error = EAGAIN;
1736 break;
1737 }
1738 mutex_exit(&bufcache_lock);
1739 goto retry;
1740 }
1741 dp += elem_size;
1742 len -= elem_size;
1743 }
1744 if (elem_count > 0) {
1745 needed += elem_size;
1746 if (elem_count != INT_MAX)
1747 elem_count--;
1748 }
1749 }
1750 if (error != 0)
1751 break;
1752 }
1753 mutex_exit(&bufcache_lock);
1754 sysctl_relock();
1755
1756 *oldlenp = needed;
1757 if (oldp == NULL)
1758 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1759
1760 return (error);
1761 }
1762
1763 static int
1764 sysctl_bufvm_update(SYSCTLFN_ARGS)
1765 {
1766 int t, error, rv;
1767 struct sysctlnode node;
1768
1769 node = *rnode;
1770 node.sysctl_data = &t;
1771 t = *(int *)rnode->sysctl_data;
1772 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1773 if (error || newp == NULL)
1774 return (error);
1775
1776 if (t < 0)
1777 return EINVAL;
1778 if (rnode->sysctl_data == &bufcache) {
1779 if (t > 100)
1780 return (EINVAL);
1781 bufcache = t;
1782 buf_setwm();
1783 } else if (rnode->sysctl_data == &bufmem_lowater) {
1784 if (bufmem_hiwater - t < 16)
1785 return (EINVAL);
1786 bufmem_lowater = t;
1787 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1788 if (t - bufmem_lowater < 16)
1789 return (EINVAL);
1790 bufmem_hiwater = t;
1791 } else
1792 return (EINVAL);
1793
1794 /* Drain until below new high water mark */
1795 sysctl_unlock();
1796 mutex_enter(&bufcache_lock);
1797 while ((t = bufmem - bufmem_hiwater) >= 0) {
1798 rv = buf_drain(t / (2 * 1024));
1799 if (rv <= 0)
1800 break;
1801 }
1802 mutex_exit(&bufcache_lock);
1803 sysctl_relock();
1804
1805 return 0;
1806 }
1807
1808 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1809 {
1810
1811 sysctl_createv(clog, 0, NULL, NULL,
1812 CTLFLAG_PERMANENT,
1813 CTLTYPE_NODE, "kern", NULL,
1814 NULL, 0, NULL, 0,
1815 CTL_KERN, CTL_EOL);
1816 sysctl_createv(clog, 0, NULL, NULL,
1817 CTLFLAG_PERMANENT,
1818 CTLTYPE_NODE, "buf",
1819 SYSCTL_DESCR("Kernel buffer cache information"),
1820 sysctl_dobuf, 0, NULL, 0,
1821 CTL_KERN, KERN_BUF, CTL_EOL);
1822 }
1823
1824 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1825 {
1826
1827 sysctl_createv(clog, 0, NULL, NULL,
1828 CTLFLAG_PERMANENT,
1829 CTLTYPE_NODE, "vm", NULL,
1830 NULL, 0, NULL, 0,
1831 CTL_VM, CTL_EOL);
1832
1833 sysctl_createv(clog, 0, NULL, NULL,
1834 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1835 CTLTYPE_INT, "bufcache",
1836 SYSCTL_DESCR("Percentage of physical memory to use for "
1837 "buffer cache"),
1838 sysctl_bufvm_update, 0, &bufcache, 0,
1839 CTL_VM, CTL_CREATE, CTL_EOL);
1840 sysctl_createv(clog, 0, NULL, NULL,
1841 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1842 CTLTYPE_INT, "bufmem",
1843 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1844 "cache"),
1845 NULL, 0, &bufmem, 0,
1846 CTL_VM, CTL_CREATE, CTL_EOL);
1847 sysctl_createv(clog, 0, NULL, NULL,
1848 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1849 CTLTYPE_INT, "bufmem_lowater",
1850 SYSCTL_DESCR("Minimum amount of kernel memory to "
1851 "reserve for buffer cache"),
1852 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1853 CTL_VM, CTL_CREATE, CTL_EOL);
1854 sysctl_createv(clog, 0, NULL, NULL,
1855 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1856 CTLTYPE_INT, "bufmem_hiwater",
1857 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1858 "for buffer cache"),
1859 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1860 CTL_VM, CTL_CREATE, CTL_EOL);
1861 }
1862
1863 #ifdef DEBUG
1864 /*
1865 * Print out statistics on the current allocation of the buffer pool.
1866 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1867 * in vfs_syscalls.c using sysctl.
1868 */
1869 void
1870 vfs_bufstats(void)
1871 {
1872 int i, j, count;
1873 buf_t *bp;
1874 struct bqueue *dp;
1875 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1876 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1877
1878 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1879 count = 0;
1880 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1881 counts[j] = 0;
1882 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1883 counts[bp->b_bufsize/PAGE_SIZE]++;
1884 count++;
1885 }
1886 printf("%s: total-%d", bname[i], count);
1887 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1888 if (counts[j] != 0)
1889 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1890 printf("\n");
1891 }
1892 }
1893 #endif /* DEBUG */
1894
1895 /* ------------------------------ */
1896
1897 buf_t *
1898 getiobuf(struct vnode *vp, bool waitok)
1899 {
1900 buf_t *bp;
1901
1902 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1903 if (bp == NULL)
1904 return bp;
1905
1906 buf_init(bp);
1907
1908 if ((bp->b_vp = vp) == NULL)
1909 bp->b_objlock = &buffer_lock;
1910 else
1911 bp->b_objlock = &vp->v_interlock;
1912
1913 return bp;
1914 }
1915
1916 void
1917 putiobuf(buf_t *bp)
1918 {
1919
1920 buf_destroy(bp);
1921 pool_cache_put(bufio_cache, bp);
1922 }
1923
1924 /*
1925 * nestiobuf_iodone: b_iodone callback for nested buffers.
1926 */
1927
1928 void
1929 nestiobuf_iodone(buf_t *bp)
1930 {
1931 buf_t *mbp = bp->b_private;
1932 int error;
1933 int donebytes;
1934
1935 KASSERT(bp->b_bcount <= bp->b_bufsize);
1936 KASSERT(mbp != bp);
1937
1938 error = bp->b_error;
1939 if (bp->b_error == 0 &&
1940 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1941 /*
1942 * Not all got transfered, raise an error. We have no way to
1943 * propagate these conditions to mbp.
1944 */
1945 error = EIO;
1946 }
1947
1948 donebytes = bp->b_bufsize;
1949
1950 putiobuf(bp);
1951 nestiobuf_done(mbp, donebytes, error);
1952 }
1953
1954 /*
1955 * nestiobuf_setup: setup a "nested" buffer.
1956 *
1957 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1958 * => 'bp' should be a buffer allocated by getiobuf.
1959 * => 'offset' is a byte offset in the master buffer.
1960 * => 'size' is a size in bytes of this nested buffer.
1961 */
1962
1963 void
1964 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1965 {
1966 const int b_read = mbp->b_flags & B_READ;
1967 struct vnode *vp = mbp->b_vp;
1968
1969 KASSERT(mbp->b_bcount >= offset + size);
1970 bp->b_vp = vp;
1971 bp->b_objlock = mbp->b_objlock;
1972 bp->b_cflags = BC_BUSY;
1973 bp->b_flags = B_ASYNC | b_read;
1974 bp->b_iodone = nestiobuf_iodone;
1975 bp->b_data = (char *)mbp->b_data + offset;
1976 bp->b_resid = bp->b_bcount = size;
1977 bp->b_bufsize = bp->b_bcount;
1978 bp->b_private = mbp;
1979 BIO_COPYPRIO(bp, mbp);
1980 if (!b_read && vp != NULL) {
1981 mutex_enter(&vp->v_interlock);
1982 vp->v_numoutput++;
1983 mutex_exit(&vp->v_interlock);
1984 }
1985 }
1986
1987 /*
1988 * nestiobuf_done: propagate completion to the master buffer.
1989 *
1990 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1991 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1992 */
1993
1994 void
1995 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1996 {
1997
1998 if (donebytes == 0) {
1999 return;
2000 }
2001 mutex_enter(mbp->b_objlock);
2002 KASSERT(mbp->b_resid >= donebytes);
2003 mbp->b_resid -= donebytes;
2004 if (error)
2005 mbp->b_error = error;
2006 if (mbp->b_resid == 0) {
2007 mutex_exit(mbp->b_objlock);
2008 biodone(mbp);
2009 } else
2010 mutex_exit(mbp->b_objlock);
2011 }
2012
2013 void
2014 buf_init(buf_t *bp)
2015 {
2016
2017 LIST_INIT(&bp->b_dep);
2018 cv_init(&bp->b_busy, "biolock");
2019 cv_init(&bp->b_done, "biowait");
2020 bp->b_dev = NODEV;
2021 bp->b_error = 0;
2022 bp->b_flags = 0;
2023 bp->b_cflags = 0;
2024 bp->b_oflags = 0;
2025 bp->b_objlock = &buffer_lock;
2026 bp->b_iodone = NULL;
2027 bp->b_refcnt = 1;
2028 bp->b_dev = NODEV;
2029 bp->b_vnbufs.le_next = NOLIST;
2030 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2031 }
2032
2033 void
2034 buf_destroy(buf_t *bp)
2035 {
2036
2037 cv_destroy(&bp->b_done);
2038 cv_destroy(&bp->b_busy);
2039 }
2040
2041 int
2042 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2043 {
2044 int error;
2045
2046 KASSERT(mutex_owned(&bufcache_lock));
2047
2048 if ((bp->b_cflags & BC_BUSY) != 0) {
2049 if (curlwp == uvm.pagedaemon_lwp)
2050 return EDEADLK;
2051 bp->b_cflags |= BC_WANTED;
2052 bref(bp);
2053 if (interlock != NULL)
2054 mutex_exit(interlock);
2055 if (intr) {
2056 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2057 timo);
2058 } else {
2059 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2060 timo);
2061 }
2062 brele(bp);
2063 if (interlock != NULL)
2064 mutex_enter(interlock);
2065 if (error != 0)
2066 return error;
2067 return EPASSTHROUGH;
2068 }
2069 bp->b_cflags |= BC_BUSY;
2070
2071 return 0;
2072 }
2073