vfs_bio.c revision 1.215 1 /* $NetBSD: vfs_bio.c,v 1.215 2008/12/07 20:58:46 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Wasabi Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1989, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
68 */
69
70 /*-
71 * Copyright (c) 1994 Christopher G. Demetriou
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
102 */
103
104 /*
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 */
110
111 #include <sys/cdefs.h>
112 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.215 2008/12/07 20:58:46 pooka Exp $");
113
114 #include "fs_ffs.h"
115 #include "opt_bufcache.h"
116
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/kernel.h>
120 #include <sys/proc.h>
121 #include <sys/buf.h>
122 #include <sys/vnode.h>
123 #include <sys/mount.h>
124 #include <sys/resourcevar.h>
125 #include <sys/sysctl.h>
126 #include <sys/conf.h>
127 #include <sys/kauth.h>
128 #include <sys/fstrans.h>
129 #include <sys/intr.h>
130 #include <sys/cpu.h>
131 #include <sys/wapbl.h>
132
133 #include <uvm/uvm.h>
134
135 #include <miscfs/specfs/specdev.h>
136
137 #ifndef BUFPAGES
138 # define BUFPAGES 0
139 #endif
140
141 #ifdef BUFCACHE
142 # if (BUFCACHE < 5) || (BUFCACHE > 95)
143 # error BUFCACHE is not between 5 and 95
144 # endif
145 #else
146 # define BUFCACHE 15
147 #endif
148
149 u_int nbuf; /* XXX - for softdep_lockedbufs */
150 u_int bufpages = BUFPAGES; /* optional hardwired count */
151 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
152
153 /* Function prototypes */
154 struct bqueue;
155
156 static void buf_setwm(void);
157 static int buf_trim(void);
158 static void *bufpool_page_alloc(struct pool *, int);
159 static void bufpool_page_free(struct pool *, void *);
160 static buf_t *bio_doread(struct vnode *, daddr_t, int,
161 kauth_cred_t, int);
162 static buf_t *getnewbuf(int, int, int);
163 static int buf_lotsfree(void);
164 static int buf_canrelease(void);
165 static u_long buf_mempoolidx(u_long);
166 static u_long buf_roundsize(u_long);
167 static void *buf_malloc(size_t);
168 static void buf_mrelease(void *, size_t);
169 static void binsheadfree(buf_t *, struct bqueue *);
170 static void binstailfree(buf_t *, struct bqueue *);
171 int count_lock_queue(void); /* XXX */
172 #ifdef DEBUG
173 static int checkfreelist(buf_t *, struct bqueue *, int);
174 #endif
175 static void biointr(void *);
176 static void biodone2(buf_t *);
177 static void bref(buf_t *);
178 static void brele(buf_t *);
179 static void sysctl_kern_buf_setup(void);
180 static void sysctl_vm_buf_setup(void);
181
182 /*
183 * Definitions for the buffer hash lists.
184 */
185 #define BUFHASH(dvp, lbn) \
186 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
187 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
188 u_long bufhash;
189 struct bqueue bufqueues[BQUEUES];
190 const struct bio_ops *bioopsp; /* I/O operation notification */
191
192 static kcondvar_t needbuffer_cv;
193
194 /*
195 * Buffer queue lock.
196 */
197 kmutex_t bufcache_lock;
198 kmutex_t buffer_lock;
199
200 /* Software ISR for completed transfers. */
201 static void *biodone_sih;
202
203 /* Buffer pool for I/O buffers. */
204 static pool_cache_t buf_cache;
205 static pool_cache_t bufio_cache;
206
207 /* XXX - somewhat gross.. */
208 #if MAXBSIZE == 0x2000
209 #define NMEMPOOLS 5
210 #elif MAXBSIZE == 0x4000
211 #define NMEMPOOLS 6
212 #elif MAXBSIZE == 0x8000
213 #define NMEMPOOLS 7
214 #else
215 #define NMEMPOOLS 8
216 #endif
217
218 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
219 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
220 #error update vfs_bio buffer memory parameters
221 #endif
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399
400 /*
401 * Determine the upper bound of memory to use for buffers.
402 *
403 * - If bufpages is specified, use that as the number
404 * pages.
405 *
406 * - Otherwise, use bufcache as the percentage of
407 * physical memory.
408 */
409 if (bufpages != 0) {
410 n = bufpages;
411 } else {
412 if (bufcache < 5) {
413 printf("forcing bufcache %d -> 5", bufcache);
414 bufcache = 5;
415 }
416 if (bufcache > 95) {
417 printf("forcing bufcache %d -> 95", bufcache);
418 bufcache = 95;
419 }
420 n = calc_cache_size(buf_map, bufcache,
421 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
422 / PAGE_SIZE;
423 }
424
425 n <<= PAGE_SHIFT;
426 if (bufmem_valimit != 0 && n > bufmem_valimit)
427 n = bufmem_valimit;
428
429 return (n);
430 }
431
432 /*
433 * Initialize buffers and hash links for buffers.
434 */
435 void
436 bufinit(void)
437 {
438 struct bqueue *dp;
439 int use_std;
440 u_int i;
441
442 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
443 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
444 cv_init(&needbuffer_cv, "needbuf");
445
446 if (bufmem_valimit != 0) {
447 vaddr_t minaddr = 0, maxaddr;
448 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 bufmem_valimit, 0, false, 0);
450 if (buf_map == NULL)
451 panic("bufinit: cannot allocate submap");
452 } else
453 buf_map = kernel_map;
454
455 /*
456 * Initialize buffer cache memory parameters.
457 */
458 bufmem = 0;
459 buf_setwm();
460
461 /* On "small" machines use small pool page sizes where possible */
462 use_std = (physmem < atop(16*1024*1024));
463
464 /*
465 * Also use them on systems that can map the pool pages using
466 * a direct-mapped segment.
467 */
468 #ifdef PMAP_MAP_POOLPAGE
469 use_std = 1;
470 #endif
471
472 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
473 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
474 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
475 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
476
477 bufmempool_allocator.pa_backingmap = buf_map;
478 for (i = 0; i < NMEMPOOLS; i++) {
479 struct pool_allocator *pa;
480 struct pool *pp = &bmempools[i];
481 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
482 char *name = kmem_alloc(8, KM_SLEEP);
483 if (__predict_true(size >= 1024))
484 (void)snprintf(name, 8, "buf%dk", size / 1024);
485 else
486 (void)snprintf(name, 8, "buf%db", size);
487 pa = (size <= PAGE_SIZE && use_std)
488 ? &pool_allocator_nointr
489 : &bufmempool_allocator;
490 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
491 pool_setlowat(pp, 1);
492 pool_sethiwat(pp, 1);
493 }
494
495 /* Initialize the buffer queues */
496 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
497 TAILQ_INIT(&dp->bq_queue);
498 dp->bq_bytes = 0;
499 }
500
501 /*
502 * Estimate hash table size based on the amount of memory we
503 * intend to use for the buffer cache. The average buffer
504 * size is dependent on our clients (i.e. filesystems).
505 *
506 * For now, use an empirical 3K per buffer.
507 */
508 nbuf = (bufmem_hiwater / 1024) / 3;
509 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
510
511 sysctl_kern_buf_setup();
512 sysctl_vm_buf_setup();
513 }
514
515 void
516 bufinit2(void)
517 {
518
519 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
520 NULL);
521 if (biodone_sih == NULL)
522 panic("bufinit2: can't establish soft interrupt");
523 }
524
525 static int
526 buf_lotsfree(void)
527 {
528 int try, thresh;
529
530 /* Always allocate if less than the low water mark. */
531 if (bufmem < bufmem_lowater)
532 return 1;
533
534 /* Never allocate if greater than the high water mark. */
535 if (bufmem > bufmem_hiwater)
536 return 0;
537
538 /* If there's anything on the AGE list, it should be eaten. */
539 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
540 return 0;
541
542 /*
543 * The probabily of getting a new allocation is inversely
544 * proportional to the current size of the cache, using
545 * a granularity of 16 steps.
546 */
547 try = random() & 0x0000000fL;
548
549 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
550 thresh = (bufmem - bufmem_lowater) /
551 ((bufmem_hiwater - bufmem_lowater) / 16);
552
553 if (try >= thresh)
554 return 1;
555
556 /* Otherwise don't allocate. */
557 return 0;
558 }
559
560 /*
561 * Return estimate of bytes we think need to be
562 * released to help resolve low memory conditions.
563 *
564 * => called with bufcache_lock held.
565 */
566 static int
567 buf_canrelease(void)
568 {
569 int pagedemand, ninvalid = 0;
570
571 KASSERT(mutex_owned(&bufcache_lock));
572
573 if (bufmem < bufmem_lowater)
574 return 0;
575
576 if (bufmem > bufmem_hiwater)
577 return bufmem - bufmem_hiwater;
578
579 ninvalid += bufqueues[BQ_AGE].bq_bytes;
580
581 pagedemand = uvmexp.freetarg - uvmexp.free;
582 if (pagedemand < 0)
583 return ninvalid;
584 return MAX(ninvalid, MIN(2 * MAXBSIZE,
585 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
586 }
587
588 /*
589 * Buffer memory allocation helper functions
590 */
591 static u_long
592 buf_mempoolidx(u_long size)
593 {
594 u_int n = 0;
595
596 size -= 1;
597 size >>= MEMPOOL_INDEX_OFFSET;
598 while (size) {
599 size >>= 1;
600 n += 1;
601 }
602 if (n >= NMEMPOOLS)
603 panic("buf mem pool index %d", n);
604 return n;
605 }
606
607 static u_long
608 buf_roundsize(u_long size)
609 {
610 /* Round up to nearest power of 2 */
611 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
612 }
613
614 static void *
615 buf_malloc(size_t size)
616 {
617 u_int n = buf_mempoolidx(size);
618 void *addr;
619
620 while (1) {
621 addr = pool_get(&bmempools[n], PR_NOWAIT);
622 if (addr != NULL)
623 break;
624
625 /* No memory, see if we can free some. If so, try again */
626 mutex_enter(&bufcache_lock);
627 if (buf_drain(1) > 0) {
628 mutex_exit(&bufcache_lock);
629 continue;
630 }
631
632 if (curlwp == uvm.pagedaemon_lwp) {
633 mutex_exit(&bufcache_lock);
634 return NULL;
635 }
636
637 /* Wait for buffers to arrive on the LRU queue */
638 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
639 mutex_exit(&bufcache_lock);
640 }
641
642 return addr;
643 }
644
645 static void
646 buf_mrelease(void *addr, size_t size)
647 {
648
649 pool_put(&bmempools[buf_mempoolidx(size)], addr);
650 }
651
652 /*
653 * bread()/breadn() helper.
654 */
655 static buf_t *
656 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
657 int async)
658 {
659 buf_t *bp;
660 struct mount *mp;
661
662 bp = getblk(vp, blkno, size, 0, 0);
663
664 #ifdef DIAGNOSTIC
665 if (bp == NULL) {
666 panic("bio_doread: no such buf");
667 }
668 #endif
669
670 /*
671 * If buffer does not have data valid, start a read.
672 * Note that if buffer is BC_INVAL, getblk() won't return it.
673 * Therefore, it's valid if its I/O has completed or been delayed.
674 */
675 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
676 /* Start I/O for the buffer. */
677 SET(bp->b_flags, B_READ | async);
678 if (async)
679 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
680 else
681 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
682 VOP_STRATEGY(vp, bp);
683
684 /* Pay for the read. */
685 curlwp->l_ru.ru_inblock++;
686 } else if (async)
687 brelse(bp, 0);
688
689 if (vp->v_type == VBLK)
690 mp = vp->v_specmountpoint;
691 else
692 mp = vp->v_mount;
693
694 /*
695 * Collect statistics on synchronous and asynchronous reads.
696 * Reads from block devices are charged to their associated
697 * filesystem (if any).
698 */
699 if (mp != NULL) {
700 if (async == 0)
701 mp->mnt_stat.f_syncreads++;
702 else
703 mp->mnt_stat.f_asyncreads++;
704 }
705
706 return (bp);
707 }
708
709 /*
710 * Read a disk block.
711 * This algorithm described in Bach (p.54).
712 */
713 int
714 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
715 int flags, buf_t **bpp)
716 {
717 buf_t *bp;
718 int error;
719
720 /* Get buffer for block. */
721 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
722
723 /* Wait for the read to complete, and return result. */
724 error = biowait(bp);
725 if (error == 0 && (flags & B_MODIFY) != 0) /* XXXX before the next code block or after? */
726 error = fscow_run(bp, true);
727
728 return error;
729 }
730
731 /*
732 * Read-ahead multiple disk blocks. The first is sync, the rest async.
733 * Trivial modification to the breada algorithm presented in Bach (p.55).
734 */
735 int
736 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
737 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
738 {
739 buf_t *bp;
740 int error, i;
741
742 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
743
744 /*
745 * For each of the read-ahead blocks, start a read, if necessary.
746 */
747 mutex_enter(&bufcache_lock);
748 for (i = 0; i < nrablks; i++) {
749 /* If it's in the cache, just go on to next one. */
750 if (incore(vp, rablks[i]))
751 continue;
752
753 /* Get a buffer for the read-ahead block */
754 mutex_exit(&bufcache_lock);
755 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
756 mutex_enter(&bufcache_lock);
757 }
758 mutex_exit(&bufcache_lock);
759
760 /* Otherwise, we had to start a read for it; wait until it's valid. */
761 error = biowait(bp);
762 if (error == 0 && (flags & B_MODIFY) != 0)
763 error = fscow_run(bp, true);
764 return error;
765 }
766
767 /*
768 * Read with single-block read-ahead. Defined in Bach (p.55), but
769 * implemented as a call to breadn().
770 * XXX for compatibility with old file systems.
771 */
772 int
773 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
774 int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
775 {
776
777 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
778 cred, flags, bpp));
779 }
780
781 /*
782 * Block write. Described in Bach (p.56)
783 */
784 int
785 bwrite(buf_t *bp)
786 {
787 int rv, sync, wasdelayed;
788 struct vnode *vp;
789 struct mount *mp;
790
791 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
792 KASSERT(!cv_has_waiters(&bp->b_done));
793
794 vp = bp->b_vp;
795 if (vp != NULL) {
796 KASSERT(bp->b_objlock == &vp->v_interlock);
797 if (vp->v_type == VBLK)
798 mp = vp->v_specmountpoint;
799 else
800 mp = vp->v_mount;
801 } else {
802 mp = NULL;
803 }
804
805 if (mp && mp->mnt_wapbl) {
806 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
807 bdwrite(bp);
808 return 0;
809 }
810 }
811
812 /*
813 * Remember buffer type, to switch on it later. If the write was
814 * synchronous, but the file system was mounted with MNT_ASYNC,
815 * convert it to a delayed write.
816 * XXX note that this relies on delayed tape writes being converted
817 * to async, not sync writes (which is safe, but ugly).
818 */
819 sync = !ISSET(bp->b_flags, B_ASYNC);
820 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
821 bdwrite(bp);
822 return (0);
823 }
824
825 /*
826 * Collect statistics on synchronous and asynchronous writes.
827 * Writes to block devices are charged to their associated
828 * filesystem (if any).
829 */
830 if (mp != NULL) {
831 if (sync)
832 mp->mnt_stat.f_syncwrites++;
833 else
834 mp->mnt_stat.f_asyncwrites++;
835 }
836
837 /*
838 * Pay for the I/O operation and make sure the buf is on the correct
839 * vnode queue.
840 */
841 bp->b_error = 0;
842 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
843 CLR(bp->b_flags, B_READ);
844 if (wasdelayed) {
845 mutex_enter(&bufcache_lock);
846 mutex_enter(bp->b_objlock);
847 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
848 reassignbuf(bp, bp->b_vp);
849 mutex_exit(&bufcache_lock);
850 } else {
851 curlwp->l_ru.ru_oublock++;
852 mutex_enter(bp->b_objlock);
853 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
854 }
855 if (vp != NULL)
856 vp->v_numoutput++;
857 mutex_exit(bp->b_objlock);
858
859 /* Initiate disk write. */
860 if (sync)
861 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
862 else
863 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
864
865 VOP_STRATEGY(vp, bp);
866
867 if (sync) {
868 /* If I/O was synchronous, wait for it to complete. */
869 rv = biowait(bp);
870
871 /* Release the buffer. */
872 brelse(bp, 0);
873
874 return (rv);
875 } else {
876 return (0);
877 }
878 }
879
880 int
881 vn_bwrite(void *v)
882 {
883 struct vop_bwrite_args *ap = v;
884
885 return (bwrite(ap->a_bp));
886 }
887
888 /*
889 * Delayed write.
890 *
891 * The buffer is marked dirty, but is not queued for I/O.
892 * This routine should be used when the buffer is expected
893 * to be modified again soon, typically a small write that
894 * partially fills a buffer.
895 *
896 * NB: magnetic tapes cannot be delayed; they must be
897 * written in the order that the writes are requested.
898 *
899 * Described in Leffler, et al. (pp. 208-213).
900 */
901 void
902 bdwrite(buf_t *bp)
903 {
904
905 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
906 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
907 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
908 KASSERT(!cv_has_waiters(&bp->b_done));
909
910 /* If this is a tape block, write the block now. */
911 if (bdev_type(bp->b_dev) == D_TAPE) {
912 bawrite(bp);
913 return;
914 }
915
916 if (wapbl_vphaswapbl(bp->b_vp)) {
917 struct mount *mp = wapbl_vptomp(bp->b_vp);
918
919 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
920 WAPBL_ADD_BUF(mp, bp);
921 }
922 }
923
924 /*
925 * If the block hasn't been seen before:
926 * (1) Mark it as having been seen,
927 * (2) Charge for the write,
928 * (3) Make sure it's on its vnode's correct block list.
929 */
930 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
931
932 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
933 mutex_enter(&bufcache_lock);
934 mutex_enter(bp->b_objlock);
935 SET(bp->b_oflags, BO_DELWRI);
936 curlwp->l_ru.ru_oublock++;
937 reassignbuf(bp, bp->b_vp);
938 mutex_exit(&bufcache_lock);
939 } else {
940 mutex_enter(bp->b_objlock);
941 }
942 /* Otherwise, the "write" is done, so mark and release the buffer. */
943 CLR(bp->b_oflags, BO_DONE);
944 mutex_exit(bp->b_objlock);
945
946 brelse(bp, 0);
947 }
948
949 /*
950 * Asynchronous block write; just an asynchronous bwrite().
951 */
952 void
953 bawrite(buf_t *bp)
954 {
955
956 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
957
958 SET(bp->b_flags, B_ASYNC);
959 VOP_BWRITE(bp);
960 }
961
962 /*
963 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
964 * Call with the buffer interlock held.
965 *
966 * Note: called only from biodone() through ffs softdep's io_complete()
967 * Note2: smbfs also learned about bdirty().
968 */
969 void
970 bdirty(buf_t *bp)
971 {
972
973 KASSERT(mutex_owned(&bufcache_lock));
974 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
975 KASSERT(mutex_owned(bp->b_objlock));
976 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
977
978 CLR(bp->b_cflags, BC_AGE);
979
980 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
981 SET(bp->b_oflags, BO_DELWRI);
982 curlwp->l_ru.ru_oublock++;
983 reassignbuf(bp, bp->b_vp);
984 }
985 }
986
987
988 /*
989 * Release a buffer on to the free lists.
990 * Described in Bach (p. 46).
991 */
992 void
993 brelsel(buf_t *bp, int set)
994 {
995 struct bqueue *bufq;
996 struct vnode *vp;
997
998 KASSERT(mutex_owned(&bufcache_lock));
999 KASSERT(!cv_has_waiters(&bp->b_done));
1000 KASSERT(bp->b_refcnt > 0);
1001
1002 SET(bp->b_cflags, set);
1003
1004 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1005 KASSERT(bp->b_iodone == NULL);
1006
1007 /* Wake up any processes waiting for any buffer to become free. */
1008 cv_signal(&needbuffer_cv);
1009
1010 /* Wake up any proceeses waiting for _this_ buffer to become */
1011 if (ISSET(bp->b_cflags, BC_WANTED))
1012 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1013
1014 /*
1015 * Determine which queue the buffer should be on, then put it there.
1016 */
1017
1018 /* If it's locked, don't report an error; try again later. */
1019 if (ISSET(bp->b_flags, B_LOCKED))
1020 bp->b_error = 0;
1021
1022 /* If it's not cacheable, or an error, mark it invalid. */
1023 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1024 SET(bp->b_cflags, BC_INVAL);
1025
1026 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1027 /*
1028 * This is a delayed write buffer that was just flushed to
1029 * disk. It is still on the LRU queue. If it's become
1030 * invalid, then we need to move it to a different queue;
1031 * otherwise leave it in its current position.
1032 */
1033 CLR(bp->b_cflags, BC_VFLUSH);
1034 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1035 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1036 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1037 goto already_queued;
1038 } else {
1039 bremfree(bp);
1040 }
1041 }
1042
1043 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1044 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1045 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1046
1047 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1048 /*
1049 * If it's invalid or empty, dissociate it from its vnode
1050 * and put on the head of the appropriate queue.
1051 */
1052 if (bioopsp != NULL)
1053 (*bioopsp->io_deallocate)(bp);
1054
1055 if (ISSET(bp->b_flags, B_LOCKED)) {
1056 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1057 struct mount *mp = wapbl_vptomp(vp);
1058
1059 KASSERT(bp->b_iodone
1060 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1061 WAPBL_REMOVE_BUF(mp, bp);
1062 }
1063 }
1064
1065 mutex_enter(bp->b_objlock);
1066 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1067 if ((vp = bp->b_vp) != NULL) {
1068 KASSERT(bp->b_objlock == &vp->v_interlock);
1069 reassignbuf(bp, bp->b_vp);
1070 brelvp(bp);
1071 mutex_exit(&vp->v_interlock);
1072 } else {
1073 KASSERT(bp->b_objlock == &buffer_lock);
1074 mutex_exit(bp->b_objlock);
1075 }
1076
1077 if (bp->b_bufsize <= 0)
1078 /* no data */
1079 goto already_queued;
1080 else
1081 /* invalid data */
1082 bufq = &bufqueues[BQ_AGE];
1083 binsheadfree(bp, bufq);
1084 } else {
1085 /*
1086 * It has valid data. Put it on the end of the appropriate
1087 * queue, so that it'll stick around for as long as possible.
1088 * If buf is AGE, but has dependencies, must put it on last
1089 * bufqueue to be scanned, ie LRU. This protects against the
1090 * livelock where BQ_AGE only has buffers with dependencies,
1091 * and we thus never get to the dependent buffers in BQ_LRU.
1092 */
1093 if (ISSET(bp->b_flags, B_LOCKED)) {
1094 /* locked in core */
1095 bufq = &bufqueues[BQ_LOCKED];
1096 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1097 /* valid data */
1098 bufq = &bufqueues[BQ_LRU];
1099 } else {
1100 /* stale but valid data */
1101 int has_deps;
1102
1103 if (bioopsp != NULL)
1104 has_deps = (*bioopsp->io_countdeps)(bp, 0);
1105 else
1106 has_deps = 0;
1107 bufq = has_deps ? &bufqueues[BQ_LRU] :
1108 &bufqueues[BQ_AGE];
1109 }
1110 binstailfree(bp, bufq);
1111 }
1112 already_queued:
1113 /* Unlock the buffer. */
1114 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1115 CLR(bp->b_flags, B_ASYNC);
1116 cv_broadcast(&bp->b_busy);
1117
1118 if (bp->b_bufsize <= 0)
1119 brele(bp);
1120 }
1121
1122 void
1123 brelse(buf_t *bp, int set)
1124 {
1125
1126 mutex_enter(&bufcache_lock);
1127 brelsel(bp, set);
1128 mutex_exit(&bufcache_lock);
1129 }
1130
1131 /*
1132 * Determine if a block is in the cache.
1133 * Just look on what would be its hash chain. If it's there, return
1134 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1135 * we normally don't return the buffer, unless the caller explicitly
1136 * wants us to.
1137 */
1138 buf_t *
1139 incore(struct vnode *vp, daddr_t blkno)
1140 {
1141 buf_t *bp;
1142
1143 KASSERT(mutex_owned(&bufcache_lock));
1144
1145 /* Search hash chain */
1146 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1147 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1148 !ISSET(bp->b_cflags, BC_INVAL)) {
1149 KASSERT(bp->b_objlock == &vp->v_interlock);
1150 return (bp);
1151 }
1152 }
1153
1154 return (NULL);
1155 }
1156
1157 /*
1158 * Get a block of requested size that is associated with
1159 * a given vnode and block offset. If it is found in the
1160 * block cache, mark it as having been found, make it busy
1161 * and return it. Otherwise, return an empty block of the
1162 * correct size. It is up to the caller to insure that the
1163 * cached blocks be of the correct size.
1164 */
1165 buf_t *
1166 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1167 {
1168 int err, preserve;
1169 buf_t *bp;
1170
1171 mutex_enter(&bufcache_lock);
1172 loop:
1173 bp = incore(vp, blkno);
1174 if (bp != NULL) {
1175 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1176 if (err != 0) {
1177 if (err == EPASSTHROUGH)
1178 goto loop;
1179 mutex_exit(&bufcache_lock);
1180 return (NULL);
1181 }
1182 KASSERT(!cv_has_waiters(&bp->b_done));
1183 #ifdef DIAGNOSTIC
1184 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1185 bp->b_bcount < size && vp->v_type != VBLK)
1186 panic("getblk: block size invariant failed");
1187 #endif
1188 bremfree(bp);
1189 preserve = 1;
1190 } else {
1191 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1192 goto loop;
1193
1194 if (incore(vp, blkno) != NULL) {
1195 /* The block has come into memory in the meantime. */
1196 brelsel(bp, 0);
1197 goto loop;
1198 }
1199
1200 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1201 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1202 mutex_enter(&vp->v_interlock);
1203 bgetvp(vp, bp);
1204 mutex_exit(&vp->v_interlock);
1205 preserve = 0;
1206 }
1207 mutex_exit(&bufcache_lock);
1208
1209 /*
1210 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1211 * if we re-size buffers here.
1212 */
1213 if (ISSET(bp->b_flags, B_LOCKED)) {
1214 KASSERT(bp->b_bufsize >= size);
1215 } else {
1216 if (allocbuf(bp, size, preserve)) {
1217 mutex_enter(&bufcache_lock);
1218 LIST_REMOVE(bp, b_hash);
1219 mutex_exit(&bufcache_lock);
1220 brelse(bp, BC_INVAL);
1221 return NULL;
1222 }
1223 }
1224 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1225 return (bp);
1226 }
1227
1228 /*
1229 * Get an empty, disassociated buffer of given size.
1230 */
1231 buf_t *
1232 geteblk(int size)
1233 {
1234 buf_t *bp;
1235 int error;
1236
1237 mutex_enter(&bufcache_lock);
1238 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1239 ;
1240
1241 SET(bp->b_cflags, BC_INVAL);
1242 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1243 mutex_exit(&bufcache_lock);
1244 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1245 error = allocbuf(bp, size, 0);
1246 KASSERT(error == 0);
1247 return (bp);
1248 }
1249
1250 /*
1251 * Expand or contract the actual memory allocated to a buffer.
1252 *
1253 * If the buffer shrinks, data is lost, so it's up to the
1254 * caller to have written it out *first*; this routine will not
1255 * start a write. If the buffer grows, it's the callers
1256 * responsibility to fill out the buffer's additional contents.
1257 */
1258 int
1259 allocbuf(buf_t *bp, int size, int preserve)
1260 {
1261 void *addr;
1262 vsize_t oldsize, desired_size;
1263 int oldcount;
1264 int delta;
1265
1266 desired_size = buf_roundsize(size);
1267 if (desired_size > MAXBSIZE)
1268 printf("allocbuf: buffer larger than MAXBSIZE requested");
1269
1270 oldcount = bp->b_bcount;
1271
1272 bp->b_bcount = size;
1273
1274 oldsize = bp->b_bufsize;
1275 if (oldsize == desired_size) {
1276 /*
1277 * Do not short cut the WAPBL resize, as the buffer length
1278 * could still have changed and this would corrupt the
1279 * tracking of the transaction length.
1280 */
1281 goto out;
1282 }
1283
1284 /*
1285 * If we want a buffer of a different size, re-allocate the
1286 * buffer's memory; copy old content only if needed.
1287 */
1288 addr = buf_malloc(desired_size);
1289 if (addr == NULL)
1290 return ENOMEM;
1291 if (preserve)
1292 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1293 if (bp->b_data != NULL)
1294 buf_mrelease(bp->b_data, oldsize);
1295 bp->b_data = addr;
1296 bp->b_bufsize = desired_size;
1297
1298 /*
1299 * Update overall buffer memory counter (protected by bufcache_lock)
1300 */
1301 delta = (long)desired_size - (long)oldsize;
1302
1303 mutex_enter(&bufcache_lock);
1304 if ((bufmem += delta) > bufmem_hiwater) {
1305 /*
1306 * Need to trim overall memory usage.
1307 */
1308 while (buf_canrelease()) {
1309 if (curcpu()->ci_schedstate.spc_flags &
1310 SPCF_SHOULDYIELD) {
1311 mutex_exit(&bufcache_lock);
1312 preempt();
1313 mutex_enter(&bufcache_lock);
1314 }
1315 if (buf_trim() == 0)
1316 break;
1317 }
1318 }
1319 mutex_exit(&bufcache_lock);
1320
1321 out:
1322 if (wapbl_vphaswapbl(bp->b_vp))
1323 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1324
1325 return 0;
1326 }
1327
1328 /*
1329 * Find a buffer which is available for use.
1330 * Select something from a free list.
1331 * Preference is to AGE list, then LRU list.
1332 *
1333 * Called with the buffer queues locked.
1334 * Return buffer locked.
1335 */
1336 buf_t *
1337 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1338 {
1339 buf_t *bp;
1340 struct vnode *vp;
1341
1342 start:
1343 KASSERT(mutex_owned(&bufcache_lock));
1344
1345 /*
1346 * Get a new buffer from the pool.
1347 */
1348 if (!from_bufq && buf_lotsfree()) {
1349 mutex_exit(&bufcache_lock);
1350 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1351 if (bp != NULL) {
1352 memset((char *)bp, 0, sizeof(*bp));
1353 buf_init(bp);
1354 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1355 mutex_enter(&bufcache_lock);
1356 #if defined(DIAGNOSTIC)
1357 bp->b_freelistindex = -1;
1358 #endif /* defined(DIAGNOSTIC) */
1359 return (bp);
1360 }
1361 mutex_enter(&bufcache_lock);
1362 }
1363
1364 KASSERT(mutex_owned(&bufcache_lock));
1365 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1366 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1367 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1368 bremfree(bp);
1369
1370 /* Buffer is no longer on free lists. */
1371 SET(bp->b_cflags, BC_BUSY);
1372 } else {
1373 /*
1374 * XXX: !from_bufq should be removed.
1375 */
1376 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1377 /* wait for a free buffer of any kind */
1378 if ((slpflag & PCATCH) != 0)
1379 (void)cv_timedwait_sig(&needbuffer_cv,
1380 &bufcache_lock, slptimeo);
1381 else
1382 (void)cv_timedwait(&needbuffer_cv,
1383 &bufcache_lock, slptimeo);
1384 }
1385 return (NULL);
1386 }
1387
1388 #ifdef DIAGNOSTIC
1389 if (bp->b_bufsize <= 0)
1390 panic("buffer %p: on queue but empty", bp);
1391 #endif
1392
1393 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1394 /*
1395 * This is a delayed write buffer being flushed to disk. Make
1396 * sure it gets aged out of the queue when it's finished, and
1397 * leave it off the LRU queue.
1398 */
1399 CLR(bp->b_cflags, BC_VFLUSH);
1400 SET(bp->b_cflags, BC_AGE);
1401 goto start;
1402 }
1403
1404 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1405 KASSERT(bp->b_refcnt > 0);
1406 KASSERT(!cv_has_waiters(&bp->b_done));
1407
1408 /*
1409 * If buffer was a delayed write, start it and return NULL
1410 * (since we might sleep while starting the write).
1411 */
1412 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1413 /*
1414 * This buffer has gone through the LRU, so make sure it gets
1415 * reused ASAP.
1416 */
1417 SET(bp->b_cflags, BC_AGE);
1418 mutex_exit(&bufcache_lock);
1419 bawrite(bp);
1420 mutex_enter(&bufcache_lock);
1421 return (NULL);
1422 }
1423
1424 vp = bp->b_vp;
1425 if (bioopsp != NULL)
1426 (*bioopsp->io_deallocate)(bp);
1427
1428 /* clear out various other fields */
1429 bp->b_cflags = BC_BUSY;
1430 bp->b_oflags = 0;
1431 bp->b_flags = 0;
1432 bp->b_dev = NODEV;
1433 bp->b_blkno = 0;
1434 bp->b_lblkno = 0;
1435 bp->b_rawblkno = 0;
1436 bp->b_iodone = 0;
1437 bp->b_error = 0;
1438 bp->b_resid = 0;
1439 bp->b_bcount = 0;
1440
1441 LIST_REMOVE(bp, b_hash);
1442
1443 /* Disassociate us from our vnode, if we had one... */
1444 if (vp != NULL) {
1445 mutex_enter(&vp->v_interlock);
1446 brelvp(bp);
1447 mutex_exit(&vp->v_interlock);
1448 }
1449
1450 return (bp);
1451 }
1452
1453 /*
1454 * Attempt to free an aged buffer off the queues.
1455 * Called with queue lock held.
1456 * Returns the amount of buffer memory freed.
1457 */
1458 static int
1459 buf_trim(void)
1460 {
1461 buf_t *bp;
1462 long size = 0;
1463
1464 KASSERT(mutex_owned(&bufcache_lock));
1465
1466 /* Instruct getnewbuf() to get buffers off the queues */
1467 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1468 return 0;
1469
1470 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1471 size = bp->b_bufsize;
1472 bufmem -= size;
1473 if (size > 0) {
1474 buf_mrelease(bp->b_data, size);
1475 bp->b_bcount = bp->b_bufsize = 0;
1476 }
1477 /* brelse() will return the buffer to the global buffer pool */
1478 brelsel(bp, 0);
1479 return size;
1480 }
1481
1482 int
1483 buf_drain(int n)
1484 {
1485 int size = 0, sz;
1486
1487 KASSERT(mutex_owned(&bufcache_lock));
1488
1489 while (size < n && bufmem > bufmem_lowater) {
1490 sz = buf_trim();
1491 if (sz <= 0)
1492 break;
1493 size += sz;
1494 }
1495
1496 return size;
1497 }
1498
1499 /*
1500 * Wait for operations on the buffer to complete.
1501 * When they do, extract and return the I/O's error value.
1502 */
1503 int
1504 biowait(buf_t *bp)
1505 {
1506
1507 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1508 KASSERT(bp->b_refcnt > 0);
1509
1510 mutex_enter(bp->b_objlock);
1511 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1512 cv_wait(&bp->b_done, bp->b_objlock);
1513 mutex_exit(bp->b_objlock);
1514
1515 return bp->b_error;
1516 }
1517
1518 /*
1519 * Mark I/O complete on a buffer.
1520 *
1521 * If a callback has been requested, e.g. the pageout
1522 * daemon, do so. Otherwise, awaken waiting processes.
1523 *
1524 * [ Leffler, et al., says on p.247:
1525 * "This routine wakes up the blocked process, frees the buffer
1526 * for an asynchronous write, or, for a request by the pagedaemon
1527 * process, invokes a procedure specified in the buffer structure" ]
1528 *
1529 * In real life, the pagedaemon (or other system processes) wants
1530 * to do async stuff to, and doesn't want the buffer brelse()'d.
1531 * (for swap pager, that puts swap buffers on the free lists (!!!),
1532 * for the vn device, that puts malloc'd buffers on the free lists!)
1533 */
1534 void
1535 biodone(buf_t *bp)
1536 {
1537 int s;
1538
1539 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1540
1541 if (cpu_intr_p()) {
1542 /* From interrupt mode: defer to a soft interrupt. */
1543 s = splvm();
1544 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1545 softint_schedule(biodone_sih);
1546 splx(s);
1547 } else {
1548 /* Process now - the buffer may be freed soon. */
1549 biodone2(bp);
1550 }
1551 }
1552
1553 static void
1554 biodone2(buf_t *bp)
1555 {
1556 void (*callout)(buf_t *);
1557
1558 if (bioopsp != NULL)
1559 (*bioopsp->io_complete)(bp);
1560
1561 mutex_enter(bp->b_objlock);
1562 /* Note that the transfer is done. */
1563 if (ISSET(bp->b_oflags, BO_DONE))
1564 panic("biodone2 already");
1565 CLR(bp->b_flags, B_COWDONE);
1566 SET(bp->b_oflags, BO_DONE);
1567 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1568
1569 /* Wake up waiting writers. */
1570 if (!ISSET(bp->b_flags, B_READ))
1571 vwakeup(bp);
1572
1573 if ((callout = bp->b_iodone) != NULL) {
1574 /* Note callout done, then call out. */
1575 KASSERT(!cv_has_waiters(&bp->b_done));
1576 KERNEL_LOCK(1, NULL); /* XXXSMP */
1577 bp->b_iodone = NULL;
1578 mutex_exit(bp->b_objlock);
1579 (*callout)(bp);
1580 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1581 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1582 /* If async, release. */
1583 KASSERT(!cv_has_waiters(&bp->b_done));
1584 mutex_exit(bp->b_objlock);
1585 brelse(bp, 0);
1586 } else {
1587 /* Otherwise just wake up waiters in biowait(). */
1588 cv_broadcast(&bp->b_done);
1589 mutex_exit(bp->b_objlock);
1590 }
1591 }
1592
1593 static void
1594 biointr(void *cookie)
1595 {
1596 struct cpu_info *ci;
1597 buf_t *bp;
1598 int s;
1599
1600 ci = curcpu();
1601
1602 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1603 KASSERT(curcpu() == ci);
1604
1605 s = splvm();
1606 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1607 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1608 splx(s);
1609
1610 biodone2(bp);
1611 }
1612 }
1613
1614 /*
1615 * Return a count of buffers on the "locked" queue.
1616 */
1617 int
1618 count_lock_queue(void)
1619 {
1620 buf_t *bp;
1621 int n = 0;
1622
1623 mutex_enter(&bufcache_lock);
1624 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1625 n++;
1626 mutex_exit(&bufcache_lock);
1627 return (n);
1628 }
1629
1630 /*
1631 * Wait for all buffers to complete I/O
1632 * Return the number of "stuck" buffers.
1633 */
1634 int
1635 buf_syncwait(void)
1636 {
1637 buf_t *bp;
1638 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1639
1640 dcount = 10000;
1641 for (iter = 0; iter < 20;) {
1642 mutex_enter(&bufcache_lock);
1643 nbusy = 0;
1644 for (ihash = 0; ihash < bufhash+1; ihash++) {
1645 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1646 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1647 nbusy += ((bp->b_flags & B_READ) == 0);
1648 /*
1649 * With soft updates, some buffers that are
1650 * written will be remarked as dirty until other
1651 * buffers are written.
1652 */
1653 if (bp->b_vp && bp->b_vp->v_tag != VT_NON
1654 && bp->b_vp->v_mount
1655 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1656 && (bp->b_oflags & BO_DELWRI)) {
1657 bremfree(bp);
1658 bp->b_cflags |= BC_BUSY;
1659 nbusy++;
1660 mutex_exit(&bufcache_lock);
1661 bawrite(bp);
1662 if (dcount-- <= 0) {
1663 printf("softdep ");
1664 goto fail;
1665 }
1666 mutex_enter(&bufcache_lock);
1667 }
1668 }
1669 }
1670 mutex_exit(&bufcache_lock);
1671
1672 if (nbusy == 0)
1673 break;
1674 if (nbusy_prev == 0)
1675 nbusy_prev = nbusy;
1676 printf("%d ", nbusy);
1677 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1678 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1679 iter++;
1680 else
1681 nbusy_prev = nbusy;
1682 }
1683
1684 if (nbusy) {
1685 fail:;
1686 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1687 printf("giving up\nPrinting vnodes for busy buffers\n");
1688 for (ihash = 0; ihash < bufhash+1; ihash++) {
1689 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1690 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1691 (bp->b_flags & B_READ) == 0)
1692 vprint(NULL, bp->b_vp);
1693 }
1694 }
1695 #endif
1696 }
1697
1698 return nbusy;
1699 }
1700
1701 static void
1702 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1703 {
1704
1705 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1706 o->b_error = i->b_error;
1707 o->b_prio = i->b_prio;
1708 o->b_dev = i->b_dev;
1709 o->b_bufsize = i->b_bufsize;
1710 o->b_bcount = i->b_bcount;
1711 o->b_resid = i->b_resid;
1712 o->b_addr = PTRTOUINT64(i->b_data);
1713 o->b_blkno = i->b_blkno;
1714 o->b_rawblkno = i->b_rawblkno;
1715 o->b_iodone = PTRTOUINT64(i->b_iodone);
1716 o->b_proc = PTRTOUINT64(i->b_proc);
1717 o->b_vp = PTRTOUINT64(i->b_vp);
1718 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1719 o->b_lblkno = i->b_lblkno;
1720 }
1721
1722 #define KERN_BUFSLOP 20
1723 static int
1724 sysctl_dobuf(SYSCTLFN_ARGS)
1725 {
1726 buf_t *bp;
1727 struct buf_sysctl bs;
1728 struct bqueue *bq;
1729 char *dp;
1730 u_int i, op, arg;
1731 size_t len, needed, elem_size, out_size;
1732 int error, elem_count, retries;
1733
1734 if (namelen == 1 && name[0] == CTL_QUERY)
1735 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1736
1737 if (namelen != 4)
1738 return (EINVAL);
1739
1740 retries = 100;
1741 retry:
1742 dp = oldp;
1743 len = (oldp != NULL) ? *oldlenp : 0;
1744 op = name[0];
1745 arg = name[1];
1746 elem_size = name[2];
1747 elem_count = name[3];
1748 out_size = MIN(sizeof(bs), elem_size);
1749
1750 /*
1751 * at the moment, these are just "placeholders" to make the
1752 * API for retrieving kern.buf data more extensible in the
1753 * future.
1754 *
1755 * XXX kern.buf currently has "netbsd32" issues. hopefully
1756 * these will be resolved at a later point.
1757 */
1758 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1759 elem_size < 1 || elem_count < 0)
1760 return (EINVAL);
1761
1762 error = 0;
1763 needed = 0;
1764 sysctl_unlock();
1765 mutex_enter(&bufcache_lock);
1766 for (i = 0; i < BQUEUES; i++) {
1767 bq = &bufqueues[i];
1768 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1769 bq->bq_marker = bp;
1770 if (len >= elem_size && elem_count > 0) {
1771 sysctl_fillbuf(bp, &bs);
1772 mutex_exit(&bufcache_lock);
1773 error = copyout(&bs, dp, out_size);
1774 mutex_enter(&bufcache_lock);
1775 if (error)
1776 break;
1777 if (bq->bq_marker != bp) {
1778 /*
1779 * This sysctl node is only for
1780 * statistics. Retry; if the
1781 * queue keeps changing, then
1782 * bail out.
1783 */
1784 if (retries-- == 0) {
1785 error = EAGAIN;
1786 break;
1787 }
1788 mutex_exit(&bufcache_lock);
1789 goto retry;
1790 }
1791 dp += elem_size;
1792 len -= elem_size;
1793 }
1794 if (elem_count > 0) {
1795 needed += elem_size;
1796 if (elem_count != INT_MAX)
1797 elem_count--;
1798 }
1799 }
1800 if (error != 0)
1801 break;
1802 }
1803 mutex_exit(&bufcache_lock);
1804 sysctl_relock();
1805
1806 *oldlenp = needed;
1807 if (oldp == NULL)
1808 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1809
1810 return (error);
1811 }
1812
1813 static int
1814 sysctl_bufvm_update(SYSCTLFN_ARGS)
1815 {
1816 int t, error, rv;
1817 struct sysctlnode node;
1818
1819 node = *rnode;
1820 node.sysctl_data = &t;
1821 t = *(int *)rnode->sysctl_data;
1822 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1823 if (error || newp == NULL)
1824 return (error);
1825
1826 if (t < 0)
1827 return EINVAL;
1828 if (rnode->sysctl_data == &bufcache) {
1829 if (t > 100)
1830 return (EINVAL);
1831 bufcache = t;
1832 buf_setwm();
1833 } else if (rnode->sysctl_data == &bufmem_lowater) {
1834 if (bufmem_hiwater - t < 16)
1835 return (EINVAL);
1836 bufmem_lowater = t;
1837 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1838 if (t - bufmem_lowater < 16)
1839 return (EINVAL);
1840 bufmem_hiwater = t;
1841 } else
1842 return (EINVAL);
1843
1844 /* Drain until below new high water mark */
1845 sysctl_unlock();
1846 mutex_enter(&bufcache_lock);
1847 while ((t = bufmem - bufmem_hiwater) >= 0) {
1848 rv = buf_drain(t / (2 * 1024));
1849 if (rv <= 0)
1850 break;
1851 }
1852 mutex_exit(&bufcache_lock);
1853 sysctl_relock();
1854
1855 return 0;
1856 }
1857
1858 static struct sysctllog *vfsbio_sysctllog;
1859
1860 static void
1861 sysctl_kern_buf_setup(void)
1862 {
1863
1864 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1865 CTLFLAG_PERMANENT,
1866 CTLTYPE_NODE, "kern", NULL,
1867 NULL, 0, NULL, 0,
1868 CTL_KERN, CTL_EOL);
1869 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1870 CTLFLAG_PERMANENT,
1871 CTLTYPE_NODE, "buf",
1872 SYSCTL_DESCR("Kernel buffer cache information"),
1873 sysctl_dobuf, 0, NULL, 0,
1874 CTL_KERN, KERN_BUF, CTL_EOL);
1875 }
1876
1877 static void
1878 sysctl_vm_buf_setup(void)
1879 {
1880
1881 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1882 CTLFLAG_PERMANENT,
1883 CTLTYPE_NODE, "vm", NULL,
1884 NULL, 0, NULL, 0,
1885 CTL_VM, CTL_EOL);
1886 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1888 CTLTYPE_INT, "bufcache",
1889 SYSCTL_DESCR("Percentage of physical memory to use for "
1890 "buffer cache"),
1891 sysctl_bufvm_update, 0, &bufcache, 0,
1892 CTL_VM, CTL_CREATE, CTL_EOL);
1893 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1894 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1895 CTLTYPE_INT, "bufmem",
1896 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1897 "cache"),
1898 NULL, 0, &bufmem, 0,
1899 CTL_VM, CTL_CREATE, CTL_EOL);
1900 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1901 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1902 CTLTYPE_INT, "bufmem_lowater",
1903 SYSCTL_DESCR("Minimum amount of kernel memory to "
1904 "reserve for buffer cache"),
1905 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1906 CTL_VM, CTL_CREATE, CTL_EOL);
1907 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1908 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1909 CTLTYPE_INT, "bufmem_hiwater",
1910 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1911 "for buffer cache"),
1912 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1913 CTL_VM, CTL_CREATE, CTL_EOL);
1914 }
1915
1916 #ifdef DEBUG
1917 /*
1918 * Print out statistics on the current allocation of the buffer pool.
1919 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1920 * in vfs_syscalls.c using sysctl.
1921 */
1922 void
1923 vfs_bufstats(void)
1924 {
1925 int i, j, count;
1926 buf_t *bp;
1927 struct bqueue *dp;
1928 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1929 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1930
1931 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1932 count = 0;
1933 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1934 counts[j] = 0;
1935 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1936 counts[bp->b_bufsize/PAGE_SIZE]++;
1937 count++;
1938 }
1939 printf("%s: total-%d", bname[i], count);
1940 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1941 if (counts[j] != 0)
1942 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1943 printf("\n");
1944 }
1945 }
1946 #endif /* DEBUG */
1947
1948 /* ------------------------------ */
1949
1950 buf_t *
1951 getiobuf(struct vnode *vp, bool waitok)
1952 {
1953 buf_t *bp;
1954
1955 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1956 if (bp == NULL)
1957 return bp;
1958
1959 buf_init(bp);
1960
1961 if ((bp->b_vp = vp) == NULL)
1962 bp->b_objlock = &buffer_lock;
1963 else
1964 bp->b_objlock = &vp->v_interlock;
1965
1966 return bp;
1967 }
1968
1969 void
1970 putiobuf(buf_t *bp)
1971 {
1972
1973 buf_destroy(bp);
1974 pool_cache_put(bufio_cache, bp);
1975 }
1976
1977 /*
1978 * nestiobuf_iodone: b_iodone callback for nested buffers.
1979 */
1980
1981 void
1982 nestiobuf_iodone(buf_t *bp)
1983 {
1984 buf_t *mbp = bp->b_private;
1985 int error;
1986 int donebytes;
1987
1988 KASSERT(bp->b_bcount <= bp->b_bufsize);
1989 KASSERT(mbp != bp);
1990
1991 error = bp->b_error;
1992 if (bp->b_error == 0 &&
1993 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1994 /*
1995 * Not all got transfered, raise an error. We have no way to
1996 * propagate these conditions to mbp.
1997 */
1998 error = EIO;
1999 }
2000
2001 donebytes = bp->b_bufsize;
2002
2003 putiobuf(bp);
2004 nestiobuf_done(mbp, donebytes, error);
2005 }
2006
2007 /*
2008 * nestiobuf_setup: setup a "nested" buffer.
2009 *
2010 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2011 * => 'bp' should be a buffer allocated by getiobuf.
2012 * => 'offset' is a byte offset in the master buffer.
2013 * => 'size' is a size in bytes of this nested buffer.
2014 */
2015
2016 void
2017 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2018 {
2019 const int b_read = mbp->b_flags & B_READ;
2020 struct vnode *vp = mbp->b_vp;
2021
2022 KASSERT(mbp->b_bcount >= offset + size);
2023 bp->b_vp = vp;
2024 bp->b_dev = mbp->b_dev;
2025 bp->b_objlock = mbp->b_objlock;
2026 bp->b_cflags = BC_BUSY;
2027 bp->b_flags = B_ASYNC | b_read;
2028 bp->b_iodone = nestiobuf_iodone;
2029 bp->b_data = (char *)mbp->b_data + offset;
2030 bp->b_resid = bp->b_bcount = size;
2031 bp->b_bufsize = bp->b_bcount;
2032 bp->b_private = mbp;
2033 BIO_COPYPRIO(bp, mbp);
2034 if (!b_read && vp != NULL) {
2035 mutex_enter(&vp->v_interlock);
2036 vp->v_numoutput++;
2037 mutex_exit(&vp->v_interlock);
2038 }
2039 }
2040
2041 /*
2042 * nestiobuf_done: propagate completion to the master buffer.
2043 *
2044 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2045 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2046 */
2047
2048 void
2049 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2050 {
2051
2052 if (donebytes == 0) {
2053 return;
2054 }
2055 mutex_enter(mbp->b_objlock);
2056 KASSERT(mbp->b_resid >= donebytes);
2057 mbp->b_resid -= donebytes;
2058 if (error)
2059 mbp->b_error = error;
2060 if (mbp->b_resid == 0) {
2061 mutex_exit(mbp->b_objlock);
2062 biodone(mbp);
2063 } else
2064 mutex_exit(mbp->b_objlock);
2065 }
2066
2067 void
2068 buf_init(buf_t *bp)
2069 {
2070
2071 LIST_INIT(&bp->b_dep);
2072 cv_init(&bp->b_busy, "biolock");
2073 cv_init(&bp->b_done, "biowait");
2074 bp->b_dev = NODEV;
2075 bp->b_error = 0;
2076 bp->b_flags = 0;
2077 bp->b_cflags = 0;
2078 bp->b_oflags = 0;
2079 bp->b_objlock = &buffer_lock;
2080 bp->b_iodone = NULL;
2081 bp->b_refcnt = 1;
2082 bp->b_dev = NODEV;
2083 bp->b_vnbufs.le_next = NOLIST;
2084 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2085 }
2086
2087 void
2088 buf_destroy(buf_t *bp)
2089 {
2090
2091 cv_destroy(&bp->b_done);
2092 cv_destroy(&bp->b_busy);
2093 }
2094
2095 int
2096 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2097 {
2098 int error;
2099
2100 KASSERT(mutex_owned(&bufcache_lock));
2101
2102 if ((bp->b_cflags & BC_BUSY) != 0) {
2103 if (curlwp == uvm.pagedaemon_lwp)
2104 return EDEADLK;
2105 bp->b_cflags |= BC_WANTED;
2106 bref(bp);
2107 if (interlock != NULL)
2108 mutex_exit(interlock);
2109 if (intr) {
2110 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2111 timo);
2112 } else {
2113 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2114 timo);
2115 }
2116 brele(bp);
2117 if (interlock != NULL)
2118 mutex_enter(interlock);
2119 if (error != 0)
2120 return error;
2121 return EPASSTHROUGH;
2122 }
2123 bp->b_cflags |= BC_BUSY;
2124
2125 return 0;
2126 }
2127