Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.206
      1 /*	$NetBSD: vfs_bio.c,v 1.206 2008/07/06 15:00:45 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * Some references:
    104  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    105  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    106  *		UNIX Operating System (Addison Welley, 1989)
    107  */
    108 
    109 #include <sys/cdefs.h>
    110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.206 2008/07/06 15:00:45 bouyer Exp $");
    111 
    112 #include "fs_ffs.h"
    113 #include "opt_bufcache.h"
    114 
    115 #include <sys/param.h>
    116 #include <sys/systm.h>
    117 #include <sys/kernel.h>
    118 #include <sys/proc.h>
    119 #include <sys/buf.h>
    120 #include <sys/vnode.h>
    121 #include <sys/mount.h>
    122 #include <sys/resourcevar.h>
    123 #include <sys/sysctl.h>
    124 #include <sys/conf.h>
    125 #include <sys/kauth.h>
    126 #include <sys/fstrans.h>
    127 #include <sys/intr.h>
    128 #include <sys/cpu.h>
    129 
    130 #include <uvm/uvm.h>
    131 
    132 #include <miscfs/specfs/specdev.h>
    133 
    134 #ifndef	BUFPAGES
    135 # define BUFPAGES 0
    136 #endif
    137 
    138 #ifdef BUFCACHE
    139 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    140 #  error BUFCACHE is not between 5 and 95
    141 # endif
    142 #else
    143 # define BUFCACHE 15
    144 #endif
    145 
    146 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
    147 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    148 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    149 
    150 /* Function prototypes */
    151 struct bqueue;
    152 
    153 static void buf_setwm(void);
    154 static int buf_trim(void);
    155 static void *bufpool_page_alloc(struct pool *, int);
    156 static void bufpool_page_free(struct pool *, void *);
    157 static buf_t *bio_doread(struct vnode *, daddr_t, int,
    158     kauth_cred_t, int);
    159 static buf_t *getnewbuf(int, int, int);
    160 static int buf_lotsfree(void);
    161 static int buf_canrelease(void);
    162 static u_long buf_mempoolidx(u_long);
    163 static u_long buf_roundsize(u_long);
    164 static void *buf_malloc(size_t);
    165 static void buf_mrelease(void *, size_t);
    166 static void binsheadfree(buf_t *, struct bqueue *);
    167 static void binstailfree(buf_t *, struct bqueue *);
    168 int count_lock_queue(void); /* XXX */
    169 #ifdef DEBUG
    170 static int checkfreelist(buf_t *, struct bqueue *, int);
    171 #endif
    172 static void biointr(void *);
    173 static void biodone2(buf_t *);
    174 static void bref(buf_t *);
    175 static void brele(buf_t *);
    176 
    177 /*
    178  * Definitions for the buffer hash lists.
    179  */
    180 #define	BUFHASH(dvp, lbn)	\
    181 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    182 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    183 u_long	bufhash;
    184 struct bqueue bufqueues[BQUEUES];
    185 const struct bio_ops *bioopsp;	/* I/O operation notification */
    186 
    187 static kcondvar_t needbuffer_cv;
    188 
    189 /*
    190  * Buffer queue lock.
    191  */
    192 kmutex_t bufcache_lock;
    193 kmutex_t buffer_lock;
    194 
    195 /* Software ISR for completed transfers. */
    196 static void *biodone_sih;
    197 
    198 /* Buffer pool for I/O buffers. */
    199 static pool_cache_t buf_cache;
    200 static pool_cache_t bufio_cache;
    201 
    202 /* XXX - somewhat gross.. */
    203 #if MAXBSIZE == 0x2000
    204 #define NMEMPOOLS 5
    205 #elif MAXBSIZE == 0x4000
    206 #define NMEMPOOLS 6
    207 #elif MAXBSIZE == 0x8000
    208 #define NMEMPOOLS 7
    209 #else
    210 #define NMEMPOOLS 8
    211 #endif
    212 
    213 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    214 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    215 #error update vfs_bio buffer memory parameters
    216 #endif
    217 
    218 /* Buffer memory pools */
    219 static struct pool bmempools[NMEMPOOLS];
    220 
    221 static struct vm_map *buf_map;
    222 
    223 /*
    224  * Buffer memory pool allocator.
    225  */
    226 static void *
    227 bufpool_page_alloc(struct pool *pp, int flags)
    228 {
    229 
    230 	return (void *)uvm_km_alloc(buf_map,
    231 	    MAXBSIZE, MAXBSIZE,
    232 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    233 	    | UVM_KMF_WIRED);
    234 }
    235 
    236 static void
    237 bufpool_page_free(struct pool *pp, void *v)
    238 {
    239 
    240 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    241 }
    242 
    243 static struct pool_allocator bufmempool_allocator = {
    244 	.pa_alloc = bufpool_page_alloc,
    245 	.pa_free = bufpool_page_free,
    246 	.pa_pagesz = MAXBSIZE,
    247 };
    248 
    249 /* Buffer memory management variables */
    250 u_long bufmem_valimit;
    251 u_long bufmem_hiwater;
    252 u_long bufmem_lowater;
    253 u_long bufmem;
    254 
    255 /*
    256  * MD code can call this to set a hard limit on the amount
    257  * of virtual memory used by the buffer cache.
    258  */
    259 int
    260 buf_setvalimit(vsize_t sz)
    261 {
    262 
    263 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    264 	if (sz < NMEMPOOLS * MAXBSIZE)
    265 		return EINVAL;
    266 
    267 	bufmem_valimit = sz;
    268 	return 0;
    269 }
    270 
    271 static void
    272 buf_setwm(void)
    273 {
    274 
    275 	bufmem_hiwater = buf_memcalc();
    276 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    277 #define	BUFMEM_WMSHIFT	3
    278 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    279 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    280 		/* Ensure a reasonable minimum value */
    281 		bufmem_hiwater = BUFMEM_HIWMMIN;
    282 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    283 }
    284 
    285 #ifdef DEBUG
    286 int debug_verify_freelist = 0;
    287 static int
    288 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    289 {
    290 	buf_t *b;
    291 
    292 	if (!debug_verify_freelist)
    293 		return 1;
    294 
    295 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    296 		if (b == bp)
    297 			return ison ? 1 : 0;
    298 	}
    299 
    300 	return ison ? 0 : 1;
    301 }
    302 #endif
    303 
    304 /*
    305  * Insq/Remq for the buffer hash lists.
    306  * Call with buffer queue locked.
    307  */
    308 static void
    309 binsheadfree(buf_t *bp, struct bqueue *dp)
    310 {
    311 
    312 	KASSERT(mutex_owned(&bufcache_lock));
    313 	KASSERT(bp->b_freelistindex == -1);
    314 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    315 	dp->bq_bytes += bp->b_bufsize;
    316 	bp->b_freelistindex = dp - bufqueues;
    317 }
    318 
    319 static void
    320 binstailfree(buf_t *bp, struct bqueue *dp)
    321 {
    322 
    323 	KASSERT(mutex_owned(&bufcache_lock));
    324 	KASSERT(bp->b_freelistindex == -1);
    325 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    326 	dp->bq_bytes += bp->b_bufsize;
    327 	bp->b_freelistindex = dp - bufqueues;
    328 }
    329 
    330 void
    331 bremfree(buf_t *bp)
    332 {
    333 	struct bqueue *dp;
    334 	int bqidx = bp->b_freelistindex;
    335 
    336 	KASSERT(mutex_owned(&bufcache_lock));
    337 
    338 	KASSERT(bqidx != -1);
    339 	dp = &bufqueues[bqidx];
    340 	KDASSERT(checkfreelist(bp, dp, 1));
    341 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    342 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    343 	dp->bq_bytes -= bp->b_bufsize;
    344 
    345 	/* For the sysctl helper. */
    346 	if (bp == dp->bq_marker)
    347 		dp->bq_marker = NULL;
    348 
    349 #if defined(DIAGNOSTIC)
    350 	bp->b_freelistindex = -1;
    351 #endif /* defined(DIAGNOSTIC) */
    352 }
    353 
    354 /*
    355  * Add a reference to an buffer structure that came from buf_cache.
    356  */
    357 static inline void
    358 bref(buf_t *bp)
    359 {
    360 
    361 	KASSERT(mutex_owned(&bufcache_lock));
    362 	KASSERT(bp->b_refcnt > 0);
    363 
    364 	bp->b_refcnt++;
    365 }
    366 
    367 /*
    368  * Free an unused buffer structure that came from buf_cache.
    369  */
    370 static inline void
    371 brele(buf_t *bp)
    372 {
    373 
    374 	KASSERT(mutex_owned(&bufcache_lock));
    375 	KASSERT(bp->b_refcnt > 0);
    376 
    377 	if (bp->b_refcnt-- == 1) {
    378 		buf_destroy(bp);
    379 #ifdef DEBUG
    380 		memset((char *)bp, 0, sizeof(*bp));
    381 #endif
    382 		pool_cache_put(buf_cache, bp);
    383 	}
    384 }
    385 
    386 /*
    387  * note that for some ports this is used by pmap bootstrap code to
    388  * determine kva size.
    389  */
    390 u_long
    391 buf_memcalc(void)
    392 {
    393 	u_long n;
    394 
    395 	/*
    396 	 * Determine the upper bound of memory to use for buffers.
    397 	 *
    398 	 *	- If bufpages is specified, use that as the number
    399 	 *	  pages.
    400 	 *
    401 	 *	- Otherwise, use bufcache as the percentage of
    402 	 *	  physical memory.
    403 	 */
    404 	if (bufpages != 0) {
    405 		n = bufpages;
    406 	} else {
    407 		if (bufcache < 5) {
    408 			printf("forcing bufcache %d -> 5", bufcache);
    409 			bufcache = 5;
    410 		}
    411 		if (bufcache > 95) {
    412 			printf("forcing bufcache %d -> 95", bufcache);
    413 			bufcache = 95;
    414 		}
    415 		n = calc_cache_size(buf_map, bufcache,
    416 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    417 		    / PAGE_SIZE;
    418 	}
    419 
    420 	n <<= PAGE_SHIFT;
    421 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    422 		n = bufmem_valimit;
    423 
    424 	return (n);
    425 }
    426 
    427 /*
    428  * Initialize buffers and hash links for buffers.
    429  */
    430 void
    431 bufinit(void)
    432 {
    433 	struct bqueue *dp;
    434 	int use_std;
    435 	u_int i;
    436 
    437 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    438 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    439 	cv_init(&needbuffer_cv, "needbuf");
    440 
    441 	if (bufmem_valimit != 0) {
    442 		vaddr_t minaddr = 0, maxaddr;
    443 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    444 					  bufmem_valimit, 0, false, 0);
    445 		if (buf_map == NULL)
    446 			panic("bufinit: cannot allocate submap");
    447 	} else
    448 		buf_map = kernel_map;
    449 
    450 	/*
    451 	 * Initialize buffer cache memory parameters.
    452 	 */
    453 	bufmem = 0;
    454 	buf_setwm();
    455 
    456 	/* On "small" machines use small pool page sizes where possible */
    457 	use_std = (physmem < atop(16*1024*1024));
    458 
    459 	/*
    460 	 * Also use them on systems that can map the pool pages using
    461 	 * a direct-mapped segment.
    462 	 */
    463 #ifdef PMAP_MAP_POOLPAGE
    464 	use_std = 1;
    465 #endif
    466 
    467 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    468 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    469 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    470 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    471 
    472 	bufmempool_allocator.pa_backingmap = buf_map;
    473 	for (i = 0; i < NMEMPOOLS; i++) {
    474 		struct pool_allocator *pa;
    475 		struct pool *pp = &bmempools[i];
    476 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    477 		char *name = kmem_alloc(8, KM_SLEEP);
    478 		if (__predict_true(size >= 1024))
    479 			(void)snprintf(name, 8, "buf%dk", size / 1024);
    480 		else
    481 			(void)snprintf(name, 8, "buf%db", size);
    482 		pa = (size <= PAGE_SIZE && use_std)
    483 			? &pool_allocator_nointr
    484 			: &bufmempool_allocator;
    485 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    486 		pool_setlowat(pp, 1);
    487 		pool_sethiwat(pp, 1);
    488 	}
    489 
    490 	/* Initialize the buffer queues */
    491 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    492 		TAILQ_INIT(&dp->bq_queue);
    493 		dp->bq_bytes = 0;
    494 	}
    495 
    496 	/*
    497 	 * Estimate hash table size based on the amount of memory we
    498 	 * intend to use for the buffer cache. The average buffer
    499 	 * size is dependent on our clients (i.e. filesystems).
    500 	 *
    501 	 * For now, use an empirical 3K per buffer.
    502 	 */
    503 	nbuf = (bufmem_hiwater / 1024) / 3;
    504 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    505 }
    506 
    507 void
    508 bufinit2(void)
    509 {
    510 
    511 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    512 	    NULL);
    513 	if (biodone_sih == NULL)
    514 		panic("bufinit2: can't establish soft interrupt");
    515 }
    516 
    517 static int
    518 buf_lotsfree(void)
    519 {
    520 	int try, thresh;
    521 
    522 	/* Always allocate if less than the low water mark. */
    523 	if (bufmem < bufmem_lowater)
    524 		return 1;
    525 
    526 	/* Never allocate if greater than the high water mark. */
    527 	if (bufmem > bufmem_hiwater)
    528 		return 0;
    529 
    530 	/* If there's anything on the AGE list, it should be eaten. */
    531 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    532 		return 0;
    533 
    534 	/*
    535 	 * The probabily of getting a new allocation is inversely
    536 	 * proportional to the current size of the cache, using
    537 	 * a granularity of 16 steps.
    538 	 */
    539 	try = random() & 0x0000000fL;
    540 
    541 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    542 	thresh = (bufmem - bufmem_lowater) /
    543 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    544 
    545 	if (try >= thresh)
    546 		return 1;
    547 
    548 	/* Otherwise don't allocate. */
    549 	return 0;
    550 }
    551 
    552 /*
    553  * Return estimate of bytes we think need to be
    554  * released to help resolve low memory conditions.
    555  *
    556  * => called with bufcache_lock held.
    557  */
    558 static int
    559 buf_canrelease(void)
    560 {
    561 	int pagedemand, ninvalid = 0;
    562 
    563 	KASSERT(mutex_owned(&bufcache_lock));
    564 
    565 	if (bufmem < bufmem_lowater)
    566 		return 0;
    567 
    568 	if (bufmem > bufmem_hiwater)
    569 		return bufmem - bufmem_hiwater;
    570 
    571 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    572 
    573 	pagedemand = uvmexp.freetarg - uvmexp.free;
    574 	if (pagedemand < 0)
    575 		return ninvalid;
    576 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    577 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    578 }
    579 
    580 /*
    581  * Buffer memory allocation helper functions
    582  */
    583 static u_long
    584 buf_mempoolidx(u_long size)
    585 {
    586 	u_int n = 0;
    587 
    588 	size -= 1;
    589 	size >>= MEMPOOL_INDEX_OFFSET;
    590 	while (size) {
    591 		size >>= 1;
    592 		n += 1;
    593 	}
    594 	if (n >= NMEMPOOLS)
    595 		panic("buf mem pool index %d", n);
    596 	return n;
    597 }
    598 
    599 static u_long
    600 buf_roundsize(u_long size)
    601 {
    602 	/* Round up to nearest power of 2 */
    603 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    604 }
    605 
    606 static void *
    607 buf_malloc(size_t size)
    608 {
    609 	u_int n = buf_mempoolidx(size);
    610 	void *addr;
    611 
    612 	while (1) {
    613 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    614 		if (addr != NULL)
    615 			break;
    616 
    617 		/* No memory, see if we can free some. If so, try again */
    618 		mutex_enter(&bufcache_lock);
    619 		if (buf_drain(1) > 0) {
    620 			mutex_exit(&bufcache_lock);
    621 			continue;
    622 		}
    623 
    624 		if (curlwp == uvm.pagedaemon_lwp) {
    625 			mutex_exit(&bufcache_lock);
    626 			return NULL;
    627 		}
    628 
    629 		/* Wait for buffers to arrive on the LRU queue */
    630 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    631 		mutex_exit(&bufcache_lock);
    632 	}
    633 
    634 	return addr;
    635 }
    636 
    637 static void
    638 buf_mrelease(void *addr, size_t size)
    639 {
    640 
    641 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    642 }
    643 
    644 /*
    645  * bread()/breadn() helper.
    646  */
    647 static buf_t *
    648 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    649     int async)
    650 {
    651 	buf_t *bp;
    652 	struct mount *mp;
    653 
    654 	bp = getblk(vp, blkno, size, 0, 0);
    655 
    656 #ifdef DIAGNOSTIC
    657 	if (bp == NULL) {
    658 		panic("bio_doread: no such buf");
    659 	}
    660 #endif
    661 
    662 	/*
    663 	 * If buffer does not have data valid, start a read.
    664 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    665 	 * Therefore, it's valid if its I/O has completed or been delayed.
    666 	 */
    667 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    668 		/* Start I/O for the buffer. */
    669 		SET(bp->b_flags, B_READ | async);
    670 		if (async)
    671 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    672 		else
    673 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    674 		VOP_STRATEGY(vp, bp);
    675 
    676 		/* Pay for the read. */
    677 		curlwp->l_ru.ru_inblock++;
    678 	} else if (async)
    679 		brelse(bp, 0);
    680 
    681 	if (vp->v_type == VBLK)
    682 		mp = vp->v_specmountpoint;
    683 	else
    684 		mp = vp->v_mount;
    685 
    686 	/*
    687 	 * Collect statistics on synchronous and asynchronous reads.
    688 	 * Reads from block devices are charged to their associated
    689 	 * filesystem (if any).
    690 	 */
    691 	if (mp != NULL) {
    692 		if (async == 0)
    693 			mp->mnt_stat.f_syncreads++;
    694 		else
    695 			mp->mnt_stat.f_asyncreads++;
    696 	}
    697 
    698 	return (bp);
    699 }
    700 
    701 /*
    702  * Read a disk block.
    703  * This algorithm described in Bach (p.54).
    704  */
    705 int
    706 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    707     int flags, buf_t **bpp)
    708 {
    709 	buf_t *bp;
    710 	int error;
    711 
    712 	/* Get buffer for block. */
    713 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    714 
    715 	/* Wait for the read to complete, and return result. */
    716 	error = biowait(bp);
    717 	if (error == 0 && (flags & B_MODIFY) != 0)
    718 		error = fscow_run(bp, true);
    719 	return error;
    720 }
    721 
    722 /*
    723  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    724  * Trivial modification to the breada algorithm presented in Bach (p.55).
    725  */
    726 int
    727 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    728     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
    729 {
    730 	buf_t *bp;
    731 	int error, i;
    732 
    733 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    734 
    735 	/*
    736 	 * For each of the read-ahead blocks, start a read, if necessary.
    737 	 */
    738 	mutex_enter(&bufcache_lock);
    739 	for (i = 0; i < nrablks; i++) {
    740 		/* If it's in the cache, just go on to next one. */
    741 		if (incore(vp, rablks[i]))
    742 			continue;
    743 
    744 		/* Get a buffer for the read-ahead block */
    745 		mutex_exit(&bufcache_lock);
    746 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    747 		mutex_enter(&bufcache_lock);
    748 	}
    749 	mutex_exit(&bufcache_lock);
    750 
    751 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    752 	error = biowait(bp);
    753 	if (error == 0 && (flags & B_MODIFY) != 0)
    754 		error = fscow_run(bp, true);
    755 	return error;
    756 }
    757 
    758 /*
    759  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    760  * implemented as a call to breadn().
    761  * XXX for compatibility with old file systems.
    762  */
    763 int
    764 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
    765     int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
    766 {
    767 
    768 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
    769 	    cred, flags, bpp));
    770 }
    771 
    772 /*
    773  * Block write.  Described in Bach (p.56)
    774  */
    775 int
    776 bwrite(buf_t *bp)
    777 {
    778 	int rv, sync, wasdelayed;
    779 	struct vnode *vp;
    780 	struct mount *mp;
    781 
    782 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    783 	KASSERT(!cv_has_waiters(&bp->b_done));
    784 
    785 	vp = bp->b_vp;
    786 	if (vp != NULL) {
    787 		KASSERT(bp->b_objlock == &vp->v_interlock);
    788 		if (vp->v_type == VBLK)
    789 			mp = vp->v_specmountpoint;
    790 		else
    791 			mp = vp->v_mount;
    792 	} else {
    793 		mp = NULL;
    794 	}
    795 
    796 	/*
    797 	 * Remember buffer type, to switch on it later.  If the write was
    798 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    799 	 * convert it to a delayed write.
    800 	 * XXX note that this relies on delayed tape writes being converted
    801 	 * to async, not sync writes (which is safe, but ugly).
    802 	 */
    803 	sync = !ISSET(bp->b_flags, B_ASYNC);
    804 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    805 		bdwrite(bp);
    806 		return (0);
    807 	}
    808 
    809 	/*
    810 	 * Collect statistics on synchronous and asynchronous writes.
    811 	 * Writes to block devices are charged to their associated
    812 	 * filesystem (if any).
    813 	 */
    814 	if (mp != NULL) {
    815 		if (sync)
    816 			mp->mnt_stat.f_syncwrites++;
    817 		else
    818 			mp->mnt_stat.f_asyncwrites++;
    819 	}
    820 
    821 	/*
    822 	 * Pay for the I/O operation and make sure the buf is on the correct
    823 	 * vnode queue.
    824 	 */
    825 	bp->b_error = 0;
    826 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    827 	CLR(bp->b_flags, B_READ);
    828 	if (wasdelayed) {
    829 		mutex_enter(&bufcache_lock);
    830 		mutex_enter(bp->b_objlock);
    831 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    832 		reassignbuf(bp, bp->b_vp);
    833 		mutex_exit(&bufcache_lock);
    834 	} else {
    835 		curlwp->l_ru.ru_oublock++;
    836 		mutex_enter(bp->b_objlock);
    837 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    838 	}
    839 	if (vp != NULL)
    840 		vp->v_numoutput++;
    841 	mutex_exit(bp->b_objlock);
    842 
    843 	/* Initiate disk write. */
    844 	if (sync)
    845 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    846 	else
    847 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    848 
    849 	VOP_STRATEGY(vp, bp);
    850 
    851 	if (sync) {
    852 		/* If I/O was synchronous, wait for it to complete. */
    853 		rv = biowait(bp);
    854 
    855 		/* Release the buffer. */
    856 		brelse(bp, 0);
    857 
    858 		return (rv);
    859 	} else {
    860 		return (0);
    861 	}
    862 }
    863 
    864 int
    865 vn_bwrite(void *v)
    866 {
    867 	struct vop_bwrite_args *ap = v;
    868 
    869 	return (bwrite(ap->a_bp));
    870 }
    871 
    872 /*
    873  * Delayed write.
    874  *
    875  * The buffer is marked dirty, but is not queued for I/O.
    876  * This routine should be used when the buffer is expected
    877  * to be modified again soon, typically a small write that
    878  * partially fills a buffer.
    879  *
    880  * NB: magnetic tapes cannot be delayed; they must be
    881  * written in the order that the writes are requested.
    882  *
    883  * Described in Leffler, et al. (pp. 208-213).
    884  */
    885 void
    886 bdwrite(buf_t *bp)
    887 {
    888 
    889 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    890 	    ISSET(bp->b_flags, B_COWDONE));
    891 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    892 	KASSERT(!cv_has_waiters(&bp->b_done));
    893 
    894 	/* If this is a tape block, write the block now. */
    895 	if (bdev_type(bp->b_dev) == D_TAPE) {
    896 		bawrite(bp);
    897 		return;
    898 	}
    899 
    900 	/*
    901 	 * If the block hasn't been seen before:
    902 	 *	(1) Mark it as having been seen,
    903 	 *	(2) Charge for the write,
    904 	 *	(3) Make sure it's on its vnode's correct block list.
    905 	 */
    906 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
    907 
    908 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    909 		mutex_enter(&bufcache_lock);
    910 		mutex_enter(bp->b_objlock);
    911 		SET(bp->b_oflags, BO_DELWRI);
    912 		curlwp->l_ru.ru_oublock++;
    913 		reassignbuf(bp, bp->b_vp);
    914 		mutex_exit(&bufcache_lock);
    915 	} else {
    916 		mutex_enter(bp->b_objlock);
    917 	}
    918 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    919 	CLR(bp->b_oflags, BO_DONE);
    920 	mutex_exit(bp->b_objlock);
    921 
    922 	brelse(bp, 0);
    923 }
    924 
    925 /*
    926  * Asynchronous block write; just an asynchronous bwrite().
    927  */
    928 void
    929 bawrite(buf_t *bp)
    930 {
    931 
    932 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    933 
    934 	SET(bp->b_flags, B_ASYNC);
    935 	VOP_BWRITE(bp);
    936 }
    937 
    938 /*
    939  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    940  * Call with the buffer interlock held.
    941  *
    942  * Note: called only from biodone() through ffs softdep's io_complete()
    943  * Note2: smbfs also learned about bdirty().
    944  */
    945 void
    946 bdirty(buf_t *bp)
    947 {
    948 
    949 	KASSERT(mutex_owned(&bufcache_lock));
    950 	KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
    951 	KASSERT(mutex_owned(bp->b_objlock));
    952 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    953 
    954 	CLR(bp->b_cflags, BC_AGE);
    955 
    956 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    957 		SET(bp->b_oflags, BO_DELWRI);
    958 		curlwp->l_ru.ru_oublock++;
    959 		reassignbuf(bp, bp->b_vp);
    960 	}
    961 }
    962 
    963 
    964 /*
    965  * Release a buffer on to the free lists.
    966  * Described in Bach (p. 46).
    967  */
    968 void
    969 brelsel(buf_t *bp, int set)
    970 {
    971 	struct bqueue *bufq;
    972 	struct vnode *vp;
    973 
    974 	KASSERT(mutex_owned(&bufcache_lock));
    975 	KASSERT(!cv_has_waiters(&bp->b_done));
    976 	KASSERT(bp->b_refcnt > 0);
    977 
    978 	SET(bp->b_cflags, set);
    979 
    980 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    981 	KASSERT(bp->b_iodone == NULL);
    982 
    983 	/* Wake up any processes waiting for any buffer to become free. */
    984 	cv_signal(&needbuffer_cv);
    985 
    986 	/* Wake up any proceeses waiting for _this_ buffer to become */
    987 	if (ISSET(bp->b_cflags, BC_WANTED))
    988 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    989 
    990 	/*
    991 	 * Determine which queue the buffer should be on, then put it there.
    992 	 */
    993 
    994 	/* If it's locked, don't report an error; try again later. */
    995 	if (ISSET(bp->b_flags, B_LOCKED))
    996 		bp->b_error = 0;
    997 
    998 	/* If it's not cacheable, or an error, mark it invalid. */
    999 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1000 		SET(bp->b_cflags, BC_INVAL);
   1001 
   1002 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1003 		/*
   1004 		 * This is a delayed write buffer that was just flushed to
   1005 		 * disk.  It is still on the LRU queue.  If it's become
   1006 		 * invalid, then we need to move it to a different queue;
   1007 		 * otherwise leave it in its current position.
   1008 		 */
   1009 		CLR(bp->b_cflags, BC_VFLUSH);
   1010 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1011 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1012 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1013 			goto already_queued;
   1014 		} else {
   1015 			bremfree(bp);
   1016 		}
   1017 	}
   1018 
   1019 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1020 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1021 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1022 
   1023 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1024 		/*
   1025 		 * If it's invalid or empty, dissociate it from its vnode
   1026 		 * and put on the head of the appropriate queue.
   1027 		 */
   1028 		if (bioopsp != NULL)
   1029 			(*bioopsp->io_deallocate)(bp);
   1030 
   1031 		mutex_enter(bp->b_objlock);
   1032 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1033 		if ((vp = bp->b_vp) != NULL) {
   1034 			KASSERT(bp->b_objlock == &vp->v_interlock);
   1035 			reassignbuf(bp, bp->b_vp);
   1036 			brelvp(bp);
   1037 			mutex_exit(&vp->v_interlock);
   1038 		} else {
   1039 			KASSERT(bp->b_objlock == &buffer_lock);
   1040 			mutex_exit(bp->b_objlock);
   1041 		}
   1042 
   1043 		if (bp->b_bufsize <= 0)
   1044 			/* no data */
   1045 			goto already_queued;
   1046 		else
   1047 			/* invalid data */
   1048 			bufq = &bufqueues[BQ_AGE];
   1049 		binsheadfree(bp, bufq);
   1050 	} else  {
   1051 		/*
   1052 		 * It has valid data.  Put it on the end of the appropriate
   1053 		 * queue, so that it'll stick around for as long as possible.
   1054 		 * If buf is AGE, but has dependencies, must put it on last
   1055 		 * bufqueue to be scanned, ie LRU. This protects against the
   1056 		 * livelock where BQ_AGE only has buffers with dependencies,
   1057 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1058 		 */
   1059 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1060 			/* locked in core */
   1061 			bufq = &bufqueues[BQ_LOCKED];
   1062 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1063 			/* valid data */
   1064 			bufq = &bufqueues[BQ_LRU];
   1065 		} else {
   1066 			/* stale but valid data */
   1067 			int has_deps;
   1068 
   1069 			if (bioopsp != NULL)
   1070 				has_deps = (*bioopsp->io_countdeps)(bp, 0);
   1071 			else
   1072 				has_deps = 0;
   1073 			bufq = has_deps ? &bufqueues[BQ_LRU] :
   1074 			    &bufqueues[BQ_AGE];
   1075 		}
   1076 		binstailfree(bp, bufq);
   1077 	}
   1078 already_queued:
   1079 	/* Unlock the buffer. */
   1080 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1081 	CLR(bp->b_flags, B_ASYNC);
   1082 	cv_broadcast(&bp->b_busy);
   1083 
   1084 	if (bp->b_bufsize <= 0)
   1085 		brele(bp);
   1086 }
   1087 
   1088 void
   1089 brelse(buf_t *bp, int set)
   1090 {
   1091 
   1092 	mutex_enter(&bufcache_lock);
   1093 	brelsel(bp, set);
   1094 	mutex_exit(&bufcache_lock);
   1095 }
   1096 
   1097 /*
   1098  * Determine if a block is in the cache.
   1099  * Just look on what would be its hash chain.  If it's there, return
   1100  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1101  * we normally don't return the buffer, unless the caller explicitly
   1102  * wants us to.
   1103  */
   1104 buf_t *
   1105 incore(struct vnode *vp, daddr_t blkno)
   1106 {
   1107 	buf_t *bp;
   1108 
   1109 	KASSERT(mutex_owned(&bufcache_lock));
   1110 
   1111 	/* Search hash chain */
   1112 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1113 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1114 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1115 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
   1116 		    	return (bp);
   1117 		}
   1118 	}
   1119 
   1120 	return (NULL);
   1121 }
   1122 
   1123 /*
   1124  * Get a block of requested size that is associated with
   1125  * a given vnode and block offset. If it is found in the
   1126  * block cache, mark it as having been found, make it busy
   1127  * and return it. Otherwise, return an empty block of the
   1128  * correct size. It is up to the caller to insure that the
   1129  * cached blocks be of the correct size.
   1130  */
   1131 buf_t *
   1132 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1133 {
   1134 	int err, preserve;
   1135 	buf_t *bp;
   1136 
   1137 	mutex_enter(&bufcache_lock);
   1138  loop:
   1139 	bp = incore(vp, blkno);
   1140 	if (bp != NULL) {
   1141 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1142 		if (err != 0) {
   1143 			if (err == EPASSTHROUGH)
   1144 				goto loop;
   1145 			mutex_exit(&bufcache_lock);
   1146 			return (NULL);
   1147 		}
   1148 		KASSERT(!cv_has_waiters(&bp->b_done));
   1149 #ifdef DIAGNOSTIC
   1150 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1151 		    bp->b_bcount < size && vp->v_type != VBLK)
   1152 			panic("getblk: block size invariant failed");
   1153 #endif
   1154 		bremfree(bp);
   1155 		preserve = 1;
   1156 	} else {
   1157 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1158 			goto loop;
   1159 
   1160 		if (incore(vp, blkno) != NULL) {
   1161 			/* The block has come into memory in the meantime. */
   1162 			brelsel(bp, 0);
   1163 			goto loop;
   1164 		}
   1165 
   1166 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1167 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1168 		mutex_enter(&vp->v_interlock);
   1169 		bgetvp(vp, bp);
   1170 		mutex_exit(&vp->v_interlock);
   1171 		preserve = 0;
   1172 	}
   1173 	mutex_exit(&bufcache_lock);
   1174 
   1175 	/*
   1176 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1177 	 * if we re-size buffers here.
   1178 	 */
   1179 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1180 		KASSERT(bp->b_bufsize >= size);
   1181 	} else {
   1182 		if (allocbuf(bp, size, preserve)) {
   1183 			mutex_enter(&bufcache_lock);
   1184 			LIST_REMOVE(bp, b_hash);
   1185 			mutex_exit(&bufcache_lock);
   1186 			brelse(bp, BC_INVAL);
   1187 			return NULL;
   1188 		}
   1189 	}
   1190 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1191 	return (bp);
   1192 }
   1193 
   1194 /*
   1195  * Get an empty, disassociated buffer of given size.
   1196  */
   1197 buf_t *
   1198 geteblk(int size)
   1199 {
   1200 	buf_t *bp;
   1201 	int error;
   1202 
   1203 	mutex_enter(&bufcache_lock);
   1204 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1205 		;
   1206 
   1207 	SET(bp->b_cflags, BC_INVAL);
   1208 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1209 	mutex_exit(&bufcache_lock);
   1210 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1211 	error = allocbuf(bp, size, 0);
   1212 	KASSERT(error == 0);
   1213 	return (bp);
   1214 }
   1215 
   1216 /*
   1217  * Expand or contract the actual memory allocated to a buffer.
   1218  *
   1219  * If the buffer shrinks, data is lost, so it's up to the
   1220  * caller to have written it out *first*; this routine will not
   1221  * start a write.  If the buffer grows, it's the callers
   1222  * responsibility to fill out the buffer's additional contents.
   1223  */
   1224 int
   1225 allocbuf(buf_t *bp, int size, int preserve)
   1226 {
   1227 	vsize_t oldsize, desired_size;
   1228 	void *addr;
   1229 	int delta;
   1230 
   1231 	desired_size = buf_roundsize(size);
   1232 	if (desired_size > MAXBSIZE)
   1233 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1234 
   1235 	bp->b_bcount = size;
   1236 
   1237 	oldsize = bp->b_bufsize;
   1238 	if (oldsize == desired_size)
   1239 		return 0;
   1240 
   1241 	/*
   1242 	 * If we want a buffer of a different size, re-allocate the
   1243 	 * buffer's memory; copy old content only if needed.
   1244 	 */
   1245 	addr = buf_malloc(desired_size);
   1246 	if (addr == NULL)
   1247 		return ENOMEM;
   1248 	if (preserve)
   1249 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1250 	if (bp->b_data != NULL)
   1251 		buf_mrelease(bp->b_data, oldsize);
   1252 	bp->b_data = addr;
   1253 	bp->b_bufsize = desired_size;
   1254 
   1255 	/*
   1256 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1257 	 */
   1258 	delta = (long)desired_size - (long)oldsize;
   1259 
   1260 	mutex_enter(&bufcache_lock);
   1261 	if ((bufmem += delta) > bufmem_hiwater) {
   1262 		/*
   1263 		 * Need to trim overall memory usage.
   1264 		 */
   1265 		while (buf_canrelease()) {
   1266 			if (curcpu()->ci_schedstate.spc_flags &
   1267 			    SPCF_SHOULDYIELD) {
   1268 				mutex_exit(&bufcache_lock);
   1269 				preempt();
   1270 				mutex_enter(&bufcache_lock);
   1271 			}
   1272 			if (buf_trim() == 0)
   1273 				break;
   1274 		}
   1275 	}
   1276 	mutex_exit(&bufcache_lock);
   1277 	return 0;
   1278 }
   1279 
   1280 /*
   1281  * Find a buffer which is available for use.
   1282  * Select something from a free list.
   1283  * Preference is to AGE list, then LRU list.
   1284  *
   1285  * Called with the buffer queues locked.
   1286  * Return buffer locked.
   1287  */
   1288 buf_t *
   1289 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1290 {
   1291 	buf_t *bp;
   1292 	struct vnode *vp;
   1293 
   1294  start:
   1295 	KASSERT(mutex_owned(&bufcache_lock));
   1296 
   1297 	/*
   1298 	 * Get a new buffer from the pool.
   1299 	 */
   1300 	if (!from_bufq && buf_lotsfree()) {
   1301 		mutex_exit(&bufcache_lock);
   1302 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1303 		if (bp != NULL) {
   1304 			memset((char *)bp, 0, sizeof(*bp));
   1305 			buf_init(bp);
   1306 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1307 			mutex_enter(&bufcache_lock);
   1308 #if defined(DIAGNOSTIC)
   1309 			bp->b_freelistindex = -1;
   1310 #endif /* defined(DIAGNOSTIC) */
   1311 			return (bp);
   1312 		}
   1313 		mutex_enter(&bufcache_lock);
   1314 	}
   1315 
   1316 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1317 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1318 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1319 		bremfree(bp);
   1320 
   1321 		/* Buffer is no longer on free lists. */
   1322 		SET(bp->b_cflags, BC_BUSY);
   1323 	} else {
   1324 		/*
   1325 		 * XXX: !from_bufq should be removed.
   1326 		 */
   1327 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1328 			/* wait for a free buffer of any kind */
   1329 			if ((slpflag & PCATCH) != 0)
   1330 				(void)cv_timedwait_sig(&needbuffer_cv,
   1331 				    &bufcache_lock, slptimeo);
   1332 			else
   1333 				(void)cv_timedwait(&needbuffer_cv,
   1334 				    &bufcache_lock, slptimeo);
   1335 		}
   1336 		return (NULL);
   1337 	}
   1338 
   1339 #ifdef DIAGNOSTIC
   1340 	if (bp->b_bufsize <= 0)
   1341 		panic("buffer %p: on queue but empty", bp);
   1342 #endif
   1343 
   1344 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1345 		/*
   1346 		 * This is a delayed write buffer being flushed to disk.  Make
   1347 		 * sure it gets aged out of the queue when it's finished, and
   1348 		 * leave it off the LRU queue.
   1349 		 */
   1350 		CLR(bp->b_cflags, BC_VFLUSH);
   1351 		SET(bp->b_cflags, BC_AGE);
   1352 		goto start;
   1353 	}
   1354 
   1355 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1356 	KASSERT(bp->b_refcnt > 0);
   1357     	KASSERT(!cv_has_waiters(&bp->b_done));
   1358 
   1359 	/*
   1360 	 * If buffer was a delayed write, start it and return NULL
   1361 	 * (since we might sleep while starting the write).
   1362 	 */
   1363 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1364 		/*
   1365 		 * This buffer has gone through the LRU, so make sure it gets
   1366 		 * reused ASAP.
   1367 		 */
   1368 		SET(bp->b_cflags, BC_AGE);
   1369 		mutex_exit(&bufcache_lock);
   1370 		bawrite(bp);
   1371 		mutex_enter(&bufcache_lock);
   1372 		return (NULL);
   1373 	}
   1374 
   1375 	vp = bp->b_vp;
   1376 	if (bioopsp != NULL)
   1377 		(*bioopsp->io_deallocate)(bp);
   1378 
   1379 	/* clear out various other fields */
   1380 	bp->b_cflags = BC_BUSY;
   1381 	bp->b_oflags = 0;
   1382 	bp->b_flags = 0;
   1383 	bp->b_dev = NODEV;
   1384 	bp->b_blkno = 0;
   1385 	bp->b_lblkno = 0;
   1386 	bp->b_rawblkno = 0;
   1387 	bp->b_iodone = 0;
   1388 	bp->b_error = 0;
   1389 	bp->b_resid = 0;
   1390 	bp->b_bcount = 0;
   1391 
   1392 	LIST_REMOVE(bp, b_hash);
   1393 
   1394 	/* Disassociate us from our vnode, if we had one... */
   1395 	if (vp != NULL) {
   1396 		mutex_enter(&vp->v_interlock);
   1397 		brelvp(bp);
   1398 		mutex_exit(&vp->v_interlock);
   1399 	}
   1400 
   1401 	return (bp);
   1402 }
   1403 
   1404 /*
   1405  * Attempt to free an aged buffer off the queues.
   1406  * Called with queue lock held.
   1407  * Returns the amount of buffer memory freed.
   1408  */
   1409 static int
   1410 buf_trim(void)
   1411 {
   1412 	buf_t *bp;
   1413 	long size = 0;
   1414 
   1415 	KASSERT(mutex_owned(&bufcache_lock));
   1416 
   1417 	/* Instruct getnewbuf() to get buffers off the queues */
   1418 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1419 		return 0;
   1420 
   1421 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1422 	size = bp->b_bufsize;
   1423 	bufmem -= size;
   1424 	if (size > 0) {
   1425 		buf_mrelease(bp->b_data, size);
   1426 		bp->b_bcount = bp->b_bufsize = 0;
   1427 	}
   1428 	/* brelse() will return the buffer to the global buffer pool */
   1429 	brelsel(bp, 0);
   1430 	return size;
   1431 }
   1432 
   1433 int
   1434 buf_drain(int n)
   1435 {
   1436 	int size = 0, sz;
   1437 
   1438 	KASSERT(mutex_owned(&bufcache_lock));
   1439 
   1440 	while (size < n && bufmem > bufmem_lowater) {
   1441 		sz = buf_trim();
   1442 		if (sz <= 0)
   1443 			break;
   1444 		size += sz;
   1445 	}
   1446 
   1447 	return size;
   1448 }
   1449 
   1450 /*
   1451  * Wait for operations on the buffer to complete.
   1452  * When they do, extract and return the I/O's error value.
   1453  */
   1454 int
   1455 biowait(buf_t *bp)
   1456 {
   1457 
   1458 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1459 	KASSERT(bp->b_refcnt > 0);
   1460 
   1461 	mutex_enter(bp->b_objlock);
   1462 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1463 		cv_wait(&bp->b_done, bp->b_objlock);
   1464 	mutex_exit(bp->b_objlock);
   1465 
   1466 	return bp->b_error;
   1467 }
   1468 
   1469 /*
   1470  * Mark I/O complete on a buffer.
   1471  *
   1472  * If a callback has been requested, e.g. the pageout
   1473  * daemon, do so. Otherwise, awaken waiting processes.
   1474  *
   1475  * [ Leffler, et al., says on p.247:
   1476  *	"This routine wakes up the blocked process, frees the buffer
   1477  *	for an asynchronous write, or, for a request by the pagedaemon
   1478  *	process, invokes a procedure specified in the buffer structure" ]
   1479  *
   1480  * In real life, the pagedaemon (or other system processes) wants
   1481  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1482  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1483  * for the vn device, that puts malloc'd buffers on the free lists!)
   1484  */
   1485 void
   1486 biodone(buf_t *bp)
   1487 {
   1488 	int s;
   1489 
   1490 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1491 
   1492 	if (cpu_intr_p()) {
   1493 		/* From interrupt mode: defer to a soft interrupt. */
   1494 		s = splvm();
   1495 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1496 		softint_schedule(biodone_sih);
   1497 		splx(s);
   1498 	} else {
   1499 		/* Process now - the buffer may be freed soon. */
   1500 		biodone2(bp);
   1501 	}
   1502 }
   1503 
   1504 static void
   1505 biodone2(buf_t *bp)
   1506 {
   1507 	void (*callout)(buf_t *);
   1508 
   1509 	if (bioopsp != NULL)
   1510 		(*bioopsp->io_complete)(bp);
   1511 
   1512 	mutex_enter(bp->b_objlock);
   1513 	/* Note that the transfer is done. */
   1514 	if (ISSET(bp->b_oflags, BO_DONE))
   1515 		panic("biodone2 already");
   1516 	CLR(bp->b_flags, B_COWDONE);
   1517 	SET(bp->b_oflags, BO_DONE);
   1518 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1519 
   1520 	/* Wake up waiting writers. */
   1521 	if (!ISSET(bp->b_flags, B_READ))
   1522 		vwakeup(bp);
   1523 
   1524 	if ((callout = bp->b_iodone) != NULL) {
   1525 		/* Note callout done, then call out. */
   1526 		KASSERT(!cv_has_waiters(&bp->b_done));
   1527 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1528 		bp->b_iodone = NULL;
   1529 		mutex_exit(bp->b_objlock);
   1530 		(*callout)(bp);
   1531 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1532 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1533 		/* If async, release. */
   1534 		KASSERT(!cv_has_waiters(&bp->b_done));
   1535 		mutex_exit(bp->b_objlock);
   1536 		brelse(bp, 0);
   1537 	} else {
   1538 		/* Otherwise just wake up waiters in biowait(). */
   1539 		cv_broadcast(&bp->b_done);
   1540 		mutex_exit(bp->b_objlock);
   1541 	}
   1542 }
   1543 
   1544 static void
   1545 biointr(void *cookie)
   1546 {
   1547 	struct cpu_info *ci;
   1548 	buf_t *bp;
   1549 	int s;
   1550 
   1551 	ci = curcpu();
   1552 
   1553 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1554 		KASSERT(curcpu() == ci);
   1555 
   1556 		s = splvm();
   1557 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1558 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1559 		splx(s);
   1560 
   1561 		biodone2(bp);
   1562 	}
   1563 }
   1564 
   1565 /*
   1566  * Return a count of buffers on the "locked" queue.
   1567  */
   1568 int
   1569 count_lock_queue(void)
   1570 {
   1571 	buf_t *bp;
   1572 	int n = 0;
   1573 
   1574 	mutex_enter(&bufcache_lock);
   1575 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1576 		n++;
   1577 	mutex_exit(&bufcache_lock);
   1578 	return (n);
   1579 }
   1580 
   1581 /*
   1582  * Wait for all buffers to complete I/O
   1583  * Return the number of "stuck" buffers.
   1584  */
   1585 int
   1586 buf_syncwait(void)
   1587 {
   1588 	buf_t *bp;
   1589 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
   1590 
   1591 	dcount = 10000;
   1592 	for (iter = 0; iter < 20;) {
   1593 		mutex_enter(&bufcache_lock);
   1594 		nbusy = 0;
   1595 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1596 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1597 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1598 				nbusy += ((bp->b_flags & B_READ) == 0);
   1599 			/*
   1600 			 * With soft updates, some buffers that are
   1601 			 * written will be remarked as dirty until other
   1602 			 * buffers are written.
   1603 			 */
   1604 			if (bp->b_vp && bp->b_vp->v_mount
   1605 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
   1606 			    && (bp->b_oflags & BO_DELWRI)) {
   1607 				bremfree(bp);
   1608 				bp->b_cflags |= BC_BUSY;
   1609 				nbusy++;
   1610 				mutex_exit(&bufcache_lock);
   1611 				bawrite(bp);
   1612 				if (dcount-- <= 0) {
   1613 					printf("softdep ");
   1614 					goto fail;
   1615 				}
   1616 				mutex_enter(&bufcache_lock);
   1617 			}
   1618 		    }
   1619 		}
   1620 		mutex_exit(&bufcache_lock);
   1621 
   1622 		if (nbusy == 0)
   1623 			break;
   1624 		if (nbusy_prev == 0)
   1625 			nbusy_prev = nbusy;
   1626 		printf("%d ", nbusy);
   1627 		kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
   1628 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1629 			iter++;
   1630 		else
   1631 			nbusy_prev = nbusy;
   1632 	}
   1633 
   1634 	if (nbusy) {
   1635 fail:;
   1636 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1637 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1638 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1639 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1640 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1641 			    (bp->b_flags & B_READ) == 0)
   1642 				vprint(NULL, bp->b_vp);
   1643 		    }
   1644 		}
   1645 #endif
   1646 	}
   1647 
   1648 	return nbusy;
   1649 }
   1650 
   1651 static void
   1652 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1653 {
   1654 
   1655 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1656 	o->b_error = i->b_error;
   1657 	o->b_prio = i->b_prio;
   1658 	o->b_dev = i->b_dev;
   1659 	o->b_bufsize = i->b_bufsize;
   1660 	o->b_bcount = i->b_bcount;
   1661 	o->b_resid = i->b_resid;
   1662 	o->b_addr = PTRTOUINT64(i->b_data);
   1663 	o->b_blkno = i->b_blkno;
   1664 	o->b_rawblkno = i->b_rawblkno;
   1665 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1666 	o->b_proc = PTRTOUINT64(i->b_proc);
   1667 	o->b_vp = PTRTOUINT64(i->b_vp);
   1668 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1669 	o->b_lblkno = i->b_lblkno;
   1670 }
   1671 
   1672 #define KERN_BUFSLOP 20
   1673 static int
   1674 sysctl_dobuf(SYSCTLFN_ARGS)
   1675 {
   1676 	buf_t *bp;
   1677 	struct buf_sysctl bs;
   1678 	struct bqueue *bq;
   1679 	char *dp;
   1680 	u_int i, op, arg;
   1681 	size_t len, needed, elem_size, out_size;
   1682 	int error, elem_count, retries;
   1683 
   1684 	if (namelen == 1 && name[0] == CTL_QUERY)
   1685 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1686 
   1687 	if (namelen != 4)
   1688 		return (EINVAL);
   1689 
   1690 	retries = 100;
   1691  retry:
   1692 	dp = oldp;
   1693 	len = (oldp != NULL) ? *oldlenp : 0;
   1694 	op = name[0];
   1695 	arg = name[1];
   1696 	elem_size = name[2];
   1697 	elem_count = name[3];
   1698 	out_size = MIN(sizeof(bs), elem_size);
   1699 
   1700 	/*
   1701 	 * at the moment, these are just "placeholders" to make the
   1702 	 * API for retrieving kern.buf data more extensible in the
   1703 	 * future.
   1704 	 *
   1705 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1706 	 * these will be resolved at a later point.
   1707 	 */
   1708 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1709 	    elem_size < 1 || elem_count < 0)
   1710 		return (EINVAL);
   1711 
   1712 	error = 0;
   1713 	needed = 0;
   1714 	sysctl_unlock();
   1715 	mutex_enter(&bufcache_lock);
   1716 	for (i = 0; i < BQUEUES; i++) {
   1717 		bq = &bufqueues[i];
   1718 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1719 			bq->bq_marker = bp;
   1720 			if (len >= elem_size && elem_count > 0) {
   1721 				sysctl_fillbuf(bp, &bs);
   1722 				mutex_exit(&bufcache_lock);
   1723 				error = copyout(&bs, dp, out_size);
   1724 				mutex_enter(&bufcache_lock);
   1725 				if (error)
   1726 					break;
   1727 				if (bq->bq_marker != bp) {
   1728 					/*
   1729 					 * This sysctl node is only for
   1730 					 * statistics.  Retry; if the
   1731 					 * queue keeps changing, then
   1732 					 * bail out.
   1733 					 */
   1734 					if (retries-- == 0) {
   1735 						error = EAGAIN;
   1736 						break;
   1737 					}
   1738 					mutex_exit(&bufcache_lock);
   1739 					goto retry;
   1740 				}
   1741 				dp += elem_size;
   1742 				len -= elem_size;
   1743 			}
   1744 			if (elem_count > 0) {
   1745 				needed += elem_size;
   1746 				if (elem_count != INT_MAX)
   1747 					elem_count--;
   1748 			}
   1749 		}
   1750 		if (error != 0)
   1751 			break;
   1752 	}
   1753 	mutex_exit(&bufcache_lock);
   1754 	sysctl_relock();
   1755 
   1756 	*oldlenp = needed;
   1757 	if (oldp == NULL)
   1758 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1759 
   1760 	return (error);
   1761 }
   1762 
   1763 static int
   1764 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1765 {
   1766 	int t, error, rv;
   1767 	struct sysctlnode node;
   1768 
   1769 	node = *rnode;
   1770 	node.sysctl_data = &t;
   1771 	t = *(int *)rnode->sysctl_data;
   1772 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1773 	if (error || newp == NULL)
   1774 		return (error);
   1775 
   1776 	if (t < 0)
   1777 		return EINVAL;
   1778 	if (rnode->sysctl_data == &bufcache) {
   1779 		if (t > 100)
   1780 			return (EINVAL);
   1781 		bufcache = t;
   1782 		buf_setwm();
   1783 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1784 		if (bufmem_hiwater - t < 16)
   1785 			return (EINVAL);
   1786 		bufmem_lowater = t;
   1787 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1788 		if (t - bufmem_lowater < 16)
   1789 			return (EINVAL);
   1790 		bufmem_hiwater = t;
   1791 	} else
   1792 		return (EINVAL);
   1793 
   1794 	/* Drain until below new high water mark */
   1795 	sysctl_unlock();
   1796 	mutex_enter(&bufcache_lock);
   1797 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1798 		rv = buf_drain(t / (2 * 1024));
   1799 		if (rv <= 0)
   1800 			break;
   1801 	}
   1802 	mutex_exit(&bufcache_lock);
   1803 	sysctl_relock();
   1804 
   1805 	return 0;
   1806 }
   1807 
   1808 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
   1809 {
   1810 
   1811 	sysctl_createv(clog, 0, NULL, NULL,
   1812 		       CTLFLAG_PERMANENT,
   1813 		       CTLTYPE_NODE, "kern", NULL,
   1814 		       NULL, 0, NULL, 0,
   1815 		       CTL_KERN, CTL_EOL);
   1816 	sysctl_createv(clog, 0, NULL, NULL,
   1817 		       CTLFLAG_PERMANENT,
   1818 		       CTLTYPE_NODE, "buf",
   1819 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1820 		       sysctl_dobuf, 0, NULL, 0,
   1821 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1822 }
   1823 
   1824 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
   1825 {
   1826 
   1827 	sysctl_createv(clog, 0, NULL, NULL,
   1828 		       CTLFLAG_PERMANENT,
   1829 		       CTLTYPE_NODE, "vm", NULL,
   1830 		       NULL, 0, NULL, 0,
   1831 		       CTL_VM, CTL_EOL);
   1832 
   1833 	sysctl_createv(clog, 0, NULL, NULL,
   1834 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1835 		       CTLTYPE_INT, "bufcache",
   1836 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1837 				    "buffer cache"),
   1838 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1839 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1840 	sysctl_createv(clog, 0, NULL, NULL,
   1841 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1842 		       CTLTYPE_INT, "bufmem",
   1843 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1844 				    "cache"),
   1845 		       NULL, 0, &bufmem, 0,
   1846 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1847 	sysctl_createv(clog, 0, NULL, NULL,
   1848 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1849 		       CTLTYPE_INT, "bufmem_lowater",
   1850 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1851 				    "reserve for buffer cache"),
   1852 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1853 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1854 	sysctl_createv(clog, 0, NULL, NULL,
   1855 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1856 		       CTLTYPE_INT, "bufmem_hiwater",
   1857 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1858 				    "for buffer cache"),
   1859 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1860 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1861 }
   1862 
   1863 #ifdef DEBUG
   1864 /*
   1865  * Print out statistics on the current allocation of the buffer pool.
   1866  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1867  * in vfs_syscalls.c using sysctl.
   1868  */
   1869 void
   1870 vfs_bufstats(void)
   1871 {
   1872 	int i, j, count;
   1873 	buf_t *bp;
   1874 	struct bqueue *dp;
   1875 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1876 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1877 
   1878 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1879 		count = 0;
   1880 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1881 			counts[j] = 0;
   1882 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1883 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1884 			count++;
   1885 		}
   1886 		printf("%s: total-%d", bname[i], count);
   1887 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1888 			if (counts[j] != 0)
   1889 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1890 		printf("\n");
   1891 	}
   1892 }
   1893 #endif /* DEBUG */
   1894 
   1895 /* ------------------------------ */
   1896 
   1897 buf_t *
   1898 getiobuf(struct vnode *vp, bool waitok)
   1899 {
   1900 	buf_t *bp;
   1901 
   1902 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1903 	if (bp == NULL)
   1904 		return bp;
   1905 
   1906 	buf_init(bp);
   1907 
   1908 	if ((bp->b_vp = vp) == NULL)
   1909 		bp->b_objlock = &buffer_lock;
   1910 	else
   1911 		bp->b_objlock = &vp->v_interlock;
   1912 
   1913 	return bp;
   1914 }
   1915 
   1916 void
   1917 putiobuf(buf_t *bp)
   1918 {
   1919 
   1920 	buf_destroy(bp);
   1921 	pool_cache_put(bufio_cache, bp);
   1922 }
   1923 
   1924 /*
   1925  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1926  */
   1927 
   1928 void
   1929 nestiobuf_iodone(buf_t *bp)
   1930 {
   1931 	buf_t *mbp = bp->b_private;
   1932 	int error;
   1933 	int donebytes;
   1934 
   1935 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1936 	KASSERT(mbp != bp);
   1937 
   1938 	error = bp->b_error;
   1939 	if (bp->b_error == 0 &&
   1940 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1941 		/*
   1942 		 * Not all got transfered, raise an error. We have no way to
   1943 		 * propagate these conditions to mbp.
   1944 		 */
   1945 		error = EIO;
   1946 	}
   1947 
   1948 	donebytes = bp->b_bufsize;
   1949 
   1950 	putiobuf(bp);
   1951 	nestiobuf_done(mbp, donebytes, error);
   1952 }
   1953 
   1954 /*
   1955  * nestiobuf_setup: setup a "nested" buffer.
   1956  *
   1957  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1958  * => 'bp' should be a buffer allocated by getiobuf.
   1959  * => 'offset' is a byte offset in the master buffer.
   1960  * => 'size' is a size in bytes of this nested buffer.
   1961  */
   1962 
   1963 void
   1964 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1965 {
   1966 	const int b_read = mbp->b_flags & B_READ;
   1967 	struct vnode *vp = mbp->b_vp;
   1968 
   1969 	KASSERT(mbp->b_bcount >= offset + size);
   1970 	bp->b_vp = vp;
   1971 	bp->b_objlock = mbp->b_objlock;
   1972 	bp->b_cflags = BC_BUSY;
   1973 	bp->b_flags = B_ASYNC | b_read;
   1974 	bp->b_iodone = nestiobuf_iodone;
   1975 	bp->b_data = (char *)mbp->b_data + offset;
   1976 	bp->b_resid = bp->b_bcount = size;
   1977 	bp->b_bufsize = bp->b_bcount;
   1978 	bp->b_private = mbp;
   1979 	BIO_COPYPRIO(bp, mbp);
   1980 	if (!b_read && vp != NULL) {
   1981 		mutex_enter(&vp->v_interlock);
   1982 		vp->v_numoutput++;
   1983 		mutex_exit(&vp->v_interlock);
   1984 	}
   1985 }
   1986 
   1987 /*
   1988  * nestiobuf_done: propagate completion to the master buffer.
   1989  *
   1990  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1991  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1992  */
   1993 
   1994 void
   1995 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1996 {
   1997 
   1998 	if (donebytes == 0) {
   1999 		return;
   2000 	}
   2001 	mutex_enter(mbp->b_objlock);
   2002 	KASSERT(mbp->b_resid >= donebytes);
   2003 	mbp->b_resid -= donebytes;
   2004 	if (error)
   2005 		mbp->b_error = error;
   2006 	if (mbp->b_resid == 0) {
   2007 		mutex_exit(mbp->b_objlock);
   2008 		biodone(mbp);
   2009 	} else
   2010 		mutex_exit(mbp->b_objlock);
   2011 }
   2012 
   2013 void
   2014 buf_init(buf_t *bp)
   2015 {
   2016 
   2017 	LIST_INIT(&bp->b_dep);
   2018 	cv_init(&bp->b_busy, "biolock");
   2019 	cv_init(&bp->b_done, "biowait");
   2020 	bp->b_dev = NODEV;
   2021 	bp->b_error = 0;
   2022 	bp->b_flags = 0;
   2023 	bp->b_cflags = 0;
   2024 	bp->b_oflags = 0;
   2025 	bp->b_objlock = &buffer_lock;
   2026 	bp->b_iodone = NULL;
   2027 	bp->b_refcnt = 1;
   2028 	bp->b_dev = NODEV;
   2029 	bp->b_vnbufs.le_next = NOLIST;
   2030 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2031 }
   2032 
   2033 void
   2034 buf_destroy(buf_t *bp)
   2035 {
   2036 
   2037 	cv_destroy(&bp->b_done);
   2038 	cv_destroy(&bp->b_busy);
   2039 }
   2040 
   2041 int
   2042 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2043 {
   2044 	int error;
   2045 
   2046 	KASSERT(mutex_owned(&bufcache_lock));
   2047 
   2048 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2049 		if (curlwp == uvm.pagedaemon_lwp)
   2050 			return EDEADLK;
   2051 		bp->b_cflags |= BC_WANTED;
   2052 		bref(bp);
   2053 		if (interlock != NULL)
   2054 			mutex_exit(interlock);
   2055 		if (intr) {
   2056 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2057 			    timo);
   2058 		} else {
   2059 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2060 			    timo);
   2061 		}
   2062 		brele(bp);
   2063 		if (interlock != NULL)
   2064 			mutex_enter(interlock);
   2065 		if (error != 0)
   2066 			return error;
   2067 		return EPASSTHROUGH;
   2068 	}
   2069 	bp->b_cflags |= BC_BUSY;
   2070 
   2071 	return 0;
   2072 }
   2073