Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.222
      1 /*	$NetBSD: vfs_bio.c,v 1.222 2009/11/17 14:38:31 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.222 2009/11/17 14:38:31 pooka Exp $");
    127 
    128 #include "fs_ffs.h"
    129 #include "opt_bufcache.h"
    130 
    131 #include <sys/param.h>
    132 #include <sys/systm.h>
    133 #include <sys/kernel.h>
    134 #include <sys/proc.h>
    135 #include <sys/buf.h>
    136 #include <sys/vnode.h>
    137 #include <sys/mount.h>
    138 #include <sys/resourcevar.h>
    139 #include <sys/sysctl.h>
    140 #include <sys/conf.h>
    141 #include <sys/kauth.h>
    142 #include <sys/fstrans.h>
    143 #include <sys/intr.h>
    144 #include <sys/cpu.h>
    145 #include <sys/wapbl.h>
    146 
    147 #include <uvm/uvm.h>
    148 
    149 #include <miscfs/specfs/specdev.h>
    150 
    151 #ifndef	BUFPAGES
    152 # define BUFPAGES 0
    153 #endif
    154 
    155 #ifdef BUFCACHE
    156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    157 #  error BUFCACHE is not between 5 and 95
    158 # endif
    159 #else
    160 # define BUFCACHE 15
    161 #endif
    162 
    163 u_int	nbuf;			/* desired number of buffer headers */
    164 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    165 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    166 
    167 /* Function prototypes */
    168 struct bqueue;
    169 
    170 static void buf_setwm(void);
    171 static int buf_trim(void);
    172 static void *bufpool_page_alloc(struct pool *, int);
    173 static void bufpool_page_free(struct pool *, void *);
    174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
    175     kauth_cred_t, int);
    176 static buf_t *getnewbuf(int, int, int);
    177 static int buf_lotsfree(void);
    178 static int buf_canrelease(void);
    179 static u_long buf_mempoolidx(u_long);
    180 static u_long buf_roundsize(u_long);
    181 static void *buf_malloc(size_t);
    182 static void buf_mrelease(void *, size_t);
    183 static void binsheadfree(buf_t *, struct bqueue *);
    184 static void binstailfree(buf_t *, struct bqueue *);
    185 int count_lock_queue(void); /* XXX */
    186 #ifdef DEBUG
    187 static int checkfreelist(buf_t *, struct bqueue *, int);
    188 #endif
    189 static void biointr(void *);
    190 static void biodone2(buf_t *);
    191 static void bref(buf_t *);
    192 static void brele(buf_t *);
    193 static void sysctl_kern_buf_setup(void);
    194 static void sysctl_vm_buf_setup(void);
    195 
    196 /*
    197  * Definitions for the buffer hash lists.
    198  */
    199 #define	BUFHASH(dvp, lbn)	\
    200 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    201 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    202 u_long	bufhash;
    203 struct bqueue bufqueues[BQUEUES];
    204 
    205 static kcondvar_t needbuffer_cv;
    206 
    207 /*
    208  * Buffer queue lock.
    209  */
    210 kmutex_t bufcache_lock;
    211 kmutex_t buffer_lock;
    212 
    213 /* Software ISR for completed transfers. */
    214 static void *biodone_sih;
    215 
    216 /* Buffer pool for I/O buffers. */
    217 static pool_cache_t buf_cache;
    218 static pool_cache_t bufio_cache;
    219 
    220 /* XXX - somewhat gross.. */
    221 #if MAXBSIZE == 0x2000
    222 #define NMEMPOOLS 5
    223 #elif MAXBSIZE == 0x4000
    224 #define NMEMPOOLS 6
    225 #elif MAXBSIZE == 0x8000
    226 #define NMEMPOOLS 7
    227 #else
    228 #define NMEMPOOLS 8
    229 #endif
    230 
    231 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    232 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    233 #error update vfs_bio buffer memory parameters
    234 #endif
    235 
    236 /* Buffer memory pools */
    237 static struct pool bmempools[NMEMPOOLS];
    238 
    239 static struct vm_map *buf_map;
    240 
    241 /*
    242  * Buffer memory pool allocator.
    243  */
    244 static void *
    245 bufpool_page_alloc(struct pool *pp, int flags)
    246 {
    247 
    248 	return (void *)uvm_km_alloc(buf_map,
    249 	    MAXBSIZE, MAXBSIZE,
    250 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    251 	    | UVM_KMF_WIRED);
    252 }
    253 
    254 static void
    255 bufpool_page_free(struct pool *pp, void *v)
    256 {
    257 
    258 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    259 }
    260 
    261 static struct pool_allocator bufmempool_allocator = {
    262 	.pa_alloc = bufpool_page_alloc,
    263 	.pa_free = bufpool_page_free,
    264 	.pa_pagesz = MAXBSIZE,
    265 };
    266 
    267 /* Buffer memory management variables */
    268 u_long bufmem_valimit;
    269 u_long bufmem_hiwater;
    270 u_long bufmem_lowater;
    271 u_long bufmem;
    272 
    273 /*
    274  * MD code can call this to set a hard limit on the amount
    275  * of virtual memory used by the buffer cache.
    276  */
    277 int
    278 buf_setvalimit(vsize_t sz)
    279 {
    280 
    281 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    282 	if (sz < NMEMPOOLS * MAXBSIZE)
    283 		return EINVAL;
    284 
    285 	bufmem_valimit = sz;
    286 	return 0;
    287 }
    288 
    289 static void
    290 buf_setwm(void)
    291 {
    292 
    293 	bufmem_hiwater = buf_memcalc();
    294 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    295 #define	BUFMEM_WMSHIFT	3
    296 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    297 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    298 		/* Ensure a reasonable minimum value */
    299 		bufmem_hiwater = BUFMEM_HIWMMIN;
    300 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    301 }
    302 
    303 #ifdef DEBUG
    304 int debug_verify_freelist = 0;
    305 static int
    306 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    307 {
    308 	buf_t *b;
    309 
    310 	if (!debug_verify_freelist)
    311 		return 1;
    312 
    313 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    314 		if (b == bp)
    315 			return ison ? 1 : 0;
    316 	}
    317 
    318 	return ison ? 0 : 1;
    319 }
    320 #endif
    321 
    322 /*
    323  * Insq/Remq for the buffer hash lists.
    324  * Call with buffer queue locked.
    325  */
    326 static void
    327 binsheadfree(buf_t *bp, struct bqueue *dp)
    328 {
    329 
    330 	KASSERT(mutex_owned(&bufcache_lock));
    331 	KASSERT(bp->b_freelistindex == -1);
    332 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    333 	dp->bq_bytes += bp->b_bufsize;
    334 	bp->b_freelistindex = dp - bufqueues;
    335 }
    336 
    337 static void
    338 binstailfree(buf_t *bp, struct bqueue *dp)
    339 {
    340 
    341 	KASSERT(mutex_owned(&bufcache_lock));
    342 	KASSERT(bp->b_freelistindex == -1);
    343 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    344 	dp->bq_bytes += bp->b_bufsize;
    345 	bp->b_freelistindex = dp - bufqueues;
    346 }
    347 
    348 void
    349 bremfree(buf_t *bp)
    350 {
    351 	struct bqueue *dp;
    352 	int bqidx = bp->b_freelistindex;
    353 
    354 	KASSERT(mutex_owned(&bufcache_lock));
    355 
    356 	KASSERT(bqidx != -1);
    357 	dp = &bufqueues[bqidx];
    358 	KDASSERT(checkfreelist(bp, dp, 1));
    359 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    360 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    361 	dp->bq_bytes -= bp->b_bufsize;
    362 
    363 	/* For the sysctl helper. */
    364 	if (bp == dp->bq_marker)
    365 		dp->bq_marker = NULL;
    366 
    367 #if defined(DIAGNOSTIC)
    368 	bp->b_freelistindex = -1;
    369 #endif /* defined(DIAGNOSTIC) */
    370 }
    371 
    372 /*
    373  * Add a reference to an buffer structure that came from buf_cache.
    374  */
    375 static inline void
    376 bref(buf_t *bp)
    377 {
    378 
    379 	KASSERT(mutex_owned(&bufcache_lock));
    380 	KASSERT(bp->b_refcnt > 0);
    381 
    382 	bp->b_refcnt++;
    383 }
    384 
    385 /*
    386  * Free an unused buffer structure that came from buf_cache.
    387  */
    388 static inline void
    389 brele(buf_t *bp)
    390 {
    391 
    392 	KASSERT(mutex_owned(&bufcache_lock));
    393 	KASSERT(bp->b_refcnt > 0);
    394 
    395 	if (bp->b_refcnt-- == 1) {
    396 		buf_destroy(bp);
    397 #ifdef DEBUG
    398 		memset((char *)bp, 0, sizeof(*bp));
    399 #endif
    400 		pool_cache_put(buf_cache, bp);
    401 	}
    402 }
    403 
    404 /*
    405  * note that for some ports this is used by pmap bootstrap code to
    406  * determine kva size.
    407  */
    408 u_long
    409 buf_memcalc(void)
    410 {
    411 	u_long n;
    412 
    413 	/*
    414 	 * Determine the upper bound of memory to use for buffers.
    415 	 *
    416 	 *	- If bufpages is specified, use that as the number
    417 	 *	  pages.
    418 	 *
    419 	 *	- Otherwise, use bufcache as the percentage of
    420 	 *	  physical memory.
    421 	 */
    422 	if (bufpages != 0) {
    423 		n = bufpages;
    424 	} else {
    425 		if (bufcache < 5) {
    426 			printf("forcing bufcache %d -> 5", bufcache);
    427 			bufcache = 5;
    428 		}
    429 		if (bufcache > 95) {
    430 			printf("forcing bufcache %d -> 95", bufcache);
    431 			bufcache = 95;
    432 		}
    433 		n = calc_cache_size(buf_map, bufcache,
    434 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    435 		    / PAGE_SIZE;
    436 	}
    437 
    438 	n <<= PAGE_SHIFT;
    439 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    440 		n = bufmem_valimit;
    441 
    442 	return (n);
    443 }
    444 
    445 /*
    446  * Initialize buffers and hash links for buffers.
    447  */
    448 void
    449 bufinit(void)
    450 {
    451 	struct bqueue *dp;
    452 	int use_std;
    453 	u_int i;
    454 
    455 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    456 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    457 	cv_init(&needbuffer_cv, "needbuf");
    458 
    459 	if (bufmem_valimit != 0) {
    460 		vaddr_t minaddr = 0, maxaddr;
    461 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    462 					  bufmem_valimit, 0, false, 0);
    463 		if (buf_map == NULL)
    464 			panic("bufinit: cannot allocate submap");
    465 	} else
    466 		buf_map = kernel_map;
    467 
    468 	/*
    469 	 * Initialize buffer cache memory parameters.
    470 	 */
    471 	bufmem = 0;
    472 	buf_setwm();
    473 
    474 	/* On "small" machines use small pool page sizes where possible */
    475 	use_std = (physmem < atop(16*1024*1024));
    476 
    477 	/*
    478 	 * Also use them on systems that can map the pool pages using
    479 	 * a direct-mapped segment.
    480 	 */
    481 #ifdef PMAP_MAP_POOLPAGE
    482 	use_std = 1;
    483 #endif
    484 
    485 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    486 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    487 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    488 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    489 
    490 	bufmempool_allocator.pa_backingmap = buf_map;
    491 	for (i = 0; i < NMEMPOOLS; i++) {
    492 		struct pool_allocator *pa;
    493 		struct pool *pp = &bmempools[i];
    494 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    495 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    496 		if (__predict_true(size >= 1024))
    497 			(void)snprintf(name, 8, "buf%dk", size / 1024);
    498 		else
    499 			(void)snprintf(name, 8, "buf%db", size);
    500 		pa = (size <= PAGE_SIZE && use_std)
    501 			? &pool_allocator_nointr
    502 			: &bufmempool_allocator;
    503 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    504 		pool_setlowat(pp, 1);
    505 		pool_sethiwat(pp, 1);
    506 	}
    507 
    508 	/* Initialize the buffer queues */
    509 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    510 		TAILQ_INIT(&dp->bq_queue);
    511 		dp->bq_bytes = 0;
    512 	}
    513 
    514 	/*
    515 	 * Estimate hash table size based on the amount of memory we
    516 	 * intend to use for the buffer cache. The average buffer
    517 	 * size is dependent on our clients (i.e. filesystems).
    518 	 *
    519 	 * For now, use an empirical 3K per buffer.
    520 	 */
    521 	nbuf = (bufmem_hiwater / 1024) / 3;
    522 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    523 
    524 	sysctl_kern_buf_setup();
    525 	sysctl_vm_buf_setup();
    526 }
    527 
    528 void
    529 bufinit2(void)
    530 {
    531 
    532 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    533 	    NULL);
    534 	if (biodone_sih == NULL)
    535 		panic("bufinit2: can't establish soft interrupt");
    536 }
    537 
    538 static int
    539 buf_lotsfree(void)
    540 {
    541 	int try, thresh;
    542 
    543 	/* Always allocate if less than the low water mark. */
    544 	if (bufmem < bufmem_lowater)
    545 		return 1;
    546 
    547 	/* Never allocate if greater than the high water mark. */
    548 	if (bufmem > bufmem_hiwater)
    549 		return 0;
    550 
    551 	/* If there's anything on the AGE list, it should be eaten. */
    552 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    553 		return 0;
    554 
    555 	/*
    556 	 * The probabily of getting a new allocation is inversely
    557 	 * proportional to the current size of the cache, using
    558 	 * a granularity of 16 steps.
    559 	 */
    560 	try = random() & 0x0000000fL;
    561 
    562 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    563 	thresh = (bufmem - bufmem_lowater) /
    564 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    565 
    566 	if (try >= thresh)
    567 		return 1;
    568 
    569 	/* Otherwise don't allocate. */
    570 	return 0;
    571 }
    572 
    573 /*
    574  * Return estimate of bytes we think need to be
    575  * released to help resolve low memory conditions.
    576  *
    577  * => called with bufcache_lock held.
    578  */
    579 static int
    580 buf_canrelease(void)
    581 {
    582 	int pagedemand, ninvalid = 0;
    583 
    584 	KASSERT(mutex_owned(&bufcache_lock));
    585 
    586 	if (bufmem < bufmem_lowater)
    587 		return 0;
    588 
    589 	if (bufmem > bufmem_hiwater)
    590 		return bufmem - bufmem_hiwater;
    591 
    592 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    593 
    594 	pagedemand = uvmexp.freetarg - uvmexp.free;
    595 	if (pagedemand < 0)
    596 		return ninvalid;
    597 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    598 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    599 }
    600 
    601 /*
    602  * Buffer memory allocation helper functions
    603  */
    604 static u_long
    605 buf_mempoolidx(u_long size)
    606 {
    607 	u_int n = 0;
    608 
    609 	size -= 1;
    610 	size >>= MEMPOOL_INDEX_OFFSET;
    611 	while (size) {
    612 		size >>= 1;
    613 		n += 1;
    614 	}
    615 	if (n >= NMEMPOOLS)
    616 		panic("buf mem pool index %d", n);
    617 	return n;
    618 }
    619 
    620 static u_long
    621 buf_roundsize(u_long size)
    622 {
    623 	/* Round up to nearest power of 2 */
    624 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    625 }
    626 
    627 static void *
    628 buf_malloc(size_t size)
    629 {
    630 	u_int n = buf_mempoolidx(size);
    631 	void *addr;
    632 
    633 	while (1) {
    634 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    635 		if (addr != NULL)
    636 			break;
    637 
    638 		/* No memory, see if we can free some. If so, try again */
    639 		mutex_enter(&bufcache_lock);
    640 		if (buf_drain(1) > 0) {
    641 			mutex_exit(&bufcache_lock);
    642 			continue;
    643 		}
    644 
    645 		if (curlwp == uvm.pagedaemon_lwp) {
    646 			mutex_exit(&bufcache_lock);
    647 			return NULL;
    648 		}
    649 
    650 		/* Wait for buffers to arrive on the LRU queue */
    651 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    652 		mutex_exit(&bufcache_lock);
    653 	}
    654 
    655 	return addr;
    656 }
    657 
    658 static void
    659 buf_mrelease(void *addr, size_t size)
    660 {
    661 
    662 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    663 }
    664 
    665 /*
    666  * bread()/breadn() helper.
    667  */
    668 static buf_t *
    669 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    670     int async)
    671 {
    672 	buf_t *bp;
    673 	struct mount *mp;
    674 
    675 	bp = getblk(vp, blkno, size, 0, 0);
    676 
    677 #ifdef DIAGNOSTIC
    678 	if (bp == NULL) {
    679 		panic("bio_doread: no such buf");
    680 	}
    681 #endif
    682 
    683 	/*
    684 	 * If buffer does not have data valid, start a read.
    685 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    686 	 * Therefore, it's valid if its I/O has completed or been delayed.
    687 	 */
    688 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    689 		/* Start I/O for the buffer. */
    690 		SET(bp->b_flags, B_READ | async);
    691 		if (async)
    692 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    693 		else
    694 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    695 		VOP_STRATEGY(vp, bp);
    696 
    697 		/* Pay for the read. */
    698 		curlwp->l_ru.ru_inblock++;
    699 	} else if (async)
    700 		brelse(bp, 0);
    701 
    702 	if (vp->v_type == VBLK)
    703 		mp = vp->v_specmountpoint;
    704 	else
    705 		mp = vp->v_mount;
    706 
    707 	/*
    708 	 * Collect statistics on synchronous and asynchronous reads.
    709 	 * Reads from block devices are charged to their associated
    710 	 * filesystem (if any).
    711 	 */
    712 	if (mp != NULL) {
    713 		if (async == 0)
    714 			mp->mnt_stat.f_syncreads++;
    715 		else
    716 			mp->mnt_stat.f_asyncreads++;
    717 	}
    718 
    719 	return (bp);
    720 }
    721 
    722 /*
    723  * Read a disk block.
    724  * This algorithm described in Bach (p.54).
    725  */
    726 int
    727 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    728     int flags, buf_t **bpp)
    729 {
    730 	buf_t *bp;
    731 	int error;
    732 
    733 	/* Get buffer for block. */
    734 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    735 
    736 	/* Wait for the read to complete, and return result. */
    737 	error = biowait(bp);
    738 	if (error == 0 && (flags & B_MODIFY) != 0)
    739 		error = fscow_run(bp, true);
    740 
    741 	return error;
    742 }
    743 
    744 /*
    745  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    746  * Trivial modification to the breada algorithm presented in Bach (p.55).
    747  */
    748 int
    749 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    750     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
    751 {
    752 	buf_t *bp;
    753 	int error, i;
    754 
    755 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    756 
    757 	/*
    758 	 * For each of the read-ahead blocks, start a read, if necessary.
    759 	 */
    760 	mutex_enter(&bufcache_lock);
    761 	for (i = 0; i < nrablks; i++) {
    762 		/* If it's in the cache, just go on to next one. */
    763 		if (incore(vp, rablks[i]))
    764 			continue;
    765 
    766 		/* Get a buffer for the read-ahead block */
    767 		mutex_exit(&bufcache_lock);
    768 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    769 		mutex_enter(&bufcache_lock);
    770 	}
    771 	mutex_exit(&bufcache_lock);
    772 
    773 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    774 	error = biowait(bp);
    775 	if (error == 0 && (flags & B_MODIFY) != 0)
    776 		error = fscow_run(bp, true);
    777 	return error;
    778 }
    779 
    780 /*
    781  * Block write.  Described in Bach (p.56)
    782  */
    783 int
    784 bwrite(buf_t *bp)
    785 {
    786 	int rv, sync, wasdelayed;
    787 	struct vnode *vp;
    788 	struct mount *mp;
    789 
    790 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    791 	KASSERT(!cv_has_waiters(&bp->b_done));
    792 
    793 	vp = bp->b_vp;
    794 	if (vp != NULL) {
    795 		KASSERT(bp->b_objlock == &vp->v_interlock);
    796 		if (vp->v_type == VBLK)
    797 			mp = vp->v_specmountpoint;
    798 		else
    799 			mp = vp->v_mount;
    800 	} else {
    801 		mp = NULL;
    802 	}
    803 
    804 	if (mp && mp->mnt_wapbl) {
    805 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    806 			bdwrite(bp);
    807 			return 0;
    808 		}
    809 	}
    810 
    811 	/*
    812 	 * Remember buffer type, to switch on it later.  If the write was
    813 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    814 	 * convert it to a delayed write.
    815 	 * XXX note that this relies on delayed tape writes being converted
    816 	 * to async, not sync writes (which is safe, but ugly).
    817 	 */
    818 	sync = !ISSET(bp->b_flags, B_ASYNC);
    819 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    820 		bdwrite(bp);
    821 		return (0);
    822 	}
    823 
    824 	/*
    825 	 * Collect statistics on synchronous and asynchronous writes.
    826 	 * Writes to block devices are charged to their associated
    827 	 * filesystem (if any).
    828 	 */
    829 	if (mp != NULL) {
    830 		if (sync)
    831 			mp->mnt_stat.f_syncwrites++;
    832 		else
    833 			mp->mnt_stat.f_asyncwrites++;
    834 	}
    835 
    836 	/*
    837 	 * Pay for the I/O operation and make sure the buf is on the correct
    838 	 * vnode queue.
    839 	 */
    840 	bp->b_error = 0;
    841 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    842 	CLR(bp->b_flags, B_READ);
    843 	if (wasdelayed) {
    844 		mutex_enter(&bufcache_lock);
    845 		mutex_enter(bp->b_objlock);
    846 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    847 		reassignbuf(bp, bp->b_vp);
    848 		mutex_exit(&bufcache_lock);
    849 	} else {
    850 		curlwp->l_ru.ru_oublock++;
    851 		mutex_enter(bp->b_objlock);
    852 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    853 	}
    854 	if (vp != NULL)
    855 		vp->v_numoutput++;
    856 	mutex_exit(bp->b_objlock);
    857 
    858 	/* Initiate disk write. */
    859 	if (sync)
    860 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    861 	else
    862 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    863 
    864 	VOP_STRATEGY(vp, bp);
    865 
    866 	if (sync) {
    867 		/* If I/O was synchronous, wait for it to complete. */
    868 		rv = biowait(bp);
    869 
    870 		/* Release the buffer. */
    871 		brelse(bp, 0);
    872 
    873 		return (rv);
    874 	} else {
    875 		return (0);
    876 	}
    877 }
    878 
    879 int
    880 vn_bwrite(void *v)
    881 {
    882 	struct vop_bwrite_args *ap = v;
    883 
    884 	return (bwrite(ap->a_bp));
    885 }
    886 
    887 /*
    888  * Delayed write.
    889  *
    890  * The buffer is marked dirty, but is not queued for I/O.
    891  * This routine should be used when the buffer is expected
    892  * to be modified again soon, typically a small write that
    893  * partially fills a buffer.
    894  *
    895  * NB: magnetic tapes cannot be delayed; they must be
    896  * written in the order that the writes are requested.
    897  *
    898  * Described in Leffler, et al. (pp. 208-213).
    899  */
    900 void
    901 bdwrite(buf_t *bp)
    902 {
    903 
    904 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    905 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    906 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    907 	KASSERT(!cv_has_waiters(&bp->b_done));
    908 
    909 	/* If this is a tape block, write the block now. */
    910 	if (bdev_type(bp->b_dev) == D_TAPE) {
    911 		bawrite(bp);
    912 		return;
    913 	}
    914 
    915 	if (wapbl_vphaswapbl(bp->b_vp)) {
    916 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    917 
    918 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    919 			WAPBL_ADD_BUF(mp, bp);
    920 		}
    921 	}
    922 
    923 	/*
    924 	 * If the block hasn't been seen before:
    925 	 *	(1) Mark it as having been seen,
    926 	 *	(2) Charge for the write,
    927 	 *	(3) Make sure it's on its vnode's correct block list.
    928 	 */
    929 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
    930 
    931 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    932 		mutex_enter(&bufcache_lock);
    933 		mutex_enter(bp->b_objlock);
    934 		SET(bp->b_oflags, BO_DELWRI);
    935 		curlwp->l_ru.ru_oublock++;
    936 		reassignbuf(bp, bp->b_vp);
    937 		mutex_exit(&bufcache_lock);
    938 	} else {
    939 		mutex_enter(bp->b_objlock);
    940 	}
    941 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    942 	CLR(bp->b_oflags, BO_DONE);
    943 	mutex_exit(bp->b_objlock);
    944 
    945 	brelse(bp, 0);
    946 }
    947 
    948 /*
    949  * Asynchronous block write; just an asynchronous bwrite().
    950  */
    951 void
    952 bawrite(buf_t *bp)
    953 {
    954 
    955 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    956 
    957 	SET(bp->b_flags, B_ASYNC);
    958 	VOP_BWRITE(bp);
    959 }
    960 
    961 /*
    962  * Release a buffer on to the free lists.
    963  * Described in Bach (p. 46).
    964  */
    965 void
    966 brelsel(buf_t *bp, int set)
    967 {
    968 	struct bqueue *bufq;
    969 	struct vnode *vp;
    970 
    971 	KASSERT(mutex_owned(&bufcache_lock));
    972 	KASSERT(!cv_has_waiters(&bp->b_done));
    973 	KASSERT(bp->b_refcnt > 0);
    974 
    975 	SET(bp->b_cflags, set);
    976 
    977 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    978 	KASSERT(bp->b_iodone == NULL);
    979 
    980 	/* Wake up any processes waiting for any buffer to become free. */
    981 	cv_signal(&needbuffer_cv);
    982 
    983 	/* Wake up any proceeses waiting for _this_ buffer to become */
    984 	if (ISSET(bp->b_cflags, BC_WANTED))
    985 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    986 
    987 	/*
    988 	 * Determine which queue the buffer should be on, then put it there.
    989 	 */
    990 
    991 	/* If it's locked, don't report an error; try again later. */
    992 	if (ISSET(bp->b_flags, B_LOCKED))
    993 		bp->b_error = 0;
    994 
    995 	/* If it's not cacheable, or an error, mark it invalid. */
    996 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
    997 		SET(bp->b_cflags, BC_INVAL);
    998 
    999 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1000 		/*
   1001 		 * This is a delayed write buffer that was just flushed to
   1002 		 * disk.  It is still on the LRU queue.  If it's become
   1003 		 * invalid, then we need to move it to a different queue;
   1004 		 * otherwise leave it in its current position.
   1005 		 */
   1006 		CLR(bp->b_cflags, BC_VFLUSH);
   1007 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1008 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1009 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1010 			goto already_queued;
   1011 		} else {
   1012 			bremfree(bp);
   1013 		}
   1014 	}
   1015 
   1016 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1017 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1018 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1019 
   1020 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1021 		/*
   1022 		 * If it's invalid or empty, dissociate it from its vnode
   1023 		 * and put on the head of the appropriate queue.
   1024 		 */
   1025 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1026 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1027 				struct mount *mp = wapbl_vptomp(vp);
   1028 
   1029 				KASSERT(bp->b_iodone
   1030 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1031 				WAPBL_REMOVE_BUF(mp, bp);
   1032 			}
   1033 		}
   1034 
   1035 		mutex_enter(bp->b_objlock);
   1036 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1037 		if ((vp = bp->b_vp) != NULL) {
   1038 			KASSERT(bp->b_objlock == &vp->v_interlock);
   1039 			reassignbuf(bp, bp->b_vp);
   1040 			brelvp(bp);
   1041 			mutex_exit(&vp->v_interlock);
   1042 		} else {
   1043 			KASSERT(bp->b_objlock == &buffer_lock);
   1044 			mutex_exit(bp->b_objlock);
   1045 		}
   1046 
   1047 		if (bp->b_bufsize <= 0)
   1048 			/* no data */
   1049 			goto already_queued;
   1050 		else
   1051 			/* invalid data */
   1052 			bufq = &bufqueues[BQ_AGE];
   1053 		binsheadfree(bp, bufq);
   1054 	} else  {
   1055 		/*
   1056 		 * It has valid data.  Put it on the end of the appropriate
   1057 		 * queue, so that it'll stick around for as long as possible.
   1058 		 * If buf is AGE, but has dependencies, must put it on last
   1059 		 * bufqueue to be scanned, ie LRU. This protects against the
   1060 		 * livelock where BQ_AGE only has buffers with dependencies,
   1061 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1062 		 */
   1063 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1064 			/* locked in core */
   1065 			bufq = &bufqueues[BQ_LOCKED];
   1066 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1067 			/* valid data */
   1068 			bufq = &bufqueues[BQ_LRU];
   1069 		} else {
   1070 			/* stale but valid data */
   1071 			bufq = &bufqueues[BQ_AGE];
   1072 		}
   1073 		binstailfree(bp, bufq);
   1074 	}
   1075 already_queued:
   1076 	/* Unlock the buffer. */
   1077 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1078 	CLR(bp->b_flags, B_ASYNC);
   1079 	cv_broadcast(&bp->b_busy);
   1080 
   1081 	if (bp->b_bufsize <= 0)
   1082 		brele(bp);
   1083 }
   1084 
   1085 void
   1086 brelse(buf_t *bp, int set)
   1087 {
   1088 
   1089 	mutex_enter(&bufcache_lock);
   1090 	brelsel(bp, set);
   1091 	mutex_exit(&bufcache_lock);
   1092 }
   1093 
   1094 /*
   1095  * Determine if a block is in the cache.
   1096  * Just look on what would be its hash chain.  If it's there, return
   1097  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1098  * we normally don't return the buffer, unless the caller explicitly
   1099  * wants us to.
   1100  */
   1101 buf_t *
   1102 incore(struct vnode *vp, daddr_t blkno)
   1103 {
   1104 	buf_t *bp;
   1105 
   1106 	KASSERT(mutex_owned(&bufcache_lock));
   1107 
   1108 	/* Search hash chain */
   1109 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1110 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1111 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1112 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
   1113 		    	return (bp);
   1114 		}
   1115 	}
   1116 
   1117 	return (NULL);
   1118 }
   1119 
   1120 /*
   1121  * Get a block of requested size that is associated with
   1122  * a given vnode and block offset. If it is found in the
   1123  * block cache, mark it as having been found, make it busy
   1124  * and return it. Otherwise, return an empty block of the
   1125  * correct size. It is up to the caller to insure that the
   1126  * cached blocks be of the correct size.
   1127  */
   1128 buf_t *
   1129 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1130 {
   1131 	int err, preserve;
   1132 	buf_t *bp;
   1133 
   1134 	mutex_enter(&bufcache_lock);
   1135  loop:
   1136 	bp = incore(vp, blkno);
   1137 	if (bp != NULL) {
   1138 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1139 		if (err != 0) {
   1140 			if (err == EPASSTHROUGH)
   1141 				goto loop;
   1142 			mutex_exit(&bufcache_lock);
   1143 			return (NULL);
   1144 		}
   1145 		KASSERT(!cv_has_waiters(&bp->b_done));
   1146 #ifdef DIAGNOSTIC
   1147 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1148 		    bp->b_bcount < size && vp->v_type != VBLK)
   1149 			panic("getblk: block size invariant failed");
   1150 #endif
   1151 		bremfree(bp);
   1152 		preserve = 1;
   1153 	} else {
   1154 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1155 			goto loop;
   1156 
   1157 		if (incore(vp, blkno) != NULL) {
   1158 			/* The block has come into memory in the meantime. */
   1159 			brelsel(bp, 0);
   1160 			goto loop;
   1161 		}
   1162 
   1163 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1164 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1165 		mutex_enter(&vp->v_interlock);
   1166 		bgetvp(vp, bp);
   1167 		mutex_exit(&vp->v_interlock);
   1168 		preserve = 0;
   1169 	}
   1170 	mutex_exit(&bufcache_lock);
   1171 
   1172 	/*
   1173 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1174 	 * if we re-size buffers here.
   1175 	 */
   1176 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1177 		KASSERT(bp->b_bufsize >= size);
   1178 	} else {
   1179 		if (allocbuf(bp, size, preserve)) {
   1180 			mutex_enter(&bufcache_lock);
   1181 			LIST_REMOVE(bp, b_hash);
   1182 			mutex_exit(&bufcache_lock);
   1183 			brelse(bp, BC_INVAL);
   1184 			return NULL;
   1185 		}
   1186 	}
   1187 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1188 	return (bp);
   1189 }
   1190 
   1191 /*
   1192  * Get an empty, disassociated buffer of given size.
   1193  */
   1194 buf_t *
   1195 geteblk(int size)
   1196 {
   1197 	buf_t *bp;
   1198 	int error;
   1199 
   1200 	mutex_enter(&bufcache_lock);
   1201 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1202 		;
   1203 
   1204 	SET(bp->b_cflags, BC_INVAL);
   1205 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1206 	mutex_exit(&bufcache_lock);
   1207 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1208 	error = allocbuf(bp, size, 0);
   1209 	KASSERT(error == 0);
   1210 	return (bp);
   1211 }
   1212 
   1213 /*
   1214  * Expand or contract the actual memory allocated to a buffer.
   1215  *
   1216  * If the buffer shrinks, data is lost, so it's up to the
   1217  * caller to have written it out *first*; this routine will not
   1218  * start a write.  If the buffer grows, it's the callers
   1219  * responsibility to fill out the buffer's additional contents.
   1220  */
   1221 int
   1222 allocbuf(buf_t *bp, int size, int preserve)
   1223 {
   1224 	void *addr;
   1225 	vsize_t oldsize, desired_size;
   1226 	int oldcount;
   1227 	int delta;
   1228 
   1229 	desired_size = buf_roundsize(size);
   1230 	if (desired_size > MAXBSIZE)
   1231 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1232 
   1233 	oldcount = bp->b_bcount;
   1234 
   1235 	bp->b_bcount = size;
   1236 
   1237 	oldsize = bp->b_bufsize;
   1238 	if (oldsize == desired_size) {
   1239 		/*
   1240 		 * Do not short cut the WAPBL resize, as the buffer length
   1241 		 * could still have changed and this would corrupt the
   1242 		 * tracking of the transaction length.
   1243 		 */
   1244 		goto out;
   1245 	}
   1246 
   1247 	/*
   1248 	 * If we want a buffer of a different size, re-allocate the
   1249 	 * buffer's memory; copy old content only if needed.
   1250 	 */
   1251 	addr = buf_malloc(desired_size);
   1252 	if (addr == NULL)
   1253 		return ENOMEM;
   1254 	if (preserve)
   1255 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1256 	if (bp->b_data != NULL)
   1257 		buf_mrelease(bp->b_data, oldsize);
   1258 	bp->b_data = addr;
   1259 	bp->b_bufsize = desired_size;
   1260 
   1261 	/*
   1262 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1263 	 */
   1264 	delta = (long)desired_size - (long)oldsize;
   1265 
   1266 	mutex_enter(&bufcache_lock);
   1267 	if ((bufmem += delta) > bufmem_hiwater) {
   1268 		/*
   1269 		 * Need to trim overall memory usage.
   1270 		 */
   1271 		while (buf_canrelease()) {
   1272 			if (curcpu()->ci_schedstate.spc_flags &
   1273 			    SPCF_SHOULDYIELD) {
   1274 				mutex_exit(&bufcache_lock);
   1275 				preempt();
   1276 				mutex_enter(&bufcache_lock);
   1277 			}
   1278 			if (buf_trim() == 0)
   1279 				break;
   1280 		}
   1281 	}
   1282 	mutex_exit(&bufcache_lock);
   1283 
   1284  out:
   1285 	if (wapbl_vphaswapbl(bp->b_vp))
   1286 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1287 
   1288 	return 0;
   1289 }
   1290 
   1291 /*
   1292  * Find a buffer which is available for use.
   1293  * Select something from a free list.
   1294  * Preference is to AGE list, then LRU list.
   1295  *
   1296  * Called with the buffer queues locked.
   1297  * Return buffer locked.
   1298  */
   1299 buf_t *
   1300 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1301 {
   1302 	buf_t *bp;
   1303 	struct vnode *vp;
   1304 
   1305  start:
   1306 	KASSERT(mutex_owned(&bufcache_lock));
   1307 
   1308 	/*
   1309 	 * Get a new buffer from the pool.
   1310 	 */
   1311 	if (!from_bufq && buf_lotsfree()) {
   1312 		mutex_exit(&bufcache_lock);
   1313 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1314 		if (bp != NULL) {
   1315 			memset((char *)bp, 0, sizeof(*bp));
   1316 			buf_init(bp);
   1317 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1318 			mutex_enter(&bufcache_lock);
   1319 #if defined(DIAGNOSTIC)
   1320 			bp->b_freelistindex = -1;
   1321 #endif /* defined(DIAGNOSTIC) */
   1322 			return (bp);
   1323 		}
   1324 		mutex_enter(&bufcache_lock);
   1325 	}
   1326 
   1327 	KASSERT(mutex_owned(&bufcache_lock));
   1328 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1329 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1330 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1331 		bremfree(bp);
   1332 
   1333 		/* Buffer is no longer on free lists. */
   1334 		SET(bp->b_cflags, BC_BUSY);
   1335 	} else {
   1336 		/*
   1337 		 * XXX: !from_bufq should be removed.
   1338 		 */
   1339 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1340 			/* wait for a free buffer of any kind */
   1341 			if ((slpflag & PCATCH) != 0)
   1342 				(void)cv_timedwait_sig(&needbuffer_cv,
   1343 				    &bufcache_lock, slptimeo);
   1344 			else
   1345 				(void)cv_timedwait(&needbuffer_cv,
   1346 				    &bufcache_lock, slptimeo);
   1347 		}
   1348 		return (NULL);
   1349 	}
   1350 
   1351 #ifdef DIAGNOSTIC
   1352 	if (bp->b_bufsize <= 0)
   1353 		panic("buffer %p: on queue but empty", bp);
   1354 #endif
   1355 
   1356 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1357 		/*
   1358 		 * This is a delayed write buffer being flushed to disk.  Make
   1359 		 * sure it gets aged out of the queue when it's finished, and
   1360 		 * leave it off the LRU queue.
   1361 		 */
   1362 		CLR(bp->b_cflags, BC_VFLUSH);
   1363 		SET(bp->b_cflags, BC_AGE);
   1364 		goto start;
   1365 	}
   1366 
   1367 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1368 	KASSERT(bp->b_refcnt > 0);
   1369     	KASSERT(!cv_has_waiters(&bp->b_done));
   1370 
   1371 	/*
   1372 	 * If buffer was a delayed write, start it and return NULL
   1373 	 * (since we might sleep while starting the write).
   1374 	 */
   1375 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1376 		/*
   1377 		 * This buffer has gone through the LRU, so make sure it gets
   1378 		 * reused ASAP.
   1379 		 */
   1380 		SET(bp->b_cflags, BC_AGE);
   1381 		mutex_exit(&bufcache_lock);
   1382 		bawrite(bp);
   1383 		mutex_enter(&bufcache_lock);
   1384 		return (NULL);
   1385 	}
   1386 
   1387 	vp = bp->b_vp;
   1388 
   1389 	/* clear out various other fields */
   1390 	bp->b_cflags = BC_BUSY;
   1391 	bp->b_oflags = 0;
   1392 	bp->b_flags = 0;
   1393 	bp->b_dev = NODEV;
   1394 	bp->b_blkno = 0;
   1395 	bp->b_lblkno = 0;
   1396 	bp->b_rawblkno = 0;
   1397 	bp->b_iodone = 0;
   1398 	bp->b_error = 0;
   1399 	bp->b_resid = 0;
   1400 	bp->b_bcount = 0;
   1401 
   1402 	LIST_REMOVE(bp, b_hash);
   1403 
   1404 	/* Disassociate us from our vnode, if we had one... */
   1405 	if (vp != NULL) {
   1406 		mutex_enter(&vp->v_interlock);
   1407 		brelvp(bp);
   1408 		mutex_exit(&vp->v_interlock);
   1409 	}
   1410 
   1411 	return (bp);
   1412 }
   1413 
   1414 /*
   1415  * Attempt to free an aged buffer off the queues.
   1416  * Called with queue lock held.
   1417  * Returns the amount of buffer memory freed.
   1418  */
   1419 static int
   1420 buf_trim(void)
   1421 {
   1422 	buf_t *bp;
   1423 	long size = 0;
   1424 
   1425 	KASSERT(mutex_owned(&bufcache_lock));
   1426 
   1427 	/* Instruct getnewbuf() to get buffers off the queues */
   1428 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1429 		return 0;
   1430 
   1431 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1432 	size = bp->b_bufsize;
   1433 	bufmem -= size;
   1434 	if (size > 0) {
   1435 		buf_mrelease(bp->b_data, size);
   1436 		bp->b_bcount = bp->b_bufsize = 0;
   1437 	}
   1438 	/* brelse() will return the buffer to the global buffer pool */
   1439 	brelsel(bp, 0);
   1440 	return size;
   1441 }
   1442 
   1443 int
   1444 buf_drain(int n)
   1445 {
   1446 	int size = 0, sz;
   1447 
   1448 	KASSERT(mutex_owned(&bufcache_lock));
   1449 
   1450 	while (size < n && bufmem > bufmem_lowater) {
   1451 		sz = buf_trim();
   1452 		if (sz <= 0)
   1453 			break;
   1454 		size += sz;
   1455 	}
   1456 
   1457 	return size;
   1458 }
   1459 
   1460 /*
   1461  * Wait for operations on the buffer to complete.
   1462  * When they do, extract and return the I/O's error value.
   1463  */
   1464 int
   1465 biowait(buf_t *bp)
   1466 {
   1467 
   1468 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1469 	KASSERT(bp->b_refcnt > 0);
   1470 
   1471 	mutex_enter(bp->b_objlock);
   1472 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1473 		cv_wait(&bp->b_done, bp->b_objlock);
   1474 	mutex_exit(bp->b_objlock);
   1475 
   1476 	return bp->b_error;
   1477 }
   1478 
   1479 /*
   1480  * Mark I/O complete on a buffer.
   1481  *
   1482  * If a callback has been requested, e.g. the pageout
   1483  * daemon, do so. Otherwise, awaken waiting processes.
   1484  *
   1485  * [ Leffler, et al., says on p.247:
   1486  *	"This routine wakes up the blocked process, frees the buffer
   1487  *	for an asynchronous write, or, for a request by the pagedaemon
   1488  *	process, invokes a procedure specified in the buffer structure" ]
   1489  *
   1490  * In real life, the pagedaemon (or other system processes) wants
   1491  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1492  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1493  * for the vn device, that puts malloc'd buffers on the free lists!)
   1494  */
   1495 void
   1496 biodone(buf_t *bp)
   1497 {
   1498 	int s;
   1499 
   1500 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1501 
   1502 	if (cpu_intr_p()) {
   1503 		/* From interrupt mode: defer to a soft interrupt. */
   1504 		s = splvm();
   1505 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1506 		softint_schedule(biodone_sih);
   1507 		splx(s);
   1508 	} else {
   1509 		/* Process now - the buffer may be freed soon. */
   1510 		biodone2(bp);
   1511 	}
   1512 }
   1513 
   1514 static void
   1515 biodone2(buf_t *bp)
   1516 {
   1517 	void (*callout)(buf_t *);
   1518 
   1519 	mutex_enter(bp->b_objlock);
   1520 	/* Note that the transfer is done. */
   1521 	if (ISSET(bp->b_oflags, BO_DONE))
   1522 		panic("biodone2 already");
   1523 	CLR(bp->b_flags, B_COWDONE);
   1524 	SET(bp->b_oflags, BO_DONE);
   1525 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1526 
   1527 	/* Wake up waiting writers. */
   1528 	if (!ISSET(bp->b_flags, B_READ))
   1529 		vwakeup(bp);
   1530 
   1531 	if ((callout = bp->b_iodone) != NULL) {
   1532 		/* Note callout done, then call out. */
   1533 		KASSERT(!cv_has_waiters(&bp->b_done));
   1534 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1535 		bp->b_iodone = NULL;
   1536 		mutex_exit(bp->b_objlock);
   1537 		(*callout)(bp);
   1538 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1539 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1540 		/* If async, release. */
   1541 		KASSERT(!cv_has_waiters(&bp->b_done));
   1542 		mutex_exit(bp->b_objlock);
   1543 		brelse(bp, 0);
   1544 	} else {
   1545 		/* Otherwise just wake up waiters in biowait(). */
   1546 		cv_broadcast(&bp->b_done);
   1547 		mutex_exit(bp->b_objlock);
   1548 	}
   1549 }
   1550 
   1551 static void
   1552 biointr(void *cookie)
   1553 {
   1554 	struct cpu_info *ci;
   1555 	buf_t *bp;
   1556 	int s;
   1557 
   1558 	ci = curcpu();
   1559 
   1560 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1561 		KASSERT(curcpu() == ci);
   1562 
   1563 		s = splvm();
   1564 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1565 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1566 		splx(s);
   1567 
   1568 		biodone2(bp);
   1569 	}
   1570 }
   1571 
   1572 /*
   1573  * Return a count of buffers on the "locked" queue.
   1574  */
   1575 int
   1576 count_lock_queue(void)
   1577 {
   1578 	buf_t *bp;
   1579 	int n = 0;
   1580 
   1581 	mutex_enter(&bufcache_lock);
   1582 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
   1583 		n++;
   1584 	mutex_exit(&bufcache_lock);
   1585 	return (n);
   1586 }
   1587 
   1588 /*
   1589  * Wait for all buffers to complete I/O
   1590  * Return the number of "stuck" buffers.
   1591  */
   1592 int
   1593 buf_syncwait(void)
   1594 {
   1595 	buf_t *bp;
   1596 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
   1597 
   1598 	dcount = 10000;
   1599 	for (iter = 0; iter < 20;) {
   1600 		mutex_enter(&bufcache_lock);
   1601 		nbusy = 0;
   1602 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1603 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1604 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1605 				nbusy += ((bp->b_flags & B_READ) == 0);
   1606 		    }
   1607 		}
   1608 		mutex_exit(&bufcache_lock);
   1609 
   1610 		if (nbusy == 0)
   1611 			break;
   1612 		if (nbusy_prev == 0)
   1613 			nbusy_prev = nbusy;
   1614 		printf("%d ", nbusy);
   1615 		kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
   1616 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1617 			iter++;
   1618 		else
   1619 			nbusy_prev = nbusy;
   1620 	}
   1621 
   1622 	if (nbusy) {
   1623 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1624 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1625 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1626 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1627 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1628 			    (bp->b_flags & B_READ) == 0)
   1629 				vprint(NULL, bp->b_vp);
   1630 		    }
   1631 		}
   1632 #endif
   1633 	}
   1634 
   1635 	return nbusy;
   1636 }
   1637 
   1638 static void
   1639 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1640 {
   1641 
   1642 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1643 	o->b_error = i->b_error;
   1644 	o->b_prio = i->b_prio;
   1645 	o->b_dev = i->b_dev;
   1646 	o->b_bufsize = i->b_bufsize;
   1647 	o->b_bcount = i->b_bcount;
   1648 	o->b_resid = i->b_resid;
   1649 	o->b_addr = PTRTOUINT64(i->b_data);
   1650 	o->b_blkno = i->b_blkno;
   1651 	o->b_rawblkno = i->b_rawblkno;
   1652 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1653 	o->b_proc = PTRTOUINT64(i->b_proc);
   1654 	o->b_vp = PTRTOUINT64(i->b_vp);
   1655 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1656 	o->b_lblkno = i->b_lblkno;
   1657 }
   1658 
   1659 #define KERN_BUFSLOP 20
   1660 static int
   1661 sysctl_dobuf(SYSCTLFN_ARGS)
   1662 {
   1663 	buf_t *bp;
   1664 	struct buf_sysctl bs;
   1665 	struct bqueue *bq;
   1666 	char *dp;
   1667 	u_int i, op, arg;
   1668 	size_t len, needed, elem_size, out_size;
   1669 	int error, elem_count, retries;
   1670 
   1671 	if (namelen == 1 && name[0] == CTL_QUERY)
   1672 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1673 
   1674 	if (namelen != 4)
   1675 		return (EINVAL);
   1676 
   1677 	retries = 100;
   1678  retry:
   1679 	dp = oldp;
   1680 	len = (oldp != NULL) ? *oldlenp : 0;
   1681 	op = name[0];
   1682 	arg = name[1];
   1683 	elem_size = name[2];
   1684 	elem_count = name[3];
   1685 	out_size = MIN(sizeof(bs), elem_size);
   1686 
   1687 	/*
   1688 	 * at the moment, these are just "placeholders" to make the
   1689 	 * API for retrieving kern.buf data more extensible in the
   1690 	 * future.
   1691 	 *
   1692 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1693 	 * these will be resolved at a later point.
   1694 	 */
   1695 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1696 	    elem_size < 1 || elem_count < 0)
   1697 		return (EINVAL);
   1698 
   1699 	error = 0;
   1700 	needed = 0;
   1701 	sysctl_unlock();
   1702 	mutex_enter(&bufcache_lock);
   1703 	for (i = 0; i < BQUEUES; i++) {
   1704 		bq = &bufqueues[i];
   1705 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1706 			bq->bq_marker = bp;
   1707 			if (len >= elem_size && elem_count > 0) {
   1708 				sysctl_fillbuf(bp, &bs);
   1709 				mutex_exit(&bufcache_lock);
   1710 				error = copyout(&bs, dp, out_size);
   1711 				mutex_enter(&bufcache_lock);
   1712 				if (error)
   1713 					break;
   1714 				if (bq->bq_marker != bp) {
   1715 					/*
   1716 					 * This sysctl node is only for
   1717 					 * statistics.  Retry; if the
   1718 					 * queue keeps changing, then
   1719 					 * bail out.
   1720 					 */
   1721 					if (retries-- == 0) {
   1722 						error = EAGAIN;
   1723 						break;
   1724 					}
   1725 					mutex_exit(&bufcache_lock);
   1726 					goto retry;
   1727 				}
   1728 				dp += elem_size;
   1729 				len -= elem_size;
   1730 			}
   1731 			needed += elem_size;
   1732 			if (elem_count > 0 && elem_count != INT_MAX)
   1733 				elem_count--;
   1734 		}
   1735 		if (error != 0)
   1736 			break;
   1737 	}
   1738 	mutex_exit(&bufcache_lock);
   1739 	sysctl_relock();
   1740 
   1741 	*oldlenp = needed;
   1742 	if (oldp == NULL)
   1743 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1744 
   1745 	return (error);
   1746 }
   1747 
   1748 static int
   1749 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1750 {
   1751 	int t, error, rv;
   1752 	struct sysctlnode node;
   1753 
   1754 	node = *rnode;
   1755 	node.sysctl_data = &t;
   1756 	t = *(int *)rnode->sysctl_data;
   1757 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1758 	if (error || newp == NULL)
   1759 		return (error);
   1760 
   1761 	if (t < 0)
   1762 		return EINVAL;
   1763 	if (rnode->sysctl_data == &bufcache) {
   1764 		if (t > 100)
   1765 			return (EINVAL);
   1766 		bufcache = t;
   1767 		buf_setwm();
   1768 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1769 		if (bufmem_hiwater - t < 16)
   1770 			return (EINVAL);
   1771 		bufmem_lowater = t;
   1772 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1773 		if (t - bufmem_lowater < 16)
   1774 			return (EINVAL);
   1775 		bufmem_hiwater = t;
   1776 	} else
   1777 		return (EINVAL);
   1778 
   1779 	/* Drain until below new high water mark */
   1780 	sysctl_unlock();
   1781 	mutex_enter(&bufcache_lock);
   1782 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1783 		rv = buf_drain(t / (2 * 1024));
   1784 		if (rv <= 0)
   1785 			break;
   1786 	}
   1787 	mutex_exit(&bufcache_lock);
   1788 	sysctl_relock();
   1789 
   1790 	return 0;
   1791 }
   1792 
   1793 static struct sysctllog *vfsbio_sysctllog;
   1794 
   1795 static void
   1796 sysctl_kern_buf_setup(void)
   1797 {
   1798 
   1799 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1800 		       CTLFLAG_PERMANENT,
   1801 		       CTLTYPE_NODE, "kern", NULL,
   1802 		       NULL, 0, NULL, 0,
   1803 		       CTL_KERN, CTL_EOL);
   1804 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1805 		       CTLFLAG_PERMANENT,
   1806 		       CTLTYPE_NODE, "buf",
   1807 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1808 		       sysctl_dobuf, 0, NULL, 0,
   1809 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1810 }
   1811 
   1812 static void
   1813 sysctl_vm_buf_setup(void)
   1814 {
   1815 
   1816 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1817 		       CTLFLAG_PERMANENT,
   1818 		       CTLTYPE_NODE, "vm", NULL,
   1819 		       NULL, 0, NULL, 0,
   1820 		       CTL_VM, CTL_EOL);
   1821 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1822 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1823 		       CTLTYPE_INT, "bufcache",
   1824 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1825 				    "buffer cache"),
   1826 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1827 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1828 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1829 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1830 		       CTLTYPE_INT, "bufmem",
   1831 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1832 				    "cache"),
   1833 		       NULL, 0, &bufmem, 0,
   1834 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1835 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1836 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1837 		       CTLTYPE_INT, "bufmem_lowater",
   1838 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1839 				    "reserve for buffer cache"),
   1840 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1841 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1842 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1843 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1844 		       CTLTYPE_INT, "bufmem_hiwater",
   1845 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1846 				    "for buffer cache"),
   1847 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1848 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1849 }
   1850 
   1851 #ifdef DEBUG
   1852 /*
   1853  * Print out statistics on the current allocation of the buffer pool.
   1854  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1855  * in vfs_syscalls.c using sysctl.
   1856  */
   1857 void
   1858 vfs_bufstats(void)
   1859 {
   1860 	int i, j, count;
   1861 	buf_t *bp;
   1862 	struct bqueue *dp;
   1863 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1864 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1865 
   1866 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1867 		count = 0;
   1868 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1869 			counts[j] = 0;
   1870 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1871 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1872 			count++;
   1873 		}
   1874 		printf("%s: total-%d", bname[i], count);
   1875 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1876 			if (counts[j] != 0)
   1877 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1878 		printf("\n");
   1879 	}
   1880 }
   1881 #endif /* DEBUG */
   1882 
   1883 /* ------------------------------ */
   1884 
   1885 buf_t *
   1886 getiobuf(struct vnode *vp, bool waitok)
   1887 {
   1888 	buf_t *bp;
   1889 
   1890 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1891 	if (bp == NULL)
   1892 		return bp;
   1893 
   1894 	buf_init(bp);
   1895 
   1896 	if ((bp->b_vp = vp) == NULL)
   1897 		bp->b_objlock = &buffer_lock;
   1898 	else
   1899 		bp->b_objlock = &vp->v_interlock;
   1900 
   1901 	return bp;
   1902 }
   1903 
   1904 void
   1905 putiobuf(buf_t *bp)
   1906 {
   1907 
   1908 	buf_destroy(bp);
   1909 	pool_cache_put(bufio_cache, bp);
   1910 }
   1911 
   1912 /*
   1913  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1914  */
   1915 
   1916 void
   1917 nestiobuf_iodone(buf_t *bp)
   1918 {
   1919 	buf_t *mbp = bp->b_private;
   1920 	int error;
   1921 	int donebytes;
   1922 
   1923 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1924 	KASSERT(mbp != bp);
   1925 
   1926 	error = bp->b_error;
   1927 	if (bp->b_error == 0 &&
   1928 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1929 		/*
   1930 		 * Not all got transfered, raise an error. We have no way to
   1931 		 * propagate these conditions to mbp.
   1932 		 */
   1933 		error = EIO;
   1934 	}
   1935 
   1936 	donebytes = bp->b_bufsize;
   1937 
   1938 	putiobuf(bp);
   1939 	nestiobuf_done(mbp, donebytes, error);
   1940 }
   1941 
   1942 /*
   1943  * nestiobuf_setup: setup a "nested" buffer.
   1944  *
   1945  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1946  * => 'bp' should be a buffer allocated by getiobuf.
   1947  * => 'offset' is a byte offset in the master buffer.
   1948  * => 'size' is a size in bytes of this nested buffer.
   1949  */
   1950 
   1951 void
   1952 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1953 {
   1954 	const int b_read = mbp->b_flags & B_READ;
   1955 	struct vnode *vp = mbp->b_vp;
   1956 
   1957 	KASSERT(mbp->b_bcount >= offset + size);
   1958 	bp->b_vp = vp;
   1959 	bp->b_dev = mbp->b_dev;
   1960 	bp->b_objlock = mbp->b_objlock;
   1961 	bp->b_cflags = BC_BUSY;
   1962 	bp->b_flags = B_ASYNC | b_read;
   1963 	bp->b_iodone = nestiobuf_iodone;
   1964 	bp->b_data = (char *)mbp->b_data + offset;
   1965 	bp->b_resid = bp->b_bcount = size;
   1966 	bp->b_bufsize = bp->b_bcount;
   1967 	bp->b_private = mbp;
   1968 	BIO_COPYPRIO(bp, mbp);
   1969 	if (!b_read && vp != NULL) {
   1970 		mutex_enter(&vp->v_interlock);
   1971 		vp->v_numoutput++;
   1972 		mutex_exit(&vp->v_interlock);
   1973 	}
   1974 }
   1975 
   1976 /*
   1977  * nestiobuf_done: propagate completion to the master buffer.
   1978  *
   1979  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1980  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1981  */
   1982 
   1983 void
   1984 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1985 {
   1986 
   1987 	if (donebytes == 0) {
   1988 		return;
   1989 	}
   1990 	mutex_enter(mbp->b_objlock);
   1991 	KASSERT(mbp->b_resid >= donebytes);
   1992 	mbp->b_resid -= donebytes;
   1993 	if (error)
   1994 		mbp->b_error = error;
   1995 	if (mbp->b_resid == 0) {
   1996 		mutex_exit(mbp->b_objlock);
   1997 		biodone(mbp);
   1998 	} else
   1999 		mutex_exit(mbp->b_objlock);
   2000 }
   2001 
   2002 void
   2003 buf_init(buf_t *bp)
   2004 {
   2005 
   2006 	cv_init(&bp->b_busy, "biolock");
   2007 	cv_init(&bp->b_done, "biowait");
   2008 	bp->b_dev = NODEV;
   2009 	bp->b_error = 0;
   2010 	bp->b_flags = 0;
   2011 	bp->b_cflags = 0;
   2012 	bp->b_oflags = 0;
   2013 	bp->b_objlock = &buffer_lock;
   2014 	bp->b_iodone = NULL;
   2015 	bp->b_refcnt = 1;
   2016 	bp->b_dev = NODEV;
   2017 	bp->b_vnbufs.le_next = NOLIST;
   2018 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2019 }
   2020 
   2021 void
   2022 buf_destroy(buf_t *bp)
   2023 {
   2024 
   2025 	cv_destroy(&bp->b_done);
   2026 	cv_destroy(&bp->b_busy);
   2027 }
   2028 
   2029 int
   2030 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2031 {
   2032 	int error;
   2033 
   2034 	KASSERT(mutex_owned(&bufcache_lock));
   2035 
   2036 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2037 		if (curlwp == uvm.pagedaemon_lwp)
   2038 			return EDEADLK;
   2039 		bp->b_cflags |= BC_WANTED;
   2040 		bref(bp);
   2041 		if (interlock != NULL)
   2042 			mutex_exit(interlock);
   2043 		if (intr) {
   2044 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2045 			    timo);
   2046 		} else {
   2047 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2048 			    timo);
   2049 		}
   2050 		brele(bp);
   2051 		if (interlock != NULL)
   2052 			mutex_enter(interlock);
   2053 		if (error != 0)
   2054 			return error;
   2055 		return EPASSTHROUGH;
   2056 	}
   2057 	bp->b_cflags |= BC_BUSY;
   2058 
   2059 	return 0;
   2060 }
   2061