vfs_bio.c revision 1.218 1 /* $NetBSD: vfs_bio.c,v 1.218 2009/03/11 05:55:22 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * Some references:
104 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
105 * Leffler, et al.: The Design and Implementation of the 4.3BSD
106 * UNIX Operating System (Addison Welley, 1989)
107 */
108
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.218 2009/03/11 05:55:22 mrg Exp $");
111
112 #include "fs_ffs.h"
113 #include "opt_bufcache.h"
114
115 #include <sys/param.h>
116 #include <sys/systm.h>
117 #include <sys/kernel.h>
118 #include <sys/proc.h>
119 #include <sys/buf.h>
120 #include <sys/vnode.h>
121 #include <sys/mount.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sysctl.h>
124 #include <sys/conf.h>
125 #include <sys/kauth.h>
126 #include <sys/fstrans.h>
127 #include <sys/intr.h>
128 #include <sys/cpu.h>
129 #include <sys/wapbl.h>
130
131 #include <uvm/uvm.h>
132
133 #include <miscfs/specfs/specdev.h>
134
135 #ifndef BUFPAGES
136 # define BUFPAGES 0
137 #endif
138
139 #ifdef BUFCACHE
140 # if (BUFCACHE < 5) || (BUFCACHE > 95)
141 # error BUFCACHE is not between 5 and 95
142 # endif
143 #else
144 # define BUFCACHE 15
145 #endif
146
147 u_int nbuf; /* desired number of buffer headers */
148 u_int bufpages = BUFPAGES; /* optional hardwired count */
149 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
150
151 /* Function prototypes */
152 struct bqueue;
153
154 static void buf_setwm(void);
155 static int buf_trim(void);
156 static void *bufpool_page_alloc(struct pool *, int);
157 static void bufpool_page_free(struct pool *, void *);
158 static buf_t *bio_doread(struct vnode *, daddr_t, int,
159 kauth_cred_t, int);
160 static buf_t *getnewbuf(int, int, int);
161 static int buf_lotsfree(void);
162 static int buf_canrelease(void);
163 static u_long buf_mempoolidx(u_long);
164 static u_long buf_roundsize(u_long);
165 static void *buf_malloc(size_t);
166 static void buf_mrelease(void *, size_t);
167 static void binsheadfree(buf_t *, struct bqueue *);
168 static void binstailfree(buf_t *, struct bqueue *);
169 int count_lock_queue(void); /* XXX */
170 #ifdef DEBUG
171 static int checkfreelist(buf_t *, struct bqueue *, int);
172 #endif
173 static void biointr(void *);
174 static void biodone2(buf_t *);
175 static void bref(buf_t *);
176 static void brele(buf_t *);
177 static void sysctl_kern_buf_setup(void);
178 static void sysctl_vm_buf_setup(void);
179
180 /*
181 * Definitions for the buffer hash lists.
182 */
183 #define BUFHASH(dvp, lbn) \
184 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
185 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
186 u_long bufhash;
187 struct bqueue bufqueues[BQUEUES];
188
189 static kcondvar_t needbuffer_cv;
190
191 /*
192 * Buffer queue lock.
193 */
194 kmutex_t bufcache_lock;
195 kmutex_t buffer_lock;
196
197 /* Software ISR for completed transfers. */
198 static void *biodone_sih;
199
200 /* Buffer pool for I/O buffers. */
201 static pool_cache_t buf_cache;
202 static pool_cache_t bufio_cache;
203
204 /* XXX - somewhat gross.. */
205 #if MAXBSIZE == 0x2000
206 #define NMEMPOOLS 5
207 #elif MAXBSIZE == 0x4000
208 #define NMEMPOOLS 6
209 #elif MAXBSIZE == 0x8000
210 #define NMEMPOOLS 7
211 #else
212 #define NMEMPOOLS 8
213 #endif
214
215 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
216 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
217 #error update vfs_bio buffer memory parameters
218 #endif
219
220 /* Buffer memory pools */
221 static struct pool bmempools[NMEMPOOLS];
222
223 static struct vm_map *buf_map;
224
225 /*
226 * Buffer memory pool allocator.
227 */
228 static void *
229 bufpool_page_alloc(struct pool *pp, int flags)
230 {
231
232 return (void *)uvm_km_alloc(buf_map,
233 MAXBSIZE, MAXBSIZE,
234 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
235 | UVM_KMF_WIRED);
236 }
237
238 static void
239 bufpool_page_free(struct pool *pp, void *v)
240 {
241
242 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
243 }
244
245 static struct pool_allocator bufmempool_allocator = {
246 .pa_alloc = bufpool_page_alloc,
247 .pa_free = bufpool_page_free,
248 .pa_pagesz = MAXBSIZE,
249 };
250
251 /* Buffer memory management variables */
252 u_long bufmem_valimit;
253 u_long bufmem_hiwater;
254 u_long bufmem_lowater;
255 u_long bufmem;
256
257 /*
258 * MD code can call this to set a hard limit on the amount
259 * of virtual memory used by the buffer cache.
260 */
261 int
262 buf_setvalimit(vsize_t sz)
263 {
264
265 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
266 if (sz < NMEMPOOLS * MAXBSIZE)
267 return EINVAL;
268
269 bufmem_valimit = sz;
270 return 0;
271 }
272
273 static void
274 buf_setwm(void)
275 {
276
277 bufmem_hiwater = buf_memcalc();
278 /* lowater is approx. 2% of memory (with bufcache = 15) */
279 #define BUFMEM_WMSHIFT 3
280 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
281 if (bufmem_hiwater < BUFMEM_HIWMMIN)
282 /* Ensure a reasonable minimum value */
283 bufmem_hiwater = BUFMEM_HIWMMIN;
284 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
285 }
286
287 #ifdef DEBUG
288 int debug_verify_freelist = 0;
289 static int
290 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
291 {
292 buf_t *b;
293
294 if (!debug_verify_freelist)
295 return 1;
296
297 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
298 if (b == bp)
299 return ison ? 1 : 0;
300 }
301
302 return ison ? 0 : 1;
303 }
304 #endif
305
306 /*
307 * Insq/Remq for the buffer hash lists.
308 * Call with buffer queue locked.
309 */
310 static void
311 binsheadfree(buf_t *bp, struct bqueue *dp)
312 {
313
314 KASSERT(mutex_owned(&bufcache_lock));
315 KASSERT(bp->b_freelistindex == -1);
316 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
317 dp->bq_bytes += bp->b_bufsize;
318 bp->b_freelistindex = dp - bufqueues;
319 }
320
321 static void
322 binstailfree(buf_t *bp, struct bqueue *dp)
323 {
324
325 KASSERT(mutex_owned(&bufcache_lock));
326 KASSERT(bp->b_freelistindex == -1);
327 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
328 dp->bq_bytes += bp->b_bufsize;
329 bp->b_freelistindex = dp - bufqueues;
330 }
331
332 void
333 bremfree(buf_t *bp)
334 {
335 struct bqueue *dp;
336 int bqidx = bp->b_freelistindex;
337
338 KASSERT(mutex_owned(&bufcache_lock));
339
340 KASSERT(bqidx != -1);
341 dp = &bufqueues[bqidx];
342 KDASSERT(checkfreelist(bp, dp, 1));
343 KASSERT(dp->bq_bytes >= bp->b_bufsize);
344 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
345 dp->bq_bytes -= bp->b_bufsize;
346
347 /* For the sysctl helper. */
348 if (bp == dp->bq_marker)
349 dp->bq_marker = NULL;
350
351 #if defined(DIAGNOSTIC)
352 bp->b_freelistindex = -1;
353 #endif /* defined(DIAGNOSTIC) */
354 }
355
356 /*
357 * Add a reference to an buffer structure that came from buf_cache.
358 */
359 static inline void
360 bref(buf_t *bp)
361 {
362
363 KASSERT(mutex_owned(&bufcache_lock));
364 KASSERT(bp->b_refcnt > 0);
365
366 bp->b_refcnt++;
367 }
368
369 /*
370 * Free an unused buffer structure that came from buf_cache.
371 */
372 static inline void
373 brele(buf_t *bp)
374 {
375
376 KASSERT(mutex_owned(&bufcache_lock));
377 KASSERT(bp->b_refcnt > 0);
378
379 if (bp->b_refcnt-- == 1) {
380 buf_destroy(bp);
381 #ifdef DEBUG
382 memset((char *)bp, 0, sizeof(*bp));
383 #endif
384 pool_cache_put(buf_cache, bp);
385 }
386 }
387
388 /*
389 * note that for some ports this is used by pmap bootstrap code to
390 * determine kva size.
391 */
392 u_long
393 buf_memcalc(void)
394 {
395 u_long n;
396
397 /*
398 * Determine the upper bound of memory to use for buffers.
399 *
400 * - If bufpages is specified, use that as the number
401 * pages.
402 *
403 * - Otherwise, use bufcache as the percentage of
404 * physical memory.
405 */
406 if (bufpages != 0) {
407 n = bufpages;
408 } else {
409 if (bufcache < 5) {
410 printf("forcing bufcache %d -> 5", bufcache);
411 bufcache = 5;
412 }
413 if (bufcache > 95) {
414 printf("forcing bufcache %d -> 95", bufcache);
415 bufcache = 95;
416 }
417 n = calc_cache_size(buf_map, bufcache,
418 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
419 / PAGE_SIZE;
420 }
421
422 n <<= PAGE_SHIFT;
423 if (bufmem_valimit != 0 && n > bufmem_valimit)
424 n = bufmem_valimit;
425
426 return (n);
427 }
428
429 /*
430 * Initialize buffers and hash links for buffers.
431 */
432 void
433 bufinit(void)
434 {
435 struct bqueue *dp;
436 int use_std;
437 u_int i;
438
439 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
440 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
441 cv_init(&needbuffer_cv, "needbuf");
442
443 if (bufmem_valimit != 0) {
444 vaddr_t minaddr = 0, maxaddr;
445 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
446 bufmem_valimit, 0, false, 0);
447 if (buf_map == NULL)
448 panic("bufinit: cannot allocate submap");
449 } else
450 buf_map = kernel_map;
451
452 /*
453 * Initialize buffer cache memory parameters.
454 */
455 bufmem = 0;
456 buf_setwm();
457
458 /* On "small" machines use small pool page sizes where possible */
459 use_std = (physmem < atop(16*1024*1024));
460
461 /*
462 * Also use them on systems that can map the pool pages using
463 * a direct-mapped segment.
464 */
465 #ifdef PMAP_MAP_POOLPAGE
466 use_std = 1;
467 #endif
468
469 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
470 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
471 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
472 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
473
474 bufmempool_allocator.pa_backingmap = buf_map;
475 for (i = 0; i < NMEMPOOLS; i++) {
476 struct pool_allocator *pa;
477 struct pool *pp = &bmempools[i];
478 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
479 char *name = kmem_alloc(8, KM_SLEEP);
480 if (__predict_true(size >= 1024))
481 (void)snprintf(name, 8, "buf%dk", size / 1024);
482 else
483 (void)snprintf(name, 8, "buf%db", size);
484 pa = (size <= PAGE_SIZE && use_std)
485 ? &pool_allocator_nointr
486 : &bufmempool_allocator;
487 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
488 pool_setlowat(pp, 1);
489 pool_sethiwat(pp, 1);
490 }
491
492 /* Initialize the buffer queues */
493 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
494 TAILQ_INIT(&dp->bq_queue);
495 dp->bq_bytes = 0;
496 }
497
498 /*
499 * Estimate hash table size based on the amount of memory we
500 * intend to use for the buffer cache. The average buffer
501 * size is dependent on our clients (i.e. filesystems).
502 *
503 * For now, use an empirical 3K per buffer.
504 */
505 nbuf = (bufmem_hiwater / 1024) / 3;
506 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
507
508 sysctl_kern_buf_setup();
509 sysctl_vm_buf_setup();
510 }
511
512 void
513 bufinit2(void)
514 {
515
516 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
517 NULL);
518 if (biodone_sih == NULL)
519 panic("bufinit2: can't establish soft interrupt");
520 }
521
522 static int
523 buf_lotsfree(void)
524 {
525 int try, thresh;
526
527 /* Always allocate if less than the low water mark. */
528 if (bufmem < bufmem_lowater)
529 return 1;
530
531 /* Never allocate if greater than the high water mark. */
532 if (bufmem > bufmem_hiwater)
533 return 0;
534
535 /* If there's anything on the AGE list, it should be eaten. */
536 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
537 return 0;
538
539 /*
540 * The probabily of getting a new allocation is inversely
541 * proportional to the current size of the cache, using
542 * a granularity of 16 steps.
543 */
544 try = random() & 0x0000000fL;
545
546 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
547 thresh = (bufmem - bufmem_lowater) /
548 ((bufmem_hiwater - bufmem_lowater) / 16);
549
550 if (try >= thresh)
551 return 1;
552
553 /* Otherwise don't allocate. */
554 return 0;
555 }
556
557 /*
558 * Return estimate of bytes we think need to be
559 * released to help resolve low memory conditions.
560 *
561 * => called with bufcache_lock held.
562 */
563 static int
564 buf_canrelease(void)
565 {
566 int pagedemand, ninvalid = 0;
567
568 KASSERT(mutex_owned(&bufcache_lock));
569
570 if (bufmem < bufmem_lowater)
571 return 0;
572
573 if (bufmem > bufmem_hiwater)
574 return bufmem - bufmem_hiwater;
575
576 ninvalid += bufqueues[BQ_AGE].bq_bytes;
577
578 pagedemand = uvmexp.freetarg - uvmexp.free;
579 if (pagedemand < 0)
580 return ninvalid;
581 return MAX(ninvalid, MIN(2 * MAXBSIZE,
582 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
583 }
584
585 /*
586 * Buffer memory allocation helper functions
587 */
588 static u_long
589 buf_mempoolidx(u_long size)
590 {
591 u_int n = 0;
592
593 size -= 1;
594 size >>= MEMPOOL_INDEX_OFFSET;
595 while (size) {
596 size >>= 1;
597 n += 1;
598 }
599 if (n >= NMEMPOOLS)
600 panic("buf mem pool index %d", n);
601 return n;
602 }
603
604 static u_long
605 buf_roundsize(u_long size)
606 {
607 /* Round up to nearest power of 2 */
608 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
609 }
610
611 static void *
612 buf_malloc(size_t size)
613 {
614 u_int n = buf_mempoolidx(size);
615 void *addr;
616
617 while (1) {
618 addr = pool_get(&bmempools[n], PR_NOWAIT);
619 if (addr != NULL)
620 break;
621
622 /* No memory, see if we can free some. If so, try again */
623 mutex_enter(&bufcache_lock);
624 if (buf_drain(1) > 0) {
625 mutex_exit(&bufcache_lock);
626 continue;
627 }
628
629 if (curlwp == uvm.pagedaemon_lwp) {
630 mutex_exit(&bufcache_lock);
631 return NULL;
632 }
633
634 /* Wait for buffers to arrive on the LRU queue */
635 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
636 mutex_exit(&bufcache_lock);
637 }
638
639 return addr;
640 }
641
642 static void
643 buf_mrelease(void *addr, size_t size)
644 {
645
646 pool_put(&bmempools[buf_mempoolidx(size)], addr);
647 }
648
649 /*
650 * bread()/breadn() helper.
651 */
652 static buf_t *
653 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
654 int async)
655 {
656 buf_t *bp;
657 struct mount *mp;
658
659 bp = getblk(vp, blkno, size, 0, 0);
660
661 #ifdef DIAGNOSTIC
662 if (bp == NULL) {
663 panic("bio_doread: no such buf");
664 }
665 #endif
666
667 /*
668 * If buffer does not have data valid, start a read.
669 * Note that if buffer is BC_INVAL, getblk() won't return it.
670 * Therefore, it's valid if its I/O has completed or been delayed.
671 */
672 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
673 /* Start I/O for the buffer. */
674 SET(bp->b_flags, B_READ | async);
675 if (async)
676 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
677 else
678 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
679 VOP_STRATEGY(vp, bp);
680
681 /* Pay for the read. */
682 curlwp->l_ru.ru_inblock++;
683 } else if (async)
684 brelse(bp, 0);
685
686 if (vp->v_type == VBLK)
687 mp = vp->v_specmountpoint;
688 else
689 mp = vp->v_mount;
690
691 /*
692 * Collect statistics on synchronous and asynchronous reads.
693 * Reads from block devices are charged to their associated
694 * filesystem (if any).
695 */
696 if (mp != NULL) {
697 if (async == 0)
698 mp->mnt_stat.f_syncreads++;
699 else
700 mp->mnt_stat.f_asyncreads++;
701 }
702
703 return (bp);
704 }
705
706 /*
707 * Read a disk block.
708 * This algorithm described in Bach (p.54).
709 */
710 int
711 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
712 int flags, buf_t **bpp)
713 {
714 buf_t *bp;
715 int error;
716
717 /* Get buffer for block. */
718 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
719
720 /* Wait for the read to complete, and return result. */
721 error = biowait(bp);
722 if (error == 0 && (flags & B_MODIFY) != 0) /* XXXX before the next code block or after? */
723 error = fscow_run(bp, true);
724
725 return error;
726 }
727
728 /*
729 * Read-ahead multiple disk blocks. The first is sync, the rest async.
730 * Trivial modification to the breada algorithm presented in Bach (p.55).
731 */
732 int
733 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
734 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
735 {
736 buf_t *bp;
737 int error, i;
738
739 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
740
741 /*
742 * For each of the read-ahead blocks, start a read, if necessary.
743 */
744 mutex_enter(&bufcache_lock);
745 for (i = 0; i < nrablks; i++) {
746 /* If it's in the cache, just go on to next one. */
747 if (incore(vp, rablks[i]))
748 continue;
749
750 /* Get a buffer for the read-ahead block */
751 mutex_exit(&bufcache_lock);
752 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
753 mutex_enter(&bufcache_lock);
754 }
755 mutex_exit(&bufcache_lock);
756
757 /* Otherwise, we had to start a read for it; wait until it's valid. */
758 error = biowait(bp);
759 if (error == 0 && (flags & B_MODIFY) != 0)
760 error = fscow_run(bp, true);
761 return error;
762 }
763
764 /*
765 * Read with single-block read-ahead. Defined in Bach (p.55), but
766 * implemented as a call to breadn().
767 * XXX for compatibility with old file systems.
768 */
769 int
770 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
771 int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
772 {
773
774 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
775 cred, flags, bpp));
776 }
777
778 /*
779 * Block write. Described in Bach (p.56)
780 */
781 int
782 bwrite(buf_t *bp)
783 {
784 int rv, sync, wasdelayed;
785 struct vnode *vp;
786 struct mount *mp;
787
788 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
789 KASSERT(!cv_has_waiters(&bp->b_done));
790
791 vp = bp->b_vp;
792 if (vp != NULL) {
793 KASSERT(bp->b_objlock == &vp->v_interlock);
794 if (vp->v_type == VBLK)
795 mp = vp->v_specmountpoint;
796 else
797 mp = vp->v_mount;
798 } else {
799 mp = NULL;
800 }
801
802 if (mp && mp->mnt_wapbl) {
803 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
804 bdwrite(bp);
805 return 0;
806 }
807 }
808
809 /*
810 * Remember buffer type, to switch on it later. If the write was
811 * synchronous, but the file system was mounted with MNT_ASYNC,
812 * convert it to a delayed write.
813 * XXX note that this relies on delayed tape writes being converted
814 * to async, not sync writes (which is safe, but ugly).
815 */
816 sync = !ISSET(bp->b_flags, B_ASYNC);
817 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
818 bdwrite(bp);
819 return (0);
820 }
821
822 /*
823 * Collect statistics on synchronous and asynchronous writes.
824 * Writes to block devices are charged to their associated
825 * filesystem (if any).
826 */
827 if (mp != NULL) {
828 if (sync)
829 mp->mnt_stat.f_syncwrites++;
830 else
831 mp->mnt_stat.f_asyncwrites++;
832 }
833
834 /*
835 * Pay for the I/O operation and make sure the buf is on the correct
836 * vnode queue.
837 */
838 bp->b_error = 0;
839 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
840 CLR(bp->b_flags, B_READ);
841 if (wasdelayed) {
842 mutex_enter(&bufcache_lock);
843 mutex_enter(bp->b_objlock);
844 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
845 reassignbuf(bp, bp->b_vp);
846 mutex_exit(&bufcache_lock);
847 } else {
848 curlwp->l_ru.ru_oublock++;
849 mutex_enter(bp->b_objlock);
850 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
851 }
852 if (vp != NULL)
853 vp->v_numoutput++;
854 mutex_exit(bp->b_objlock);
855
856 /* Initiate disk write. */
857 if (sync)
858 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
859 else
860 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
861
862 VOP_STRATEGY(vp, bp);
863
864 if (sync) {
865 /* If I/O was synchronous, wait for it to complete. */
866 rv = biowait(bp);
867
868 /* Release the buffer. */
869 brelse(bp, 0);
870
871 return (rv);
872 } else {
873 return (0);
874 }
875 }
876
877 int
878 vn_bwrite(void *v)
879 {
880 struct vop_bwrite_args *ap = v;
881
882 return (bwrite(ap->a_bp));
883 }
884
885 /*
886 * Delayed write.
887 *
888 * The buffer is marked dirty, but is not queued for I/O.
889 * This routine should be used when the buffer is expected
890 * to be modified again soon, typically a small write that
891 * partially fills a buffer.
892 *
893 * NB: magnetic tapes cannot be delayed; they must be
894 * written in the order that the writes are requested.
895 *
896 * Described in Leffler, et al. (pp. 208-213).
897 */
898 void
899 bdwrite(buf_t *bp)
900 {
901
902 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
903 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
904 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
905 KASSERT(!cv_has_waiters(&bp->b_done));
906
907 /* If this is a tape block, write the block now. */
908 if (bdev_type(bp->b_dev) == D_TAPE) {
909 bawrite(bp);
910 return;
911 }
912
913 if (wapbl_vphaswapbl(bp->b_vp)) {
914 struct mount *mp = wapbl_vptomp(bp->b_vp);
915
916 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
917 WAPBL_ADD_BUF(mp, bp);
918 }
919 }
920
921 /*
922 * If the block hasn't been seen before:
923 * (1) Mark it as having been seen,
924 * (2) Charge for the write,
925 * (3) Make sure it's on its vnode's correct block list.
926 */
927 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
928
929 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
930 mutex_enter(&bufcache_lock);
931 mutex_enter(bp->b_objlock);
932 SET(bp->b_oflags, BO_DELWRI);
933 curlwp->l_ru.ru_oublock++;
934 reassignbuf(bp, bp->b_vp);
935 mutex_exit(&bufcache_lock);
936 } else {
937 mutex_enter(bp->b_objlock);
938 }
939 /* Otherwise, the "write" is done, so mark and release the buffer. */
940 CLR(bp->b_oflags, BO_DONE);
941 mutex_exit(bp->b_objlock);
942
943 brelse(bp, 0);
944 }
945
946 /*
947 * Asynchronous block write; just an asynchronous bwrite().
948 */
949 void
950 bawrite(buf_t *bp)
951 {
952
953 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
954
955 SET(bp->b_flags, B_ASYNC);
956 VOP_BWRITE(bp);
957 }
958
959 /*
960 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
961 * Call with the buffer interlock held.
962 */
963 void
964 bdirty(buf_t *bp)
965 {
966
967 KASSERT(mutex_owned(&bufcache_lock));
968 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
969 KASSERT(mutex_owned(bp->b_objlock));
970 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
971
972 CLR(bp->b_cflags, BC_AGE);
973
974 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
975 SET(bp->b_oflags, BO_DELWRI);
976 curlwp->l_ru.ru_oublock++;
977 reassignbuf(bp, bp->b_vp);
978 }
979 }
980
981 /*
982 * Release a buffer on to the free lists.
983 * Described in Bach (p. 46).
984 */
985 void
986 brelsel(buf_t *bp, int set)
987 {
988 struct bqueue *bufq;
989 struct vnode *vp;
990
991 KASSERT(mutex_owned(&bufcache_lock));
992 KASSERT(!cv_has_waiters(&bp->b_done));
993 KASSERT(bp->b_refcnt > 0);
994
995 SET(bp->b_cflags, set);
996
997 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
998 KASSERT(bp->b_iodone == NULL);
999
1000 /* Wake up any processes waiting for any buffer to become free. */
1001 cv_signal(&needbuffer_cv);
1002
1003 /* Wake up any proceeses waiting for _this_ buffer to become */
1004 if (ISSET(bp->b_cflags, BC_WANTED))
1005 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1006
1007 /*
1008 * Determine which queue the buffer should be on, then put it there.
1009 */
1010
1011 /* If it's locked, don't report an error; try again later. */
1012 if (ISSET(bp->b_flags, B_LOCKED))
1013 bp->b_error = 0;
1014
1015 /* If it's not cacheable, or an error, mark it invalid. */
1016 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1017 SET(bp->b_cflags, BC_INVAL);
1018
1019 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1020 /*
1021 * This is a delayed write buffer that was just flushed to
1022 * disk. It is still on the LRU queue. If it's become
1023 * invalid, then we need to move it to a different queue;
1024 * otherwise leave it in its current position.
1025 */
1026 CLR(bp->b_cflags, BC_VFLUSH);
1027 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1028 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1029 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1030 goto already_queued;
1031 } else {
1032 bremfree(bp);
1033 }
1034 }
1035
1036 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1037 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1038 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1039
1040 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1041 /*
1042 * If it's invalid or empty, dissociate it from its vnode
1043 * and put on the head of the appropriate queue.
1044 */
1045 if (ISSET(bp->b_flags, B_LOCKED)) {
1046 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1047 struct mount *mp = wapbl_vptomp(vp);
1048
1049 KASSERT(bp->b_iodone
1050 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1051 WAPBL_REMOVE_BUF(mp, bp);
1052 }
1053 }
1054
1055 mutex_enter(bp->b_objlock);
1056 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1057 if ((vp = bp->b_vp) != NULL) {
1058 KASSERT(bp->b_objlock == &vp->v_interlock);
1059 reassignbuf(bp, bp->b_vp);
1060 brelvp(bp);
1061 mutex_exit(&vp->v_interlock);
1062 } else {
1063 KASSERT(bp->b_objlock == &buffer_lock);
1064 mutex_exit(bp->b_objlock);
1065 }
1066
1067 if (bp->b_bufsize <= 0)
1068 /* no data */
1069 goto already_queued;
1070 else
1071 /* invalid data */
1072 bufq = &bufqueues[BQ_AGE];
1073 binsheadfree(bp, bufq);
1074 } else {
1075 /*
1076 * It has valid data. Put it on the end of the appropriate
1077 * queue, so that it'll stick around for as long as possible.
1078 * If buf is AGE, but has dependencies, must put it on last
1079 * bufqueue to be scanned, ie LRU. This protects against the
1080 * livelock where BQ_AGE only has buffers with dependencies,
1081 * and we thus never get to the dependent buffers in BQ_LRU.
1082 */
1083 if (ISSET(bp->b_flags, B_LOCKED)) {
1084 /* locked in core */
1085 bufq = &bufqueues[BQ_LOCKED];
1086 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1087 /* valid data */
1088 bufq = &bufqueues[BQ_LRU];
1089 } else {
1090 /* stale but valid data */
1091 bufq = &bufqueues[BQ_AGE];
1092 }
1093 binstailfree(bp, bufq);
1094 }
1095 already_queued:
1096 /* Unlock the buffer. */
1097 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1098 CLR(bp->b_flags, B_ASYNC);
1099 cv_broadcast(&bp->b_busy);
1100
1101 if (bp->b_bufsize <= 0)
1102 brele(bp);
1103 }
1104
1105 void
1106 brelse(buf_t *bp, int set)
1107 {
1108
1109 mutex_enter(&bufcache_lock);
1110 brelsel(bp, set);
1111 mutex_exit(&bufcache_lock);
1112 }
1113
1114 /*
1115 * Determine if a block is in the cache.
1116 * Just look on what would be its hash chain. If it's there, return
1117 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1118 * we normally don't return the buffer, unless the caller explicitly
1119 * wants us to.
1120 */
1121 buf_t *
1122 incore(struct vnode *vp, daddr_t blkno)
1123 {
1124 buf_t *bp;
1125
1126 KASSERT(mutex_owned(&bufcache_lock));
1127
1128 /* Search hash chain */
1129 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1130 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1131 !ISSET(bp->b_cflags, BC_INVAL)) {
1132 KASSERT(bp->b_objlock == &vp->v_interlock);
1133 return (bp);
1134 }
1135 }
1136
1137 return (NULL);
1138 }
1139
1140 /*
1141 * Get a block of requested size that is associated with
1142 * a given vnode and block offset. If it is found in the
1143 * block cache, mark it as having been found, make it busy
1144 * and return it. Otherwise, return an empty block of the
1145 * correct size. It is up to the caller to insure that the
1146 * cached blocks be of the correct size.
1147 */
1148 buf_t *
1149 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1150 {
1151 int err, preserve;
1152 buf_t *bp;
1153
1154 mutex_enter(&bufcache_lock);
1155 loop:
1156 bp = incore(vp, blkno);
1157 if (bp != NULL) {
1158 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1159 if (err != 0) {
1160 if (err == EPASSTHROUGH)
1161 goto loop;
1162 mutex_exit(&bufcache_lock);
1163 return (NULL);
1164 }
1165 KASSERT(!cv_has_waiters(&bp->b_done));
1166 #ifdef DIAGNOSTIC
1167 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1168 bp->b_bcount < size && vp->v_type != VBLK)
1169 panic("getblk: block size invariant failed");
1170 #endif
1171 bremfree(bp);
1172 preserve = 1;
1173 } else {
1174 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1175 goto loop;
1176
1177 if (incore(vp, blkno) != NULL) {
1178 /* The block has come into memory in the meantime. */
1179 brelsel(bp, 0);
1180 goto loop;
1181 }
1182
1183 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1184 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1185 mutex_enter(&vp->v_interlock);
1186 bgetvp(vp, bp);
1187 mutex_exit(&vp->v_interlock);
1188 preserve = 0;
1189 }
1190 mutex_exit(&bufcache_lock);
1191
1192 /*
1193 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1194 * if we re-size buffers here.
1195 */
1196 if (ISSET(bp->b_flags, B_LOCKED)) {
1197 KASSERT(bp->b_bufsize >= size);
1198 } else {
1199 if (allocbuf(bp, size, preserve)) {
1200 mutex_enter(&bufcache_lock);
1201 LIST_REMOVE(bp, b_hash);
1202 mutex_exit(&bufcache_lock);
1203 brelse(bp, BC_INVAL);
1204 return NULL;
1205 }
1206 }
1207 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1208 return (bp);
1209 }
1210
1211 /*
1212 * Get an empty, disassociated buffer of given size.
1213 */
1214 buf_t *
1215 geteblk(int size)
1216 {
1217 buf_t *bp;
1218 int error;
1219
1220 mutex_enter(&bufcache_lock);
1221 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1222 ;
1223
1224 SET(bp->b_cflags, BC_INVAL);
1225 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1226 mutex_exit(&bufcache_lock);
1227 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1228 error = allocbuf(bp, size, 0);
1229 KASSERT(error == 0);
1230 return (bp);
1231 }
1232
1233 /*
1234 * Expand or contract the actual memory allocated to a buffer.
1235 *
1236 * If the buffer shrinks, data is lost, so it's up to the
1237 * caller to have written it out *first*; this routine will not
1238 * start a write. If the buffer grows, it's the callers
1239 * responsibility to fill out the buffer's additional contents.
1240 */
1241 int
1242 allocbuf(buf_t *bp, int size, int preserve)
1243 {
1244 void *addr;
1245 vsize_t oldsize, desired_size;
1246 int oldcount;
1247 int delta;
1248
1249 desired_size = buf_roundsize(size);
1250 if (desired_size > MAXBSIZE)
1251 printf("allocbuf: buffer larger than MAXBSIZE requested");
1252
1253 oldcount = bp->b_bcount;
1254
1255 bp->b_bcount = size;
1256
1257 oldsize = bp->b_bufsize;
1258 if (oldsize == desired_size) {
1259 /*
1260 * Do not short cut the WAPBL resize, as the buffer length
1261 * could still have changed and this would corrupt the
1262 * tracking of the transaction length.
1263 */
1264 goto out;
1265 }
1266
1267 /*
1268 * If we want a buffer of a different size, re-allocate the
1269 * buffer's memory; copy old content only if needed.
1270 */
1271 addr = buf_malloc(desired_size);
1272 if (addr == NULL)
1273 return ENOMEM;
1274 if (preserve)
1275 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1276 if (bp->b_data != NULL)
1277 buf_mrelease(bp->b_data, oldsize);
1278 bp->b_data = addr;
1279 bp->b_bufsize = desired_size;
1280
1281 /*
1282 * Update overall buffer memory counter (protected by bufcache_lock)
1283 */
1284 delta = (long)desired_size - (long)oldsize;
1285
1286 mutex_enter(&bufcache_lock);
1287 if ((bufmem += delta) > bufmem_hiwater) {
1288 /*
1289 * Need to trim overall memory usage.
1290 */
1291 while (buf_canrelease()) {
1292 if (curcpu()->ci_schedstate.spc_flags &
1293 SPCF_SHOULDYIELD) {
1294 mutex_exit(&bufcache_lock);
1295 preempt();
1296 mutex_enter(&bufcache_lock);
1297 }
1298 if (buf_trim() == 0)
1299 break;
1300 }
1301 }
1302 mutex_exit(&bufcache_lock);
1303
1304 out:
1305 if (wapbl_vphaswapbl(bp->b_vp))
1306 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1307
1308 return 0;
1309 }
1310
1311 /*
1312 * Find a buffer which is available for use.
1313 * Select something from a free list.
1314 * Preference is to AGE list, then LRU list.
1315 *
1316 * Called with the buffer queues locked.
1317 * Return buffer locked.
1318 */
1319 buf_t *
1320 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1321 {
1322 buf_t *bp;
1323 struct vnode *vp;
1324
1325 start:
1326 KASSERT(mutex_owned(&bufcache_lock));
1327
1328 /*
1329 * Get a new buffer from the pool.
1330 */
1331 if (!from_bufq && buf_lotsfree()) {
1332 mutex_exit(&bufcache_lock);
1333 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1334 if (bp != NULL) {
1335 memset((char *)bp, 0, sizeof(*bp));
1336 buf_init(bp);
1337 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1338 mutex_enter(&bufcache_lock);
1339 #if defined(DIAGNOSTIC)
1340 bp->b_freelistindex = -1;
1341 #endif /* defined(DIAGNOSTIC) */
1342 return (bp);
1343 }
1344 mutex_enter(&bufcache_lock);
1345 }
1346
1347 KASSERT(mutex_owned(&bufcache_lock));
1348 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1349 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1350 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1351 bremfree(bp);
1352
1353 /* Buffer is no longer on free lists. */
1354 SET(bp->b_cflags, BC_BUSY);
1355 } else {
1356 /*
1357 * XXX: !from_bufq should be removed.
1358 */
1359 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1360 /* wait for a free buffer of any kind */
1361 if ((slpflag & PCATCH) != 0)
1362 (void)cv_timedwait_sig(&needbuffer_cv,
1363 &bufcache_lock, slptimeo);
1364 else
1365 (void)cv_timedwait(&needbuffer_cv,
1366 &bufcache_lock, slptimeo);
1367 }
1368 return (NULL);
1369 }
1370
1371 #ifdef DIAGNOSTIC
1372 if (bp->b_bufsize <= 0)
1373 panic("buffer %p: on queue but empty", bp);
1374 #endif
1375
1376 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1377 /*
1378 * This is a delayed write buffer being flushed to disk. Make
1379 * sure it gets aged out of the queue when it's finished, and
1380 * leave it off the LRU queue.
1381 */
1382 CLR(bp->b_cflags, BC_VFLUSH);
1383 SET(bp->b_cflags, BC_AGE);
1384 goto start;
1385 }
1386
1387 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1388 KASSERT(bp->b_refcnt > 0);
1389 KASSERT(!cv_has_waiters(&bp->b_done));
1390
1391 /*
1392 * If buffer was a delayed write, start it and return NULL
1393 * (since we might sleep while starting the write).
1394 */
1395 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1396 /*
1397 * This buffer has gone through the LRU, so make sure it gets
1398 * reused ASAP.
1399 */
1400 SET(bp->b_cflags, BC_AGE);
1401 mutex_exit(&bufcache_lock);
1402 bawrite(bp);
1403 mutex_enter(&bufcache_lock);
1404 return (NULL);
1405 }
1406
1407 vp = bp->b_vp;
1408
1409 /* clear out various other fields */
1410 bp->b_cflags = BC_BUSY;
1411 bp->b_oflags = 0;
1412 bp->b_flags = 0;
1413 bp->b_dev = NODEV;
1414 bp->b_blkno = 0;
1415 bp->b_lblkno = 0;
1416 bp->b_rawblkno = 0;
1417 bp->b_iodone = 0;
1418 bp->b_error = 0;
1419 bp->b_resid = 0;
1420 bp->b_bcount = 0;
1421
1422 LIST_REMOVE(bp, b_hash);
1423
1424 /* Disassociate us from our vnode, if we had one... */
1425 if (vp != NULL) {
1426 mutex_enter(&vp->v_interlock);
1427 brelvp(bp);
1428 mutex_exit(&vp->v_interlock);
1429 }
1430
1431 return (bp);
1432 }
1433
1434 /*
1435 * Attempt to free an aged buffer off the queues.
1436 * Called with queue lock held.
1437 * Returns the amount of buffer memory freed.
1438 */
1439 static int
1440 buf_trim(void)
1441 {
1442 buf_t *bp;
1443 long size = 0;
1444
1445 KASSERT(mutex_owned(&bufcache_lock));
1446
1447 /* Instruct getnewbuf() to get buffers off the queues */
1448 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1449 return 0;
1450
1451 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1452 size = bp->b_bufsize;
1453 bufmem -= size;
1454 if (size > 0) {
1455 buf_mrelease(bp->b_data, size);
1456 bp->b_bcount = bp->b_bufsize = 0;
1457 }
1458 /* brelse() will return the buffer to the global buffer pool */
1459 brelsel(bp, 0);
1460 return size;
1461 }
1462
1463 int
1464 buf_drain(int n)
1465 {
1466 int size = 0, sz;
1467
1468 KASSERT(mutex_owned(&bufcache_lock));
1469
1470 while (size < n && bufmem > bufmem_lowater) {
1471 sz = buf_trim();
1472 if (sz <= 0)
1473 break;
1474 size += sz;
1475 }
1476
1477 return size;
1478 }
1479
1480 /*
1481 * Wait for operations on the buffer to complete.
1482 * When they do, extract and return the I/O's error value.
1483 */
1484 int
1485 biowait(buf_t *bp)
1486 {
1487
1488 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1489 KASSERT(bp->b_refcnt > 0);
1490
1491 mutex_enter(bp->b_objlock);
1492 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1493 cv_wait(&bp->b_done, bp->b_objlock);
1494 mutex_exit(bp->b_objlock);
1495
1496 return bp->b_error;
1497 }
1498
1499 /*
1500 * Mark I/O complete on a buffer.
1501 *
1502 * If a callback has been requested, e.g. the pageout
1503 * daemon, do so. Otherwise, awaken waiting processes.
1504 *
1505 * [ Leffler, et al., says on p.247:
1506 * "This routine wakes up the blocked process, frees the buffer
1507 * for an asynchronous write, or, for a request by the pagedaemon
1508 * process, invokes a procedure specified in the buffer structure" ]
1509 *
1510 * In real life, the pagedaemon (or other system processes) wants
1511 * to do async stuff to, and doesn't want the buffer brelse()'d.
1512 * (for swap pager, that puts swap buffers on the free lists (!!!),
1513 * for the vn device, that puts malloc'd buffers on the free lists!)
1514 */
1515 void
1516 biodone(buf_t *bp)
1517 {
1518 int s;
1519
1520 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1521
1522 if (cpu_intr_p()) {
1523 /* From interrupt mode: defer to a soft interrupt. */
1524 s = splvm();
1525 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1526 softint_schedule(biodone_sih);
1527 splx(s);
1528 } else {
1529 /* Process now - the buffer may be freed soon. */
1530 biodone2(bp);
1531 }
1532 }
1533
1534 static void
1535 biodone2(buf_t *bp)
1536 {
1537 void (*callout)(buf_t *);
1538
1539 mutex_enter(bp->b_objlock);
1540 /* Note that the transfer is done. */
1541 if (ISSET(bp->b_oflags, BO_DONE))
1542 panic("biodone2 already");
1543 CLR(bp->b_flags, B_COWDONE);
1544 SET(bp->b_oflags, BO_DONE);
1545 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1546
1547 /* Wake up waiting writers. */
1548 if (!ISSET(bp->b_flags, B_READ))
1549 vwakeup(bp);
1550
1551 if ((callout = bp->b_iodone) != NULL) {
1552 /* Note callout done, then call out. */
1553 KASSERT(!cv_has_waiters(&bp->b_done));
1554 KERNEL_LOCK(1, NULL); /* XXXSMP */
1555 bp->b_iodone = NULL;
1556 mutex_exit(bp->b_objlock);
1557 (*callout)(bp);
1558 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1559 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1560 /* If async, release. */
1561 KASSERT(!cv_has_waiters(&bp->b_done));
1562 mutex_exit(bp->b_objlock);
1563 brelse(bp, 0);
1564 } else {
1565 /* Otherwise just wake up waiters in biowait(). */
1566 cv_broadcast(&bp->b_done);
1567 mutex_exit(bp->b_objlock);
1568 }
1569 }
1570
1571 static void
1572 biointr(void *cookie)
1573 {
1574 struct cpu_info *ci;
1575 buf_t *bp;
1576 int s;
1577
1578 ci = curcpu();
1579
1580 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1581 KASSERT(curcpu() == ci);
1582
1583 s = splvm();
1584 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1585 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1586 splx(s);
1587
1588 biodone2(bp);
1589 }
1590 }
1591
1592 /*
1593 * Return a count of buffers on the "locked" queue.
1594 */
1595 int
1596 count_lock_queue(void)
1597 {
1598 buf_t *bp;
1599 int n = 0;
1600
1601 mutex_enter(&bufcache_lock);
1602 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1603 n++;
1604 mutex_exit(&bufcache_lock);
1605 return (n);
1606 }
1607
1608 /*
1609 * Wait for all buffers to complete I/O
1610 * Return the number of "stuck" buffers.
1611 */
1612 int
1613 buf_syncwait(void)
1614 {
1615 buf_t *bp;
1616 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1617
1618 dcount = 10000;
1619 for (iter = 0; iter < 20;) {
1620 mutex_enter(&bufcache_lock);
1621 nbusy = 0;
1622 for (ihash = 0; ihash < bufhash+1; ihash++) {
1623 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1624 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1625 nbusy += ((bp->b_flags & B_READ) == 0);
1626 }
1627 }
1628 mutex_exit(&bufcache_lock);
1629
1630 if (nbusy == 0)
1631 break;
1632 if (nbusy_prev == 0)
1633 nbusy_prev = nbusy;
1634 printf("%d ", nbusy);
1635 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1636 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1637 iter++;
1638 else
1639 nbusy_prev = nbusy;
1640 }
1641
1642 if (nbusy) {
1643 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1644 printf("giving up\nPrinting vnodes for busy buffers\n");
1645 for (ihash = 0; ihash < bufhash+1; ihash++) {
1646 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1647 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1648 (bp->b_flags & B_READ) == 0)
1649 vprint(NULL, bp->b_vp);
1650 }
1651 }
1652 #endif
1653 }
1654
1655 return nbusy;
1656 }
1657
1658 static void
1659 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1660 {
1661
1662 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1663 o->b_error = i->b_error;
1664 o->b_prio = i->b_prio;
1665 o->b_dev = i->b_dev;
1666 o->b_bufsize = i->b_bufsize;
1667 o->b_bcount = i->b_bcount;
1668 o->b_resid = i->b_resid;
1669 o->b_addr = PTRTOUINT64(i->b_data);
1670 o->b_blkno = i->b_blkno;
1671 o->b_rawblkno = i->b_rawblkno;
1672 o->b_iodone = PTRTOUINT64(i->b_iodone);
1673 o->b_proc = PTRTOUINT64(i->b_proc);
1674 o->b_vp = PTRTOUINT64(i->b_vp);
1675 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1676 o->b_lblkno = i->b_lblkno;
1677 }
1678
1679 #define KERN_BUFSLOP 20
1680 static int
1681 sysctl_dobuf(SYSCTLFN_ARGS)
1682 {
1683 buf_t *bp;
1684 struct buf_sysctl bs;
1685 struct bqueue *bq;
1686 char *dp;
1687 u_int i, op, arg;
1688 size_t len, needed, elem_size, out_size;
1689 int error, elem_count, retries;
1690
1691 if (namelen == 1 && name[0] == CTL_QUERY)
1692 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1693
1694 if (namelen != 4)
1695 return (EINVAL);
1696
1697 retries = 100;
1698 retry:
1699 dp = oldp;
1700 len = (oldp != NULL) ? *oldlenp : 0;
1701 op = name[0];
1702 arg = name[1];
1703 elem_size = name[2];
1704 elem_count = name[3];
1705 out_size = MIN(sizeof(bs), elem_size);
1706
1707 /*
1708 * at the moment, these are just "placeholders" to make the
1709 * API for retrieving kern.buf data more extensible in the
1710 * future.
1711 *
1712 * XXX kern.buf currently has "netbsd32" issues. hopefully
1713 * these will be resolved at a later point.
1714 */
1715 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1716 elem_size < 1 || elem_count < 0)
1717 return (EINVAL);
1718
1719 error = 0;
1720 needed = 0;
1721 sysctl_unlock();
1722 mutex_enter(&bufcache_lock);
1723 for (i = 0; i < BQUEUES; i++) {
1724 bq = &bufqueues[i];
1725 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1726 bq->bq_marker = bp;
1727 if (len >= elem_size && elem_count > 0) {
1728 sysctl_fillbuf(bp, &bs);
1729 mutex_exit(&bufcache_lock);
1730 error = copyout(&bs, dp, out_size);
1731 mutex_enter(&bufcache_lock);
1732 if (error)
1733 break;
1734 if (bq->bq_marker != bp) {
1735 /*
1736 * This sysctl node is only for
1737 * statistics. Retry; if the
1738 * queue keeps changing, then
1739 * bail out.
1740 */
1741 if (retries-- == 0) {
1742 error = EAGAIN;
1743 break;
1744 }
1745 mutex_exit(&bufcache_lock);
1746 goto retry;
1747 }
1748 dp += elem_size;
1749 len -= elem_size;
1750 }
1751 needed += elem_size;
1752 if (elem_count > 0 && elem_count != INT_MAX)
1753 elem_count--;
1754 }
1755 if (error != 0)
1756 break;
1757 }
1758 mutex_exit(&bufcache_lock);
1759 sysctl_relock();
1760
1761 *oldlenp = needed;
1762 if (oldp == NULL)
1763 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1764
1765 return (error);
1766 }
1767
1768 static int
1769 sysctl_bufvm_update(SYSCTLFN_ARGS)
1770 {
1771 int t, error, rv;
1772 struct sysctlnode node;
1773
1774 node = *rnode;
1775 node.sysctl_data = &t;
1776 t = *(int *)rnode->sysctl_data;
1777 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1778 if (error || newp == NULL)
1779 return (error);
1780
1781 if (t < 0)
1782 return EINVAL;
1783 if (rnode->sysctl_data == &bufcache) {
1784 if (t > 100)
1785 return (EINVAL);
1786 bufcache = t;
1787 buf_setwm();
1788 } else if (rnode->sysctl_data == &bufmem_lowater) {
1789 if (bufmem_hiwater - t < 16)
1790 return (EINVAL);
1791 bufmem_lowater = t;
1792 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1793 if (t - bufmem_lowater < 16)
1794 return (EINVAL);
1795 bufmem_hiwater = t;
1796 } else
1797 return (EINVAL);
1798
1799 /* Drain until below new high water mark */
1800 sysctl_unlock();
1801 mutex_enter(&bufcache_lock);
1802 while ((t = bufmem - bufmem_hiwater) >= 0) {
1803 rv = buf_drain(t / (2 * 1024));
1804 if (rv <= 0)
1805 break;
1806 }
1807 mutex_exit(&bufcache_lock);
1808 sysctl_relock();
1809
1810 return 0;
1811 }
1812
1813 static struct sysctllog *vfsbio_sysctllog;
1814
1815 static void
1816 sysctl_kern_buf_setup(void)
1817 {
1818
1819 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1820 CTLFLAG_PERMANENT,
1821 CTLTYPE_NODE, "kern", NULL,
1822 NULL, 0, NULL, 0,
1823 CTL_KERN, CTL_EOL);
1824 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1825 CTLFLAG_PERMANENT,
1826 CTLTYPE_NODE, "buf",
1827 SYSCTL_DESCR("Kernel buffer cache information"),
1828 sysctl_dobuf, 0, NULL, 0,
1829 CTL_KERN, KERN_BUF, CTL_EOL);
1830 }
1831
1832 static void
1833 sysctl_vm_buf_setup(void)
1834 {
1835
1836 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1837 CTLFLAG_PERMANENT,
1838 CTLTYPE_NODE, "vm", NULL,
1839 NULL, 0, NULL, 0,
1840 CTL_VM, CTL_EOL);
1841 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1842 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1843 CTLTYPE_INT, "bufcache",
1844 SYSCTL_DESCR("Percentage of physical memory to use for "
1845 "buffer cache"),
1846 sysctl_bufvm_update, 0, &bufcache, 0,
1847 CTL_VM, CTL_CREATE, CTL_EOL);
1848 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1849 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1850 CTLTYPE_INT, "bufmem",
1851 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1852 "cache"),
1853 NULL, 0, &bufmem, 0,
1854 CTL_VM, CTL_CREATE, CTL_EOL);
1855 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1856 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1857 CTLTYPE_INT, "bufmem_lowater",
1858 SYSCTL_DESCR("Minimum amount of kernel memory to "
1859 "reserve for buffer cache"),
1860 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1861 CTL_VM, CTL_CREATE, CTL_EOL);
1862 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1863 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1864 CTLTYPE_INT, "bufmem_hiwater",
1865 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1866 "for buffer cache"),
1867 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1868 CTL_VM, CTL_CREATE, CTL_EOL);
1869 }
1870
1871 #ifdef DEBUG
1872 /*
1873 * Print out statistics on the current allocation of the buffer pool.
1874 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1875 * in vfs_syscalls.c using sysctl.
1876 */
1877 void
1878 vfs_bufstats(void)
1879 {
1880 int i, j, count;
1881 buf_t *bp;
1882 struct bqueue *dp;
1883 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1884 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1885
1886 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1887 count = 0;
1888 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1889 counts[j] = 0;
1890 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1891 counts[bp->b_bufsize/PAGE_SIZE]++;
1892 count++;
1893 }
1894 printf("%s: total-%d", bname[i], count);
1895 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1896 if (counts[j] != 0)
1897 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1898 printf("\n");
1899 }
1900 }
1901 #endif /* DEBUG */
1902
1903 /* ------------------------------ */
1904
1905 buf_t *
1906 getiobuf(struct vnode *vp, bool waitok)
1907 {
1908 buf_t *bp;
1909
1910 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1911 if (bp == NULL)
1912 return bp;
1913
1914 buf_init(bp);
1915
1916 if ((bp->b_vp = vp) == NULL)
1917 bp->b_objlock = &buffer_lock;
1918 else
1919 bp->b_objlock = &vp->v_interlock;
1920
1921 return bp;
1922 }
1923
1924 void
1925 putiobuf(buf_t *bp)
1926 {
1927
1928 buf_destroy(bp);
1929 pool_cache_put(bufio_cache, bp);
1930 }
1931
1932 /*
1933 * nestiobuf_iodone: b_iodone callback for nested buffers.
1934 */
1935
1936 void
1937 nestiobuf_iodone(buf_t *bp)
1938 {
1939 buf_t *mbp = bp->b_private;
1940 int error;
1941 int donebytes;
1942
1943 KASSERT(bp->b_bcount <= bp->b_bufsize);
1944 KASSERT(mbp != bp);
1945
1946 error = bp->b_error;
1947 if (bp->b_error == 0 &&
1948 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1949 /*
1950 * Not all got transfered, raise an error. We have no way to
1951 * propagate these conditions to mbp.
1952 */
1953 error = EIO;
1954 }
1955
1956 donebytes = bp->b_bufsize;
1957
1958 putiobuf(bp);
1959 nestiobuf_done(mbp, donebytes, error);
1960 }
1961
1962 /*
1963 * nestiobuf_setup: setup a "nested" buffer.
1964 *
1965 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1966 * => 'bp' should be a buffer allocated by getiobuf.
1967 * => 'offset' is a byte offset in the master buffer.
1968 * => 'size' is a size in bytes of this nested buffer.
1969 */
1970
1971 void
1972 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1973 {
1974 const int b_read = mbp->b_flags & B_READ;
1975 struct vnode *vp = mbp->b_vp;
1976
1977 KASSERT(mbp->b_bcount >= offset + size);
1978 bp->b_vp = vp;
1979 bp->b_dev = mbp->b_dev;
1980 bp->b_objlock = mbp->b_objlock;
1981 bp->b_cflags = BC_BUSY;
1982 bp->b_flags = B_ASYNC | b_read;
1983 bp->b_iodone = nestiobuf_iodone;
1984 bp->b_data = (char *)mbp->b_data + offset;
1985 bp->b_resid = bp->b_bcount = size;
1986 bp->b_bufsize = bp->b_bcount;
1987 bp->b_private = mbp;
1988 BIO_COPYPRIO(bp, mbp);
1989 if (!b_read && vp != NULL) {
1990 mutex_enter(&vp->v_interlock);
1991 vp->v_numoutput++;
1992 mutex_exit(&vp->v_interlock);
1993 }
1994 }
1995
1996 /*
1997 * nestiobuf_done: propagate completion to the master buffer.
1998 *
1999 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2000 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2001 */
2002
2003 void
2004 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2005 {
2006
2007 if (donebytes == 0) {
2008 return;
2009 }
2010 mutex_enter(mbp->b_objlock);
2011 KASSERT(mbp->b_resid >= donebytes);
2012 mbp->b_resid -= donebytes;
2013 if (error)
2014 mbp->b_error = error;
2015 if (mbp->b_resid == 0) {
2016 mutex_exit(mbp->b_objlock);
2017 biodone(mbp);
2018 } else
2019 mutex_exit(mbp->b_objlock);
2020 }
2021
2022 void
2023 buf_init(buf_t *bp)
2024 {
2025
2026 cv_init(&bp->b_busy, "biolock");
2027 cv_init(&bp->b_done, "biowait");
2028 bp->b_dev = NODEV;
2029 bp->b_error = 0;
2030 bp->b_flags = 0;
2031 bp->b_cflags = 0;
2032 bp->b_oflags = 0;
2033 bp->b_objlock = &buffer_lock;
2034 bp->b_iodone = NULL;
2035 bp->b_refcnt = 1;
2036 bp->b_dev = NODEV;
2037 bp->b_vnbufs.le_next = NOLIST;
2038 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2039 }
2040
2041 void
2042 buf_destroy(buf_t *bp)
2043 {
2044
2045 cv_destroy(&bp->b_done);
2046 cv_destroy(&bp->b_busy);
2047 }
2048
2049 int
2050 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2051 {
2052 int error;
2053
2054 KASSERT(mutex_owned(&bufcache_lock));
2055
2056 if ((bp->b_cflags & BC_BUSY) != 0) {
2057 if (curlwp == uvm.pagedaemon_lwp)
2058 return EDEADLK;
2059 bp->b_cflags |= BC_WANTED;
2060 bref(bp);
2061 if (interlock != NULL)
2062 mutex_exit(interlock);
2063 if (intr) {
2064 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2065 timo);
2066 } else {
2067 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2068 timo);
2069 }
2070 brele(bp);
2071 if (interlock != NULL)
2072 mutex_enter(interlock);
2073 if (error != 0)
2074 return error;
2075 return EPASSTHROUGH;
2076 }
2077 bp->b_cflags |= BC_BUSY;
2078
2079 return 0;
2080 }
2081