vfs_bio.c revision 1.230 1 /* $NetBSD: vfs_bio.c,v 1.230 2011/06/12 03:35:56 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.230 2011/06/12 03:35:56 rmind Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145
146 #include <uvm/uvm.h> /* extern struct uvm uvm */
147
148 #include <miscfs/specfs/specdev.h>
149
150 #ifndef BUFPAGES
151 # define BUFPAGES 0
152 #endif
153
154 #ifdef BUFCACHE
155 # if (BUFCACHE < 5) || (BUFCACHE > 95)
156 # error BUFCACHE is not between 5 and 95
157 # endif
158 #else
159 # define BUFCACHE 15
160 #endif
161
162 u_int nbuf; /* desired number of buffer headers */
163 u_int bufpages = BUFPAGES; /* optional hardwired count */
164 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
165
166 /* Function prototypes */
167 struct bqueue;
168
169 static void buf_setwm(void);
170 static int buf_trim(void);
171 static void *bufpool_page_alloc(struct pool *, int);
172 static void bufpool_page_free(struct pool *, void *);
173 static buf_t *bio_doread(struct vnode *, daddr_t, int,
174 kauth_cred_t, int);
175 static buf_t *getnewbuf(int, int, int);
176 static int buf_lotsfree(void);
177 static int buf_canrelease(void);
178 static u_long buf_mempoolidx(u_long);
179 static u_long buf_roundsize(u_long);
180 static void *buf_alloc(size_t);
181 static void buf_mrelease(void *, size_t);
182 static void binsheadfree(buf_t *, struct bqueue *);
183 static void binstailfree(buf_t *, struct bqueue *);
184 #ifdef DEBUG
185 static int checkfreelist(buf_t *, struct bqueue *, int);
186 #endif
187 static void biointr(void *);
188 static void biodone2(buf_t *);
189 static void bref(buf_t *);
190 static void brele(buf_t *);
191 static void sysctl_kern_buf_setup(void);
192 static void sysctl_vm_buf_setup(void);
193
194 /*
195 * Definitions for the buffer hash lists.
196 */
197 #define BUFHASH(dvp, lbn) \
198 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
199 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
200 u_long bufhash;
201 struct bqueue bufqueues[BQUEUES];
202
203 static kcondvar_t needbuffer_cv;
204
205 /*
206 * Buffer queue lock.
207 */
208 kmutex_t bufcache_lock;
209 kmutex_t buffer_lock;
210
211 /* Software ISR for completed transfers. */
212 static void *biodone_sih;
213
214 /* Buffer pool for I/O buffers. */
215 static pool_cache_t buf_cache;
216 static pool_cache_t bufio_cache;
217
218 /* XXX - somewhat gross.. */
219 #if MAXBSIZE == 0x2000
220 #define NMEMPOOLS 5
221 #elif MAXBSIZE == 0x4000
222 #define NMEMPOOLS 6
223 #elif MAXBSIZE == 0x8000
224 #define NMEMPOOLS 7
225 #else
226 #define NMEMPOOLS 8
227 #endif
228
229 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
230 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
231 #error update vfs_bio buffer memory parameters
232 #endif
233
234 /* Buffer memory pools */
235 static struct pool bmempools[NMEMPOOLS];
236
237 static struct vm_map *buf_map;
238
239 /*
240 * Buffer memory pool allocator.
241 */
242 static void *
243 bufpool_page_alloc(struct pool *pp, int flags)
244 {
245
246 return (void *)uvm_km_alloc(buf_map,
247 MAXBSIZE, MAXBSIZE,
248 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
249 | UVM_KMF_WIRED);
250 }
251
252 static void
253 bufpool_page_free(struct pool *pp, void *v)
254 {
255
256 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
257 }
258
259 static struct pool_allocator bufmempool_allocator = {
260 .pa_alloc = bufpool_page_alloc,
261 .pa_free = bufpool_page_free,
262 .pa_pagesz = MAXBSIZE,
263 };
264
265 /* Buffer memory management variables */
266 u_long bufmem_valimit;
267 u_long bufmem_hiwater;
268 u_long bufmem_lowater;
269 u_long bufmem;
270
271 /*
272 * MD code can call this to set a hard limit on the amount
273 * of virtual memory used by the buffer cache.
274 */
275 int
276 buf_setvalimit(vsize_t sz)
277 {
278
279 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
280 if (sz < NMEMPOOLS * MAXBSIZE)
281 return EINVAL;
282
283 bufmem_valimit = sz;
284 return 0;
285 }
286
287 static void
288 buf_setwm(void)
289 {
290
291 bufmem_hiwater = buf_memcalc();
292 /* lowater is approx. 2% of memory (with bufcache = 15) */
293 #define BUFMEM_WMSHIFT 3
294 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
295 if (bufmem_hiwater < BUFMEM_HIWMMIN)
296 /* Ensure a reasonable minimum value */
297 bufmem_hiwater = BUFMEM_HIWMMIN;
298 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
299 }
300
301 #ifdef DEBUG
302 int debug_verify_freelist = 0;
303 static int
304 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
305 {
306 buf_t *b;
307
308 if (!debug_verify_freelist)
309 return 1;
310
311 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
312 if (b == bp)
313 return ison ? 1 : 0;
314 }
315
316 return ison ? 0 : 1;
317 }
318 #endif
319
320 /*
321 * Insq/Remq for the buffer hash lists.
322 * Call with buffer queue locked.
323 */
324 static void
325 binsheadfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 static void
336 binstailfree(buf_t *bp, struct bqueue *dp)
337 {
338
339 KASSERT(mutex_owned(&bufcache_lock));
340 KASSERT(bp->b_freelistindex == -1);
341 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
342 dp->bq_bytes += bp->b_bufsize;
343 bp->b_freelistindex = dp - bufqueues;
344 }
345
346 void
347 bremfree(buf_t *bp)
348 {
349 struct bqueue *dp;
350 int bqidx = bp->b_freelistindex;
351
352 KASSERT(mutex_owned(&bufcache_lock));
353
354 KASSERT(bqidx != -1);
355 dp = &bufqueues[bqidx];
356 KDASSERT(checkfreelist(bp, dp, 1));
357 KASSERT(dp->bq_bytes >= bp->b_bufsize);
358 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
359 dp->bq_bytes -= bp->b_bufsize;
360
361 /* For the sysctl helper. */
362 if (bp == dp->bq_marker)
363 dp->bq_marker = NULL;
364
365 #if defined(DIAGNOSTIC)
366 bp->b_freelistindex = -1;
367 #endif /* defined(DIAGNOSTIC) */
368 }
369
370 /*
371 * Add a reference to an buffer structure that came from buf_cache.
372 */
373 static inline void
374 bref(buf_t *bp)
375 {
376
377 KASSERT(mutex_owned(&bufcache_lock));
378 KASSERT(bp->b_refcnt > 0);
379
380 bp->b_refcnt++;
381 }
382
383 /*
384 * Free an unused buffer structure that came from buf_cache.
385 */
386 static inline void
387 brele(buf_t *bp)
388 {
389
390 KASSERT(mutex_owned(&bufcache_lock));
391 KASSERT(bp->b_refcnt > 0);
392
393 if (bp->b_refcnt-- == 1) {
394 buf_destroy(bp);
395 #ifdef DEBUG
396 memset((char *)bp, 0, sizeof(*bp));
397 #endif
398 pool_cache_put(buf_cache, bp);
399 }
400 }
401
402 /*
403 * note that for some ports this is used by pmap bootstrap code to
404 * determine kva size.
405 */
406 u_long
407 buf_memcalc(void)
408 {
409 u_long n;
410
411 /*
412 * Determine the upper bound of memory to use for buffers.
413 *
414 * - If bufpages is specified, use that as the number
415 * pages.
416 *
417 * - Otherwise, use bufcache as the percentage of
418 * physical memory.
419 */
420 if (bufpages != 0) {
421 n = bufpages;
422 } else {
423 if (bufcache < 5) {
424 printf("forcing bufcache %d -> 5", bufcache);
425 bufcache = 5;
426 }
427 if (bufcache > 95) {
428 printf("forcing bufcache %d -> 95", bufcache);
429 bufcache = 95;
430 }
431 n = calc_cache_size(buf_map, bufcache,
432 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
433 / PAGE_SIZE;
434 }
435
436 n <<= PAGE_SHIFT;
437 if (bufmem_valimit != 0 && n > bufmem_valimit)
438 n = bufmem_valimit;
439
440 return (n);
441 }
442
443 /*
444 * Initialize buffers and hash links for buffers.
445 */
446 void
447 bufinit(void)
448 {
449 struct bqueue *dp;
450 int use_std;
451 u_int i;
452
453 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
454 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
455 cv_init(&needbuffer_cv, "needbuf");
456
457 if (bufmem_valimit != 0) {
458 vaddr_t minaddr = 0, maxaddr;
459 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
460 bufmem_valimit, 0, false, 0);
461 if (buf_map == NULL)
462 panic("bufinit: cannot allocate submap");
463 } else
464 buf_map = kernel_map;
465
466 /*
467 * Initialize buffer cache memory parameters.
468 */
469 bufmem = 0;
470 buf_setwm();
471
472 /* On "small" machines use small pool page sizes where possible */
473 use_std = (physmem < atop(16*1024*1024));
474
475 /*
476 * Also use them on systems that can map the pool pages using
477 * a direct-mapped segment.
478 */
479 #ifdef PMAP_MAP_POOLPAGE
480 use_std = 1;
481 #endif
482
483 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
484 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
485 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
486 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
487
488 bufmempool_allocator.pa_backingmap = buf_map;
489 for (i = 0; i < NMEMPOOLS; i++) {
490 struct pool_allocator *pa;
491 struct pool *pp = &bmempools[i];
492 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
493 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
494 if (__predict_true(size >= 1024))
495 (void)snprintf(name, 8, "buf%dk", size / 1024);
496 else
497 (void)snprintf(name, 8, "buf%db", size);
498 pa = (size <= PAGE_SIZE && use_std)
499 ? &pool_allocator_nointr
500 : &bufmempool_allocator;
501 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
502 pool_setlowat(pp, 1);
503 pool_sethiwat(pp, 1);
504 }
505
506 /* Initialize the buffer queues */
507 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
508 TAILQ_INIT(&dp->bq_queue);
509 dp->bq_bytes = 0;
510 }
511
512 /*
513 * Estimate hash table size based on the amount of memory we
514 * intend to use for the buffer cache. The average buffer
515 * size is dependent on our clients (i.e. filesystems).
516 *
517 * For now, use an empirical 3K per buffer.
518 */
519 nbuf = (bufmem_hiwater / 1024) / 3;
520 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
521
522 sysctl_kern_buf_setup();
523 sysctl_vm_buf_setup();
524 }
525
526 void
527 bufinit2(void)
528 {
529
530 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
531 NULL);
532 if (biodone_sih == NULL)
533 panic("bufinit2: can't establish soft interrupt");
534 }
535
536 static int
537 buf_lotsfree(void)
538 {
539 int try, thresh;
540
541 /* Always allocate if less than the low water mark. */
542 if (bufmem < bufmem_lowater)
543 return 1;
544
545 /* Never allocate if greater than the high water mark. */
546 if (bufmem > bufmem_hiwater)
547 return 0;
548
549 /* If there's anything on the AGE list, it should be eaten. */
550 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
551 return 0;
552
553 /*
554 * The probabily of getting a new allocation is inversely
555 * proportional to the current size of the cache, using
556 * a granularity of 16 steps.
557 */
558 try = random() & 0x0000000fL;
559
560 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
561 thresh = (bufmem - bufmem_lowater) /
562 ((bufmem_hiwater - bufmem_lowater) / 16);
563
564 if (try >= thresh)
565 return 1;
566
567 /* Otherwise don't allocate. */
568 return 0;
569 }
570
571 /*
572 * Return estimate of bytes we think need to be
573 * released to help resolve low memory conditions.
574 *
575 * => called with bufcache_lock held.
576 */
577 static int
578 buf_canrelease(void)
579 {
580 int pagedemand, ninvalid = 0;
581
582 KASSERT(mutex_owned(&bufcache_lock));
583
584 if (bufmem < bufmem_lowater)
585 return 0;
586
587 if (bufmem > bufmem_hiwater)
588 return bufmem - bufmem_hiwater;
589
590 ninvalid += bufqueues[BQ_AGE].bq_bytes;
591
592 pagedemand = uvmexp.freetarg - uvmexp.free;
593 if (pagedemand < 0)
594 return ninvalid;
595 return MAX(ninvalid, MIN(2 * MAXBSIZE,
596 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
597 }
598
599 /*
600 * Buffer memory allocation helper functions
601 */
602 static u_long
603 buf_mempoolidx(u_long size)
604 {
605 u_int n = 0;
606
607 size -= 1;
608 size >>= MEMPOOL_INDEX_OFFSET;
609 while (size) {
610 size >>= 1;
611 n += 1;
612 }
613 if (n >= NMEMPOOLS)
614 panic("buf mem pool index %d", n);
615 return n;
616 }
617
618 static u_long
619 buf_roundsize(u_long size)
620 {
621 /* Round up to nearest power of 2 */
622 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
623 }
624
625 static void *
626 buf_alloc(size_t size)
627 {
628 u_int n = buf_mempoolidx(size);
629 void *addr;
630
631 while (1) {
632 addr = pool_get(&bmempools[n], PR_NOWAIT);
633 if (addr != NULL)
634 break;
635
636 /* No memory, see if we can free some. If so, try again */
637 mutex_enter(&bufcache_lock);
638 if (buf_drain(1) > 0) {
639 mutex_exit(&bufcache_lock);
640 continue;
641 }
642
643 if (curlwp == uvm.pagedaemon_lwp) {
644 mutex_exit(&bufcache_lock);
645 return NULL;
646 }
647
648 /* Wait for buffers to arrive on the LRU queue */
649 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
650 mutex_exit(&bufcache_lock);
651 }
652
653 return addr;
654 }
655
656 static void
657 buf_mrelease(void *addr, size_t size)
658 {
659
660 pool_put(&bmempools[buf_mempoolidx(size)], addr);
661 }
662
663 /*
664 * bread()/breadn() helper.
665 */
666 static buf_t *
667 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
668 int async)
669 {
670 buf_t *bp;
671 struct mount *mp;
672
673 bp = getblk(vp, blkno, size, 0, 0);
674
675 #ifdef DIAGNOSTIC
676 if (bp == NULL) {
677 panic("bio_doread: no such buf");
678 }
679 #endif
680
681 /*
682 * If buffer does not have data valid, start a read.
683 * Note that if buffer is BC_INVAL, getblk() won't return it.
684 * Therefore, it's valid if its I/O has completed or been delayed.
685 */
686 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
687 /* Start I/O for the buffer. */
688 SET(bp->b_flags, B_READ | async);
689 if (async)
690 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
691 else
692 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
693 VOP_STRATEGY(vp, bp);
694
695 /* Pay for the read. */
696 curlwp->l_ru.ru_inblock++;
697 } else if (async)
698 brelse(bp, 0);
699
700 if (vp->v_type == VBLK)
701 mp = vp->v_specmountpoint;
702 else
703 mp = vp->v_mount;
704
705 /*
706 * Collect statistics on synchronous and asynchronous reads.
707 * Reads from block devices are charged to their associated
708 * filesystem (if any).
709 */
710 if (mp != NULL) {
711 if (async == 0)
712 mp->mnt_stat.f_syncreads++;
713 else
714 mp->mnt_stat.f_asyncreads++;
715 }
716
717 return (bp);
718 }
719
720 /*
721 * Read a disk block.
722 * This algorithm described in Bach (p.54).
723 */
724 int
725 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
726 int flags, buf_t **bpp)
727 {
728 buf_t *bp;
729 int error;
730
731 /* Get buffer for block. */
732 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
733
734 /* Wait for the read to complete, and return result. */
735 error = biowait(bp);
736 if (error == 0 && (flags & B_MODIFY) != 0)
737 error = fscow_run(bp, true);
738
739 return error;
740 }
741
742 /*
743 * Read-ahead multiple disk blocks. The first is sync, the rest async.
744 * Trivial modification to the breada algorithm presented in Bach (p.55).
745 */
746 int
747 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
748 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
749 {
750 buf_t *bp;
751 int error, i;
752
753 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
754
755 /*
756 * For each of the read-ahead blocks, start a read, if necessary.
757 */
758 mutex_enter(&bufcache_lock);
759 for (i = 0; i < nrablks; i++) {
760 /* If it's in the cache, just go on to next one. */
761 if (incore(vp, rablks[i]))
762 continue;
763
764 /* Get a buffer for the read-ahead block */
765 mutex_exit(&bufcache_lock);
766 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
767 mutex_enter(&bufcache_lock);
768 }
769 mutex_exit(&bufcache_lock);
770
771 /* Otherwise, we had to start a read for it; wait until it's valid. */
772 error = biowait(bp);
773 if (error == 0 && (flags & B_MODIFY) != 0)
774 error = fscow_run(bp, true);
775 return error;
776 }
777
778 /*
779 * Block write. Described in Bach (p.56)
780 */
781 int
782 bwrite(buf_t *bp)
783 {
784 int rv, sync, wasdelayed;
785 struct vnode *vp;
786 struct mount *mp;
787
788 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
789 KASSERT(!cv_has_waiters(&bp->b_done));
790
791 vp = bp->b_vp;
792 if (vp != NULL) {
793 KASSERT(bp->b_objlock == vp->v_interlock);
794 if (vp->v_type == VBLK)
795 mp = vp->v_specmountpoint;
796 else
797 mp = vp->v_mount;
798 } else {
799 mp = NULL;
800 }
801
802 if (mp && mp->mnt_wapbl) {
803 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
804 bdwrite(bp);
805 return 0;
806 }
807 }
808
809 /*
810 * Remember buffer type, to switch on it later. If the write was
811 * synchronous, but the file system was mounted with MNT_ASYNC,
812 * convert it to a delayed write.
813 * XXX note that this relies on delayed tape writes being converted
814 * to async, not sync writes (which is safe, but ugly).
815 */
816 sync = !ISSET(bp->b_flags, B_ASYNC);
817 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
818 bdwrite(bp);
819 return (0);
820 }
821
822 /*
823 * Collect statistics on synchronous and asynchronous writes.
824 * Writes to block devices are charged to their associated
825 * filesystem (if any).
826 */
827 if (mp != NULL) {
828 if (sync)
829 mp->mnt_stat.f_syncwrites++;
830 else
831 mp->mnt_stat.f_asyncwrites++;
832 }
833
834 /*
835 * Pay for the I/O operation and make sure the buf is on the correct
836 * vnode queue.
837 */
838 bp->b_error = 0;
839 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
840 CLR(bp->b_flags, B_READ);
841 if (wasdelayed) {
842 mutex_enter(&bufcache_lock);
843 mutex_enter(bp->b_objlock);
844 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
845 reassignbuf(bp, bp->b_vp);
846 mutex_exit(&bufcache_lock);
847 } else {
848 curlwp->l_ru.ru_oublock++;
849 mutex_enter(bp->b_objlock);
850 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
851 }
852 if (vp != NULL)
853 vp->v_numoutput++;
854 mutex_exit(bp->b_objlock);
855
856 /* Initiate disk write. */
857 if (sync)
858 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
859 else
860 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
861
862 VOP_STRATEGY(vp, bp);
863
864 if (sync) {
865 /* If I/O was synchronous, wait for it to complete. */
866 rv = biowait(bp);
867
868 /* Release the buffer. */
869 brelse(bp, 0);
870
871 return (rv);
872 } else {
873 return (0);
874 }
875 }
876
877 int
878 vn_bwrite(void *v)
879 {
880 struct vop_bwrite_args *ap = v;
881
882 return (bwrite(ap->a_bp));
883 }
884
885 /*
886 * Delayed write.
887 *
888 * The buffer is marked dirty, but is not queued for I/O.
889 * This routine should be used when the buffer is expected
890 * to be modified again soon, typically a small write that
891 * partially fills a buffer.
892 *
893 * NB: magnetic tapes cannot be delayed; they must be
894 * written in the order that the writes are requested.
895 *
896 * Described in Leffler, et al. (pp. 208-213).
897 */
898 void
899 bdwrite(buf_t *bp)
900 {
901
902 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
903 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
904 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
905 KASSERT(!cv_has_waiters(&bp->b_done));
906
907 /* If this is a tape block, write the block now. */
908 if (bdev_type(bp->b_dev) == D_TAPE) {
909 bawrite(bp);
910 return;
911 }
912
913 if (wapbl_vphaswapbl(bp->b_vp)) {
914 struct mount *mp = wapbl_vptomp(bp->b_vp);
915
916 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
917 WAPBL_ADD_BUF(mp, bp);
918 }
919 }
920
921 /*
922 * If the block hasn't been seen before:
923 * (1) Mark it as having been seen,
924 * (2) Charge for the write,
925 * (3) Make sure it's on its vnode's correct block list.
926 */
927 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
928
929 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
930 mutex_enter(&bufcache_lock);
931 mutex_enter(bp->b_objlock);
932 SET(bp->b_oflags, BO_DELWRI);
933 curlwp->l_ru.ru_oublock++;
934 reassignbuf(bp, bp->b_vp);
935 mutex_exit(&bufcache_lock);
936 } else {
937 mutex_enter(bp->b_objlock);
938 }
939 /* Otherwise, the "write" is done, so mark and release the buffer. */
940 CLR(bp->b_oflags, BO_DONE);
941 mutex_exit(bp->b_objlock);
942
943 brelse(bp, 0);
944 }
945
946 /*
947 * Asynchronous block write; just an asynchronous bwrite().
948 */
949 void
950 bawrite(buf_t *bp)
951 {
952
953 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
954
955 SET(bp->b_flags, B_ASYNC);
956 VOP_BWRITE(bp);
957 }
958
959 /*
960 * Release a buffer on to the free lists.
961 * Described in Bach (p. 46).
962 */
963 void
964 brelsel(buf_t *bp, int set)
965 {
966 struct bqueue *bufq;
967 struct vnode *vp;
968
969 KASSERT(mutex_owned(&bufcache_lock));
970 KASSERT(!cv_has_waiters(&bp->b_done));
971 KASSERT(bp->b_refcnt > 0);
972
973 SET(bp->b_cflags, set);
974
975 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
976 KASSERT(bp->b_iodone == NULL);
977
978 /* Wake up any processes waiting for any buffer to become free. */
979 cv_signal(&needbuffer_cv);
980
981 /* Wake up any proceeses waiting for _this_ buffer to become */
982 if (ISSET(bp->b_cflags, BC_WANTED))
983 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
984
985 /* If it's clean clear the copy-on-write flag. */
986 if (ISSET(bp->b_flags, B_COWDONE)) {
987 mutex_enter(bp->b_objlock);
988 if (!ISSET(bp->b_oflags, BO_DELWRI))
989 CLR(bp->b_flags, B_COWDONE);
990 mutex_exit(bp->b_objlock);
991 }
992
993 /*
994 * Determine which queue the buffer should be on, then put it there.
995 */
996
997 /* If it's locked, don't report an error; try again later. */
998 if (ISSET(bp->b_flags, B_LOCKED))
999 bp->b_error = 0;
1000
1001 /* If it's not cacheable, or an error, mark it invalid. */
1002 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1003 SET(bp->b_cflags, BC_INVAL);
1004
1005 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1006 /*
1007 * This is a delayed write buffer that was just flushed to
1008 * disk. It is still on the LRU queue. If it's become
1009 * invalid, then we need to move it to a different queue;
1010 * otherwise leave it in its current position.
1011 */
1012 CLR(bp->b_cflags, BC_VFLUSH);
1013 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1014 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1015 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1016 goto already_queued;
1017 } else {
1018 bremfree(bp);
1019 }
1020 }
1021
1022 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1023 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1024 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1025
1026 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1027 /*
1028 * If it's invalid or empty, dissociate it from its vnode
1029 * and put on the head of the appropriate queue.
1030 */
1031 if (ISSET(bp->b_flags, B_LOCKED)) {
1032 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1033 struct mount *mp = wapbl_vptomp(vp);
1034
1035 KASSERT(bp->b_iodone
1036 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1037 WAPBL_REMOVE_BUF(mp, bp);
1038 }
1039 }
1040
1041 mutex_enter(bp->b_objlock);
1042 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1043 if ((vp = bp->b_vp) != NULL) {
1044 KASSERT(bp->b_objlock == vp->v_interlock);
1045 reassignbuf(bp, bp->b_vp);
1046 brelvp(bp);
1047 mutex_exit(vp->v_interlock);
1048 } else {
1049 KASSERT(bp->b_objlock == &buffer_lock);
1050 mutex_exit(bp->b_objlock);
1051 }
1052
1053 if (bp->b_bufsize <= 0)
1054 /* no data */
1055 goto already_queued;
1056 else
1057 /* invalid data */
1058 bufq = &bufqueues[BQ_AGE];
1059 binsheadfree(bp, bufq);
1060 } else {
1061 /*
1062 * It has valid data. Put it on the end of the appropriate
1063 * queue, so that it'll stick around for as long as possible.
1064 * If buf is AGE, but has dependencies, must put it on last
1065 * bufqueue to be scanned, ie LRU. This protects against the
1066 * livelock where BQ_AGE only has buffers with dependencies,
1067 * and we thus never get to the dependent buffers in BQ_LRU.
1068 */
1069 if (ISSET(bp->b_flags, B_LOCKED)) {
1070 /* locked in core */
1071 bufq = &bufqueues[BQ_LOCKED];
1072 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1073 /* valid data */
1074 bufq = &bufqueues[BQ_LRU];
1075 } else {
1076 /* stale but valid data */
1077 bufq = &bufqueues[BQ_AGE];
1078 }
1079 binstailfree(bp, bufq);
1080 }
1081 already_queued:
1082 /* Unlock the buffer. */
1083 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1084 CLR(bp->b_flags, B_ASYNC);
1085 cv_broadcast(&bp->b_busy);
1086
1087 if (bp->b_bufsize <= 0)
1088 brele(bp);
1089 }
1090
1091 void
1092 brelse(buf_t *bp, int set)
1093 {
1094
1095 mutex_enter(&bufcache_lock);
1096 brelsel(bp, set);
1097 mutex_exit(&bufcache_lock);
1098 }
1099
1100 /*
1101 * Determine if a block is in the cache.
1102 * Just look on what would be its hash chain. If it's there, return
1103 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1104 * we normally don't return the buffer, unless the caller explicitly
1105 * wants us to.
1106 */
1107 buf_t *
1108 incore(struct vnode *vp, daddr_t blkno)
1109 {
1110 buf_t *bp;
1111
1112 KASSERT(mutex_owned(&bufcache_lock));
1113
1114 /* Search hash chain */
1115 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1116 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1117 !ISSET(bp->b_cflags, BC_INVAL)) {
1118 KASSERT(bp->b_objlock == vp->v_interlock);
1119 return (bp);
1120 }
1121 }
1122
1123 return (NULL);
1124 }
1125
1126 /*
1127 * Get a block of requested size that is associated with
1128 * a given vnode and block offset. If it is found in the
1129 * block cache, mark it as having been found, make it busy
1130 * and return it. Otherwise, return an empty block of the
1131 * correct size. It is up to the caller to insure that the
1132 * cached blocks be of the correct size.
1133 */
1134 buf_t *
1135 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1136 {
1137 int err, preserve;
1138 buf_t *bp;
1139
1140 mutex_enter(&bufcache_lock);
1141 loop:
1142 bp = incore(vp, blkno);
1143 if (bp != NULL) {
1144 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1145 if (err != 0) {
1146 if (err == EPASSTHROUGH)
1147 goto loop;
1148 mutex_exit(&bufcache_lock);
1149 return (NULL);
1150 }
1151 KASSERT(!cv_has_waiters(&bp->b_done));
1152 #ifdef DIAGNOSTIC
1153 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1154 bp->b_bcount < size && vp->v_type != VBLK)
1155 panic("getblk: block size invariant failed");
1156 #endif
1157 bremfree(bp);
1158 preserve = 1;
1159 } else {
1160 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1161 goto loop;
1162
1163 if (incore(vp, blkno) != NULL) {
1164 /* The block has come into memory in the meantime. */
1165 brelsel(bp, 0);
1166 goto loop;
1167 }
1168
1169 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1170 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1171 mutex_enter(vp->v_interlock);
1172 bgetvp(vp, bp);
1173 mutex_exit(vp->v_interlock);
1174 preserve = 0;
1175 }
1176 mutex_exit(&bufcache_lock);
1177
1178 /*
1179 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1180 * if we re-size buffers here.
1181 */
1182 if (ISSET(bp->b_flags, B_LOCKED)) {
1183 KASSERT(bp->b_bufsize >= size);
1184 } else {
1185 if (allocbuf(bp, size, preserve)) {
1186 mutex_enter(&bufcache_lock);
1187 LIST_REMOVE(bp, b_hash);
1188 mutex_exit(&bufcache_lock);
1189 brelse(bp, BC_INVAL);
1190 return NULL;
1191 }
1192 }
1193 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1194 return (bp);
1195 }
1196
1197 /*
1198 * Get an empty, disassociated buffer of given size.
1199 */
1200 buf_t *
1201 geteblk(int size)
1202 {
1203 buf_t *bp;
1204 int error;
1205
1206 mutex_enter(&bufcache_lock);
1207 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1208 ;
1209
1210 SET(bp->b_cflags, BC_INVAL);
1211 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1212 mutex_exit(&bufcache_lock);
1213 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1214 error = allocbuf(bp, size, 0);
1215 KASSERT(error == 0);
1216 return (bp);
1217 }
1218
1219 /*
1220 * Expand or contract the actual memory allocated to a buffer.
1221 *
1222 * If the buffer shrinks, data is lost, so it's up to the
1223 * caller to have written it out *first*; this routine will not
1224 * start a write. If the buffer grows, it's the callers
1225 * responsibility to fill out the buffer's additional contents.
1226 */
1227 int
1228 allocbuf(buf_t *bp, int size, int preserve)
1229 {
1230 void *addr;
1231 vsize_t oldsize, desired_size;
1232 int oldcount;
1233 int delta;
1234
1235 desired_size = buf_roundsize(size);
1236 if (desired_size > MAXBSIZE)
1237 printf("allocbuf: buffer larger than MAXBSIZE requested");
1238
1239 oldcount = bp->b_bcount;
1240
1241 bp->b_bcount = size;
1242
1243 oldsize = bp->b_bufsize;
1244 if (oldsize == desired_size) {
1245 /*
1246 * Do not short cut the WAPBL resize, as the buffer length
1247 * could still have changed and this would corrupt the
1248 * tracking of the transaction length.
1249 */
1250 goto out;
1251 }
1252
1253 /*
1254 * If we want a buffer of a different size, re-allocate the
1255 * buffer's memory; copy old content only if needed.
1256 */
1257 addr = buf_alloc(desired_size);
1258 if (addr == NULL)
1259 return ENOMEM;
1260 if (preserve)
1261 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1262 if (bp->b_data != NULL)
1263 buf_mrelease(bp->b_data, oldsize);
1264 bp->b_data = addr;
1265 bp->b_bufsize = desired_size;
1266
1267 /*
1268 * Update overall buffer memory counter (protected by bufcache_lock)
1269 */
1270 delta = (long)desired_size - (long)oldsize;
1271
1272 mutex_enter(&bufcache_lock);
1273 if ((bufmem += delta) > bufmem_hiwater) {
1274 /*
1275 * Need to trim overall memory usage.
1276 */
1277 while (buf_canrelease()) {
1278 if (curcpu()->ci_schedstate.spc_flags &
1279 SPCF_SHOULDYIELD) {
1280 mutex_exit(&bufcache_lock);
1281 preempt();
1282 mutex_enter(&bufcache_lock);
1283 }
1284 if (buf_trim() == 0)
1285 break;
1286 }
1287 }
1288 mutex_exit(&bufcache_lock);
1289
1290 out:
1291 if (wapbl_vphaswapbl(bp->b_vp))
1292 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1293
1294 return 0;
1295 }
1296
1297 /*
1298 * Find a buffer which is available for use.
1299 * Select something from a free list.
1300 * Preference is to AGE list, then LRU list.
1301 *
1302 * Called with the buffer queues locked.
1303 * Return buffer locked.
1304 */
1305 buf_t *
1306 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1307 {
1308 buf_t *bp;
1309 struct vnode *vp;
1310
1311 start:
1312 KASSERT(mutex_owned(&bufcache_lock));
1313
1314 /*
1315 * Get a new buffer from the pool.
1316 */
1317 if (!from_bufq && buf_lotsfree()) {
1318 mutex_exit(&bufcache_lock);
1319 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1320 if (bp != NULL) {
1321 memset((char *)bp, 0, sizeof(*bp));
1322 buf_init(bp);
1323 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1324 mutex_enter(&bufcache_lock);
1325 #if defined(DIAGNOSTIC)
1326 bp->b_freelistindex = -1;
1327 #endif /* defined(DIAGNOSTIC) */
1328 return (bp);
1329 }
1330 mutex_enter(&bufcache_lock);
1331 }
1332
1333 KASSERT(mutex_owned(&bufcache_lock));
1334 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1335 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1336 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1337 bremfree(bp);
1338
1339 /* Buffer is no longer on free lists. */
1340 SET(bp->b_cflags, BC_BUSY);
1341 } else {
1342 /*
1343 * XXX: !from_bufq should be removed.
1344 */
1345 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1346 /* wait for a free buffer of any kind */
1347 if ((slpflag & PCATCH) != 0)
1348 (void)cv_timedwait_sig(&needbuffer_cv,
1349 &bufcache_lock, slptimeo);
1350 else
1351 (void)cv_timedwait(&needbuffer_cv,
1352 &bufcache_lock, slptimeo);
1353 }
1354 return (NULL);
1355 }
1356
1357 #ifdef DIAGNOSTIC
1358 if (bp->b_bufsize <= 0)
1359 panic("buffer %p: on queue but empty", bp);
1360 #endif
1361
1362 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1363 /*
1364 * This is a delayed write buffer being flushed to disk. Make
1365 * sure it gets aged out of the queue when it's finished, and
1366 * leave it off the LRU queue.
1367 */
1368 CLR(bp->b_cflags, BC_VFLUSH);
1369 SET(bp->b_cflags, BC_AGE);
1370 goto start;
1371 }
1372
1373 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1374 KASSERT(bp->b_refcnt > 0);
1375 KASSERT(!cv_has_waiters(&bp->b_done));
1376
1377 /*
1378 * If buffer was a delayed write, start it and return NULL
1379 * (since we might sleep while starting the write).
1380 */
1381 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1382 /*
1383 * This buffer has gone through the LRU, so make sure it gets
1384 * reused ASAP.
1385 */
1386 SET(bp->b_cflags, BC_AGE);
1387 mutex_exit(&bufcache_lock);
1388 bawrite(bp);
1389 mutex_enter(&bufcache_lock);
1390 return (NULL);
1391 }
1392
1393 vp = bp->b_vp;
1394
1395 /* clear out various other fields */
1396 bp->b_cflags = BC_BUSY;
1397 bp->b_oflags = 0;
1398 bp->b_flags = 0;
1399 bp->b_dev = NODEV;
1400 bp->b_blkno = 0;
1401 bp->b_lblkno = 0;
1402 bp->b_rawblkno = 0;
1403 bp->b_iodone = 0;
1404 bp->b_error = 0;
1405 bp->b_resid = 0;
1406 bp->b_bcount = 0;
1407
1408 LIST_REMOVE(bp, b_hash);
1409
1410 /* Disassociate us from our vnode, if we had one... */
1411 if (vp != NULL) {
1412 mutex_enter(vp->v_interlock);
1413 brelvp(bp);
1414 mutex_exit(vp->v_interlock);
1415 }
1416
1417 return (bp);
1418 }
1419
1420 /*
1421 * Attempt to free an aged buffer off the queues.
1422 * Called with queue lock held.
1423 * Returns the amount of buffer memory freed.
1424 */
1425 static int
1426 buf_trim(void)
1427 {
1428 buf_t *bp;
1429 long size = 0;
1430
1431 KASSERT(mutex_owned(&bufcache_lock));
1432
1433 /* Instruct getnewbuf() to get buffers off the queues */
1434 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1435 return 0;
1436
1437 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1438 size = bp->b_bufsize;
1439 bufmem -= size;
1440 if (size > 0) {
1441 buf_mrelease(bp->b_data, size);
1442 bp->b_bcount = bp->b_bufsize = 0;
1443 }
1444 /* brelse() will return the buffer to the global buffer pool */
1445 brelsel(bp, 0);
1446 return size;
1447 }
1448
1449 int
1450 buf_drain(int n)
1451 {
1452 int size = 0, sz;
1453
1454 KASSERT(mutex_owned(&bufcache_lock));
1455
1456 while (size < n && bufmem > bufmem_lowater) {
1457 sz = buf_trim();
1458 if (sz <= 0)
1459 break;
1460 size += sz;
1461 }
1462
1463 return size;
1464 }
1465
1466 /*
1467 * Wait for operations on the buffer to complete.
1468 * When they do, extract and return the I/O's error value.
1469 */
1470 int
1471 biowait(buf_t *bp)
1472 {
1473
1474 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1475 KASSERT(bp->b_refcnt > 0);
1476
1477 mutex_enter(bp->b_objlock);
1478 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1479 cv_wait(&bp->b_done, bp->b_objlock);
1480 mutex_exit(bp->b_objlock);
1481
1482 return bp->b_error;
1483 }
1484
1485 /*
1486 * Mark I/O complete on a buffer.
1487 *
1488 * If a callback has been requested, e.g. the pageout
1489 * daemon, do so. Otherwise, awaken waiting processes.
1490 *
1491 * [ Leffler, et al., says on p.247:
1492 * "This routine wakes up the blocked process, frees the buffer
1493 * for an asynchronous write, or, for a request by the pagedaemon
1494 * process, invokes a procedure specified in the buffer structure" ]
1495 *
1496 * In real life, the pagedaemon (or other system processes) wants
1497 * to do async stuff to, and doesn't want the buffer brelse()'d.
1498 * (for swap pager, that puts swap buffers on the free lists (!!!),
1499 * for the vn device, that puts allocated buffers on the free lists!)
1500 */
1501 void
1502 biodone(buf_t *bp)
1503 {
1504 int s;
1505
1506 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1507
1508 if (cpu_intr_p()) {
1509 /* From interrupt mode: defer to a soft interrupt. */
1510 s = splvm();
1511 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1512 softint_schedule(biodone_sih);
1513 splx(s);
1514 } else {
1515 /* Process now - the buffer may be freed soon. */
1516 biodone2(bp);
1517 }
1518 }
1519
1520 static void
1521 biodone2(buf_t *bp)
1522 {
1523 void (*callout)(buf_t *);
1524
1525 mutex_enter(bp->b_objlock);
1526 /* Note that the transfer is done. */
1527 if (ISSET(bp->b_oflags, BO_DONE))
1528 panic("biodone2 already");
1529 CLR(bp->b_flags, B_COWDONE);
1530 SET(bp->b_oflags, BO_DONE);
1531 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1532
1533 /* Wake up waiting writers. */
1534 if (!ISSET(bp->b_flags, B_READ))
1535 vwakeup(bp);
1536
1537 if ((callout = bp->b_iodone) != NULL) {
1538 /* Note callout done, then call out. */
1539 KASSERT(!cv_has_waiters(&bp->b_done));
1540 KERNEL_LOCK(1, NULL); /* XXXSMP */
1541 bp->b_iodone = NULL;
1542 mutex_exit(bp->b_objlock);
1543 (*callout)(bp);
1544 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1545 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1546 /* If async, release. */
1547 KASSERT(!cv_has_waiters(&bp->b_done));
1548 mutex_exit(bp->b_objlock);
1549 brelse(bp, 0);
1550 } else {
1551 /* Otherwise just wake up waiters in biowait(). */
1552 cv_broadcast(&bp->b_done);
1553 mutex_exit(bp->b_objlock);
1554 }
1555 }
1556
1557 static void
1558 biointr(void *cookie)
1559 {
1560 struct cpu_info *ci;
1561 buf_t *bp;
1562 int s;
1563
1564 ci = curcpu();
1565
1566 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1567 KASSERT(curcpu() == ci);
1568
1569 s = splvm();
1570 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1571 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1572 splx(s);
1573
1574 biodone2(bp);
1575 }
1576 }
1577
1578 /*
1579 * Wait for all buffers to complete I/O
1580 * Return the number of "stuck" buffers.
1581 */
1582 int
1583 buf_syncwait(void)
1584 {
1585 buf_t *bp;
1586 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1587
1588 dcount = 10000;
1589 for (iter = 0; iter < 20;) {
1590 mutex_enter(&bufcache_lock);
1591 nbusy = 0;
1592 for (ihash = 0; ihash < bufhash+1; ihash++) {
1593 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1594 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1595 nbusy += ((bp->b_flags & B_READ) == 0);
1596 }
1597 }
1598 mutex_exit(&bufcache_lock);
1599
1600 if (nbusy == 0)
1601 break;
1602 if (nbusy_prev == 0)
1603 nbusy_prev = nbusy;
1604 printf("%d ", nbusy);
1605 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1606 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1607 iter++;
1608 else
1609 nbusy_prev = nbusy;
1610 }
1611
1612 if (nbusy) {
1613 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1614 printf("giving up\nPrinting vnodes for busy buffers\n");
1615 for (ihash = 0; ihash < bufhash+1; ihash++) {
1616 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1617 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1618 (bp->b_flags & B_READ) == 0)
1619 vprint(NULL, bp->b_vp);
1620 }
1621 }
1622 #endif
1623 }
1624
1625 return nbusy;
1626 }
1627
1628 static void
1629 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1630 {
1631
1632 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1633 o->b_error = i->b_error;
1634 o->b_prio = i->b_prio;
1635 o->b_dev = i->b_dev;
1636 o->b_bufsize = i->b_bufsize;
1637 o->b_bcount = i->b_bcount;
1638 o->b_resid = i->b_resid;
1639 o->b_addr = PTRTOUINT64(i->b_data);
1640 o->b_blkno = i->b_blkno;
1641 o->b_rawblkno = i->b_rawblkno;
1642 o->b_iodone = PTRTOUINT64(i->b_iodone);
1643 o->b_proc = PTRTOUINT64(i->b_proc);
1644 o->b_vp = PTRTOUINT64(i->b_vp);
1645 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1646 o->b_lblkno = i->b_lblkno;
1647 }
1648
1649 #define KERN_BUFSLOP 20
1650 static int
1651 sysctl_dobuf(SYSCTLFN_ARGS)
1652 {
1653 buf_t *bp;
1654 struct buf_sysctl bs;
1655 struct bqueue *bq;
1656 char *dp;
1657 u_int i, op, arg;
1658 size_t len, needed, elem_size, out_size;
1659 int error, elem_count, retries;
1660
1661 if (namelen == 1 && name[0] == CTL_QUERY)
1662 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1663
1664 if (namelen != 4)
1665 return (EINVAL);
1666
1667 retries = 100;
1668 retry:
1669 dp = oldp;
1670 len = (oldp != NULL) ? *oldlenp : 0;
1671 op = name[0];
1672 arg = name[1];
1673 elem_size = name[2];
1674 elem_count = name[3];
1675 out_size = MIN(sizeof(bs), elem_size);
1676
1677 /*
1678 * at the moment, these are just "placeholders" to make the
1679 * API for retrieving kern.buf data more extensible in the
1680 * future.
1681 *
1682 * XXX kern.buf currently has "netbsd32" issues. hopefully
1683 * these will be resolved at a later point.
1684 */
1685 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1686 elem_size < 1 || elem_count < 0)
1687 return (EINVAL);
1688
1689 error = 0;
1690 needed = 0;
1691 sysctl_unlock();
1692 mutex_enter(&bufcache_lock);
1693 for (i = 0; i < BQUEUES; i++) {
1694 bq = &bufqueues[i];
1695 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1696 bq->bq_marker = bp;
1697 if (len >= elem_size && elem_count > 0) {
1698 sysctl_fillbuf(bp, &bs);
1699 mutex_exit(&bufcache_lock);
1700 error = copyout(&bs, dp, out_size);
1701 mutex_enter(&bufcache_lock);
1702 if (error)
1703 break;
1704 if (bq->bq_marker != bp) {
1705 /*
1706 * This sysctl node is only for
1707 * statistics. Retry; if the
1708 * queue keeps changing, then
1709 * bail out.
1710 */
1711 if (retries-- == 0) {
1712 error = EAGAIN;
1713 break;
1714 }
1715 mutex_exit(&bufcache_lock);
1716 goto retry;
1717 }
1718 dp += elem_size;
1719 len -= elem_size;
1720 }
1721 needed += elem_size;
1722 if (elem_count > 0 && elem_count != INT_MAX)
1723 elem_count--;
1724 }
1725 if (error != 0)
1726 break;
1727 }
1728 mutex_exit(&bufcache_lock);
1729 sysctl_relock();
1730
1731 *oldlenp = needed;
1732 if (oldp == NULL)
1733 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1734
1735 return (error);
1736 }
1737
1738 static int
1739 sysctl_bufvm_update(SYSCTLFN_ARGS)
1740 {
1741 int t, error, rv;
1742 struct sysctlnode node;
1743
1744 node = *rnode;
1745 node.sysctl_data = &t;
1746 t = *(int *)rnode->sysctl_data;
1747 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1748 if (error || newp == NULL)
1749 return (error);
1750
1751 if (t < 0)
1752 return EINVAL;
1753 if (rnode->sysctl_data == &bufcache) {
1754 if (t > 100)
1755 return (EINVAL);
1756 bufcache = t;
1757 buf_setwm();
1758 } else if (rnode->sysctl_data == &bufmem_lowater) {
1759 if (bufmem_hiwater - t < 16)
1760 return (EINVAL);
1761 bufmem_lowater = t;
1762 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1763 if (t - bufmem_lowater < 16)
1764 return (EINVAL);
1765 bufmem_hiwater = t;
1766 } else
1767 return (EINVAL);
1768
1769 /* Drain until below new high water mark */
1770 sysctl_unlock();
1771 mutex_enter(&bufcache_lock);
1772 while ((t = bufmem - bufmem_hiwater) >= 0) {
1773 rv = buf_drain(t / (2 * 1024));
1774 if (rv <= 0)
1775 break;
1776 }
1777 mutex_exit(&bufcache_lock);
1778 sysctl_relock();
1779
1780 return 0;
1781 }
1782
1783 static struct sysctllog *vfsbio_sysctllog;
1784
1785 static void
1786 sysctl_kern_buf_setup(void)
1787 {
1788
1789 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1790 CTLFLAG_PERMANENT,
1791 CTLTYPE_NODE, "kern", NULL,
1792 NULL, 0, NULL, 0,
1793 CTL_KERN, CTL_EOL);
1794 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1795 CTLFLAG_PERMANENT,
1796 CTLTYPE_NODE, "buf",
1797 SYSCTL_DESCR("Kernel buffer cache information"),
1798 sysctl_dobuf, 0, NULL, 0,
1799 CTL_KERN, KERN_BUF, CTL_EOL);
1800 }
1801
1802 static void
1803 sysctl_vm_buf_setup(void)
1804 {
1805
1806 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1807 CTLFLAG_PERMANENT,
1808 CTLTYPE_NODE, "vm", NULL,
1809 NULL, 0, NULL, 0,
1810 CTL_VM, CTL_EOL);
1811 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1812 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1813 CTLTYPE_INT, "bufcache",
1814 SYSCTL_DESCR("Percentage of physical memory to use for "
1815 "buffer cache"),
1816 sysctl_bufvm_update, 0, &bufcache, 0,
1817 CTL_VM, CTL_CREATE, CTL_EOL);
1818 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1819 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1820 CTLTYPE_INT, "bufmem",
1821 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1822 "cache"),
1823 NULL, 0, &bufmem, 0,
1824 CTL_VM, CTL_CREATE, CTL_EOL);
1825 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1826 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1827 CTLTYPE_INT, "bufmem_lowater",
1828 SYSCTL_DESCR("Minimum amount of kernel memory to "
1829 "reserve for buffer cache"),
1830 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1831 CTL_VM, CTL_CREATE, CTL_EOL);
1832 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1833 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1834 CTLTYPE_INT, "bufmem_hiwater",
1835 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1836 "for buffer cache"),
1837 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1838 CTL_VM, CTL_CREATE, CTL_EOL);
1839 }
1840
1841 #ifdef DEBUG
1842 /*
1843 * Print out statistics on the current allocation of the buffer pool.
1844 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1845 * in vfs_syscalls.c using sysctl.
1846 */
1847 void
1848 vfs_bufstats(void)
1849 {
1850 int i, j, count;
1851 buf_t *bp;
1852 struct bqueue *dp;
1853 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1854 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1855
1856 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1857 count = 0;
1858 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1859 counts[j] = 0;
1860 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1861 counts[bp->b_bufsize/PAGE_SIZE]++;
1862 count++;
1863 }
1864 printf("%s: total-%d", bname[i], count);
1865 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1866 if (counts[j] != 0)
1867 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1868 printf("\n");
1869 }
1870 }
1871 #endif /* DEBUG */
1872
1873 /* ------------------------------ */
1874
1875 buf_t *
1876 getiobuf(struct vnode *vp, bool waitok)
1877 {
1878 buf_t *bp;
1879
1880 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1881 if (bp == NULL)
1882 return bp;
1883
1884 buf_init(bp);
1885
1886 if ((bp->b_vp = vp) == NULL)
1887 bp->b_objlock = &buffer_lock;
1888 else
1889 bp->b_objlock = vp->v_interlock;
1890
1891 return bp;
1892 }
1893
1894 void
1895 putiobuf(buf_t *bp)
1896 {
1897
1898 buf_destroy(bp);
1899 pool_cache_put(bufio_cache, bp);
1900 }
1901
1902 /*
1903 * nestiobuf_iodone: b_iodone callback for nested buffers.
1904 */
1905
1906 void
1907 nestiobuf_iodone(buf_t *bp)
1908 {
1909 buf_t *mbp = bp->b_private;
1910 int error;
1911 int donebytes;
1912
1913 KASSERT(bp->b_bcount <= bp->b_bufsize);
1914 KASSERT(mbp != bp);
1915
1916 error = bp->b_error;
1917 if (bp->b_error == 0 &&
1918 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1919 /*
1920 * Not all got transfered, raise an error. We have no way to
1921 * propagate these conditions to mbp.
1922 */
1923 error = EIO;
1924 }
1925
1926 donebytes = bp->b_bufsize;
1927
1928 putiobuf(bp);
1929 nestiobuf_done(mbp, donebytes, error);
1930 }
1931
1932 /*
1933 * nestiobuf_setup: setup a "nested" buffer.
1934 *
1935 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1936 * => 'bp' should be a buffer allocated by getiobuf.
1937 * => 'offset' is a byte offset in the master buffer.
1938 * => 'size' is a size in bytes of this nested buffer.
1939 */
1940
1941 void
1942 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1943 {
1944 const int b_read = mbp->b_flags & B_READ;
1945 struct vnode *vp = mbp->b_vp;
1946
1947 KASSERT(mbp->b_bcount >= offset + size);
1948 bp->b_vp = vp;
1949 bp->b_dev = mbp->b_dev;
1950 bp->b_objlock = mbp->b_objlock;
1951 bp->b_cflags = BC_BUSY;
1952 bp->b_flags = B_ASYNC | b_read;
1953 bp->b_iodone = nestiobuf_iodone;
1954 bp->b_data = (char *)mbp->b_data + offset;
1955 bp->b_resid = bp->b_bcount = size;
1956 bp->b_bufsize = bp->b_bcount;
1957 bp->b_private = mbp;
1958 BIO_COPYPRIO(bp, mbp);
1959 if (!b_read && vp != NULL) {
1960 mutex_enter(vp->v_interlock);
1961 vp->v_numoutput++;
1962 mutex_exit(vp->v_interlock);
1963 }
1964 }
1965
1966 /*
1967 * nestiobuf_done: propagate completion to the master buffer.
1968 *
1969 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1970 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1971 */
1972
1973 void
1974 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1975 {
1976
1977 if (donebytes == 0) {
1978 return;
1979 }
1980 mutex_enter(mbp->b_objlock);
1981 KASSERT(mbp->b_resid >= donebytes);
1982 mbp->b_resid -= donebytes;
1983 if (error)
1984 mbp->b_error = error;
1985 if (mbp->b_resid == 0) {
1986 if (mbp->b_error)
1987 mbp->b_resid = mbp->b_bcount;
1988 mutex_exit(mbp->b_objlock);
1989 biodone(mbp);
1990 } else
1991 mutex_exit(mbp->b_objlock);
1992 }
1993
1994 void
1995 buf_init(buf_t *bp)
1996 {
1997
1998 cv_init(&bp->b_busy, "biolock");
1999 cv_init(&bp->b_done, "biowait");
2000 bp->b_dev = NODEV;
2001 bp->b_error = 0;
2002 bp->b_flags = 0;
2003 bp->b_cflags = 0;
2004 bp->b_oflags = 0;
2005 bp->b_objlock = &buffer_lock;
2006 bp->b_iodone = NULL;
2007 bp->b_refcnt = 1;
2008 bp->b_dev = NODEV;
2009 bp->b_vnbufs.le_next = NOLIST;
2010 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2011 }
2012
2013 void
2014 buf_destroy(buf_t *bp)
2015 {
2016
2017 cv_destroy(&bp->b_done);
2018 cv_destroy(&bp->b_busy);
2019 }
2020
2021 int
2022 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2023 {
2024 int error;
2025
2026 KASSERT(mutex_owned(&bufcache_lock));
2027
2028 if ((bp->b_cflags & BC_BUSY) != 0) {
2029 if (curlwp == uvm.pagedaemon_lwp)
2030 return EDEADLK;
2031 bp->b_cflags |= BC_WANTED;
2032 bref(bp);
2033 if (interlock != NULL)
2034 mutex_exit(interlock);
2035 if (intr) {
2036 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2037 timo);
2038 } else {
2039 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2040 timo);
2041 }
2042 brele(bp);
2043 if (interlock != NULL)
2044 mutex_enter(interlock);
2045 if (error != 0)
2046 return error;
2047 return EPASSTHROUGH;
2048 }
2049 bp->b_cflags |= BC_BUSY;
2050
2051 return 0;
2052 }
2053