Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.230
      1 /*	$NetBSD: vfs_bio.c,v 1.230 2011/06/12 03:35:56 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.230 2011/06/12 03:35:56 rmind Exp $");
    127 
    128 #include "opt_bufcache.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/kernel.h>
    133 #include <sys/proc.h>
    134 #include <sys/buf.h>
    135 #include <sys/vnode.h>
    136 #include <sys/mount.h>
    137 #include <sys/resourcevar.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/conf.h>
    140 #include <sys/kauth.h>
    141 #include <sys/fstrans.h>
    142 #include <sys/intr.h>
    143 #include <sys/cpu.h>
    144 #include <sys/wapbl.h>
    145 
    146 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    147 
    148 #include <miscfs/specfs/specdev.h>
    149 
    150 #ifndef	BUFPAGES
    151 # define BUFPAGES 0
    152 #endif
    153 
    154 #ifdef BUFCACHE
    155 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    156 #  error BUFCACHE is not between 5 and 95
    157 # endif
    158 #else
    159 # define BUFCACHE 15
    160 #endif
    161 
    162 u_int	nbuf;			/* desired number of buffer headers */
    163 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    164 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    165 
    166 /* Function prototypes */
    167 struct bqueue;
    168 
    169 static void buf_setwm(void);
    170 static int buf_trim(void);
    171 static void *bufpool_page_alloc(struct pool *, int);
    172 static void bufpool_page_free(struct pool *, void *);
    173 static buf_t *bio_doread(struct vnode *, daddr_t, int,
    174     kauth_cred_t, int);
    175 static buf_t *getnewbuf(int, int, int);
    176 static int buf_lotsfree(void);
    177 static int buf_canrelease(void);
    178 static u_long buf_mempoolidx(u_long);
    179 static u_long buf_roundsize(u_long);
    180 static void *buf_alloc(size_t);
    181 static void buf_mrelease(void *, size_t);
    182 static void binsheadfree(buf_t *, struct bqueue *);
    183 static void binstailfree(buf_t *, struct bqueue *);
    184 #ifdef DEBUG
    185 static int checkfreelist(buf_t *, struct bqueue *, int);
    186 #endif
    187 static void biointr(void *);
    188 static void biodone2(buf_t *);
    189 static void bref(buf_t *);
    190 static void brele(buf_t *);
    191 static void sysctl_kern_buf_setup(void);
    192 static void sysctl_vm_buf_setup(void);
    193 
    194 /*
    195  * Definitions for the buffer hash lists.
    196  */
    197 #define	BUFHASH(dvp, lbn)	\
    198 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    199 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    200 u_long	bufhash;
    201 struct bqueue bufqueues[BQUEUES];
    202 
    203 static kcondvar_t needbuffer_cv;
    204 
    205 /*
    206  * Buffer queue lock.
    207  */
    208 kmutex_t bufcache_lock;
    209 kmutex_t buffer_lock;
    210 
    211 /* Software ISR for completed transfers. */
    212 static void *biodone_sih;
    213 
    214 /* Buffer pool for I/O buffers. */
    215 static pool_cache_t buf_cache;
    216 static pool_cache_t bufio_cache;
    217 
    218 /* XXX - somewhat gross.. */
    219 #if MAXBSIZE == 0x2000
    220 #define NMEMPOOLS 5
    221 #elif MAXBSIZE == 0x4000
    222 #define NMEMPOOLS 6
    223 #elif MAXBSIZE == 0x8000
    224 #define NMEMPOOLS 7
    225 #else
    226 #define NMEMPOOLS 8
    227 #endif
    228 
    229 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
    230 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
    231 #error update vfs_bio buffer memory parameters
    232 #endif
    233 
    234 /* Buffer memory pools */
    235 static struct pool bmempools[NMEMPOOLS];
    236 
    237 static struct vm_map *buf_map;
    238 
    239 /*
    240  * Buffer memory pool allocator.
    241  */
    242 static void *
    243 bufpool_page_alloc(struct pool *pp, int flags)
    244 {
    245 
    246 	return (void *)uvm_km_alloc(buf_map,
    247 	    MAXBSIZE, MAXBSIZE,
    248 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    249 	    | UVM_KMF_WIRED);
    250 }
    251 
    252 static void
    253 bufpool_page_free(struct pool *pp, void *v)
    254 {
    255 
    256 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    257 }
    258 
    259 static struct pool_allocator bufmempool_allocator = {
    260 	.pa_alloc = bufpool_page_alloc,
    261 	.pa_free = bufpool_page_free,
    262 	.pa_pagesz = MAXBSIZE,
    263 };
    264 
    265 /* Buffer memory management variables */
    266 u_long bufmem_valimit;
    267 u_long bufmem_hiwater;
    268 u_long bufmem_lowater;
    269 u_long bufmem;
    270 
    271 /*
    272  * MD code can call this to set a hard limit on the amount
    273  * of virtual memory used by the buffer cache.
    274  */
    275 int
    276 buf_setvalimit(vsize_t sz)
    277 {
    278 
    279 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    280 	if (sz < NMEMPOOLS * MAXBSIZE)
    281 		return EINVAL;
    282 
    283 	bufmem_valimit = sz;
    284 	return 0;
    285 }
    286 
    287 static void
    288 buf_setwm(void)
    289 {
    290 
    291 	bufmem_hiwater = buf_memcalc();
    292 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    293 #define	BUFMEM_WMSHIFT	3
    294 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    295 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    296 		/* Ensure a reasonable minimum value */
    297 		bufmem_hiwater = BUFMEM_HIWMMIN;
    298 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    299 }
    300 
    301 #ifdef DEBUG
    302 int debug_verify_freelist = 0;
    303 static int
    304 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    305 {
    306 	buf_t *b;
    307 
    308 	if (!debug_verify_freelist)
    309 		return 1;
    310 
    311 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    312 		if (b == bp)
    313 			return ison ? 1 : 0;
    314 	}
    315 
    316 	return ison ? 0 : 1;
    317 }
    318 #endif
    319 
    320 /*
    321  * Insq/Remq for the buffer hash lists.
    322  * Call with buffer queue locked.
    323  */
    324 static void
    325 binsheadfree(buf_t *bp, struct bqueue *dp)
    326 {
    327 
    328 	KASSERT(mutex_owned(&bufcache_lock));
    329 	KASSERT(bp->b_freelistindex == -1);
    330 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    331 	dp->bq_bytes += bp->b_bufsize;
    332 	bp->b_freelistindex = dp - bufqueues;
    333 }
    334 
    335 static void
    336 binstailfree(buf_t *bp, struct bqueue *dp)
    337 {
    338 
    339 	KASSERT(mutex_owned(&bufcache_lock));
    340 	KASSERT(bp->b_freelistindex == -1);
    341 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    342 	dp->bq_bytes += bp->b_bufsize;
    343 	bp->b_freelistindex = dp - bufqueues;
    344 }
    345 
    346 void
    347 bremfree(buf_t *bp)
    348 {
    349 	struct bqueue *dp;
    350 	int bqidx = bp->b_freelistindex;
    351 
    352 	KASSERT(mutex_owned(&bufcache_lock));
    353 
    354 	KASSERT(bqidx != -1);
    355 	dp = &bufqueues[bqidx];
    356 	KDASSERT(checkfreelist(bp, dp, 1));
    357 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    358 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    359 	dp->bq_bytes -= bp->b_bufsize;
    360 
    361 	/* For the sysctl helper. */
    362 	if (bp == dp->bq_marker)
    363 		dp->bq_marker = NULL;
    364 
    365 #if defined(DIAGNOSTIC)
    366 	bp->b_freelistindex = -1;
    367 #endif /* defined(DIAGNOSTIC) */
    368 }
    369 
    370 /*
    371  * Add a reference to an buffer structure that came from buf_cache.
    372  */
    373 static inline void
    374 bref(buf_t *bp)
    375 {
    376 
    377 	KASSERT(mutex_owned(&bufcache_lock));
    378 	KASSERT(bp->b_refcnt > 0);
    379 
    380 	bp->b_refcnt++;
    381 }
    382 
    383 /*
    384  * Free an unused buffer structure that came from buf_cache.
    385  */
    386 static inline void
    387 brele(buf_t *bp)
    388 {
    389 
    390 	KASSERT(mutex_owned(&bufcache_lock));
    391 	KASSERT(bp->b_refcnt > 0);
    392 
    393 	if (bp->b_refcnt-- == 1) {
    394 		buf_destroy(bp);
    395 #ifdef DEBUG
    396 		memset((char *)bp, 0, sizeof(*bp));
    397 #endif
    398 		pool_cache_put(buf_cache, bp);
    399 	}
    400 }
    401 
    402 /*
    403  * note that for some ports this is used by pmap bootstrap code to
    404  * determine kva size.
    405  */
    406 u_long
    407 buf_memcalc(void)
    408 {
    409 	u_long n;
    410 
    411 	/*
    412 	 * Determine the upper bound of memory to use for buffers.
    413 	 *
    414 	 *	- If bufpages is specified, use that as the number
    415 	 *	  pages.
    416 	 *
    417 	 *	- Otherwise, use bufcache as the percentage of
    418 	 *	  physical memory.
    419 	 */
    420 	if (bufpages != 0) {
    421 		n = bufpages;
    422 	} else {
    423 		if (bufcache < 5) {
    424 			printf("forcing bufcache %d -> 5", bufcache);
    425 			bufcache = 5;
    426 		}
    427 		if (bufcache > 95) {
    428 			printf("forcing bufcache %d -> 95", bufcache);
    429 			bufcache = 95;
    430 		}
    431 		n = calc_cache_size(buf_map, bufcache,
    432 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    433 		    / PAGE_SIZE;
    434 	}
    435 
    436 	n <<= PAGE_SHIFT;
    437 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    438 		n = bufmem_valimit;
    439 
    440 	return (n);
    441 }
    442 
    443 /*
    444  * Initialize buffers and hash links for buffers.
    445  */
    446 void
    447 bufinit(void)
    448 {
    449 	struct bqueue *dp;
    450 	int use_std;
    451 	u_int i;
    452 
    453 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    454 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    455 	cv_init(&needbuffer_cv, "needbuf");
    456 
    457 	if (bufmem_valimit != 0) {
    458 		vaddr_t minaddr = 0, maxaddr;
    459 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    460 					  bufmem_valimit, 0, false, 0);
    461 		if (buf_map == NULL)
    462 			panic("bufinit: cannot allocate submap");
    463 	} else
    464 		buf_map = kernel_map;
    465 
    466 	/*
    467 	 * Initialize buffer cache memory parameters.
    468 	 */
    469 	bufmem = 0;
    470 	buf_setwm();
    471 
    472 	/* On "small" machines use small pool page sizes where possible */
    473 	use_std = (physmem < atop(16*1024*1024));
    474 
    475 	/*
    476 	 * Also use them on systems that can map the pool pages using
    477 	 * a direct-mapped segment.
    478 	 */
    479 #ifdef PMAP_MAP_POOLPAGE
    480 	use_std = 1;
    481 #endif
    482 
    483 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    484 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    485 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    486 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    487 
    488 	bufmempool_allocator.pa_backingmap = buf_map;
    489 	for (i = 0; i < NMEMPOOLS; i++) {
    490 		struct pool_allocator *pa;
    491 		struct pool *pp = &bmempools[i];
    492 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    493 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    494 		if (__predict_true(size >= 1024))
    495 			(void)snprintf(name, 8, "buf%dk", size / 1024);
    496 		else
    497 			(void)snprintf(name, 8, "buf%db", size);
    498 		pa = (size <= PAGE_SIZE && use_std)
    499 			? &pool_allocator_nointr
    500 			: &bufmempool_allocator;
    501 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    502 		pool_setlowat(pp, 1);
    503 		pool_sethiwat(pp, 1);
    504 	}
    505 
    506 	/* Initialize the buffer queues */
    507 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    508 		TAILQ_INIT(&dp->bq_queue);
    509 		dp->bq_bytes = 0;
    510 	}
    511 
    512 	/*
    513 	 * Estimate hash table size based on the amount of memory we
    514 	 * intend to use for the buffer cache. The average buffer
    515 	 * size is dependent on our clients (i.e. filesystems).
    516 	 *
    517 	 * For now, use an empirical 3K per buffer.
    518 	 */
    519 	nbuf = (bufmem_hiwater / 1024) / 3;
    520 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    521 
    522 	sysctl_kern_buf_setup();
    523 	sysctl_vm_buf_setup();
    524 }
    525 
    526 void
    527 bufinit2(void)
    528 {
    529 
    530 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    531 	    NULL);
    532 	if (biodone_sih == NULL)
    533 		panic("bufinit2: can't establish soft interrupt");
    534 }
    535 
    536 static int
    537 buf_lotsfree(void)
    538 {
    539 	int try, thresh;
    540 
    541 	/* Always allocate if less than the low water mark. */
    542 	if (bufmem < bufmem_lowater)
    543 		return 1;
    544 
    545 	/* Never allocate if greater than the high water mark. */
    546 	if (bufmem > bufmem_hiwater)
    547 		return 0;
    548 
    549 	/* If there's anything on the AGE list, it should be eaten. */
    550 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    551 		return 0;
    552 
    553 	/*
    554 	 * The probabily of getting a new allocation is inversely
    555 	 * proportional to the current size of the cache, using
    556 	 * a granularity of 16 steps.
    557 	 */
    558 	try = random() & 0x0000000fL;
    559 
    560 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    561 	thresh = (bufmem - bufmem_lowater) /
    562 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    563 
    564 	if (try >= thresh)
    565 		return 1;
    566 
    567 	/* Otherwise don't allocate. */
    568 	return 0;
    569 }
    570 
    571 /*
    572  * Return estimate of bytes we think need to be
    573  * released to help resolve low memory conditions.
    574  *
    575  * => called with bufcache_lock held.
    576  */
    577 static int
    578 buf_canrelease(void)
    579 {
    580 	int pagedemand, ninvalid = 0;
    581 
    582 	KASSERT(mutex_owned(&bufcache_lock));
    583 
    584 	if (bufmem < bufmem_lowater)
    585 		return 0;
    586 
    587 	if (bufmem > bufmem_hiwater)
    588 		return bufmem - bufmem_hiwater;
    589 
    590 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    591 
    592 	pagedemand = uvmexp.freetarg - uvmexp.free;
    593 	if (pagedemand < 0)
    594 		return ninvalid;
    595 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    596 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    597 }
    598 
    599 /*
    600  * Buffer memory allocation helper functions
    601  */
    602 static u_long
    603 buf_mempoolidx(u_long size)
    604 {
    605 	u_int n = 0;
    606 
    607 	size -= 1;
    608 	size >>= MEMPOOL_INDEX_OFFSET;
    609 	while (size) {
    610 		size >>= 1;
    611 		n += 1;
    612 	}
    613 	if (n >= NMEMPOOLS)
    614 		panic("buf mem pool index %d", n);
    615 	return n;
    616 }
    617 
    618 static u_long
    619 buf_roundsize(u_long size)
    620 {
    621 	/* Round up to nearest power of 2 */
    622 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    623 }
    624 
    625 static void *
    626 buf_alloc(size_t size)
    627 {
    628 	u_int n = buf_mempoolidx(size);
    629 	void *addr;
    630 
    631 	while (1) {
    632 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    633 		if (addr != NULL)
    634 			break;
    635 
    636 		/* No memory, see if we can free some. If so, try again */
    637 		mutex_enter(&bufcache_lock);
    638 		if (buf_drain(1) > 0) {
    639 			mutex_exit(&bufcache_lock);
    640 			continue;
    641 		}
    642 
    643 		if (curlwp == uvm.pagedaemon_lwp) {
    644 			mutex_exit(&bufcache_lock);
    645 			return NULL;
    646 		}
    647 
    648 		/* Wait for buffers to arrive on the LRU queue */
    649 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    650 		mutex_exit(&bufcache_lock);
    651 	}
    652 
    653 	return addr;
    654 }
    655 
    656 static void
    657 buf_mrelease(void *addr, size_t size)
    658 {
    659 
    660 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    661 }
    662 
    663 /*
    664  * bread()/breadn() helper.
    665  */
    666 static buf_t *
    667 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    668     int async)
    669 {
    670 	buf_t *bp;
    671 	struct mount *mp;
    672 
    673 	bp = getblk(vp, blkno, size, 0, 0);
    674 
    675 #ifdef DIAGNOSTIC
    676 	if (bp == NULL) {
    677 		panic("bio_doread: no such buf");
    678 	}
    679 #endif
    680 
    681 	/*
    682 	 * If buffer does not have data valid, start a read.
    683 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    684 	 * Therefore, it's valid if its I/O has completed or been delayed.
    685 	 */
    686 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    687 		/* Start I/O for the buffer. */
    688 		SET(bp->b_flags, B_READ | async);
    689 		if (async)
    690 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    691 		else
    692 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    693 		VOP_STRATEGY(vp, bp);
    694 
    695 		/* Pay for the read. */
    696 		curlwp->l_ru.ru_inblock++;
    697 	} else if (async)
    698 		brelse(bp, 0);
    699 
    700 	if (vp->v_type == VBLK)
    701 		mp = vp->v_specmountpoint;
    702 	else
    703 		mp = vp->v_mount;
    704 
    705 	/*
    706 	 * Collect statistics on synchronous and asynchronous reads.
    707 	 * Reads from block devices are charged to their associated
    708 	 * filesystem (if any).
    709 	 */
    710 	if (mp != NULL) {
    711 		if (async == 0)
    712 			mp->mnt_stat.f_syncreads++;
    713 		else
    714 			mp->mnt_stat.f_asyncreads++;
    715 	}
    716 
    717 	return (bp);
    718 }
    719 
    720 /*
    721  * Read a disk block.
    722  * This algorithm described in Bach (p.54).
    723  */
    724 int
    725 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    726     int flags, buf_t **bpp)
    727 {
    728 	buf_t *bp;
    729 	int error;
    730 
    731 	/* Get buffer for block. */
    732 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    733 
    734 	/* Wait for the read to complete, and return result. */
    735 	error = biowait(bp);
    736 	if (error == 0 && (flags & B_MODIFY) != 0)
    737 		error = fscow_run(bp, true);
    738 
    739 	return error;
    740 }
    741 
    742 /*
    743  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    744  * Trivial modification to the breada algorithm presented in Bach (p.55).
    745  */
    746 int
    747 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    748     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
    749 {
    750 	buf_t *bp;
    751 	int error, i;
    752 
    753 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    754 
    755 	/*
    756 	 * For each of the read-ahead blocks, start a read, if necessary.
    757 	 */
    758 	mutex_enter(&bufcache_lock);
    759 	for (i = 0; i < nrablks; i++) {
    760 		/* If it's in the cache, just go on to next one. */
    761 		if (incore(vp, rablks[i]))
    762 			continue;
    763 
    764 		/* Get a buffer for the read-ahead block */
    765 		mutex_exit(&bufcache_lock);
    766 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    767 		mutex_enter(&bufcache_lock);
    768 	}
    769 	mutex_exit(&bufcache_lock);
    770 
    771 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    772 	error = biowait(bp);
    773 	if (error == 0 && (flags & B_MODIFY) != 0)
    774 		error = fscow_run(bp, true);
    775 	return error;
    776 }
    777 
    778 /*
    779  * Block write.  Described in Bach (p.56)
    780  */
    781 int
    782 bwrite(buf_t *bp)
    783 {
    784 	int rv, sync, wasdelayed;
    785 	struct vnode *vp;
    786 	struct mount *mp;
    787 
    788 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    789 	KASSERT(!cv_has_waiters(&bp->b_done));
    790 
    791 	vp = bp->b_vp;
    792 	if (vp != NULL) {
    793 		KASSERT(bp->b_objlock == vp->v_interlock);
    794 		if (vp->v_type == VBLK)
    795 			mp = vp->v_specmountpoint;
    796 		else
    797 			mp = vp->v_mount;
    798 	} else {
    799 		mp = NULL;
    800 	}
    801 
    802 	if (mp && mp->mnt_wapbl) {
    803 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    804 			bdwrite(bp);
    805 			return 0;
    806 		}
    807 	}
    808 
    809 	/*
    810 	 * Remember buffer type, to switch on it later.  If the write was
    811 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    812 	 * convert it to a delayed write.
    813 	 * XXX note that this relies on delayed tape writes being converted
    814 	 * to async, not sync writes (which is safe, but ugly).
    815 	 */
    816 	sync = !ISSET(bp->b_flags, B_ASYNC);
    817 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    818 		bdwrite(bp);
    819 		return (0);
    820 	}
    821 
    822 	/*
    823 	 * Collect statistics on synchronous and asynchronous writes.
    824 	 * Writes to block devices are charged to their associated
    825 	 * filesystem (if any).
    826 	 */
    827 	if (mp != NULL) {
    828 		if (sync)
    829 			mp->mnt_stat.f_syncwrites++;
    830 		else
    831 			mp->mnt_stat.f_asyncwrites++;
    832 	}
    833 
    834 	/*
    835 	 * Pay for the I/O operation and make sure the buf is on the correct
    836 	 * vnode queue.
    837 	 */
    838 	bp->b_error = 0;
    839 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    840 	CLR(bp->b_flags, B_READ);
    841 	if (wasdelayed) {
    842 		mutex_enter(&bufcache_lock);
    843 		mutex_enter(bp->b_objlock);
    844 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    845 		reassignbuf(bp, bp->b_vp);
    846 		mutex_exit(&bufcache_lock);
    847 	} else {
    848 		curlwp->l_ru.ru_oublock++;
    849 		mutex_enter(bp->b_objlock);
    850 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    851 	}
    852 	if (vp != NULL)
    853 		vp->v_numoutput++;
    854 	mutex_exit(bp->b_objlock);
    855 
    856 	/* Initiate disk write. */
    857 	if (sync)
    858 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    859 	else
    860 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    861 
    862 	VOP_STRATEGY(vp, bp);
    863 
    864 	if (sync) {
    865 		/* If I/O was synchronous, wait for it to complete. */
    866 		rv = biowait(bp);
    867 
    868 		/* Release the buffer. */
    869 		brelse(bp, 0);
    870 
    871 		return (rv);
    872 	} else {
    873 		return (0);
    874 	}
    875 }
    876 
    877 int
    878 vn_bwrite(void *v)
    879 {
    880 	struct vop_bwrite_args *ap = v;
    881 
    882 	return (bwrite(ap->a_bp));
    883 }
    884 
    885 /*
    886  * Delayed write.
    887  *
    888  * The buffer is marked dirty, but is not queued for I/O.
    889  * This routine should be used when the buffer is expected
    890  * to be modified again soon, typically a small write that
    891  * partially fills a buffer.
    892  *
    893  * NB: magnetic tapes cannot be delayed; they must be
    894  * written in the order that the writes are requested.
    895  *
    896  * Described in Leffler, et al. (pp. 208-213).
    897  */
    898 void
    899 bdwrite(buf_t *bp)
    900 {
    901 
    902 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    903 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    904 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    905 	KASSERT(!cv_has_waiters(&bp->b_done));
    906 
    907 	/* If this is a tape block, write the block now. */
    908 	if (bdev_type(bp->b_dev) == D_TAPE) {
    909 		bawrite(bp);
    910 		return;
    911 	}
    912 
    913 	if (wapbl_vphaswapbl(bp->b_vp)) {
    914 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    915 
    916 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    917 			WAPBL_ADD_BUF(mp, bp);
    918 		}
    919 	}
    920 
    921 	/*
    922 	 * If the block hasn't been seen before:
    923 	 *	(1) Mark it as having been seen,
    924 	 *	(2) Charge for the write,
    925 	 *	(3) Make sure it's on its vnode's correct block list.
    926 	 */
    927 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    928 
    929 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    930 		mutex_enter(&bufcache_lock);
    931 		mutex_enter(bp->b_objlock);
    932 		SET(bp->b_oflags, BO_DELWRI);
    933 		curlwp->l_ru.ru_oublock++;
    934 		reassignbuf(bp, bp->b_vp);
    935 		mutex_exit(&bufcache_lock);
    936 	} else {
    937 		mutex_enter(bp->b_objlock);
    938 	}
    939 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    940 	CLR(bp->b_oflags, BO_DONE);
    941 	mutex_exit(bp->b_objlock);
    942 
    943 	brelse(bp, 0);
    944 }
    945 
    946 /*
    947  * Asynchronous block write; just an asynchronous bwrite().
    948  */
    949 void
    950 bawrite(buf_t *bp)
    951 {
    952 
    953 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    954 
    955 	SET(bp->b_flags, B_ASYNC);
    956 	VOP_BWRITE(bp);
    957 }
    958 
    959 /*
    960  * Release a buffer on to the free lists.
    961  * Described in Bach (p. 46).
    962  */
    963 void
    964 brelsel(buf_t *bp, int set)
    965 {
    966 	struct bqueue *bufq;
    967 	struct vnode *vp;
    968 
    969 	KASSERT(mutex_owned(&bufcache_lock));
    970 	KASSERT(!cv_has_waiters(&bp->b_done));
    971 	KASSERT(bp->b_refcnt > 0);
    972 
    973 	SET(bp->b_cflags, set);
    974 
    975 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    976 	KASSERT(bp->b_iodone == NULL);
    977 
    978 	/* Wake up any processes waiting for any buffer to become free. */
    979 	cv_signal(&needbuffer_cv);
    980 
    981 	/* Wake up any proceeses waiting for _this_ buffer to become */
    982 	if (ISSET(bp->b_cflags, BC_WANTED))
    983 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    984 
    985 	/* If it's clean clear the copy-on-write flag. */
    986 	if (ISSET(bp->b_flags, B_COWDONE)) {
    987 		mutex_enter(bp->b_objlock);
    988 		if (!ISSET(bp->b_oflags, BO_DELWRI))
    989 			CLR(bp->b_flags, B_COWDONE);
    990 		mutex_exit(bp->b_objlock);
    991 	}
    992 
    993 	/*
    994 	 * Determine which queue the buffer should be on, then put it there.
    995 	 */
    996 
    997 	/* If it's locked, don't report an error; try again later. */
    998 	if (ISSET(bp->b_flags, B_LOCKED))
    999 		bp->b_error = 0;
   1000 
   1001 	/* If it's not cacheable, or an error, mark it invalid. */
   1002 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1003 		SET(bp->b_cflags, BC_INVAL);
   1004 
   1005 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1006 		/*
   1007 		 * This is a delayed write buffer that was just flushed to
   1008 		 * disk.  It is still on the LRU queue.  If it's become
   1009 		 * invalid, then we need to move it to a different queue;
   1010 		 * otherwise leave it in its current position.
   1011 		 */
   1012 		CLR(bp->b_cflags, BC_VFLUSH);
   1013 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1014 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1015 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1016 			goto already_queued;
   1017 		} else {
   1018 			bremfree(bp);
   1019 		}
   1020 	}
   1021 
   1022 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1023 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1024 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1025 
   1026 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1027 		/*
   1028 		 * If it's invalid or empty, dissociate it from its vnode
   1029 		 * and put on the head of the appropriate queue.
   1030 		 */
   1031 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1032 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1033 				struct mount *mp = wapbl_vptomp(vp);
   1034 
   1035 				KASSERT(bp->b_iodone
   1036 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1037 				WAPBL_REMOVE_BUF(mp, bp);
   1038 			}
   1039 		}
   1040 
   1041 		mutex_enter(bp->b_objlock);
   1042 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1043 		if ((vp = bp->b_vp) != NULL) {
   1044 			KASSERT(bp->b_objlock == vp->v_interlock);
   1045 			reassignbuf(bp, bp->b_vp);
   1046 			brelvp(bp);
   1047 			mutex_exit(vp->v_interlock);
   1048 		} else {
   1049 			KASSERT(bp->b_objlock == &buffer_lock);
   1050 			mutex_exit(bp->b_objlock);
   1051 		}
   1052 
   1053 		if (bp->b_bufsize <= 0)
   1054 			/* no data */
   1055 			goto already_queued;
   1056 		else
   1057 			/* invalid data */
   1058 			bufq = &bufqueues[BQ_AGE];
   1059 		binsheadfree(bp, bufq);
   1060 	} else  {
   1061 		/*
   1062 		 * It has valid data.  Put it on the end of the appropriate
   1063 		 * queue, so that it'll stick around for as long as possible.
   1064 		 * If buf is AGE, but has dependencies, must put it on last
   1065 		 * bufqueue to be scanned, ie LRU. This protects against the
   1066 		 * livelock where BQ_AGE only has buffers with dependencies,
   1067 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1068 		 */
   1069 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1070 			/* locked in core */
   1071 			bufq = &bufqueues[BQ_LOCKED];
   1072 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1073 			/* valid data */
   1074 			bufq = &bufqueues[BQ_LRU];
   1075 		} else {
   1076 			/* stale but valid data */
   1077 			bufq = &bufqueues[BQ_AGE];
   1078 		}
   1079 		binstailfree(bp, bufq);
   1080 	}
   1081 already_queued:
   1082 	/* Unlock the buffer. */
   1083 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1084 	CLR(bp->b_flags, B_ASYNC);
   1085 	cv_broadcast(&bp->b_busy);
   1086 
   1087 	if (bp->b_bufsize <= 0)
   1088 		brele(bp);
   1089 }
   1090 
   1091 void
   1092 brelse(buf_t *bp, int set)
   1093 {
   1094 
   1095 	mutex_enter(&bufcache_lock);
   1096 	brelsel(bp, set);
   1097 	mutex_exit(&bufcache_lock);
   1098 }
   1099 
   1100 /*
   1101  * Determine if a block is in the cache.
   1102  * Just look on what would be its hash chain.  If it's there, return
   1103  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1104  * we normally don't return the buffer, unless the caller explicitly
   1105  * wants us to.
   1106  */
   1107 buf_t *
   1108 incore(struct vnode *vp, daddr_t blkno)
   1109 {
   1110 	buf_t *bp;
   1111 
   1112 	KASSERT(mutex_owned(&bufcache_lock));
   1113 
   1114 	/* Search hash chain */
   1115 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1116 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1117 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1118 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1119 		    	return (bp);
   1120 		}
   1121 	}
   1122 
   1123 	return (NULL);
   1124 }
   1125 
   1126 /*
   1127  * Get a block of requested size that is associated with
   1128  * a given vnode and block offset. If it is found in the
   1129  * block cache, mark it as having been found, make it busy
   1130  * and return it. Otherwise, return an empty block of the
   1131  * correct size. It is up to the caller to insure that the
   1132  * cached blocks be of the correct size.
   1133  */
   1134 buf_t *
   1135 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1136 {
   1137 	int err, preserve;
   1138 	buf_t *bp;
   1139 
   1140 	mutex_enter(&bufcache_lock);
   1141  loop:
   1142 	bp = incore(vp, blkno);
   1143 	if (bp != NULL) {
   1144 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1145 		if (err != 0) {
   1146 			if (err == EPASSTHROUGH)
   1147 				goto loop;
   1148 			mutex_exit(&bufcache_lock);
   1149 			return (NULL);
   1150 		}
   1151 		KASSERT(!cv_has_waiters(&bp->b_done));
   1152 #ifdef DIAGNOSTIC
   1153 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1154 		    bp->b_bcount < size && vp->v_type != VBLK)
   1155 			panic("getblk: block size invariant failed");
   1156 #endif
   1157 		bremfree(bp);
   1158 		preserve = 1;
   1159 	} else {
   1160 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1161 			goto loop;
   1162 
   1163 		if (incore(vp, blkno) != NULL) {
   1164 			/* The block has come into memory in the meantime. */
   1165 			brelsel(bp, 0);
   1166 			goto loop;
   1167 		}
   1168 
   1169 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1170 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1171 		mutex_enter(vp->v_interlock);
   1172 		bgetvp(vp, bp);
   1173 		mutex_exit(vp->v_interlock);
   1174 		preserve = 0;
   1175 	}
   1176 	mutex_exit(&bufcache_lock);
   1177 
   1178 	/*
   1179 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1180 	 * if we re-size buffers here.
   1181 	 */
   1182 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1183 		KASSERT(bp->b_bufsize >= size);
   1184 	} else {
   1185 		if (allocbuf(bp, size, preserve)) {
   1186 			mutex_enter(&bufcache_lock);
   1187 			LIST_REMOVE(bp, b_hash);
   1188 			mutex_exit(&bufcache_lock);
   1189 			brelse(bp, BC_INVAL);
   1190 			return NULL;
   1191 		}
   1192 	}
   1193 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1194 	return (bp);
   1195 }
   1196 
   1197 /*
   1198  * Get an empty, disassociated buffer of given size.
   1199  */
   1200 buf_t *
   1201 geteblk(int size)
   1202 {
   1203 	buf_t *bp;
   1204 	int error;
   1205 
   1206 	mutex_enter(&bufcache_lock);
   1207 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1208 		;
   1209 
   1210 	SET(bp->b_cflags, BC_INVAL);
   1211 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1212 	mutex_exit(&bufcache_lock);
   1213 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1214 	error = allocbuf(bp, size, 0);
   1215 	KASSERT(error == 0);
   1216 	return (bp);
   1217 }
   1218 
   1219 /*
   1220  * Expand or contract the actual memory allocated to a buffer.
   1221  *
   1222  * If the buffer shrinks, data is lost, so it's up to the
   1223  * caller to have written it out *first*; this routine will not
   1224  * start a write.  If the buffer grows, it's the callers
   1225  * responsibility to fill out the buffer's additional contents.
   1226  */
   1227 int
   1228 allocbuf(buf_t *bp, int size, int preserve)
   1229 {
   1230 	void *addr;
   1231 	vsize_t oldsize, desired_size;
   1232 	int oldcount;
   1233 	int delta;
   1234 
   1235 	desired_size = buf_roundsize(size);
   1236 	if (desired_size > MAXBSIZE)
   1237 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1238 
   1239 	oldcount = bp->b_bcount;
   1240 
   1241 	bp->b_bcount = size;
   1242 
   1243 	oldsize = bp->b_bufsize;
   1244 	if (oldsize == desired_size) {
   1245 		/*
   1246 		 * Do not short cut the WAPBL resize, as the buffer length
   1247 		 * could still have changed and this would corrupt the
   1248 		 * tracking of the transaction length.
   1249 		 */
   1250 		goto out;
   1251 	}
   1252 
   1253 	/*
   1254 	 * If we want a buffer of a different size, re-allocate the
   1255 	 * buffer's memory; copy old content only if needed.
   1256 	 */
   1257 	addr = buf_alloc(desired_size);
   1258 	if (addr == NULL)
   1259 		return ENOMEM;
   1260 	if (preserve)
   1261 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1262 	if (bp->b_data != NULL)
   1263 		buf_mrelease(bp->b_data, oldsize);
   1264 	bp->b_data = addr;
   1265 	bp->b_bufsize = desired_size;
   1266 
   1267 	/*
   1268 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1269 	 */
   1270 	delta = (long)desired_size - (long)oldsize;
   1271 
   1272 	mutex_enter(&bufcache_lock);
   1273 	if ((bufmem += delta) > bufmem_hiwater) {
   1274 		/*
   1275 		 * Need to trim overall memory usage.
   1276 		 */
   1277 		while (buf_canrelease()) {
   1278 			if (curcpu()->ci_schedstate.spc_flags &
   1279 			    SPCF_SHOULDYIELD) {
   1280 				mutex_exit(&bufcache_lock);
   1281 				preempt();
   1282 				mutex_enter(&bufcache_lock);
   1283 			}
   1284 			if (buf_trim() == 0)
   1285 				break;
   1286 		}
   1287 	}
   1288 	mutex_exit(&bufcache_lock);
   1289 
   1290  out:
   1291 	if (wapbl_vphaswapbl(bp->b_vp))
   1292 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1293 
   1294 	return 0;
   1295 }
   1296 
   1297 /*
   1298  * Find a buffer which is available for use.
   1299  * Select something from a free list.
   1300  * Preference is to AGE list, then LRU list.
   1301  *
   1302  * Called with the buffer queues locked.
   1303  * Return buffer locked.
   1304  */
   1305 buf_t *
   1306 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1307 {
   1308 	buf_t *bp;
   1309 	struct vnode *vp;
   1310 
   1311  start:
   1312 	KASSERT(mutex_owned(&bufcache_lock));
   1313 
   1314 	/*
   1315 	 * Get a new buffer from the pool.
   1316 	 */
   1317 	if (!from_bufq && buf_lotsfree()) {
   1318 		mutex_exit(&bufcache_lock);
   1319 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1320 		if (bp != NULL) {
   1321 			memset((char *)bp, 0, sizeof(*bp));
   1322 			buf_init(bp);
   1323 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1324 			mutex_enter(&bufcache_lock);
   1325 #if defined(DIAGNOSTIC)
   1326 			bp->b_freelistindex = -1;
   1327 #endif /* defined(DIAGNOSTIC) */
   1328 			return (bp);
   1329 		}
   1330 		mutex_enter(&bufcache_lock);
   1331 	}
   1332 
   1333 	KASSERT(mutex_owned(&bufcache_lock));
   1334 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1335 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1336 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1337 		bremfree(bp);
   1338 
   1339 		/* Buffer is no longer on free lists. */
   1340 		SET(bp->b_cflags, BC_BUSY);
   1341 	} else {
   1342 		/*
   1343 		 * XXX: !from_bufq should be removed.
   1344 		 */
   1345 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1346 			/* wait for a free buffer of any kind */
   1347 			if ((slpflag & PCATCH) != 0)
   1348 				(void)cv_timedwait_sig(&needbuffer_cv,
   1349 				    &bufcache_lock, slptimeo);
   1350 			else
   1351 				(void)cv_timedwait(&needbuffer_cv,
   1352 				    &bufcache_lock, slptimeo);
   1353 		}
   1354 		return (NULL);
   1355 	}
   1356 
   1357 #ifdef DIAGNOSTIC
   1358 	if (bp->b_bufsize <= 0)
   1359 		panic("buffer %p: on queue but empty", bp);
   1360 #endif
   1361 
   1362 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1363 		/*
   1364 		 * This is a delayed write buffer being flushed to disk.  Make
   1365 		 * sure it gets aged out of the queue when it's finished, and
   1366 		 * leave it off the LRU queue.
   1367 		 */
   1368 		CLR(bp->b_cflags, BC_VFLUSH);
   1369 		SET(bp->b_cflags, BC_AGE);
   1370 		goto start;
   1371 	}
   1372 
   1373 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1374 	KASSERT(bp->b_refcnt > 0);
   1375     	KASSERT(!cv_has_waiters(&bp->b_done));
   1376 
   1377 	/*
   1378 	 * If buffer was a delayed write, start it and return NULL
   1379 	 * (since we might sleep while starting the write).
   1380 	 */
   1381 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1382 		/*
   1383 		 * This buffer has gone through the LRU, so make sure it gets
   1384 		 * reused ASAP.
   1385 		 */
   1386 		SET(bp->b_cflags, BC_AGE);
   1387 		mutex_exit(&bufcache_lock);
   1388 		bawrite(bp);
   1389 		mutex_enter(&bufcache_lock);
   1390 		return (NULL);
   1391 	}
   1392 
   1393 	vp = bp->b_vp;
   1394 
   1395 	/* clear out various other fields */
   1396 	bp->b_cflags = BC_BUSY;
   1397 	bp->b_oflags = 0;
   1398 	bp->b_flags = 0;
   1399 	bp->b_dev = NODEV;
   1400 	bp->b_blkno = 0;
   1401 	bp->b_lblkno = 0;
   1402 	bp->b_rawblkno = 0;
   1403 	bp->b_iodone = 0;
   1404 	bp->b_error = 0;
   1405 	bp->b_resid = 0;
   1406 	bp->b_bcount = 0;
   1407 
   1408 	LIST_REMOVE(bp, b_hash);
   1409 
   1410 	/* Disassociate us from our vnode, if we had one... */
   1411 	if (vp != NULL) {
   1412 		mutex_enter(vp->v_interlock);
   1413 		brelvp(bp);
   1414 		mutex_exit(vp->v_interlock);
   1415 	}
   1416 
   1417 	return (bp);
   1418 }
   1419 
   1420 /*
   1421  * Attempt to free an aged buffer off the queues.
   1422  * Called with queue lock held.
   1423  * Returns the amount of buffer memory freed.
   1424  */
   1425 static int
   1426 buf_trim(void)
   1427 {
   1428 	buf_t *bp;
   1429 	long size = 0;
   1430 
   1431 	KASSERT(mutex_owned(&bufcache_lock));
   1432 
   1433 	/* Instruct getnewbuf() to get buffers off the queues */
   1434 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1435 		return 0;
   1436 
   1437 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1438 	size = bp->b_bufsize;
   1439 	bufmem -= size;
   1440 	if (size > 0) {
   1441 		buf_mrelease(bp->b_data, size);
   1442 		bp->b_bcount = bp->b_bufsize = 0;
   1443 	}
   1444 	/* brelse() will return the buffer to the global buffer pool */
   1445 	brelsel(bp, 0);
   1446 	return size;
   1447 }
   1448 
   1449 int
   1450 buf_drain(int n)
   1451 {
   1452 	int size = 0, sz;
   1453 
   1454 	KASSERT(mutex_owned(&bufcache_lock));
   1455 
   1456 	while (size < n && bufmem > bufmem_lowater) {
   1457 		sz = buf_trim();
   1458 		if (sz <= 0)
   1459 			break;
   1460 		size += sz;
   1461 	}
   1462 
   1463 	return size;
   1464 }
   1465 
   1466 /*
   1467  * Wait for operations on the buffer to complete.
   1468  * When they do, extract and return the I/O's error value.
   1469  */
   1470 int
   1471 biowait(buf_t *bp)
   1472 {
   1473 
   1474 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1475 	KASSERT(bp->b_refcnt > 0);
   1476 
   1477 	mutex_enter(bp->b_objlock);
   1478 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1479 		cv_wait(&bp->b_done, bp->b_objlock);
   1480 	mutex_exit(bp->b_objlock);
   1481 
   1482 	return bp->b_error;
   1483 }
   1484 
   1485 /*
   1486  * Mark I/O complete on a buffer.
   1487  *
   1488  * If a callback has been requested, e.g. the pageout
   1489  * daemon, do so. Otherwise, awaken waiting processes.
   1490  *
   1491  * [ Leffler, et al., says on p.247:
   1492  *	"This routine wakes up the blocked process, frees the buffer
   1493  *	for an asynchronous write, or, for a request by the pagedaemon
   1494  *	process, invokes a procedure specified in the buffer structure" ]
   1495  *
   1496  * In real life, the pagedaemon (or other system processes) wants
   1497  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1498  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1499  * for the vn device, that puts allocated buffers on the free lists!)
   1500  */
   1501 void
   1502 biodone(buf_t *bp)
   1503 {
   1504 	int s;
   1505 
   1506 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1507 
   1508 	if (cpu_intr_p()) {
   1509 		/* From interrupt mode: defer to a soft interrupt. */
   1510 		s = splvm();
   1511 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1512 		softint_schedule(biodone_sih);
   1513 		splx(s);
   1514 	} else {
   1515 		/* Process now - the buffer may be freed soon. */
   1516 		biodone2(bp);
   1517 	}
   1518 }
   1519 
   1520 static void
   1521 biodone2(buf_t *bp)
   1522 {
   1523 	void (*callout)(buf_t *);
   1524 
   1525 	mutex_enter(bp->b_objlock);
   1526 	/* Note that the transfer is done. */
   1527 	if (ISSET(bp->b_oflags, BO_DONE))
   1528 		panic("biodone2 already");
   1529 	CLR(bp->b_flags, B_COWDONE);
   1530 	SET(bp->b_oflags, BO_DONE);
   1531 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1532 
   1533 	/* Wake up waiting writers. */
   1534 	if (!ISSET(bp->b_flags, B_READ))
   1535 		vwakeup(bp);
   1536 
   1537 	if ((callout = bp->b_iodone) != NULL) {
   1538 		/* Note callout done, then call out. */
   1539 		KASSERT(!cv_has_waiters(&bp->b_done));
   1540 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1541 		bp->b_iodone = NULL;
   1542 		mutex_exit(bp->b_objlock);
   1543 		(*callout)(bp);
   1544 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1545 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1546 		/* If async, release. */
   1547 		KASSERT(!cv_has_waiters(&bp->b_done));
   1548 		mutex_exit(bp->b_objlock);
   1549 		brelse(bp, 0);
   1550 	} else {
   1551 		/* Otherwise just wake up waiters in biowait(). */
   1552 		cv_broadcast(&bp->b_done);
   1553 		mutex_exit(bp->b_objlock);
   1554 	}
   1555 }
   1556 
   1557 static void
   1558 biointr(void *cookie)
   1559 {
   1560 	struct cpu_info *ci;
   1561 	buf_t *bp;
   1562 	int s;
   1563 
   1564 	ci = curcpu();
   1565 
   1566 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1567 		KASSERT(curcpu() == ci);
   1568 
   1569 		s = splvm();
   1570 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1571 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1572 		splx(s);
   1573 
   1574 		biodone2(bp);
   1575 	}
   1576 }
   1577 
   1578 /*
   1579  * Wait for all buffers to complete I/O
   1580  * Return the number of "stuck" buffers.
   1581  */
   1582 int
   1583 buf_syncwait(void)
   1584 {
   1585 	buf_t *bp;
   1586 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
   1587 
   1588 	dcount = 10000;
   1589 	for (iter = 0; iter < 20;) {
   1590 		mutex_enter(&bufcache_lock);
   1591 		nbusy = 0;
   1592 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1593 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1594 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1595 				nbusy += ((bp->b_flags & B_READ) == 0);
   1596 		    }
   1597 		}
   1598 		mutex_exit(&bufcache_lock);
   1599 
   1600 		if (nbusy == 0)
   1601 			break;
   1602 		if (nbusy_prev == 0)
   1603 			nbusy_prev = nbusy;
   1604 		printf("%d ", nbusy);
   1605 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
   1606 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1607 			iter++;
   1608 		else
   1609 			nbusy_prev = nbusy;
   1610 	}
   1611 
   1612 	if (nbusy) {
   1613 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1614 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1615 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1616 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1617 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1618 			    (bp->b_flags & B_READ) == 0)
   1619 				vprint(NULL, bp->b_vp);
   1620 		    }
   1621 		}
   1622 #endif
   1623 	}
   1624 
   1625 	return nbusy;
   1626 }
   1627 
   1628 static void
   1629 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1630 {
   1631 
   1632 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1633 	o->b_error = i->b_error;
   1634 	o->b_prio = i->b_prio;
   1635 	o->b_dev = i->b_dev;
   1636 	o->b_bufsize = i->b_bufsize;
   1637 	o->b_bcount = i->b_bcount;
   1638 	o->b_resid = i->b_resid;
   1639 	o->b_addr = PTRTOUINT64(i->b_data);
   1640 	o->b_blkno = i->b_blkno;
   1641 	o->b_rawblkno = i->b_rawblkno;
   1642 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1643 	o->b_proc = PTRTOUINT64(i->b_proc);
   1644 	o->b_vp = PTRTOUINT64(i->b_vp);
   1645 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1646 	o->b_lblkno = i->b_lblkno;
   1647 }
   1648 
   1649 #define KERN_BUFSLOP 20
   1650 static int
   1651 sysctl_dobuf(SYSCTLFN_ARGS)
   1652 {
   1653 	buf_t *bp;
   1654 	struct buf_sysctl bs;
   1655 	struct bqueue *bq;
   1656 	char *dp;
   1657 	u_int i, op, arg;
   1658 	size_t len, needed, elem_size, out_size;
   1659 	int error, elem_count, retries;
   1660 
   1661 	if (namelen == 1 && name[0] == CTL_QUERY)
   1662 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1663 
   1664 	if (namelen != 4)
   1665 		return (EINVAL);
   1666 
   1667 	retries = 100;
   1668  retry:
   1669 	dp = oldp;
   1670 	len = (oldp != NULL) ? *oldlenp : 0;
   1671 	op = name[0];
   1672 	arg = name[1];
   1673 	elem_size = name[2];
   1674 	elem_count = name[3];
   1675 	out_size = MIN(sizeof(bs), elem_size);
   1676 
   1677 	/*
   1678 	 * at the moment, these are just "placeholders" to make the
   1679 	 * API for retrieving kern.buf data more extensible in the
   1680 	 * future.
   1681 	 *
   1682 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1683 	 * these will be resolved at a later point.
   1684 	 */
   1685 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1686 	    elem_size < 1 || elem_count < 0)
   1687 		return (EINVAL);
   1688 
   1689 	error = 0;
   1690 	needed = 0;
   1691 	sysctl_unlock();
   1692 	mutex_enter(&bufcache_lock);
   1693 	for (i = 0; i < BQUEUES; i++) {
   1694 		bq = &bufqueues[i];
   1695 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1696 			bq->bq_marker = bp;
   1697 			if (len >= elem_size && elem_count > 0) {
   1698 				sysctl_fillbuf(bp, &bs);
   1699 				mutex_exit(&bufcache_lock);
   1700 				error = copyout(&bs, dp, out_size);
   1701 				mutex_enter(&bufcache_lock);
   1702 				if (error)
   1703 					break;
   1704 				if (bq->bq_marker != bp) {
   1705 					/*
   1706 					 * This sysctl node is only for
   1707 					 * statistics.  Retry; if the
   1708 					 * queue keeps changing, then
   1709 					 * bail out.
   1710 					 */
   1711 					if (retries-- == 0) {
   1712 						error = EAGAIN;
   1713 						break;
   1714 					}
   1715 					mutex_exit(&bufcache_lock);
   1716 					goto retry;
   1717 				}
   1718 				dp += elem_size;
   1719 				len -= elem_size;
   1720 			}
   1721 			needed += elem_size;
   1722 			if (elem_count > 0 && elem_count != INT_MAX)
   1723 				elem_count--;
   1724 		}
   1725 		if (error != 0)
   1726 			break;
   1727 	}
   1728 	mutex_exit(&bufcache_lock);
   1729 	sysctl_relock();
   1730 
   1731 	*oldlenp = needed;
   1732 	if (oldp == NULL)
   1733 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1734 
   1735 	return (error);
   1736 }
   1737 
   1738 static int
   1739 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1740 {
   1741 	int t, error, rv;
   1742 	struct sysctlnode node;
   1743 
   1744 	node = *rnode;
   1745 	node.sysctl_data = &t;
   1746 	t = *(int *)rnode->sysctl_data;
   1747 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1748 	if (error || newp == NULL)
   1749 		return (error);
   1750 
   1751 	if (t < 0)
   1752 		return EINVAL;
   1753 	if (rnode->sysctl_data == &bufcache) {
   1754 		if (t > 100)
   1755 			return (EINVAL);
   1756 		bufcache = t;
   1757 		buf_setwm();
   1758 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1759 		if (bufmem_hiwater - t < 16)
   1760 			return (EINVAL);
   1761 		bufmem_lowater = t;
   1762 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1763 		if (t - bufmem_lowater < 16)
   1764 			return (EINVAL);
   1765 		bufmem_hiwater = t;
   1766 	} else
   1767 		return (EINVAL);
   1768 
   1769 	/* Drain until below new high water mark */
   1770 	sysctl_unlock();
   1771 	mutex_enter(&bufcache_lock);
   1772 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1773 		rv = buf_drain(t / (2 * 1024));
   1774 		if (rv <= 0)
   1775 			break;
   1776 	}
   1777 	mutex_exit(&bufcache_lock);
   1778 	sysctl_relock();
   1779 
   1780 	return 0;
   1781 }
   1782 
   1783 static struct sysctllog *vfsbio_sysctllog;
   1784 
   1785 static void
   1786 sysctl_kern_buf_setup(void)
   1787 {
   1788 
   1789 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1790 		       CTLFLAG_PERMANENT,
   1791 		       CTLTYPE_NODE, "kern", NULL,
   1792 		       NULL, 0, NULL, 0,
   1793 		       CTL_KERN, CTL_EOL);
   1794 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1795 		       CTLFLAG_PERMANENT,
   1796 		       CTLTYPE_NODE, "buf",
   1797 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1798 		       sysctl_dobuf, 0, NULL, 0,
   1799 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1800 }
   1801 
   1802 static void
   1803 sysctl_vm_buf_setup(void)
   1804 {
   1805 
   1806 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1807 		       CTLFLAG_PERMANENT,
   1808 		       CTLTYPE_NODE, "vm", NULL,
   1809 		       NULL, 0, NULL, 0,
   1810 		       CTL_VM, CTL_EOL);
   1811 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1812 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1813 		       CTLTYPE_INT, "bufcache",
   1814 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1815 				    "buffer cache"),
   1816 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1817 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1818 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1819 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1820 		       CTLTYPE_INT, "bufmem",
   1821 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1822 				    "cache"),
   1823 		       NULL, 0, &bufmem, 0,
   1824 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1825 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1826 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1827 		       CTLTYPE_INT, "bufmem_lowater",
   1828 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1829 				    "reserve for buffer cache"),
   1830 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1831 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1832 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1833 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1834 		       CTLTYPE_INT, "bufmem_hiwater",
   1835 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1836 				    "for buffer cache"),
   1837 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1838 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1839 }
   1840 
   1841 #ifdef DEBUG
   1842 /*
   1843  * Print out statistics on the current allocation of the buffer pool.
   1844  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1845  * in vfs_syscalls.c using sysctl.
   1846  */
   1847 void
   1848 vfs_bufstats(void)
   1849 {
   1850 	int i, j, count;
   1851 	buf_t *bp;
   1852 	struct bqueue *dp;
   1853 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1854 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1855 
   1856 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1857 		count = 0;
   1858 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1859 			counts[j] = 0;
   1860 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1861 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1862 			count++;
   1863 		}
   1864 		printf("%s: total-%d", bname[i], count);
   1865 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1866 			if (counts[j] != 0)
   1867 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1868 		printf("\n");
   1869 	}
   1870 }
   1871 #endif /* DEBUG */
   1872 
   1873 /* ------------------------------ */
   1874 
   1875 buf_t *
   1876 getiobuf(struct vnode *vp, bool waitok)
   1877 {
   1878 	buf_t *bp;
   1879 
   1880 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1881 	if (bp == NULL)
   1882 		return bp;
   1883 
   1884 	buf_init(bp);
   1885 
   1886 	if ((bp->b_vp = vp) == NULL)
   1887 		bp->b_objlock = &buffer_lock;
   1888 	else
   1889 		bp->b_objlock = vp->v_interlock;
   1890 
   1891 	return bp;
   1892 }
   1893 
   1894 void
   1895 putiobuf(buf_t *bp)
   1896 {
   1897 
   1898 	buf_destroy(bp);
   1899 	pool_cache_put(bufio_cache, bp);
   1900 }
   1901 
   1902 /*
   1903  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1904  */
   1905 
   1906 void
   1907 nestiobuf_iodone(buf_t *bp)
   1908 {
   1909 	buf_t *mbp = bp->b_private;
   1910 	int error;
   1911 	int donebytes;
   1912 
   1913 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1914 	KASSERT(mbp != bp);
   1915 
   1916 	error = bp->b_error;
   1917 	if (bp->b_error == 0 &&
   1918 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1919 		/*
   1920 		 * Not all got transfered, raise an error. We have no way to
   1921 		 * propagate these conditions to mbp.
   1922 		 */
   1923 		error = EIO;
   1924 	}
   1925 
   1926 	donebytes = bp->b_bufsize;
   1927 
   1928 	putiobuf(bp);
   1929 	nestiobuf_done(mbp, donebytes, error);
   1930 }
   1931 
   1932 /*
   1933  * nestiobuf_setup: setup a "nested" buffer.
   1934  *
   1935  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1936  * => 'bp' should be a buffer allocated by getiobuf.
   1937  * => 'offset' is a byte offset in the master buffer.
   1938  * => 'size' is a size in bytes of this nested buffer.
   1939  */
   1940 
   1941 void
   1942 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1943 {
   1944 	const int b_read = mbp->b_flags & B_READ;
   1945 	struct vnode *vp = mbp->b_vp;
   1946 
   1947 	KASSERT(mbp->b_bcount >= offset + size);
   1948 	bp->b_vp = vp;
   1949 	bp->b_dev = mbp->b_dev;
   1950 	bp->b_objlock = mbp->b_objlock;
   1951 	bp->b_cflags = BC_BUSY;
   1952 	bp->b_flags = B_ASYNC | b_read;
   1953 	bp->b_iodone = nestiobuf_iodone;
   1954 	bp->b_data = (char *)mbp->b_data + offset;
   1955 	bp->b_resid = bp->b_bcount = size;
   1956 	bp->b_bufsize = bp->b_bcount;
   1957 	bp->b_private = mbp;
   1958 	BIO_COPYPRIO(bp, mbp);
   1959 	if (!b_read && vp != NULL) {
   1960 		mutex_enter(vp->v_interlock);
   1961 		vp->v_numoutput++;
   1962 		mutex_exit(vp->v_interlock);
   1963 	}
   1964 }
   1965 
   1966 /*
   1967  * nestiobuf_done: propagate completion to the master buffer.
   1968  *
   1969  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1970  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1971  */
   1972 
   1973 void
   1974 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1975 {
   1976 
   1977 	if (donebytes == 0) {
   1978 		return;
   1979 	}
   1980 	mutex_enter(mbp->b_objlock);
   1981 	KASSERT(mbp->b_resid >= donebytes);
   1982 	mbp->b_resid -= donebytes;
   1983 	if (error)
   1984 		mbp->b_error = error;
   1985 	if (mbp->b_resid == 0) {
   1986 		if (mbp->b_error)
   1987 			mbp->b_resid = mbp->b_bcount;
   1988 		mutex_exit(mbp->b_objlock);
   1989 		biodone(mbp);
   1990 	} else
   1991 		mutex_exit(mbp->b_objlock);
   1992 }
   1993 
   1994 void
   1995 buf_init(buf_t *bp)
   1996 {
   1997 
   1998 	cv_init(&bp->b_busy, "biolock");
   1999 	cv_init(&bp->b_done, "biowait");
   2000 	bp->b_dev = NODEV;
   2001 	bp->b_error = 0;
   2002 	bp->b_flags = 0;
   2003 	bp->b_cflags = 0;
   2004 	bp->b_oflags = 0;
   2005 	bp->b_objlock = &buffer_lock;
   2006 	bp->b_iodone = NULL;
   2007 	bp->b_refcnt = 1;
   2008 	bp->b_dev = NODEV;
   2009 	bp->b_vnbufs.le_next = NOLIST;
   2010 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2011 }
   2012 
   2013 void
   2014 buf_destroy(buf_t *bp)
   2015 {
   2016 
   2017 	cv_destroy(&bp->b_done);
   2018 	cv_destroy(&bp->b_busy);
   2019 }
   2020 
   2021 int
   2022 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2023 {
   2024 	int error;
   2025 
   2026 	KASSERT(mutex_owned(&bufcache_lock));
   2027 
   2028 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2029 		if (curlwp == uvm.pagedaemon_lwp)
   2030 			return EDEADLK;
   2031 		bp->b_cflags |= BC_WANTED;
   2032 		bref(bp);
   2033 		if (interlock != NULL)
   2034 			mutex_exit(interlock);
   2035 		if (intr) {
   2036 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2037 			    timo);
   2038 		} else {
   2039 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2040 			    timo);
   2041 		}
   2042 		brele(bp);
   2043 		if (interlock != NULL)
   2044 			mutex_enter(interlock);
   2045 		if (error != 0)
   2046 			return error;
   2047 		return EPASSTHROUGH;
   2048 	}
   2049 	bp->b_cflags |= BC_BUSY;
   2050 
   2051 	return 0;
   2052 }
   2053