Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.236
      1 /*	$NetBSD: vfs_bio.c,v 1.236 2012/02/01 23:43:49 para Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.236 2012/02/01 23:43:49 para Exp $");
    127 
    128 #include "opt_bufcache.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/kernel.h>
    133 #include <sys/proc.h>
    134 #include <sys/buf.h>
    135 #include <sys/vnode.h>
    136 #include <sys/mount.h>
    137 #include <sys/resourcevar.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/conf.h>
    140 #include <sys/kauth.h>
    141 #include <sys/fstrans.h>
    142 #include <sys/intr.h>
    143 #include <sys/cpu.h>
    144 #include <sys/wapbl.h>
    145 #include <sys/bitops.h>
    146 
    147 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    148 
    149 #include <miscfs/specfs/specdev.h>
    150 
    151 #ifndef	BUFPAGES
    152 # define BUFPAGES 0
    153 #endif
    154 
    155 #ifdef BUFCACHE
    156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    157 #  error BUFCACHE is not between 5 and 95
    158 # endif
    159 #else
    160 # define BUFCACHE 15
    161 #endif
    162 
    163 u_int	nbuf;			/* desired number of buffer headers */
    164 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    165 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    166 
    167 /* Function prototypes */
    168 struct bqueue;
    169 
    170 static void buf_setwm(void);
    171 static int buf_trim(void);
    172 static void *bufpool_page_alloc(struct pool *, int);
    173 static void bufpool_page_free(struct pool *, void *);
    174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
    175     kauth_cred_t, int);
    176 static buf_t *getnewbuf(int, int, int);
    177 static int buf_lotsfree(void);
    178 static int buf_canrelease(void);
    179 static u_long buf_mempoolidx(u_long);
    180 static u_long buf_roundsize(u_long);
    181 static void *buf_alloc(size_t);
    182 static void buf_mrelease(void *, size_t);
    183 static void binsheadfree(buf_t *, struct bqueue *);
    184 static void binstailfree(buf_t *, struct bqueue *);
    185 #ifdef DEBUG
    186 static int checkfreelist(buf_t *, struct bqueue *, int);
    187 #endif
    188 static void biointr(void *);
    189 static void biodone2(buf_t *);
    190 static void bref(buf_t *);
    191 static void brele(buf_t *);
    192 static void sysctl_kern_buf_setup(void);
    193 static void sysctl_vm_buf_setup(void);
    194 
    195 /*
    196  * Definitions for the buffer hash lists.
    197  */
    198 #define	BUFHASH(dvp, lbn)	\
    199 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    201 u_long	bufhash;
    202 struct bqueue bufqueues[BQUEUES];
    203 
    204 static kcondvar_t needbuffer_cv;
    205 
    206 /*
    207  * Buffer queue lock.
    208  */
    209 kmutex_t bufcache_lock;
    210 kmutex_t buffer_lock;
    211 
    212 /* Software ISR for completed transfers. */
    213 static void *biodone_sih;
    214 
    215 /* Buffer pool for I/O buffers. */
    216 static pool_cache_t buf_cache;
    217 static pool_cache_t bufio_cache;
    218 
    219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    222 
    223 /* Buffer memory pools */
    224 static struct pool bmempools[NMEMPOOLS];
    225 
    226 static struct vm_map *buf_map;
    227 
    228 /*
    229  * Buffer memory pool allocator.
    230  */
    231 static void *
    232 bufpool_page_alloc(struct pool *pp, int flags)
    233 {
    234 
    235 	return (void *)uvm_km_alloc(buf_map,
    236 	    MAXBSIZE, MAXBSIZE,
    237 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    238 	    | UVM_KMF_WIRED);
    239 }
    240 
    241 static void
    242 bufpool_page_free(struct pool *pp, void *v)
    243 {
    244 
    245 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    246 }
    247 
    248 static struct pool_allocator bufmempool_allocator = {
    249 	.pa_alloc = bufpool_page_alloc,
    250 	.pa_free = bufpool_page_free,
    251 	.pa_pagesz = MAXBSIZE,
    252 };
    253 
    254 /* Buffer memory management variables */
    255 u_long bufmem_valimit;
    256 u_long bufmem_hiwater;
    257 u_long bufmem_lowater;
    258 u_long bufmem;
    259 
    260 /*
    261  * MD code can call this to set a hard limit on the amount
    262  * of virtual memory used by the buffer cache.
    263  */
    264 int
    265 buf_setvalimit(vsize_t sz)
    266 {
    267 
    268 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    269 	if (sz < NMEMPOOLS * MAXBSIZE)
    270 		return EINVAL;
    271 
    272 	bufmem_valimit = sz;
    273 	return 0;
    274 }
    275 
    276 static void
    277 buf_setwm(void)
    278 {
    279 
    280 	bufmem_hiwater = buf_memcalc();
    281 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    282 #define	BUFMEM_WMSHIFT	3
    283 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    284 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    285 		/* Ensure a reasonable minimum value */
    286 		bufmem_hiwater = BUFMEM_HIWMMIN;
    287 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    288 }
    289 
    290 #ifdef DEBUG
    291 int debug_verify_freelist = 0;
    292 static int
    293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    294 {
    295 	buf_t *b;
    296 
    297 	if (!debug_verify_freelist)
    298 		return 1;
    299 
    300 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    301 		if (b == bp)
    302 			return ison ? 1 : 0;
    303 	}
    304 
    305 	return ison ? 0 : 1;
    306 }
    307 #endif
    308 
    309 /*
    310  * Insq/Remq for the buffer hash lists.
    311  * Call with buffer queue locked.
    312  */
    313 static void
    314 binsheadfree(buf_t *bp, struct bqueue *dp)
    315 {
    316 
    317 	KASSERT(mutex_owned(&bufcache_lock));
    318 	KASSERT(bp->b_freelistindex == -1);
    319 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    320 	dp->bq_bytes += bp->b_bufsize;
    321 	bp->b_freelistindex = dp - bufqueues;
    322 }
    323 
    324 static void
    325 binstailfree(buf_t *bp, struct bqueue *dp)
    326 {
    327 
    328 	KASSERT(mutex_owned(&bufcache_lock));
    329 	KASSERT(bp->b_freelistindex == -1);
    330 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    331 	dp->bq_bytes += bp->b_bufsize;
    332 	bp->b_freelistindex = dp - bufqueues;
    333 }
    334 
    335 void
    336 bremfree(buf_t *bp)
    337 {
    338 	struct bqueue *dp;
    339 	int bqidx = bp->b_freelistindex;
    340 
    341 	KASSERT(mutex_owned(&bufcache_lock));
    342 
    343 	KASSERT(bqidx != -1);
    344 	dp = &bufqueues[bqidx];
    345 	KDASSERT(checkfreelist(bp, dp, 1));
    346 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    347 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    348 	dp->bq_bytes -= bp->b_bufsize;
    349 
    350 	/* For the sysctl helper. */
    351 	if (bp == dp->bq_marker)
    352 		dp->bq_marker = NULL;
    353 
    354 #if defined(DIAGNOSTIC)
    355 	bp->b_freelistindex = -1;
    356 #endif /* defined(DIAGNOSTIC) */
    357 }
    358 
    359 /*
    360  * Add a reference to an buffer structure that came from buf_cache.
    361  */
    362 static inline void
    363 bref(buf_t *bp)
    364 {
    365 
    366 	KASSERT(mutex_owned(&bufcache_lock));
    367 	KASSERT(bp->b_refcnt > 0);
    368 
    369 	bp->b_refcnt++;
    370 }
    371 
    372 /*
    373  * Free an unused buffer structure that came from buf_cache.
    374  */
    375 static inline void
    376 brele(buf_t *bp)
    377 {
    378 
    379 	KASSERT(mutex_owned(&bufcache_lock));
    380 	KASSERT(bp->b_refcnt > 0);
    381 
    382 	if (bp->b_refcnt-- == 1) {
    383 		buf_destroy(bp);
    384 #ifdef DEBUG
    385 		memset((char *)bp, 0, sizeof(*bp));
    386 #endif
    387 		pool_cache_put(buf_cache, bp);
    388 	}
    389 }
    390 
    391 /*
    392  * note that for some ports this is used by pmap bootstrap code to
    393  * determine kva size.
    394  */
    395 u_long
    396 buf_memcalc(void)
    397 {
    398 	u_long n;
    399 
    400 	/*
    401 	 * Determine the upper bound of memory to use for buffers.
    402 	 *
    403 	 *	- If bufpages is specified, use that as the number
    404 	 *	  pages.
    405 	 *
    406 	 *	- Otherwise, use bufcache as the percentage of
    407 	 *	  physical memory.
    408 	 */
    409 	if (bufpages != 0) {
    410 		n = bufpages;
    411 	} else {
    412 		if (bufcache < 5) {
    413 			printf("forcing bufcache %d -> 5", bufcache);
    414 			bufcache = 5;
    415 		}
    416 		if (bufcache > 95) {
    417 			printf("forcing bufcache %d -> 95", bufcache);
    418 			bufcache = 95;
    419 		}
    420 		n = calc_cache_size(buf_map, bufcache,
    421 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    422 		    / PAGE_SIZE;
    423 	}
    424 
    425 	n <<= PAGE_SHIFT;
    426 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    427 		n = bufmem_valimit;
    428 
    429 	return (n);
    430 }
    431 
    432 /*
    433  * Initialize buffers and hash links for buffers.
    434  */
    435 void
    436 bufinit(void)
    437 {
    438 	struct bqueue *dp;
    439 	int use_std;
    440 	u_int i;
    441 
    442 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    443 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    444 	cv_init(&needbuffer_cv, "needbuf");
    445 
    446 	if (bufmem_valimit != 0) {
    447 		vaddr_t minaddr = 0, maxaddr;
    448 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    449 					  bufmem_valimit, 0, false, 0);
    450 		if (buf_map == NULL)
    451 			panic("bufinit: cannot allocate submap");
    452 	} else
    453 		buf_map = kernel_map;
    454 
    455 	/*
    456 	 * Initialize buffer cache memory parameters.
    457 	 */
    458 	bufmem = 0;
    459 	buf_setwm();
    460 
    461 	/* On "small" machines use small pool page sizes where possible */
    462 	use_std = (physmem < atop(16*1024*1024));
    463 
    464 	/*
    465 	 * Also use them on systems that can map the pool pages using
    466 	 * a direct-mapped segment.
    467 	 */
    468 #ifdef PMAP_MAP_POOLPAGE
    469 	use_std = 1;
    470 #endif
    471 
    472 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    473 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    474 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    475 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    476 
    477 	for (i = 0; i < NMEMPOOLS; i++) {
    478 		struct pool_allocator *pa;
    479 		struct pool *pp = &bmempools[i];
    480 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    481 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    482 		if (__predict_false(size >= 1048576))
    483 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    484 		else if (__predict_true(size >= 1024))
    485 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    486 		else
    487 			(void)snprintf(name, 8, "buf%ub", size);
    488 		pa = (size <= PAGE_SIZE && use_std)
    489 			? &pool_allocator_nointr
    490 			: &bufmempool_allocator;
    491 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    492 		pool_setlowat(pp, 1);
    493 		pool_sethiwat(pp, 1);
    494 	}
    495 
    496 	/* Initialize the buffer queues */
    497 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    498 		TAILQ_INIT(&dp->bq_queue);
    499 		dp->bq_bytes = 0;
    500 	}
    501 
    502 	/*
    503 	 * Estimate hash table size based on the amount of memory we
    504 	 * intend to use for the buffer cache. The average buffer
    505 	 * size is dependent on our clients (i.e. filesystems).
    506 	 *
    507 	 * For now, use an empirical 3K per buffer.
    508 	 */
    509 	nbuf = (bufmem_hiwater / 1024) / 3;
    510 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    511 
    512 	sysctl_kern_buf_setup();
    513 	sysctl_vm_buf_setup();
    514 }
    515 
    516 void
    517 bufinit2(void)
    518 {
    519 
    520 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    521 	    NULL);
    522 	if (biodone_sih == NULL)
    523 		panic("bufinit2: can't establish soft interrupt");
    524 }
    525 
    526 static int
    527 buf_lotsfree(void)
    528 {
    529 	int try, thresh;
    530 
    531 	/* Always allocate if less than the low water mark. */
    532 	if (bufmem < bufmem_lowater)
    533 		return 1;
    534 
    535 	/* Never allocate if greater than the high water mark. */
    536 	if (bufmem > bufmem_hiwater)
    537 		return 0;
    538 
    539 	/* If there's anything on the AGE list, it should be eaten. */
    540 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    541 		return 0;
    542 
    543 	/*
    544 	 * The probabily of getting a new allocation is inversely
    545 	 * proportional to the current size of the cache, using
    546 	 * a granularity of 16 steps.
    547 	 */
    548 	try = random() & 0x0000000fL;
    549 
    550 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    551 	thresh = (bufmem - bufmem_lowater) /
    552 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    553 
    554 	if (try >= thresh)
    555 		return 1;
    556 
    557 	/* Otherwise don't allocate. */
    558 	return 0;
    559 }
    560 
    561 /*
    562  * Return estimate of bytes we think need to be
    563  * released to help resolve low memory conditions.
    564  *
    565  * => called with bufcache_lock held.
    566  */
    567 static int
    568 buf_canrelease(void)
    569 {
    570 	int pagedemand, ninvalid = 0;
    571 
    572 	KASSERT(mutex_owned(&bufcache_lock));
    573 
    574 	if (bufmem < bufmem_lowater)
    575 		return 0;
    576 
    577 	if (bufmem > bufmem_hiwater)
    578 		return bufmem - bufmem_hiwater;
    579 
    580 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    581 
    582 	pagedemand = uvmexp.freetarg - uvmexp.free;
    583 	if (pagedemand < 0)
    584 		return ninvalid;
    585 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    586 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    587 }
    588 
    589 /*
    590  * Buffer memory allocation helper functions
    591  */
    592 static u_long
    593 buf_mempoolidx(u_long size)
    594 {
    595 	u_int n = 0;
    596 
    597 	size -= 1;
    598 	size >>= MEMPOOL_INDEX_OFFSET;
    599 	while (size) {
    600 		size >>= 1;
    601 		n += 1;
    602 	}
    603 	if (n >= NMEMPOOLS)
    604 		panic("buf mem pool index %d", n);
    605 	return n;
    606 }
    607 
    608 static u_long
    609 buf_roundsize(u_long size)
    610 {
    611 	/* Round up to nearest power of 2 */
    612 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    613 }
    614 
    615 static void *
    616 buf_alloc(size_t size)
    617 {
    618 	u_int n = buf_mempoolidx(size);
    619 	void *addr;
    620 
    621 	while (1) {
    622 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    623 		if (addr != NULL)
    624 			break;
    625 
    626 		/* No memory, see if we can free some. If so, try again */
    627 		mutex_enter(&bufcache_lock);
    628 		if (buf_drain(1) > 0) {
    629 			mutex_exit(&bufcache_lock);
    630 			continue;
    631 		}
    632 
    633 		if (curlwp == uvm.pagedaemon_lwp) {
    634 			mutex_exit(&bufcache_lock);
    635 			return NULL;
    636 		}
    637 
    638 		/* Wait for buffers to arrive on the LRU queue */
    639 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    640 		mutex_exit(&bufcache_lock);
    641 	}
    642 
    643 	return addr;
    644 }
    645 
    646 static void
    647 buf_mrelease(void *addr, size_t size)
    648 {
    649 
    650 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    651 }
    652 
    653 /*
    654  * bread()/breadn() helper.
    655  */
    656 static buf_t *
    657 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    658     int async)
    659 {
    660 	buf_t *bp;
    661 	struct mount *mp;
    662 
    663 	bp = getblk(vp, blkno, size, 0, 0);
    664 
    665 #ifdef DIAGNOSTIC
    666 	if (bp == NULL) {
    667 		panic("bio_doread: no such buf");
    668 	}
    669 #endif
    670 
    671 	/*
    672 	 * If buffer does not have data valid, start a read.
    673 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    674 	 * Therefore, it's valid if its I/O has completed or been delayed.
    675 	 */
    676 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    677 		/* Start I/O for the buffer. */
    678 		SET(bp->b_flags, B_READ | async);
    679 		if (async)
    680 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    681 		else
    682 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    683 		VOP_STRATEGY(vp, bp);
    684 
    685 		/* Pay for the read. */
    686 		curlwp->l_ru.ru_inblock++;
    687 	} else if (async)
    688 		brelse(bp, 0);
    689 
    690 	if (vp->v_type == VBLK)
    691 		mp = vp->v_specmountpoint;
    692 	else
    693 		mp = vp->v_mount;
    694 
    695 	/*
    696 	 * Collect statistics on synchronous and asynchronous reads.
    697 	 * Reads from block devices are charged to their associated
    698 	 * filesystem (if any).
    699 	 */
    700 	if (mp != NULL) {
    701 		if (async == 0)
    702 			mp->mnt_stat.f_syncreads++;
    703 		else
    704 			mp->mnt_stat.f_asyncreads++;
    705 	}
    706 
    707 	return (bp);
    708 }
    709 
    710 /*
    711  * Read a disk block.
    712  * This algorithm described in Bach (p.54).
    713  */
    714 int
    715 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    716     int flags, buf_t **bpp)
    717 {
    718 	buf_t *bp;
    719 	int error;
    720 
    721 	/* Get buffer for block. */
    722 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    723 
    724 	/* Wait for the read to complete, and return result. */
    725 	error = biowait(bp);
    726 	if (error == 0 && (flags & B_MODIFY) != 0)
    727 		error = fscow_run(bp, true);
    728 
    729 	return error;
    730 }
    731 
    732 /*
    733  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    734  * Trivial modification to the breada algorithm presented in Bach (p.55).
    735  */
    736 int
    737 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    738     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
    739 {
    740 	buf_t *bp;
    741 	int error, i;
    742 
    743 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    744 
    745 	/*
    746 	 * For each of the read-ahead blocks, start a read, if necessary.
    747 	 */
    748 	mutex_enter(&bufcache_lock);
    749 	for (i = 0; i < nrablks; i++) {
    750 		/* If it's in the cache, just go on to next one. */
    751 		if (incore(vp, rablks[i]))
    752 			continue;
    753 
    754 		/* Get a buffer for the read-ahead block */
    755 		mutex_exit(&bufcache_lock);
    756 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    757 		mutex_enter(&bufcache_lock);
    758 	}
    759 	mutex_exit(&bufcache_lock);
    760 
    761 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    762 	error = biowait(bp);
    763 	if (error == 0 && (flags & B_MODIFY) != 0)
    764 		error = fscow_run(bp, true);
    765 	return error;
    766 }
    767 
    768 /*
    769  * Block write.  Described in Bach (p.56)
    770  */
    771 int
    772 bwrite(buf_t *bp)
    773 {
    774 	int rv, sync, wasdelayed;
    775 	struct vnode *vp;
    776 	struct mount *mp;
    777 
    778 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    779 	KASSERT(!cv_has_waiters(&bp->b_done));
    780 
    781 	vp = bp->b_vp;
    782 	if (vp != NULL) {
    783 		KASSERT(bp->b_objlock == vp->v_interlock);
    784 		if (vp->v_type == VBLK)
    785 			mp = vp->v_specmountpoint;
    786 		else
    787 			mp = vp->v_mount;
    788 	} else {
    789 		mp = NULL;
    790 	}
    791 
    792 	if (mp && mp->mnt_wapbl) {
    793 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    794 			bdwrite(bp);
    795 			return 0;
    796 		}
    797 	}
    798 
    799 	/*
    800 	 * Remember buffer type, to switch on it later.  If the write was
    801 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    802 	 * convert it to a delayed write.
    803 	 * XXX note that this relies on delayed tape writes being converted
    804 	 * to async, not sync writes (which is safe, but ugly).
    805 	 */
    806 	sync = !ISSET(bp->b_flags, B_ASYNC);
    807 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    808 		bdwrite(bp);
    809 		return (0);
    810 	}
    811 
    812 	/*
    813 	 * Collect statistics on synchronous and asynchronous writes.
    814 	 * Writes to block devices are charged to their associated
    815 	 * filesystem (if any).
    816 	 */
    817 	if (mp != NULL) {
    818 		if (sync)
    819 			mp->mnt_stat.f_syncwrites++;
    820 		else
    821 			mp->mnt_stat.f_asyncwrites++;
    822 	}
    823 
    824 	/*
    825 	 * Pay for the I/O operation and make sure the buf is on the correct
    826 	 * vnode queue.
    827 	 */
    828 	bp->b_error = 0;
    829 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    830 	CLR(bp->b_flags, B_READ);
    831 	if (wasdelayed) {
    832 		mutex_enter(&bufcache_lock);
    833 		mutex_enter(bp->b_objlock);
    834 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    835 		reassignbuf(bp, bp->b_vp);
    836 		mutex_exit(&bufcache_lock);
    837 	} else {
    838 		curlwp->l_ru.ru_oublock++;
    839 		mutex_enter(bp->b_objlock);
    840 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    841 	}
    842 	if (vp != NULL)
    843 		vp->v_numoutput++;
    844 	mutex_exit(bp->b_objlock);
    845 
    846 	/* Initiate disk write. */
    847 	if (sync)
    848 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    849 	else
    850 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    851 
    852 	VOP_STRATEGY(vp, bp);
    853 
    854 	if (sync) {
    855 		/* If I/O was synchronous, wait for it to complete. */
    856 		rv = biowait(bp);
    857 
    858 		/* Release the buffer. */
    859 		brelse(bp, 0);
    860 
    861 		return (rv);
    862 	} else {
    863 		return (0);
    864 	}
    865 }
    866 
    867 int
    868 vn_bwrite(void *v)
    869 {
    870 	struct vop_bwrite_args *ap = v;
    871 
    872 	return (bwrite(ap->a_bp));
    873 }
    874 
    875 /*
    876  * Delayed write.
    877  *
    878  * The buffer is marked dirty, but is not queued for I/O.
    879  * This routine should be used when the buffer is expected
    880  * to be modified again soon, typically a small write that
    881  * partially fills a buffer.
    882  *
    883  * NB: magnetic tapes cannot be delayed; they must be
    884  * written in the order that the writes are requested.
    885  *
    886  * Described in Leffler, et al. (pp. 208-213).
    887  */
    888 void
    889 bdwrite(buf_t *bp)
    890 {
    891 
    892 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    893 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    894 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    895 	KASSERT(!cv_has_waiters(&bp->b_done));
    896 
    897 	/* If this is a tape block, write the block now. */
    898 	if (bdev_type(bp->b_dev) == D_TAPE) {
    899 		bawrite(bp);
    900 		return;
    901 	}
    902 
    903 	if (wapbl_vphaswapbl(bp->b_vp)) {
    904 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    905 
    906 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    907 			WAPBL_ADD_BUF(mp, bp);
    908 		}
    909 	}
    910 
    911 	/*
    912 	 * If the block hasn't been seen before:
    913 	 *	(1) Mark it as having been seen,
    914 	 *	(2) Charge for the write,
    915 	 *	(3) Make sure it's on its vnode's correct block list.
    916 	 */
    917 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    918 
    919 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    920 		mutex_enter(&bufcache_lock);
    921 		mutex_enter(bp->b_objlock);
    922 		SET(bp->b_oflags, BO_DELWRI);
    923 		curlwp->l_ru.ru_oublock++;
    924 		reassignbuf(bp, bp->b_vp);
    925 		mutex_exit(&bufcache_lock);
    926 	} else {
    927 		mutex_enter(bp->b_objlock);
    928 	}
    929 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    930 	CLR(bp->b_oflags, BO_DONE);
    931 	mutex_exit(bp->b_objlock);
    932 
    933 	brelse(bp, 0);
    934 }
    935 
    936 /*
    937  * Asynchronous block write; just an asynchronous bwrite().
    938  */
    939 void
    940 bawrite(buf_t *bp)
    941 {
    942 
    943 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    944 	KASSERT(bp->b_vp != NULL);
    945 
    946 	SET(bp->b_flags, B_ASYNC);
    947 	VOP_BWRITE(bp->b_vp, bp);
    948 }
    949 
    950 /*
    951  * Release a buffer on to the free lists.
    952  * Described in Bach (p. 46).
    953  */
    954 void
    955 brelsel(buf_t *bp, int set)
    956 {
    957 	struct bqueue *bufq;
    958 	struct vnode *vp;
    959 
    960 	KASSERT(mutex_owned(&bufcache_lock));
    961 	KASSERT(!cv_has_waiters(&bp->b_done));
    962 	KASSERT(bp->b_refcnt > 0);
    963 
    964 	SET(bp->b_cflags, set);
    965 
    966 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    967 	KASSERT(bp->b_iodone == NULL);
    968 
    969 	/* Wake up any processes waiting for any buffer to become free. */
    970 	cv_signal(&needbuffer_cv);
    971 
    972 	/* Wake up any proceeses waiting for _this_ buffer to become */
    973 	if (ISSET(bp->b_cflags, BC_WANTED))
    974 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    975 
    976 	/* If it's clean clear the copy-on-write flag. */
    977 	if (ISSET(bp->b_flags, B_COWDONE)) {
    978 		mutex_enter(bp->b_objlock);
    979 		if (!ISSET(bp->b_oflags, BO_DELWRI))
    980 			CLR(bp->b_flags, B_COWDONE);
    981 		mutex_exit(bp->b_objlock);
    982 	}
    983 
    984 	/*
    985 	 * Determine which queue the buffer should be on, then put it there.
    986 	 */
    987 
    988 	/* If it's locked, don't report an error; try again later. */
    989 	if (ISSET(bp->b_flags, B_LOCKED))
    990 		bp->b_error = 0;
    991 
    992 	/* If it's not cacheable, or an error, mark it invalid. */
    993 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
    994 		SET(bp->b_cflags, BC_INVAL);
    995 
    996 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
    997 		/*
    998 		 * This is a delayed write buffer that was just flushed to
    999 		 * disk.  It is still on the LRU queue.  If it's become
   1000 		 * invalid, then we need to move it to a different queue;
   1001 		 * otherwise leave it in its current position.
   1002 		 */
   1003 		CLR(bp->b_cflags, BC_VFLUSH);
   1004 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1005 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1006 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1007 			goto already_queued;
   1008 		} else {
   1009 			bremfree(bp);
   1010 		}
   1011 	}
   1012 
   1013 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1014 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1015 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1016 
   1017 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1018 		/*
   1019 		 * If it's invalid or empty, dissociate it from its vnode
   1020 		 * and put on the head of the appropriate queue.
   1021 		 */
   1022 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1023 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1024 				struct mount *mp = wapbl_vptomp(vp);
   1025 
   1026 				KASSERT(bp->b_iodone
   1027 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1028 				WAPBL_REMOVE_BUF(mp, bp);
   1029 			}
   1030 		}
   1031 
   1032 		mutex_enter(bp->b_objlock);
   1033 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1034 		if ((vp = bp->b_vp) != NULL) {
   1035 			KASSERT(bp->b_objlock == vp->v_interlock);
   1036 			reassignbuf(bp, bp->b_vp);
   1037 			brelvp(bp);
   1038 			mutex_exit(vp->v_interlock);
   1039 		} else {
   1040 			KASSERT(bp->b_objlock == &buffer_lock);
   1041 			mutex_exit(bp->b_objlock);
   1042 		}
   1043 
   1044 		if (bp->b_bufsize <= 0)
   1045 			/* no data */
   1046 			goto already_queued;
   1047 		else
   1048 			/* invalid data */
   1049 			bufq = &bufqueues[BQ_AGE];
   1050 		binsheadfree(bp, bufq);
   1051 	} else  {
   1052 		/*
   1053 		 * It has valid data.  Put it on the end of the appropriate
   1054 		 * queue, so that it'll stick around for as long as possible.
   1055 		 * If buf is AGE, but has dependencies, must put it on last
   1056 		 * bufqueue to be scanned, ie LRU. This protects against the
   1057 		 * livelock where BQ_AGE only has buffers with dependencies,
   1058 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1059 		 */
   1060 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1061 			/* locked in core */
   1062 			bufq = &bufqueues[BQ_LOCKED];
   1063 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1064 			/* valid data */
   1065 			bufq = &bufqueues[BQ_LRU];
   1066 		} else {
   1067 			/* stale but valid data */
   1068 			bufq = &bufqueues[BQ_AGE];
   1069 		}
   1070 		binstailfree(bp, bufq);
   1071 	}
   1072 already_queued:
   1073 	/* Unlock the buffer. */
   1074 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1075 	CLR(bp->b_flags, B_ASYNC);
   1076 	cv_broadcast(&bp->b_busy);
   1077 
   1078 	if (bp->b_bufsize <= 0)
   1079 		brele(bp);
   1080 }
   1081 
   1082 void
   1083 brelse(buf_t *bp, int set)
   1084 {
   1085 
   1086 	mutex_enter(&bufcache_lock);
   1087 	brelsel(bp, set);
   1088 	mutex_exit(&bufcache_lock);
   1089 }
   1090 
   1091 /*
   1092  * Determine if a block is in the cache.
   1093  * Just look on what would be its hash chain.  If it's there, return
   1094  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1095  * we normally don't return the buffer, unless the caller explicitly
   1096  * wants us to.
   1097  */
   1098 buf_t *
   1099 incore(struct vnode *vp, daddr_t blkno)
   1100 {
   1101 	buf_t *bp;
   1102 
   1103 	KASSERT(mutex_owned(&bufcache_lock));
   1104 
   1105 	/* Search hash chain */
   1106 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1107 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1108 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1109 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1110 		    	return (bp);
   1111 		}
   1112 	}
   1113 
   1114 	return (NULL);
   1115 }
   1116 
   1117 /*
   1118  * Get a block of requested size that is associated with
   1119  * a given vnode and block offset. If it is found in the
   1120  * block cache, mark it as having been found, make it busy
   1121  * and return it. Otherwise, return an empty block of the
   1122  * correct size. It is up to the caller to insure that the
   1123  * cached blocks be of the correct size.
   1124  */
   1125 buf_t *
   1126 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1127 {
   1128 	int err, preserve;
   1129 	buf_t *bp;
   1130 
   1131 	mutex_enter(&bufcache_lock);
   1132  loop:
   1133 	bp = incore(vp, blkno);
   1134 	if (bp != NULL) {
   1135 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1136 		if (err != 0) {
   1137 			if (err == EPASSTHROUGH)
   1138 				goto loop;
   1139 			mutex_exit(&bufcache_lock);
   1140 			return (NULL);
   1141 		}
   1142 		KASSERT(!cv_has_waiters(&bp->b_done));
   1143 #ifdef DIAGNOSTIC
   1144 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1145 		    bp->b_bcount < size && vp->v_type != VBLK)
   1146 			panic("getblk: block size invariant failed");
   1147 #endif
   1148 		bremfree(bp);
   1149 		preserve = 1;
   1150 	} else {
   1151 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1152 			goto loop;
   1153 
   1154 		if (incore(vp, blkno) != NULL) {
   1155 			/* The block has come into memory in the meantime. */
   1156 			brelsel(bp, 0);
   1157 			goto loop;
   1158 		}
   1159 
   1160 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1161 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1162 		mutex_enter(vp->v_interlock);
   1163 		bgetvp(vp, bp);
   1164 		mutex_exit(vp->v_interlock);
   1165 		preserve = 0;
   1166 	}
   1167 	mutex_exit(&bufcache_lock);
   1168 
   1169 	/*
   1170 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1171 	 * if we re-size buffers here.
   1172 	 */
   1173 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1174 		KASSERT(bp->b_bufsize >= size);
   1175 	} else {
   1176 		if (allocbuf(bp, size, preserve)) {
   1177 			mutex_enter(&bufcache_lock);
   1178 			LIST_REMOVE(bp, b_hash);
   1179 			mutex_exit(&bufcache_lock);
   1180 			brelse(bp, BC_INVAL);
   1181 			return NULL;
   1182 		}
   1183 	}
   1184 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1185 	return (bp);
   1186 }
   1187 
   1188 /*
   1189  * Get an empty, disassociated buffer of given size.
   1190  */
   1191 buf_t *
   1192 geteblk(int size)
   1193 {
   1194 	buf_t *bp;
   1195 	int error;
   1196 
   1197 	mutex_enter(&bufcache_lock);
   1198 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1199 		;
   1200 
   1201 	SET(bp->b_cflags, BC_INVAL);
   1202 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1203 	mutex_exit(&bufcache_lock);
   1204 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1205 	error = allocbuf(bp, size, 0);
   1206 	KASSERT(error == 0);
   1207 	return (bp);
   1208 }
   1209 
   1210 /*
   1211  * Expand or contract the actual memory allocated to a buffer.
   1212  *
   1213  * If the buffer shrinks, data is lost, so it's up to the
   1214  * caller to have written it out *first*; this routine will not
   1215  * start a write.  If the buffer grows, it's the callers
   1216  * responsibility to fill out the buffer's additional contents.
   1217  */
   1218 int
   1219 allocbuf(buf_t *bp, int size, int preserve)
   1220 {
   1221 	void *addr;
   1222 	vsize_t oldsize, desired_size;
   1223 	int oldcount;
   1224 	int delta;
   1225 
   1226 	desired_size = buf_roundsize(size);
   1227 	if (desired_size > MAXBSIZE)
   1228 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1229 
   1230 	oldcount = bp->b_bcount;
   1231 
   1232 	bp->b_bcount = size;
   1233 
   1234 	oldsize = bp->b_bufsize;
   1235 	if (oldsize == desired_size) {
   1236 		/*
   1237 		 * Do not short cut the WAPBL resize, as the buffer length
   1238 		 * could still have changed and this would corrupt the
   1239 		 * tracking of the transaction length.
   1240 		 */
   1241 		goto out;
   1242 	}
   1243 
   1244 	/*
   1245 	 * If we want a buffer of a different size, re-allocate the
   1246 	 * buffer's memory; copy old content only if needed.
   1247 	 */
   1248 	addr = buf_alloc(desired_size);
   1249 	if (addr == NULL)
   1250 		return ENOMEM;
   1251 	if (preserve)
   1252 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1253 	if (bp->b_data != NULL)
   1254 		buf_mrelease(bp->b_data, oldsize);
   1255 	bp->b_data = addr;
   1256 	bp->b_bufsize = desired_size;
   1257 
   1258 	/*
   1259 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1260 	 */
   1261 	delta = (long)desired_size - (long)oldsize;
   1262 
   1263 	mutex_enter(&bufcache_lock);
   1264 	if ((bufmem += delta) > bufmem_hiwater) {
   1265 		/*
   1266 		 * Need to trim overall memory usage.
   1267 		 */
   1268 		while (buf_canrelease()) {
   1269 			if (curcpu()->ci_schedstate.spc_flags &
   1270 			    SPCF_SHOULDYIELD) {
   1271 				mutex_exit(&bufcache_lock);
   1272 				preempt();
   1273 				mutex_enter(&bufcache_lock);
   1274 			}
   1275 			if (buf_trim() == 0)
   1276 				break;
   1277 		}
   1278 	}
   1279 	mutex_exit(&bufcache_lock);
   1280 
   1281  out:
   1282 	if (wapbl_vphaswapbl(bp->b_vp))
   1283 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1284 
   1285 	return 0;
   1286 }
   1287 
   1288 /*
   1289  * Find a buffer which is available for use.
   1290  * Select something from a free list.
   1291  * Preference is to AGE list, then LRU list.
   1292  *
   1293  * Called with the buffer queues locked.
   1294  * Return buffer locked.
   1295  */
   1296 buf_t *
   1297 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1298 {
   1299 	buf_t *bp;
   1300 	struct vnode *vp;
   1301 
   1302  start:
   1303 	KASSERT(mutex_owned(&bufcache_lock));
   1304 
   1305 	/*
   1306 	 * Get a new buffer from the pool.
   1307 	 */
   1308 	if (!from_bufq && buf_lotsfree()) {
   1309 		mutex_exit(&bufcache_lock);
   1310 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1311 		if (bp != NULL) {
   1312 			memset((char *)bp, 0, sizeof(*bp));
   1313 			buf_init(bp);
   1314 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1315 			mutex_enter(&bufcache_lock);
   1316 #if defined(DIAGNOSTIC)
   1317 			bp->b_freelistindex = -1;
   1318 #endif /* defined(DIAGNOSTIC) */
   1319 			return (bp);
   1320 		}
   1321 		mutex_enter(&bufcache_lock);
   1322 	}
   1323 
   1324 	KASSERT(mutex_owned(&bufcache_lock));
   1325 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1326 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1327 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1328 		bremfree(bp);
   1329 
   1330 		/* Buffer is no longer on free lists. */
   1331 		SET(bp->b_cflags, BC_BUSY);
   1332 	} else {
   1333 		/*
   1334 		 * XXX: !from_bufq should be removed.
   1335 		 */
   1336 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1337 			/* wait for a free buffer of any kind */
   1338 			if ((slpflag & PCATCH) != 0)
   1339 				(void)cv_timedwait_sig(&needbuffer_cv,
   1340 				    &bufcache_lock, slptimeo);
   1341 			else
   1342 				(void)cv_timedwait(&needbuffer_cv,
   1343 				    &bufcache_lock, slptimeo);
   1344 		}
   1345 		return (NULL);
   1346 	}
   1347 
   1348 #ifdef DIAGNOSTIC
   1349 	if (bp->b_bufsize <= 0)
   1350 		panic("buffer %p: on queue but empty", bp);
   1351 #endif
   1352 
   1353 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1354 		/*
   1355 		 * This is a delayed write buffer being flushed to disk.  Make
   1356 		 * sure it gets aged out of the queue when it's finished, and
   1357 		 * leave it off the LRU queue.
   1358 		 */
   1359 		CLR(bp->b_cflags, BC_VFLUSH);
   1360 		SET(bp->b_cflags, BC_AGE);
   1361 		goto start;
   1362 	}
   1363 
   1364 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1365 	KASSERT(bp->b_refcnt > 0);
   1366     	KASSERT(!cv_has_waiters(&bp->b_done));
   1367 
   1368 	/*
   1369 	 * If buffer was a delayed write, start it and return NULL
   1370 	 * (since we might sleep while starting the write).
   1371 	 */
   1372 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1373 		/*
   1374 		 * This buffer has gone through the LRU, so make sure it gets
   1375 		 * reused ASAP.
   1376 		 */
   1377 		SET(bp->b_cflags, BC_AGE);
   1378 		mutex_exit(&bufcache_lock);
   1379 		bawrite(bp);
   1380 		mutex_enter(&bufcache_lock);
   1381 		return (NULL);
   1382 	}
   1383 
   1384 	vp = bp->b_vp;
   1385 
   1386 	/* clear out various other fields */
   1387 	bp->b_cflags = BC_BUSY;
   1388 	bp->b_oflags = 0;
   1389 	bp->b_flags = 0;
   1390 	bp->b_dev = NODEV;
   1391 	bp->b_blkno = 0;
   1392 	bp->b_lblkno = 0;
   1393 	bp->b_rawblkno = 0;
   1394 	bp->b_iodone = 0;
   1395 	bp->b_error = 0;
   1396 	bp->b_resid = 0;
   1397 	bp->b_bcount = 0;
   1398 
   1399 	LIST_REMOVE(bp, b_hash);
   1400 
   1401 	/* Disassociate us from our vnode, if we had one... */
   1402 	if (vp != NULL) {
   1403 		mutex_enter(vp->v_interlock);
   1404 		brelvp(bp);
   1405 		mutex_exit(vp->v_interlock);
   1406 	}
   1407 
   1408 	return (bp);
   1409 }
   1410 
   1411 /*
   1412  * Attempt to free an aged buffer off the queues.
   1413  * Called with queue lock held.
   1414  * Returns the amount of buffer memory freed.
   1415  */
   1416 static int
   1417 buf_trim(void)
   1418 {
   1419 	buf_t *bp;
   1420 	long size = 0;
   1421 
   1422 	KASSERT(mutex_owned(&bufcache_lock));
   1423 
   1424 	/* Instruct getnewbuf() to get buffers off the queues */
   1425 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1426 		return 0;
   1427 
   1428 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1429 	size = bp->b_bufsize;
   1430 	bufmem -= size;
   1431 	if (size > 0) {
   1432 		buf_mrelease(bp->b_data, size);
   1433 		bp->b_bcount = bp->b_bufsize = 0;
   1434 	}
   1435 	/* brelse() will return the buffer to the global buffer pool */
   1436 	brelsel(bp, 0);
   1437 	return size;
   1438 }
   1439 
   1440 int
   1441 buf_drain(int n)
   1442 {
   1443 	int size = 0, sz;
   1444 
   1445 	KASSERT(mutex_owned(&bufcache_lock));
   1446 
   1447 	while (size < n && bufmem > bufmem_lowater) {
   1448 		sz = buf_trim();
   1449 		if (sz <= 0)
   1450 			break;
   1451 		size += sz;
   1452 	}
   1453 
   1454 	return size;
   1455 }
   1456 
   1457 /*
   1458  * Wait for operations on the buffer to complete.
   1459  * When they do, extract and return the I/O's error value.
   1460  */
   1461 int
   1462 biowait(buf_t *bp)
   1463 {
   1464 
   1465 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1466 	KASSERT(bp->b_refcnt > 0);
   1467 
   1468 	mutex_enter(bp->b_objlock);
   1469 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1470 		cv_wait(&bp->b_done, bp->b_objlock);
   1471 	mutex_exit(bp->b_objlock);
   1472 
   1473 	return bp->b_error;
   1474 }
   1475 
   1476 /*
   1477  * Mark I/O complete on a buffer.
   1478  *
   1479  * If a callback has been requested, e.g. the pageout
   1480  * daemon, do so. Otherwise, awaken waiting processes.
   1481  *
   1482  * [ Leffler, et al., says on p.247:
   1483  *	"This routine wakes up the blocked process, frees the buffer
   1484  *	for an asynchronous write, or, for a request by the pagedaemon
   1485  *	process, invokes a procedure specified in the buffer structure" ]
   1486  *
   1487  * In real life, the pagedaemon (or other system processes) wants
   1488  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1489  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1490  * for the vn device, that puts allocated buffers on the free lists!)
   1491  */
   1492 void
   1493 biodone(buf_t *bp)
   1494 {
   1495 	int s;
   1496 
   1497 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1498 
   1499 	if (cpu_intr_p()) {
   1500 		/* From interrupt mode: defer to a soft interrupt. */
   1501 		s = splvm();
   1502 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1503 		softint_schedule(biodone_sih);
   1504 		splx(s);
   1505 	} else {
   1506 		/* Process now - the buffer may be freed soon. */
   1507 		biodone2(bp);
   1508 	}
   1509 }
   1510 
   1511 static void
   1512 biodone2(buf_t *bp)
   1513 {
   1514 	void (*callout)(buf_t *);
   1515 
   1516 	mutex_enter(bp->b_objlock);
   1517 	/* Note that the transfer is done. */
   1518 	if (ISSET(bp->b_oflags, BO_DONE))
   1519 		panic("biodone2 already");
   1520 	CLR(bp->b_flags, B_COWDONE);
   1521 	SET(bp->b_oflags, BO_DONE);
   1522 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1523 
   1524 	/* Wake up waiting writers. */
   1525 	if (!ISSET(bp->b_flags, B_READ))
   1526 		vwakeup(bp);
   1527 
   1528 	if ((callout = bp->b_iodone) != NULL) {
   1529 		/* Note callout done, then call out. */
   1530 		KASSERT(!cv_has_waiters(&bp->b_done));
   1531 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1532 		bp->b_iodone = NULL;
   1533 		mutex_exit(bp->b_objlock);
   1534 		(*callout)(bp);
   1535 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1536 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1537 		/* If async, release. */
   1538 		KASSERT(!cv_has_waiters(&bp->b_done));
   1539 		mutex_exit(bp->b_objlock);
   1540 		brelse(bp, 0);
   1541 	} else {
   1542 		/* Otherwise just wake up waiters in biowait(). */
   1543 		cv_broadcast(&bp->b_done);
   1544 		mutex_exit(bp->b_objlock);
   1545 	}
   1546 }
   1547 
   1548 static void
   1549 biointr(void *cookie)
   1550 {
   1551 	struct cpu_info *ci;
   1552 	buf_t *bp;
   1553 	int s;
   1554 
   1555 	ci = curcpu();
   1556 
   1557 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1558 		KASSERT(curcpu() == ci);
   1559 
   1560 		s = splvm();
   1561 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1562 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1563 		splx(s);
   1564 
   1565 		biodone2(bp);
   1566 	}
   1567 }
   1568 
   1569 /*
   1570  * Wait for all buffers to complete I/O
   1571  * Return the number of "stuck" buffers.
   1572  */
   1573 int
   1574 buf_syncwait(void)
   1575 {
   1576 	buf_t *bp;
   1577 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
   1578 
   1579 	dcount = 10000;
   1580 	for (iter = 0; iter < 20;) {
   1581 		mutex_enter(&bufcache_lock);
   1582 		nbusy = 0;
   1583 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1584 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1585 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1586 				nbusy += ((bp->b_flags & B_READ) == 0);
   1587 		    }
   1588 		}
   1589 		mutex_exit(&bufcache_lock);
   1590 
   1591 		if (nbusy == 0)
   1592 			break;
   1593 		if (nbusy_prev == 0)
   1594 			nbusy_prev = nbusy;
   1595 		printf("%d ", nbusy);
   1596 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
   1597 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1598 			iter++;
   1599 		else
   1600 			nbusy_prev = nbusy;
   1601 	}
   1602 
   1603 	if (nbusy) {
   1604 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1605 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1606 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1607 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1608 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1609 			    (bp->b_flags & B_READ) == 0)
   1610 				vprint(NULL, bp->b_vp);
   1611 		    }
   1612 		}
   1613 #endif
   1614 	}
   1615 
   1616 	return nbusy;
   1617 }
   1618 
   1619 static void
   1620 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1621 {
   1622 
   1623 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1624 	o->b_error = i->b_error;
   1625 	o->b_prio = i->b_prio;
   1626 	o->b_dev = i->b_dev;
   1627 	o->b_bufsize = i->b_bufsize;
   1628 	o->b_bcount = i->b_bcount;
   1629 	o->b_resid = i->b_resid;
   1630 	o->b_addr = PTRTOUINT64(i->b_data);
   1631 	o->b_blkno = i->b_blkno;
   1632 	o->b_rawblkno = i->b_rawblkno;
   1633 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1634 	o->b_proc = PTRTOUINT64(i->b_proc);
   1635 	o->b_vp = PTRTOUINT64(i->b_vp);
   1636 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1637 	o->b_lblkno = i->b_lblkno;
   1638 }
   1639 
   1640 #define KERN_BUFSLOP 20
   1641 static int
   1642 sysctl_dobuf(SYSCTLFN_ARGS)
   1643 {
   1644 	buf_t *bp;
   1645 	struct buf_sysctl bs;
   1646 	struct bqueue *bq;
   1647 	char *dp;
   1648 	u_int i, op, arg;
   1649 	size_t len, needed, elem_size, out_size;
   1650 	int error, elem_count, retries;
   1651 
   1652 	if (namelen == 1 && name[0] == CTL_QUERY)
   1653 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1654 
   1655 	if (namelen != 4)
   1656 		return (EINVAL);
   1657 
   1658 	retries = 100;
   1659  retry:
   1660 	dp = oldp;
   1661 	len = (oldp != NULL) ? *oldlenp : 0;
   1662 	op = name[0];
   1663 	arg = name[1];
   1664 	elem_size = name[2];
   1665 	elem_count = name[3];
   1666 	out_size = MIN(sizeof(bs), elem_size);
   1667 
   1668 	/*
   1669 	 * at the moment, these are just "placeholders" to make the
   1670 	 * API for retrieving kern.buf data more extensible in the
   1671 	 * future.
   1672 	 *
   1673 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1674 	 * these will be resolved at a later point.
   1675 	 */
   1676 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1677 	    elem_size < 1 || elem_count < 0)
   1678 		return (EINVAL);
   1679 
   1680 	error = 0;
   1681 	needed = 0;
   1682 	sysctl_unlock();
   1683 	mutex_enter(&bufcache_lock);
   1684 	for (i = 0; i < BQUEUES; i++) {
   1685 		bq = &bufqueues[i];
   1686 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1687 			bq->bq_marker = bp;
   1688 			if (len >= elem_size && elem_count > 0) {
   1689 				sysctl_fillbuf(bp, &bs);
   1690 				mutex_exit(&bufcache_lock);
   1691 				error = copyout(&bs, dp, out_size);
   1692 				mutex_enter(&bufcache_lock);
   1693 				if (error)
   1694 					break;
   1695 				if (bq->bq_marker != bp) {
   1696 					/*
   1697 					 * This sysctl node is only for
   1698 					 * statistics.  Retry; if the
   1699 					 * queue keeps changing, then
   1700 					 * bail out.
   1701 					 */
   1702 					if (retries-- == 0) {
   1703 						error = EAGAIN;
   1704 						break;
   1705 					}
   1706 					mutex_exit(&bufcache_lock);
   1707 					sysctl_relock();
   1708 					goto retry;
   1709 				}
   1710 				dp += elem_size;
   1711 				len -= elem_size;
   1712 			}
   1713 			needed += elem_size;
   1714 			if (elem_count > 0 && elem_count != INT_MAX)
   1715 				elem_count--;
   1716 		}
   1717 		if (error != 0)
   1718 			break;
   1719 	}
   1720 	mutex_exit(&bufcache_lock);
   1721 	sysctl_relock();
   1722 
   1723 	*oldlenp = needed;
   1724 	if (oldp == NULL)
   1725 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1726 
   1727 	return (error);
   1728 }
   1729 
   1730 static int
   1731 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1732 {
   1733 	int t, error, rv;
   1734 	struct sysctlnode node;
   1735 
   1736 	node = *rnode;
   1737 	node.sysctl_data = &t;
   1738 	t = *(int *)rnode->sysctl_data;
   1739 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1740 	if (error || newp == NULL)
   1741 		return (error);
   1742 
   1743 	if (t < 0)
   1744 		return EINVAL;
   1745 	if (rnode->sysctl_data == &bufcache) {
   1746 		if (t > 100)
   1747 			return (EINVAL);
   1748 		bufcache = t;
   1749 		buf_setwm();
   1750 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1751 		if (bufmem_hiwater - t < 16)
   1752 			return (EINVAL);
   1753 		bufmem_lowater = t;
   1754 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1755 		if (t - bufmem_lowater < 16)
   1756 			return (EINVAL);
   1757 		bufmem_hiwater = t;
   1758 	} else
   1759 		return (EINVAL);
   1760 
   1761 	/* Drain until below new high water mark */
   1762 	sysctl_unlock();
   1763 	mutex_enter(&bufcache_lock);
   1764 	while ((t = bufmem - bufmem_hiwater) >= 0) {
   1765 		rv = buf_drain(t / (2 * 1024));
   1766 		if (rv <= 0)
   1767 			break;
   1768 	}
   1769 	mutex_exit(&bufcache_lock);
   1770 	sysctl_relock();
   1771 
   1772 	return 0;
   1773 }
   1774 
   1775 static struct sysctllog *vfsbio_sysctllog;
   1776 
   1777 static void
   1778 sysctl_kern_buf_setup(void)
   1779 {
   1780 
   1781 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1782 		       CTLFLAG_PERMANENT,
   1783 		       CTLTYPE_NODE, "kern", NULL,
   1784 		       NULL, 0, NULL, 0,
   1785 		       CTL_KERN, CTL_EOL);
   1786 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1787 		       CTLFLAG_PERMANENT,
   1788 		       CTLTYPE_NODE, "buf",
   1789 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1790 		       sysctl_dobuf, 0, NULL, 0,
   1791 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1792 }
   1793 
   1794 static void
   1795 sysctl_vm_buf_setup(void)
   1796 {
   1797 
   1798 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1799 		       CTLFLAG_PERMANENT,
   1800 		       CTLTYPE_NODE, "vm", NULL,
   1801 		       NULL, 0, NULL, 0,
   1802 		       CTL_VM, CTL_EOL);
   1803 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1804 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1805 		       CTLTYPE_INT, "bufcache",
   1806 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1807 				    "buffer cache"),
   1808 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1809 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1810 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1811 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1812 		       CTLTYPE_INT, "bufmem",
   1813 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1814 				    "cache"),
   1815 		       NULL, 0, &bufmem, 0,
   1816 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1817 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1818 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1819 		       CTLTYPE_INT, "bufmem_lowater",
   1820 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1821 				    "reserve for buffer cache"),
   1822 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1823 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1824 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1825 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1826 		       CTLTYPE_INT, "bufmem_hiwater",
   1827 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1828 				    "for buffer cache"),
   1829 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1830 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1831 }
   1832 
   1833 #ifdef DEBUG
   1834 /*
   1835  * Print out statistics on the current allocation of the buffer pool.
   1836  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1837  * in vfs_syscalls.c using sysctl.
   1838  */
   1839 void
   1840 vfs_bufstats(void)
   1841 {
   1842 	int i, j, count;
   1843 	buf_t *bp;
   1844 	struct bqueue *dp;
   1845 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1846 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1847 
   1848 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1849 		count = 0;
   1850 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1851 			counts[j] = 0;
   1852 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1853 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1854 			count++;
   1855 		}
   1856 		printf("%s: total-%d", bname[i], count);
   1857 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1858 			if (counts[j] != 0)
   1859 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1860 		printf("\n");
   1861 	}
   1862 }
   1863 #endif /* DEBUG */
   1864 
   1865 /* ------------------------------ */
   1866 
   1867 buf_t *
   1868 getiobuf(struct vnode *vp, bool waitok)
   1869 {
   1870 	buf_t *bp;
   1871 
   1872 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1873 	if (bp == NULL)
   1874 		return bp;
   1875 
   1876 	buf_init(bp);
   1877 
   1878 	if ((bp->b_vp = vp) == NULL)
   1879 		bp->b_objlock = &buffer_lock;
   1880 	else
   1881 		bp->b_objlock = vp->v_interlock;
   1882 
   1883 	return bp;
   1884 }
   1885 
   1886 void
   1887 putiobuf(buf_t *bp)
   1888 {
   1889 
   1890 	buf_destroy(bp);
   1891 	pool_cache_put(bufio_cache, bp);
   1892 }
   1893 
   1894 /*
   1895  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1896  */
   1897 
   1898 void
   1899 nestiobuf_iodone(buf_t *bp)
   1900 {
   1901 	buf_t *mbp = bp->b_private;
   1902 	int error;
   1903 	int donebytes;
   1904 
   1905 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1906 	KASSERT(mbp != bp);
   1907 
   1908 	error = bp->b_error;
   1909 	if (bp->b_error == 0 &&
   1910 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1911 		/*
   1912 		 * Not all got transfered, raise an error. We have no way to
   1913 		 * propagate these conditions to mbp.
   1914 		 */
   1915 		error = EIO;
   1916 	}
   1917 
   1918 	donebytes = bp->b_bufsize;
   1919 
   1920 	putiobuf(bp);
   1921 	nestiobuf_done(mbp, donebytes, error);
   1922 }
   1923 
   1924 /*
   1925  * nestiobuf_setup: setup a "nested" buffer.
   1926  *
   1927  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1928  * => 'bp' should be a buffer allocated by getiobuf.
   1929  * => 'offset' is a byte offset in the master buffer.
   1930  * => 'size' is a size in bytes of this nested buffer.
   1931  */
   1932 
   1933 void
   1934 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1935 {
   1936 	const int b_read = mbp->b_flags & B_READ;
   1937 	struct vnode *vp = mbp->b_vp;
   1938 
   1939 	KASSERT(mbp->b_bcount >= offset + size);
   1940 	bp->b_vp = vp;
   1941 	bp->b_dev = mbp->b_dev;
   1942 	bp->b_objlock = mbp->b_objlock;
   1943 	bp->b_cflags = BC_BUSY;
   1944 	bp->b_flags = B_ASYNC | b_read;
   1945 	bp->b_iodone = nestiobuf_iodone;
   1946 	bp->b_data = (char *)mbp->b_data + offset;
   1947 	bp->b_resid = bp->b_bcount = size;
   1948 	bp->b_bufsize = bp->b_bcount;
   1949 	bp->b_private = mbp;
   1950 	BIO_COPYPRIO(bp, mbp);
   1951 	if (!b_read && vp != NULL) {
   1952 		mutex_enter(vp->v_interlock);
   1953 		vp->v_numoutput++;
   1954 		mutex_exit(vp->v_interlock);
   1955 	}
   1956 }
   1957 
   1958 /*
   1959  * nestiobuf_done: propagate completion to the master buffer.
   1960  *
   1961  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1962  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1963  */
   1964 
   1965 void
   1966 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1967 {
   1968 
   1969 	if (donebytes == 0) {
   1970 		return;
   1971 	}
   1972 	mutex_enter(mbp->b_objlock);
   1973 	KASSERT(mbp->b_resid >= donebytes);
   1974 	mbp->b_resid -= donebytes;
   1975 	if (error)
   1976 		mbp->b_error = error;
   1977 	if (mbp->b_resid == 0) {
   1978 		if (mbp->b_error)
   1979 			mbp->b_resid = mbp->b_bcount;
   1980 		mutex_exit(mbp->b_objlock);
   1981 		biodone(mbp);
   1982 	} else
   1983 		mutex_exit(mbp->b_objlock);
   1984 }
   1985 
   1986 void
   1987 buf_init(buf_t *bp)
   1988 {
   1989 
   1990 	cv_init(&bp->b_busy, "biolock");
   1991 	cv_init(&bp->b_done, "biowait");
   1992 	bp->b_dev = NODEV;
   1993 	bp->b_error = 0;
   1994 	bp->b_flags = 0;
   1995 	bp->b_cflags = 0;
   1996 	bp->b_oflags = 0;
   1997 	bp->b_objlock = &buffer_lock;
   1998 	bp->b_iodone = NULL;
   1999 	bp->b_refcnt = 1;
   2000 	bp->b_dev = NODEV;
   2001 	bp->b_vnbufs.le_next = NOLIST;
   2002 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2003 }
   2004 
   2005 void
   2006 buf_destroy(buf_t *bp)
   2007 {
   2008 
   2009 	cv_destroy(&bp->b_done);
   2010 	cv_destroy(&bp->b_busy);
   2011 }
   2012 
   2013 int
   2014 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2015 {
   2016 	int error;
   2017 
   2018 	KASSERT(mutex_owned(&bufcache_lock));
   2019 
   2020 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2021 		if (curlwp == uvm.pagedaemon_lwp)
   2022 			return EDEADLK;
   2023 		bp->b_cflags |= BC_WANTED;
   2024 		bref(bp);
   2025 		if (interlock != NULL)
   2026 			mutex_exit(interlock);
   2027 		if (intr) {
   2028 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2029 			    timo);
   2030 		} else {
   2031 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2032 			    timo);
   2033 		}
   2034 		brele(bp);
   2035 		if (interlock != NULL)
   2036 			mutex_enter(interlock);
   2037 		if (error != 0)
   2038 			return error;
   2039 		return EPASSTHROUGH;
   2040 	}
   2041 	bp->b_cflags |= BC_BUSY;
   2042 
   2043 	return 0;
   2044 }
   2045