vfs_bio.c revision 1.233 1 /* $NetBSD: vfs_bio.c,v 1.233 2012/01/26 19:18:25 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.233 2012/01/26 19:18:25 rmind Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146
147 #include <uvm/uvm.h> /* extern struct uvm uvm */
148
149 #include <miscfs/specfs/specdev.h>
150
151 #ifndef BUFPAGES
152 # define BUFPAGES 0
153 #endif
154
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 # error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
162
163 u_int nbuf; /* desired number of buffer headers */
164 u_int bufpages = BUFPAGES; /* optional hardwired count */
165 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
166
167 /* Function prototypes */
168 struct bqueue;
169
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194
195 /*
196 * Definitions for the buffer hash lists.
197 */
198 #define BUFHASH(dvp, lbn) \
199 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long bufhash;
202 struct bqueue bufqueues[BQUEUES];
203
204 static kcondvar_t needbuffer_cv;
205
206 /*
207 * Buffer queue lock.
208 */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399
400 /*
401 * Determine the upper bound of memory to use for buffers.
402 *
403 * - If bufpages is specified, use that as the number
404 * pages.
405 *
406 * - Otherwise, use bufcache as the percentage of
407 * physical memory.
408 */
409 if (bufpages != 0) {
410 n = bufpages;
411 } else {
412 if (bufcache < 5) {
413 printf("forcing bufcache %d -> 5", bufcache);
414 bufcache = 5;
415 }
416 if (bufcache > 95) {
417 printf("forcing bufcache %d -> 95", bufcache);
418 bufcache = 95;
419 }
420 n = calc_cache_size(buf_map, bufcache,
421 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
422 / PAGE_SIZE;
423 }
424
425 n <<= PAGE_SHIFT;
426 if (bufmem_valimit != 0 && n > bufmem_valimit)
427 n = bufmem_valimit;
428
429 return (n);
430 }
431
432 /*
433 * Initialize buffers and hash links for buffers.
434 */
435 void
436 bufinit(void)
437 {
438 struct bqueue *dp;
439 int use_std;
440 u_int i;
441
442 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
443 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
444 cv_init(&needbuffer_cv, "needbuf");
445
446 if (bufmem_valimit != 0) {
447 vaddr_t minaddr = 0, maxaddr;
448 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 bufmem_valimit, 0, false, 0);
450 if (buf_map == NULL)
451 panic("bufinit: cannot allocate submap");
452 } else
453 buf_map = kernel_map;
454
455 /*
456 * Initialize buffer cache memory parameters.
457 */
458 bufmem = 0;
459 buf_setwm();
460
461 /* On "small" machines use small pool page sizes where possible */
462 use_std = (physmem < atop(16*1024*1024));
463
464 /*
465 * Also use them on systems that can map the pool pages using
466 * a direct-mapped segment.
467 */
468 #ifdef PMAP_MAP_POOLPAGE
469 use_std = 1;
470 #endif
471
472 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
473 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
474 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
475 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
476
477 bufmempool_allocator.pa_backingmap = buf_map;
478 for (i = 0; i < NMEMPOOLS; i++) {
479 struct pool_allocator *pa;
480 struct pool *pp = &bmempools[i];
481 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
482 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
483 if (__predict_false(size >= 1048576))
484 (void)snprintf(name, 8, "buf%um", size / 1048576);
485 else if (__predict_true(size >= 1024))
486 (void)snprintf(name, 8, "buf%uk", size / 1024);
487 else
488 (void)snprintf(name, 8, "buf%ub", size);
489 pa = (size <= PAGE_SIZE && use_std)
490 ? &pool_allocator_nointr
491 : &bufmempool_allocator;
492 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
493 pool_setlowat(pp, 1);
494 pool_sethiwat(pp, 1);
495 }
496
497 /* Initialize the buffer queues */
498 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
499 TAILQ_INIT(&dp->bq_queue);
500 dp->bq_bytes = 0;
501 }
502
503 /*
504 * Estimate hash table size based on the amount of memory we
505 * intend to use for the buffer cache. The average buffer
506 * size is dependent on our clients (i.e. filesystems).
507 *
508 * For now, use an empirical 3K per buffer.
509 */
510 nbuf = (bufmem_hiwater / 1024) / 3;
511 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
512
513 sysctl_kern_buf_setup();
514 sysctl_vm_buf_setup();
515 }
516
517 void
518 bufinit2(void)
519 {
520
521 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
522 NULL);
523 if (biodone_sih == NULL)
524 panic("bufinit2: can't establish soft interrupt");
525 }
526
527 static int
528 buf_lotsfree(void)
529 {
530 int try, thresh;
531
532 /* Always allocate if less than the low water mark. */
533 if (bufmem < bufmem_lowater)
534 return 1;
535
536 /* Never allocate if greater than the high water mark. */
537 if (bufmem > bufmem_hiwater)
538 return 0;
539
540 /* If there's anything on the AGE list, it should be eaten. */
541 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
542 return 0;
543
544 /*
545 * The probabily of getting a new allocation is inversely
546 * proportional to the current size of the cache, using
547 * a granularity of 16 steps.
548 */
549 try = random() & 0x0000000fL;
550
551 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
552 thresh = (bufmem - bufmem_lowater) /
553 ((bufmem_hiwater - bufmem_lowater) / 16);
554
555 if (try >= thresh)
556 return 1;
557
558 /* Otherwise don't allocate. */
559 return 0;
560 }
561
562 /*
563 * Return estimate of bytes we think need to be
564 * released to help resolve low memory conditions.
565 *
566 * => called with bufcache_lock held.
567 */
568 static int
569 buf_canrelease(void)
570 {
571 int pagedemand, ninvalid = 0;
572
573 KASSERT(mutex_owned(&bufcache_lock));
574
575 if (bufmem < bufmem_lowater)
576 return 0;
577
578 if (bufmem > bufmem_hiwater)
579 return bufmem - bufmem_hiwater;
580
581 ninvalid += bufqueues[BQ_AGE].bq_bytes;
582
583 pagedemand = uvmexp.freetarg - uvmexp.free;
584 if (pagedemand < 0)
585 return ninvalid;
586 return MAX(ninvalid, MIN(2 * MAXBSIZE,
587 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
588 }
589
590 /*
591 * Buffer memory allocation helper functions
592 */
593 static u_long
594 buf_mempoolidx(u_long size)
595 {
596 u_int n = 0;
597
598 size -= 1;
599 size >>= MEMPOOL_INDEX_OFFSET;
600 while (size) {
601 size >>= 1;
602 n += 1;
603 }
604 if (n >= NMEMPOOLS)
605 panic("buf mem pool index %d", n);
606 return n;
607 }
608
609 static u_long
610 buf_roundsize(u_long size)
611 {
612 /* Round up to nearest power of 2 */
613 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
614 }
615
616 static void *
617 buf_alloc(size_t size)
618 {
619 u_int n = buf_mempoolidx(size);
620 void *addr;
621
622 while (1) {
623 addr = pool_get(&bmempools[n], PR_NOWAIT);
624 if (addr != NULL)
625 break;
626
627 /* No memory, see if we can free some. If so, try again */
628 mutex_enter(&bufcache_lock);
629 if (buf_drain(1) > 0) {
630 mutex_exit(&bufcache_lock);
631 continue;
632 }
633
634 if (curlwp == uvm.pagedaemon_lwp) {
635 mutex_exit(&bufcache_lock);
636 return NULL;
637 }
638
639 /* Wait for buffers to arrive on the LRU queue */
640 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
641 mutex_exit(&bufcache_lock);
642 }
643
644 return addr;
645 }
646
647 static void
648 buf_mrelease(void *addr, size_t size)
649 {
650
651 pool_put(&bmempools[buf_mempoolidx(size)], addr);
652 }
653
654 /*
655 * bread()/breadn() helper.
656 */
657 static buf_t *
658 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
659 int async)
660 {
661 buf_t *bp;
662 struct mount *mp;
663
664 bp = getblk(vp, blkno, size, 0, 0);
665
666 #ifdef DIAGNOSTIC
667 if (bp == NULL) {
668 panic("bio_doread: no such buf");
669 }
670 #endif
671
672 /*
673 * If buffer does not have data valid, start a read.
674 * Note that if buffer is BC_INVAL, getblk() won't return it.
675 * Therefore, it's valid if its I/O has completed or been delayed.
676 */
677 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
678 /* Start I/O for the buffer. */
679 SET(bp->b_flags, B_READ | async);
680 if (async)
681 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
682 else
683 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
684 VOP_STRATEGY(vp, bp);
685
686 /* Pay for the read. */
687 curlwp->l_ru.ru_inblock++;
688 } else if (async)
689 brelse(bp, 0);
690
691 if (vp->v_type == VBLK)
692 mp = vp->v_specmountpoint;
693 else
694 mp = vp->v_mount;
695
696 /*
697 * Collect statistics on synchronous and asynchronous reads.
698 * Reads from block devices are charged to their associated
699 * filesystem (if any).
700 */
701 if (mp != NULL) {
702 if (async == 0)
703 mp->mnt_stat.f_syncreads++;
704 else
705 mp->mnt_stat.f_asyncreads++;
706 }
707
708 return (bp);
709 }
710
711 /*
712 * Read a disk block.
713 * This algorithm described in Bach (p.54).
714 */
715 int
716 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
717 int flags, buf_t **bpp)
718 {
719 buf_t *bp;
720 int error;
721
722 /* Get buffer for block. */
723 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
724
725 /* Wait for the read to complete, and return result. */
726 error = biowait(bp);
727 if (error == 0 && (flags & B_MODIFY) != 0)
728 error = fscow_run(bp, true);
729
730 return error;
731 }
732
733 /*
734 * Read-ahead multiple disk blocks. The first is sync, the rest async.
735 * Trivial modification to the breada algorithm presented in Bach (p.55).
736 */
737 int
738 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
739 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
740 {
741 buf_t *bp;
742 int error, i;
743
744 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
745
746 /*
747 * For each of the read-ahead blocks, start a read, if necessary.
748 */
749 mutex_enter(&bufcache_lock);
750 for (i = 0; i < nrablks; i++) {
751 /* If it's in the cache, just go on to next one. */
752 if (incore(vp, rablks[i]))
753 continue;
754
755 /* Get a buffer for the read-ahead block */
756 mutex_exit(&bufcache_lock);
757 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
758 mutex_enter(&bufcache_lock);
759 }
760 mutex_exit(&bufcache_lock);
761
762 /* Otherwise, we had to start a read for it; wait until it's valid. */
763 error = biowait(bp);
764 if (error == 0 && (flags & B_MODIFY) != 0)
765 error = fscow_run(bp, true);
766 return error;
767 }
768
769 /*
770 * Block write. Described in Bach (p.56)
771 */
772 int
773 bwrite(buf_t *bp)
774 {
775 int rv, sync, wasdelayed;
776 struct vnode *vp;
777 struct mount *mp;
778
779 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
780 KASSERT(!cv_has_waiters(&bp->b_done));
781
782 vp = bp->b_vp;
783 if (vp != NULL) {
784 KASSERT(bp->b_objlock == vp->v_interlock);
785 if (vp->v_type == VBLK)
786 mp = vp->v_specmountpoint;
787 else
788 mp = vp->v_mount;
789 } else {
790 mp = NULL;
791 }
792
793 if (mp && mp->mnt_wapbl) {
794 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
795 bdwrite(bp);
796 return 0;
797 }
798 }
799
800 /*
801 * Remember buffer type, to switch on it later. If the write was
802 * synchronous, but the file system was mounted with MNT_ASYNC,
803 * convert it to a delayed write.
804 * XXX note that this relies on delayed tape writes being converted
805 * to async, not sync writes (which is safe, but ugly).
806 */
807 sync = !ISSET(bp->b_flags, B_ASYNC);
808 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
809 bdwrite(bp);
810 return (0);
811 }
812
813 /*
814 * Collect statistics on synchronous and asynchronous writes.
815 * Writes to block devices are charged to their associated
816 * filesystem (if any).
817 */
818 if (mp != NULL) {
819 if (sync)
820 mp->mnt_stat.f_syncwrites++;
821 else
822 mp->mnt_stat.f_asyncwrites++;
823 }
824
825 /*
826 * Pay for the I/O operation and make sure the buf is on the correct
827 * vnode queue.
828 */
829 bp->b_error = 0;
830 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
831 CLR(bp->b_flags, B_READ);
832 if (wasdelayed) {
833 mutex_enter(&bufcache_lock);
834 mutex_enter(bp->b_objlock);
835 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
836 reassignbuf(bp, bp->b_vp);
837 mutex_exit(&bufcache_lock);
838 } else {
839 curlwp->l_ru.ru_oublock++;
840 mutex_enter(bp->b_objlock);
841 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
842 }
843 if (vp != NULL)
844 vp->v_numoutput++;
845 mutex_exit(bp->b_objlock);
846
847 /* Initiate disk write. */
848 if (sync)
849 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
850 else
851 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
852
853 VOP_STRATEGY(vp, bp);
854
855 if (sync) {
856 /* If I/O was synchronous, wait for it to complete. */
857 rv = biowait(bp);
858
859 /* Release the buffer. */
860 brelse(bp, 0);
861
862 return (rv);
863 } else {
864 return (0);
865 }
866 }
867
868 int
869 vn_bwrite(void *v)
870 {
871 struct vop_bwrite_args *ap = v;
872
873 return (bwrite(ap->a_bp));
874 }
875
876 /*
877 * Delayed write.
878 *
879 * The buffer is marked dirty, but is not queued for I/O.
880 * This routine should be used when the buffer is expected
881 * to be modified again soon, typically a small write that
882 * partially fills a buffer.
883 *
884 * NB: magnetic tapes cannot be delayed; they must be
885 * written in the order that the writes are requested.
886 *
887 * Described in Leffler, et al. (pp. 208-213).
888 */
889 void
890 bdwrite(buf_t *bp)
891 {
892
893 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
894 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
895 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
896 KASSERT(!cv_has_waiters(&bp->b_done));
897
898 /* If this is a tape block, write the block now. */
899 if (bdev_type(bp->b_dev) == D_TAPE) {
900 bawrite(bp);
901 return;
902 }
903
904 if (wapbl_vphaswapbl(bp->b_vp)) {
905 struct mount *mp = wapbl_vptomp(bp->b_vp);
906
907 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
908 WAPBL_ADD_BUF(mp, bp);
909 }
910 }
911
912 /*
913 * If the block hasn't been seen before:
914 * (1) Mark it as having been seen,
915 * (2) Charge for the write,
916 * (3) Make sure it's on its vnode's correct block list.
917 */
918 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
919
920 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
921 mutex_enter(&bufcache_lock);
922 mutex_enter(bp->b_objlock);
923 SET(bp->b_oflags, BO_DELWRI);
924 curlwp->l_ru.ru_oublock++;
925 reassignbuf(bp, bp->b_vp);
926 mutex_exit(&bufcache_lock);
927 } else {
928 mutex_enter(bp->b_objlock);
929 }
930 /* Otherwise, the "write" is done, so mark and release the buffer. */
931 CLR(bp->b_oflags, BO_DONE);
932 mutex_exit(bp->b_objlock);
933
934 brelse(bp, 0);
935 }
936
937 /*
938 * Asynchronous block write; just an asynchronous bwrite().
939 */
940 void
941 bawrite(buf_t *bp)
942 {
943
944 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
945 KASSERT(bp->b_vp != NULL);
946
947 SET(bp->b_flags, B_ASYNC);
948 VOP_BWRITE(bp->b_vp, bp);
949 }
950
951 /*
952 * Release a buffer on to the free lists.
953 * Described in Bach (p. 46).
954 */
955 void
956 brelsel(buf_t *bp, int set)
957 {
958 struct bqueue *bufq;
959 struct vnode *vp;
960
961 KASSERT(mutex_owned(&bufcache_lock));
962 KASSERT(!cv_has_waiters(&bp->b_done));
963 KASSERT(bp->b_refcnt > 0);
964
965 SET(bp->b_cflags, set);
966
967 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
968 KASSERT(bp->b_iodone == NULL);
969
970 /* Wake up any processes waiting for any buffer to become free. */
971 cv_signal(&needbuffer_cv);
972
973 /* Wake up any proceeses waiting for _this_ buffer to become */
974 if (ISSET(bp->b_cflags, BC_WANTED))
975 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
976
977 /* If it's clean clear the copy-on-write flag. */
978 if (ISSET(bp->b_flags, B_COWDONE)) {
979 mutex_enter(bp->b_objlock);
980 if (!ISSET(bp->b_oflags, BO_DELWRI))
981 CLR(bp->b_flags, B_COWDONE);
982 mutex_exit(bp->b_objlock);
983 }
984
985 /*
986 * Determine which queue the buffer should be on, then put it there.
987 */
988
989 /* If it's locked, don't report an error; try again later. */
990 if (ISSET(bp->b_flags, B_LOCKED))
991 bp->b_error = 0;
992
993 /* If it's not cacheable, or an error, mark it invalid. */
994 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
995 SET(bp->b_cflags, BC_INVAL);
996
997 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
998 /*
999 * This is a delayed write buffer that was just flushed to
1000 * disk. It is still on the LRU queue. If it's become
1001 * invalid, then we need to move it to a different queue;
1002 * otherwise leave it in its current position.
1003 */
1004 CLR(bp->b_cflags, BC_VFLUSH);
1005 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1006 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1007 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1008 goto already_queued;
1009 } else {
1010 bremfree(bp);
1011 }
1012 }
1013
1014 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1015 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1016 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1017
1018 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1019 /*
1020 * If it's invalid or empty, dissociate it from its vnode
1021 * and put on the head of the appropriate queue.
1022 */
1023 if (ISSET(bp->b_flags, B_LOCKED)) {
1024 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1025 struct mount *mp = wapbl_vptomp(vp);
1026
1027 KASSERT(bp->b_iodone
1028 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1029 WAPBL_REMOVE_BUF(mp, bp);
1030 }
1031 }
1032
1033 mutex_enter(bp->b_objlock);
1034 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1035 if ((vp = bp->b_vp) != NULL) {
1036 KASSERT(bp->b_objlock == vp->v_interlock);
1037 reassignbuf(bp, bp->b_vp);
1038 brelvp(bp);
1039 mutex_exit(vp->v_interlock);
1040 } else {
1041 KASSERT(bp->b_objlock == &buffer_lock);
1042 mutex_exit(bp->b_objlock);
1043 }
1044
1045 if (bp->b_bufsize <= 0)
1046 /* no data */
1047 goto already_queued;
1048 else
1049 /* invalid data */
1050 bufq = &bufqueues[BQ_AGE];
1051 binsheadfree(bp, bufq);
1052 } else {
1053 /*
1054 * It has valid data. Put it on the end of the appropriate
1055 * queue, so that it'll stick around for as long as possible.
1056 * If buf is AGE, but has dependencies, must put it on last
1057 * bufqueue to be scanned, ie LRU. This protects against the
1058 * livelock where BQ_AGE only has buffers with dependencies,
1059 * and we thus never get to the dependent buffers in BQ_LRU.
1060 */
1061 if (ISSET(bp->b_flags, B_LOCKED)) {
1062 /* locked in core */
1063 bufq = &bufqueues[BQ_LOCKED];
1064 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1065 /* valid data */
1066 bufq = &bufqueues[BQ_LRU];
1067 } else {
1068 /* stale but valid data */
1069 bufq = &bufqueues[BQ_AGE];
1070 }
1071 binstailfree(bp, bufq);
1072 }
1073 already_queued:
1074 /* Unlock the buffer. */
1075 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1076 CLR(bp->b_flags, B_ASYNC);
1077 cv_broadcast(&bp->b_busy);
1078
1079 if (bp->b_bufsize <= 0)
1080 brele(bp);
1081 }
1082
1083 void
1084 brelse(buf_t *bp, int set)
1085 {
1086
1087 mutex_enter(&bufcache_lock);
1088 brelsel(bp, set);
1089 mutex_exit(&bufcache_lock);
1090 }
1091
1092 /*
1093 * Determine if a block is in the cache.
1094 * Just look on what would be its hash chain. If it's there, return
1095 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1096 * we normally don't return the buffer, unless the caller explicitly
1097 * wants us to.
1098 */
1099 buf_t *
1100 incore(struct vnode *vp, daddr_t blkno)
1101 {
1102 buf_t *bp;
1103
1104 KASSERT(mutex_owned(&bufcache_lock));
1105
1106 /* Search hash chain */
1107 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1108 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1109 !ISSET(bp->b_cflags, BC_INVAL)) {
1110 KASSERT(bp->b_objlock == vp->v_interlock);
1111 return (bp);
1112 }
1113 }
1114
1115 return (NULL);
1116 }
1117
1118 /*
1119 * Get a block of requested size that is associated with
1120 * a given vnode and block offset. If it is found in the
1121 * block cache, mark it as having been found, make it busy
1122 * and return it. Otherwise, return an empty block of the
1123 * correct size. It is up to the caller to insure that the
1124 * cached blocks be of the correct size.
1125 */
1126 buf_t *
1127 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1128 {
1129 int err, preserve;
1130 buf_t *bp;
1131
1132 mutex_enter(&bufcache_lock);
1133 loop:
1134 bp = incore(vp, blkno);
1135 if (bp != NULL) {
1136 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1137 if (err != 0) {
1138 if (err == EPASSTHROUGH)
1139 goto loop;
1140 mutex_exit(&bufcache_lock);
1141 return (NULL);
1142 }
1143 KASSERT(!cv_has_waiters(&bp->b_done));
1144 #ifdef DIAGNOSTIC
1145 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1146 bp->b_bcount < size && vp->v_type != VBLK)
1147 panic("getblk: block size invariant failed");
1148 #endif
1149 bremfree(bp);
1150 preserve = 1;
1151 } else {
1152 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1153 goto loop;
1154
1155 if (incore(vp, blkno) != NULL) {
1156 /* The block has come into memory in the meantime. */
1157 brelsel(bp, 0);
1158 goto loop;
1159 }
1160
1161 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1162 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1163 mutex_enter(vp->v_interlock);
1164 bgetvp(vp, bp);
1165 mutex_exit(vp->v_interlock);
1166 preserve = 0;
1167 }
1168 mutex_exit(&bufcache_lock);
1169
1170 /*
1171 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1172 * if we re-size buffers here.
1173 */
1174 if (ISSET(bp->b_flags, B_LOCKED)) {
1175 KASSERT(bp->b_bufsize >= size);
1176 } else {
1177 if (allocbuf(bp, size, preserve)) {
1178 mutex_enter(&bufcache_lock);
1179 LIST_REMOVE(bp, b_hash);
1180 mutex_exit(&bufcache_lock);
1181 brelse(bp, BC_INVAL);
1182 return NULL;
1183 }
1184 }
1185 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1186 return (bp);
1187 }
1188
1189 /*
1190 * Get an empty, disassociated buffer of given size.
1191 */
1192 buf_t *
1193 geteblk(int size)
1194 {
1195 buf_t *bp;
1196 int error;
1197
1198 mutex_enter(&bufcache_lock);
1199 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1200 ;
1201
1202 SET(bp->b_cflags, BC_INVAL);
1203 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1204 mutex_exit(&bufcache_lock);
1205 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1206 error = allocbuf(bp, size, 0);
1207 KASSERT(error == 0);
1208 return (bp);
1209 }
1210
1211 /*
1212 * Expand or contract the actual memory allocated to a buffer.
1213 *
1214 * If the buffer shrinks, data is lost, so it's up to the
1215 * caller to have written it out *first*; this routine will not
1216 * start a write. If the buffer grows, it's the callers
1217 * responsibility to fill out the buffer's additional contents.
1218 */
1219 int
1220 allocbuf(buf_t *bp, int size, int preserve)
1221 {
1222 void *addr;
1223 vsize_t oldsize, desired_size;
1224 int oldcount;
1225 int delta;
1226
1227 desired_size = buf_roundsize(size);
1228 if (desired_size > MAXBSIZE)
1229 printf("allocbuf: buffer larger than MAXBSIZE requested");
1230
1231 oldcount = bp->b_bcount;
1232
1233 bp->b_bcount = size;
1234
1235 oldsize = bp->b_bufsize;
1236 if (oldsize == desired_size) {
1237 /*
1238 * Do not short cut the WAPBL resize, as the buffer length
1239 * could still have changed and this would corrupt the
1240 * tracking of the transaction length.
1241 */
1242 goto out;
1243 }
1244
1245 /*
1246 * If we want a buffer of a different size, re-allocate the
1247 * buffer's memory; copy old content only if needed.
1248 */
1249 addr = buf_alloc(desired_size);
1250 if (addr == NULL)
1251 return ENOMEM;
1252 if (preserve)
1253 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1254 if (bp->b_data != NULL)
1255 buf_mrelease(bp->b_data, oldsize);
1256 bp->b_data = addr;
1257 bp->b_bufsize = desired_size;
1258
1259 /*
1260 * Update overall buffer memory counter (protected by bufcache_lock)
1261 */
1262 delta = (long)desired_size - (long)oldsize;
1263
1264 mutex_enter(&bufcache_lock);
1265 if ((bufmem += delta) > bufmem_hiwater) {
1266 /*
1267 * Need to trim overall memory usage.
1268 */
1269 while (buf_canrelease()) {
1270 if (curcpu()->ci_schedstate.spc_flags &
1271 SPCF_SHOULDYIELD) {
1272 mutex_exit(&bufcache_lock);
1273 preempt();
1274 mutex_enter(&bufcache_lock);
1275 }
1276 if (buf_trim() == 0)
1277 break;
1278 }
1279 }
1280 mutex_exit(&bufcache_lock);
1281
1282 out:
1283 if (wapbl_vphaswapbl(bp->b_vp))
1284 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1285
1286 return 0;
1287 }
1288
1289 /*
1290 * Find a buffer which is available for use.
1291 * Select something from a free list.
1292 * Preference is to AGE list, then LRU list.
1293 *
1294 * Called with the buffer queues locked.
1295 * Return buffer locked.
1296 */
1297 buf_t *
1298 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1299 {
1300 buf_t *bp;
1301 struct vnode *vp;
1302
1303 start:
1304 KASSERT(mutex_owned(&bufcache_lock));
1305
1306 /*
1307 * Get a new buffer from the pool.
1308 */
1309 if (!from_bufq && buf_lotsfree()) {
1310 mutex_exit(&bufcache_lock);
1311 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1312 if (bp != NULL) {
1313 memset((char *)bp, 0, sizeof(*bp));
1314 buf_init(bp);
1315 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1316 mutex_enter(&bufcache_lock);
1317 #if defined(DIAGNOSTIC)
1318 bp->b_freelistindex = -1;
1319 #endif /* defined(DIAGNOSTIC) */
1320 return (bp);
1321 }
1322 mutex_enter(&bufcache_lock);
1323 }
1324
1325 KASSERT(mutex_owned(&bufcache_lock));
1326 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1327 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1328 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1329 bremfree(bp);
1330
1331 /* Buffer is no longer on free lists. */
1332 SET(bp->b_cflags, BC_BUSY);
1333 } else {
1334 /*
1335 * XXX: !from_bufq should be removed.
1336 */
1337 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1338 /* wait for a free buffer of any kind */
1339 if ((slpflag & PCATCH) != 0)
1340 (void)cv_timedwait_sig(&needbuffer_cv,
1341 &bufcache_lock, slptimeo);
1342 else
1343 (void)cv_timedwait(&needbuffer_cv,
1344 &bufcache_lock, slptimeo);
1345 }
1346 return (NULL);
1347 }
1348
1349 #ifdef DIAGNOSTIC
1350 if (bp->b_bufsize <= 0)
1351 panic("buffer %p: on queue but empty", bp);
1352 #endif
1353
1354 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1355 /*
1356 * This is a delayed write buffer being flushed to disk. Make
1357 * sure it gets aged out of the queue when it's finished, and
1358 * leave it off the LRU queue.
1359 */
1360 CLR(bp->b_cflags, BC_VFLUSH);
1361 SET(bp->b_cflags, BC_AGE);
1362 goto start;
1363 }
1364
1365 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1366 KASSERT(bp->b_refcnt > 0);
1367 KASSERT(!cv_has_waiters(&bp->b_done));
1368
1369 /*
1370 * If buffer was a delayed write, start it and return NULL
1371 * (since we might sleep while starting the write).
1372 */
1373 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1374 /*
1375 * This buffer has gone through the LRU, so make sure it gets
1376 * reused ASAP.
1377 */
1378 SET(bp->b_cflags, BC_AGE);
1379 mutex_exit(&bufcache_lock);
1380 bawrite(bp);
1381 mutex_enter(&bufcache_lock);
1382 return (NULL);
1383 }
1384
1385 vp = bp->b_vp;
1386
1387 /* clear out various other fields */
1388 bp->b_cflags = BC_BUSY;
1389 bp->b_oflags = 0;
1390 bp->b_flags = 0;
1391 bp->b_dev = NODEV;
1392 bp->b_blkno = 0;
1393 bp->b_lblkno = 0;
1394 bp->b_rawblkno = 0;
1395 bp->b_iodone = 0;
1396 bp->b_error = 0;
1397 bp->b_resid = 0;
1398 bp->b_bcount = 0;
1399
1400 LIST_REMOVE(bp, b_hash);
1401
1402 /* Disassociate us from our vnode, if we had one... */
1403 if (vp != NULL) {
1404 mutex_enter(vp->v_interlock);
1405 brelvp(bp);
1406 mutex_exit(vp->v_interlock);
1407 }
1408
1409 return (bp);
1410 }
1411
1412 /*
1413 * Attempt to free an aged buffer off the queues.
1414 * Called with queue lock held.
1415 * Returns the amount of buffer memory freed.
1416 */
1417 static int
1418 buf_trim(void)
1419 {
1420 buf_t *bp;
1421 long size = 0;
1422
1423 KASSERT(mutex_owned(&bufcache_lock));
1424
1425 /* Instruct getnewbuf() to get buffers off the queues */
1426 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1427 return 0;
1428
1429 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1430 size = bp->b_bufsize;
1431 bufmem -= size;
1432 if (size > 0) {
1433 buf_mrelease(bp->b_data, size);
1434 bp->b_bcount = bp->b_bufsize = 0;
1435 }
1436 /* brelse() will return the buffer to the global buffer pool */
1437 brelsel(bp, 0);
1438 return size;
1439 }
1440
1441 int
1442 buf_drain(int n)
1443 {
1444 int size = 0, sz;
1445
1446 KASSERT(mutex_owned(&bufcache_lock));
1447
1448 while (size < n && bufmem > bufmem_lowater) {
1449 sz = buf_trim();
1450 if (sz <= 0)
1451 break;
1452 size += sz;
1453 }
1454
1455 return size;
1456 }
1457
1458 /*
1459 * Wait for operations on the buffer to complete.
1460 * When they do, extract and return the I/O's error value.
1461 */
1462 int
1463 biowait(buf_t *bp)
1464 {
1465
1466 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1467 KASSERT(bp->b_refcnt > 0);
1468
1469 mutex_enter(bp->b_objlock);
1470 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1471 cv_wait(&bp->b_done, bp->b_objlock);
1472 mutex_exit(bp->b_objlock);
1473
1474 return bp->b_error;
1475 }
1476
1477 /*
1478 * Mark I/O complete on a buffer.
1479 *
1480 * If a callback has been requested, e.g. the pageout
1481 * daemon, do so. Otherwise, awaken waiting processes.
1482 *
1483 * [ Leffler, et al., says on p.247:
1484 * "This routine wakes up the blocked process, frees the buffer
1485 * for an asynchronous write, or, for a request by the pagedaemon
1486 * process, invokes a procedure specified in the buffer structure" ]
1487 *
1488 * In real life, the pagedaemon (or other system processes) wants
1489 * to do async stuff to, and doesn't want the buffer brelse()'d.
1490 * (for swap pager, that puts swap buffers on the free lists (!!!),
1491 * for the vn device, that puts allocated buffers on the free lists!)
1492 */
1493 void
1494 biodone(buf_t *bp)
1495 {
1496 int s;
1497
1498 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1499
1500 if (cpu_intr_p()) {
1501 /* From interrupt mode: defer to a soft interrupt. */
1502 s = splvm();
1503 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1504 softint_schedule(biodone_sih);
1505 splx(s);
1506 } else {
1507 /* Process now - the buffer may be freed soon. */
1508 biodone2(bp);
1509 }
1510 }
1511
1512 static void
1513 biodone2(buf_t *bp)
1514 {
1515 void (*callout)(buf_t *);
1516
1517 mutex_enter(bp->b_objlock);
1518 /* Note that the transfer is done. */
1519 if (ISSET(bp->b_oflags, BO_DONE))
1520 panic("biodone2 already");
1521 CLR(bp->b_flags, B_COWDONE);
1522 SET(bp->b_oflags, BO_DONE);
1523 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1524
1525 /* Wake up waiting writers. */
1526 if (!ISSET(bp->b_flags, B_READ))
1527 vwakeup(bp);
1528
1529 if ((callout = bp->b_iodone) != NULL) {
1530 /* Note callout done, then call out. */
1531 KASSERT(!cv_has_waiters(&bp->b_done));
1532 KERNEL_LOCK(1, NULL); /* XXXSMP */
1533 bp->b_iodone = NULL;
1534 mutex_exit(bp->b_objlock);
1535 (*callout)(bp);
1536 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1537 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1538 /* If async, release. */
1539 KASSERT(!cv_has_waiters(&bp->b_done));
1540 mutex_exit(bp->b_objlock);
1541 brelse(bp, 0);
1542 } else {
1543 /* Otherwise just wake up waiters in biowait(). */
1544 cv_broadcast(&bp->b_done);
1545 mutex_exit(bp->b_objlock);
1546 }
1547 }
1548
1549 static void
1550 biointr(void *cookie)
1551 {
1552 struct cpu_info *ci;
1553 buf_t *bp;
1554 int s;
1555
1556 ci = curcpu();
1557
1558 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1559 KASSERT(curcpu() == ci);
1560
1561 s = splvm();
1562 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1563 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1564 splx(s);
1565
1566 biodone2(bp);
1567 }
1568 }
1569
1570 /*
1571 * Wait for all buffers to complete I/O
1572 * Return the number of "stuck" buffers.
1573 */
1574 int
1575 buf_syncwait(void)
1576 {
1577 buf_t *bp;
1578 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1579
1580 dcount = 10000;
1581 for (iter = 0; iter < 20;) {
1582 mutex_enter(&bufcache_lock);
1583 nbusy = 0;
1584 for (ihash = 0; ihash < bufhash+1; ihash++) {
1585 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1586 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1587 nbusy += ((bp->b_flags & B_READ) == 0);
1588 }
1589 }
1590 mutex_exit(&bufcache_lock);
1591
1592 if (nbusy == 0)
1593 break;
1594 if (nbusy_prev == 0)
1595 nbusy_prev = nbusy;
1596 printf("%d ", nbusy);
1597 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1598 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1599 iter++;
1600 else
1601 nbusy_prev = nbusy;
1602 }
1603
1604 if (nbusy) {
1605 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1606 printf("giving up\nPrinting vnodes for busy buffers\n");
1607 for (ihash = 0; ihash < bufhash+1; ihash++) {
1608 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1609 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1610 (bp->b_flags & B_READ) == 0)
1611 vprint(NULL, bp->b_vp);
1612 }
1613 }
1614 #endif
1615 }
1616
1617 return nbusy;
1618 }
1619
1620 static void
1621 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1622 {
1623
1624 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1625 o->b_error = i->b_error;
1626 o->b_prio = i->b_prio;
1627 o->b_dev = i->b_dev;
1628 o->b_bufsize = i->b_bufsize;
1629 o->b_bcount = i->b_bcount;
1630 o->b_resid = i->b_resid;
1631 o->b_addr = PTRTOUINT64(i->b_data);
1632 o->b_blkno = i->b_blkno;
1633 o->b_rawblkno = i->b_rawblkno;
1634 o->b_iodone = PTRTOUINT64(i->b_iodone);
1635 o->b_proc = PTRTOUINT64(i->b_proc);
1636 o->b_vp = PTRTOUINT64(i->b_vp);
1637 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1638 o->b_lblkno = i->b_lblkno;
1639 }
1640
1641 #define KERN_BUFSLOP 20
1642 static int
1643 sysctl_dobuf(SYSCTLFN_ARGS)
1644 {
1645 buf_t *bp;
1646 struct buf_sysctl bs;
1647 struct bqueue *bq;
1648 char *dp;
1649 u_int i, op, arg;
1650 size_t len, needed, elem_size, out_size;
1651 int error, elem_count, retries;
1652
1653 if (namelen == 1 && name[0] == CTL_QUERY)
1654 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1655
1656 if (namelen != 4)
1657 return (EINVAL);
1658
1659 retries = 100;
1660 retry:
1661 dp = oldp;
1662 len = (oldp != NULL) ? *oldlenp : 0;
1663 op = name[0];
1664 arg = name[1];
1665 elem_size = name[2];
1666 elem_count = name[3];
1667 out_size = MIN(sizeof(bs), elem_size);
1668
1669 /*
1670 * at the moment, these are just "placeholders" to make the
1671 * API for retrieving kern.buf data more extensible in the
1672 * future.
1673 *
1674 * XXX kern.buf currently has "netbsd32" issues. hopefully
1675 * these will be resolved at a later point.
1676 */
1677 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1678 elem_size < 1 || elem_count < 0)
1679 return (EINVAL);
1680
1681 error = 0;
1682 needed = 0;
1683 sysctl_unlock();
1684 mutex_enter(&bufcache_lock);
1685 for (i = 0; i < BQUEUES; i++) {
1686 bq = &bufqueues[i];
1687 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1688 bq->bq_marker = bp;
1689 if (len >= elem_size && elem_count > 0) {
1690 sysctl_fillbuf(bp, &bs);
1691 mutex_exit(&bufcache_lock);
1692 error = copyout(&bs, dp, out_size);
1693 mutex_enter(&bufcache_lock);
1694 if (error)
1695 break;
1696 if (bq->bq_marker != bp) {
1697 /*
1698 * This sysctl node is only for
1699 * statistics. Retry; if the
1700 * queue keeps changing, then
1701 * bail out.
1702 */
1703 if (retries-- == 0) {
1704 error = EAGAIN;
1705 break;
1706 }
1707 mutex_exit(&bufcache_lock);
1708 sysctl_relock();
1709 goto retry;
1710 }
1711 dp += elem_size;
1712 len -= elem_size;
1713 }
1714 needed += elem_size;
1715 if (elem_count > 0 && elem_count != INT_MAX)
1716 elem_count--;
1717 }
1718 if (error != 0)
1719 break;
1720 }
1721 mutex_exit(&bufcache_lock);
1722 sysctl_relock();
1723
1724 *oldlenp = needed;
1725 if (oldp == NULL)
1726 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1727
1728 return (error);
1729 }
1730
1731 static int
1732 sysctl_bufvm_update(SYSCTLFN_ARGS)
1733 {
1734 int t, error, rv;
1735 struct sysctlnode node;
1736
1737 node = *rnode;
1738 node.sysctl_data = &t;
1739 t = *(int *)rnode->sysctl_data;
1740 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1741 if (error || newp == NULL)
1742 return (error);
1743
1744 if (t < 0)
1745 return EINVAL;
1746 if (rnode->sysctl_data == &bufcache) {
1747 if (t > 100)
1748 return (EINVAL);
1749 bufcache = t;
1750 buf_setwm();
1751 } else if (rnode->sysctl_data == &bufmem_lowater) {
1752 if (bufmem_hiwater - t < 16)
1753 return (EINVAL);
1754 bufmem_lowater = t;
1755 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1756 if (t - bufmem_lowater < 16)
1757 return (EINVAL);
1758 bufmem_hiwater = t;
1759 } else
1760 return (EINVAL);
1761
1762 /* Drain until below new high water mark */
1763 sysctl_unlock();
1764 mutex_enter(&bufcache_lock);
1765 while ((t = bufmem - bufmem_hiwater) >= 0) {
1766 rv = buf_drain(t / (2 * 1024));
1767 if (rv <= 0)
1768 break;
1769 }
1770 mutex_exit(&bufcache_lock);
1771 sysctl_relock();
1772
1773 return 0;
1774 }
1775
1776 static struct sysctllog *vfsbio_sysctllog;
1777
1778 static void
1779 sysctl_kern_buf_setup(void)
1780 {
1781
1782 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1783 CTLFLAG_PERMANENT,
1784 CTLTYPE_NODE, "kern", NULL,
1785 NULL, 0, NULL, 0,
1786 CTL_KERN, CTL_EOL);
1787 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1788 CTLFLAG_PERMANENT,
1789 CTLTYPE_NODE, "buf",
1790 SYSCTL_DESCR("Kernel buffer cache information"),
1791 sysctl_dobuf, 0, NULL, 0,
1792 CTL_KERN, KERN_BUF, CTL_EOL);
1793 }
1794
1795 static void
1796 sysctl_vm_buf_setup(void)
1797 {
1798
1799 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1800 CTLFLAG_PERMANENT,
1801 CTLTYPE_NODE, "vm", NULL,
1802 NULL, 0, NULL, 0,
1803 CTL_VM, CTL_EOL);
1804 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1805 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1806 CTLTYPE_INT, "bufcache",
1807 SYSCTL_DESCR("Percentage of physical memory to use for "
1808 "buffer cache"),
1809 sysctl_bufvm_update, 0, &bufcache, 0,
1810 CTL_VM, CTL_CREATE, CTL_EOL);
1811 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1812 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1813 CTLTYPE_INT, "bufmem",
1814 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1815 "cache"),
1816 NULL, 0, &bufmem, 0,
1817 CTL_VM, CTL_CREATE, CTL_EOL);
1818 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1819 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1820 CTLTYPE_INT, "bufmem_lowater",
1821 SYSCTL_DESCR("Minimum amount of kernel memory to "
1822 "reserve for buffer cache"),
1823 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1824 CTL_VM, CTL_CREATE, CTL_EOL);
1825 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1826 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1827 CTLTYPE_INT, "bufmem_hiwater",
1828 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1829 "for buffer cache"),
1830 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1831 CTL_VM, CTL_CREATE, CTL_EOL);
1832 }
1833
1834 #ifdef DEBUG
1835 /*
1836 * Print out statistics on the current allocation of the buffer pool.
1837 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1838 * in vfs_syscalls.c using sysctl.
1839 */
1840 void
1841 vfs_bufstats(void)
1842 {
1843 int i, j, count;
1844 buf_t *bp;
1845 struct bqueue *dp;
1846 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1847 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1848
1849 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1850 count = 0;
1851 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1852 counts[j] = 0;
1853 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1854 counts[bp->b_bufsize/PAGE_SIZE]++;
1855 count++;
1856 }
1857 printf("%s: total-%d", bname[i], count);
1858 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1859 if (counts[j] != 0)
1860 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1861 printf("\n");
1862 }
1863 }
1864 #endif /* DEBUG */
1865
1866 /* ------------------------------ */
1867
1868 buf_t *
1869 getiobuf(struct vnode *vp, bool waitok)
1870 {
1871 buf_t *bp;
1872
1873 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1874 if (bp == NULL)
1875 return bp;
1876
1877 buf_init(bp);
1878
1879 if ((bp->b_vp = vp) == NULL)
1880 bp->b_objlock = &buffer_lock;
1881 else
1882 bp->b_objlock = vp->v_interlock;
1883
1884 return bp;
1885 }
1886
1887 void
1888 putiobuf(buf_t *bp)
1889 {
1890
1891 buf_destroy(bp);
1892 pool_cache_put(bufio_cache, bp);
1893 }
1894
1895 /*
1896 * nestiobuf_iodone: b_iodone callback for nested buffers.
1897 */
1898
1899 void
1900 nestiobuf_iodone(buf_t *bp)
1901 {
1902 buf_t *mbp = bp->b_private;
1903 int error;
1904 int donebytes;
1905
1906 KASSERT(bp->b_bcount <= bp->b_bufsize);
1907 KASSERT(mbp != bp);
1908
1909 error = bp->b_error;
1910 if (bp->b_error == 0 &&
1911 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1912 /*
1913 * Not all got transfered, raise an error. We have no way to
1914 * propagate these conditions to mbp.
1915 */
1916 error = EIO;
1917 }
1918
1919 donebytes = bp->b_bufsize;
1920
1921 putiobuf(bp);
1922 nestiobuf_done(mbp, donebytes, error);
1923 }
1924
1925 /*
1926 * nestiobuf_setup: setup a "nested" buffer.
1927 *
1928 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1929 * => 'bp' should be a buffer allocated by getiobuf.
1930 * => 'offset' is a byte offset in the master buffer.
1931 * => 'size' is a size in bytes of this nested buffer.
1932 */
1933
1934 void
1935 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1936 {
1937 const int b_read = mbp->b_flags & B_READ;
1938 struct vnode *vp = mbp->b_vp;
1939
1940 KASSERT(mbp->b_bcount >= offset + size);
1941 bp->b_vp = vp;
1942 bp->b_dev = mbp->b_dev;
1943 bp->b_objlock = mbp->b_objlock;
1944 bp->b_cflags = BC_BUSY;
1945 bp->b_flags = B_ASYNC | b_read;
1946 bp->b_iodone = nestiobuf_iodone;
1947 bp->b_data = (char *)mbp->b_data + offset;
1948 bp->b_resid = bp->b_bcount = size;
1949 bp->b_bufsize = bp->b_bcount;
1950 bp->b_private = mbp;
1951 BIO_COPYPRIO(bp, mbp);
1952 if (!b_read && vp != NULL) {
1953 mutex_enter(vp->v_interlock);
1954 vp->v_numoutput++;
1955 mutex_exit(vp->v_interlock);
1956 }
1957 }
1958
1959 /*
1960 * nestiobuf_done: propagate completion to the master buffer.
1961 *
1962 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1963 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1964 */
1965
1966 void
1967 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1968 {
1969
1970 if (donebytes == 0) {
1971 return;
1972 }
1973 mutex_enter(mbp->b_objlock);
1974 KASSERT(mbp->b_resid >= donebytes);
1975 mbp->b_resid -= donebytes;
1976 if (error)
1977 mbp->b_error = error;
1978 if (mbp->b_resid == 0) {
1979 if (mbp->b_error)
1980 mbp->b_resid = mbp->b_bcount;
1981 mutex_exit(mbp->b_objlock);
1982 biodone(mbp);
1983 } else
1984 mutex_exit(mbp->b_objlock);
1985 }
1986
1987 void
1988 buf_init(buf_t *bp)
1989 {
1990
1991 cv_init(&bp->b_busy, "biolock");
1992 cv_init(&bp->b_done, "biowait");
1993 bp->b_dev = NODEV;
1994 bp->b_error = 0;
1995 bp->b_flags = 0;
1996 bp->b_cflags = 0;
1997 bp->b_oflags = 0;
1998 bp->b_objlock = &buffer_lock;
1999 bp->b_iodone = NULL;
2000 bp->b_refcnt = 1;
2001 bp->b_dev = NODEV;
2002 bp->b_vnbufs.le_next = NOLIST;
2003 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2004 }
2005
2006 void
2007 buf_destroy(buf_t *bp)
2008 {
2009
2010 cv_destroy(&bp->b_done);
2011 cv_destroy(&bp->b_busy);
2012 }
2013
2014 int
2015 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2016 {
2017 int error;
2018
2019 KASSERT(mutex_owned(&bufcache_lock));
2020
2021 if ((bp->b_cflags & BC_BUSY) != 0) {
2022 if (curlwp == uvm.pagedaemon_lwp)
2023 return EDEADLK;
2024 bp->b_cflags |= BC_WANTED;
2025 bref(bp);
2026 if (interlock != NULL)
2027 mutex_exit(interlock);
2028 if (intr) {
2029 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2030 timo);
2031 } else {
2032 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2033 timo);
2034 }
2035 brele(bp);
2036 if (interlock != NULL)
2037 mutex_enter(interlock);
2038 if (error != 0)
2039 return error;
2040 return EPASSTHROUGH;
2041 }
2042 bp->b_cflags |= BC_BUSY;
2043
2044 return 0;
2045 }
2046