vfs_bio.c revision 1.236 1 /* $NetBSD: vfs_bio.c,v 1.236 2012/02/01 23:43:49 para Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.236 2012/02/01 23:43:49 para Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146
147 #include <uvm/uvm.h> /* extern struct uvm uvm */
148
149 #include <miscfs/specfs/specdev.h>
150
151 #ifndef BUFPAGES
152 # define BUFPAGES 0
153 #endif
154
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 # error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
162
163 u_int nbuf; /* desired number of buffer headers */
164 u_int bufpages = BUFPAGES; /* optional hardwired count */
165 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
166
167 /* Function prototypes */
168 struct bqueue;
169
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194
195 /*
196 * Definitions for the buffer hash lists.
197 */
198 #define BUFHASH(dvp, lbn) \
199 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long bufhash;
202 struct bqueue bufqueues[BQUEUES];
203
204 static kcondvar_t needbuffer_cv;
205
206 /*
207 * Buffer queue lock.
208 */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399
400 /*
401 * Determine the upper bound of memory to use for buffers.
402 *
403 * - If bufpages is specified, use that as the number
404 * pages.
405 *
406 * - Otherwise, use bufcache as the percentage of
407 * physical memory.
408 */
409 if (bufpages != 0) {
410 n = bufpages;
411 } else {
412 if (bufcache < 5) {
413 printf("forcing bufcache %d -> 5", bufcache);
414 bufcache = 5;
415 }
416 if (bufcache > 95) {
417 printf("forcing bufcache %d -> 95", bufcache);
418 bufcache = 95;
419 }
420 n = calc_cache_size(buf_map, bufcache,
421 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
422 / PAGE_SIZE;
423 }
424
425 n <<= PAGE_SHIFT;
426 if (bufmem_valimit != 0 && n > bufmem_valimit)
427 n = bufmem_valimit;
428
429 return (n);
430 }
431
432 /*
433 * Initialize buffers and hash links for buffers.
434 */
435 void
436 bufinit(void)
437 {
438 struct bqueue *dp;
439 int use_std;
440 u_int i;
441
442 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
443 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
444 cv_init(&needbuffer_cv, "needbuf");
445
446 if (bufmem_valimit != 0) {
447 vaddr_t minaddr = 0, maxaddr;
448 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 bufmem_valimit, 0, false, 0);
450 if (buf_map == NULL)
451 panic("bufinit: cannot allocate submap");
452 } else
453 buf_map = kernel_map;
454
455 /*
456 * Initialize buffer cache memory parameters.
457 */
458 bufmem = 0;
459 buf_setwm();
460
461 /* On "small" machines use small pool page sizes where possible */
462 use_std = (physmem < atop(16*1024*1024));
463
464 /*
465 * Also use them on systems that can map the pool pages using
466 * a direct-mapped segment.
467 */
468 #ifdef PMAP_MAP_POOLPAGE
469 use_std = 1;
470 #endif
471
472 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
473 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
474 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
475 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
476
477 for (i = 0; i < NMEMPOOLS; i++) {
478 struct pool_allocator *pa;
479 struct pool *pp = &bmempools[i];
480 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
481 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
482 if (__predict_false(size >= 1048576))
483 (void)snprintf(name, 8, "buf%um", size / 1048576);
484 else if (__predict_true(size >= 1024))
485 (void)snprintf(name, 8, "buf%uk", size / 1024);
486 else
487 (void)snprintf(name, 8, "buf%ub", size);
488 pa = (size <= PAGE_SIZE && use_std)
489 ? &pool_allocator_nointr
490 : &bufmempool_allocator;
491 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
492 pool_setlowat(pp, 1);
493 pool_sethiwat(pp, 1);
494 }
495
496 /* Initialize the buffer queues */
497 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
498 TAILQ_INIT(&dp->bq_queue);
499 dp->bq_bytes = 0;
500 }
501
502 /*
503 * Estimate hash table size based on the amount of memory we
504 * intend to use for the buffer cache. The average buffer
505 * size is dependent on our clients (i.e. filesystems).
506 *
507 * For now, use an empirical 3K per buffer.
508 */
509 nbuf = (bufmem_hiwater / 1024) / 3;
510 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
511
512 sysctl_kern_buf_setup();
513 sysctl_vm_buf_setup();
514 }
515
516 void
517 bufinit2(void)
518 {
519
520 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
521 NULL);
522 if (biodone_sih == NULL)
523 panic("bufinit2: can't establish soft interrupt");
524 }
525
526 static int
527 buf_lotsfree(void)
528 {
529 int try, thresh;
530
531 /* Always allocate if less than the low water mark. */
532 if (bufmem < bufmem_lowater)
533 return 1;
534
535 /* Never allocate if greater than the high water mark. */
536 if (bufmem > bufmem_hiwater)
537 return 0;
538
539 /* If there's anything on the AGE list, it should be eaten. */
540 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
541 return 0;
542
543 /*
544 * The probabily of getting a new allocation is inversely
545 * proportional to the current size of the cache, using
546 * a granularity of 16 steps.
547 */
548 try = random() & 0x0000000fL;
549
550 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
551 thresh = (bufmem - bufmem_lowater) /
552 ((bufmem_hiwater - bufmem_lowater) / 16);
553
554 if (try >= thresh)
555 return 1;
556
557 /* Otherwise don't allocate. */
558 return 0;
559 }
560
561 /*
562 * Return estimate of bytes we think need to be
563 * released to help resolve low memory conditions.
564 *
565 * => called with bufcache_lock held.
566 */
567 static int
568 buf_canrelease(void)
569 {
570 int pagedemand, ninvalid = 0;
571
572 KASSERT(mutex_owned(&bufcache_lock));
573
574 if (bufmem < bufmem_lowater)
575 return 0;
576
577 if (bufmem > bufmem_hiwater)
578 return bufmem - bufmem_hiwater;
579
580 ninvalid += bufqueues[BQ_AGE].bq_bytes;
581
582 pagedemand = uvmexp.freetarg - uvmexp.free;
583 if (pagedemand < 0)
584 return ninvalid;
585 return MAX(ninvalid, MIN(2 * MAXBSIZE,
586 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
587 }
588
589 /*
590 * Buffer memory allocation helper functions
591 */
592 static u_long
593 buf_mempoolidx(u_long size)
594 {
595 u_int n = 0;
596
597 size -= 1;
598 size >>= MEMPOOL_INDEX_OFFSET;
599 while (size) {
600 size >>= 1;
601 n += 1;
602 }
603 if (n >= NMEMPOOLS)
604 panic("buf mem pool index %d", n);
605 return n;
606 }
607
608 static u_long
609 buf_roundsize(u_long size)
610 {
611 /* Round up to nearest power of 2 */
612 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
613 }
614
615 static void *
616 buf_alloc(size_t size)
617 {
618 u_int n = buf_mempoolidx(size);
619 void *addr;
620
621 while (1) {
622 addr = pool_get(&bmempools[n], PR_NOWAIT);
623 if (addr != NULL)
624 break;
625
626 /* No memory, see if we can free some. If so, try again */
627 mutex_enter(&bufcache_lock);
628 if (buf_drain(1) > 0) {
629 mutex_exit(&bufcache_lock);
630 continue;
631 }
632
633 if (curlwp == uvm.pagedaemon_lwp) {
634 mutex_exit(&bufcache_lock);
635 return NULL;
636 }
637
638 /* Wait for buffers to arrive on the LRU queue */
639 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
640 mutex_exit(&bufcache_lock);
641 }
642
643 return addr;
644 }
645
646 static void
647 buf_mrelease(void *addr, size_t size)
648 {
649
650 pool_put(&bmempools[buf_mempoolidx(size)], addr);
651 }
652
653 /*
654 * bread()/breadn() helper.
655 */
656 static buf_t *
657 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
658 int async)
659 {
660 buf_t *bp;
661 struct mount *mp;
662
663 bp = getblk(vp, blkno, size, 0, 0);
664
665 #ifdef DIAGNOSTIC
666 if (bp == NULL) {
667 panic("bio_doread: no such buf");
668 }
669 #endif
670
671 /*
672 * If buffer does not have data valid, start a read.
673 * Note that if buffer is BC_INVAL, getblk() won't return it.
674 * Therefore, it's valid if its I/O has completed or been delayed.
675 */
676 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
677 /* Start I/O for the buffer. */
678 SET(bp->b_flags, B_READ | async);
679 if (async)
680 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
681 else
682 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
683 VOP_STRATEGY(vp, bp);
684
685 /* Pay for the read. */
686 curlwp->l_ru.ru_inblock++;
687 } else if (async)
688 brelse(bp, 0);
689
690 if (vp->v_type == VBLK)
691 mp = vp->v_specmountpoint;
692 else
693 mp = vp->v_mount;
694
695 /*
696 * Collect statistics on synchronous and asynchronous reads.
697 * Reads from block devices are charged to their associated
698 * filesystem (if any).
699 */
700 if (mp != NULL) {
701 if (async == 0)
702 mp->mnt_stat.f_syncreads++;
703 else
704 mp->mnt_stat.f_asyncreads++;
705 }
706
707 return (bp);
708 }
709
710 /*
711 * Read a disk block.
712 * This algorithm described in Bach (p.54).
713 */
714 int
715 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
716 int flags, buf_t **bpp)
717 {
718 buf_t *bp;
719 int error;
720
721 /* Get buffer for block. */
722 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
723
724 /* Wait for the read to complete, and return result. */
725 error = biowait(bp);
726 if (error == 0 && (flags & B_MODIFY) != 0)
727 error = fscow_run(bp, true);
728
729 return error;
730 }
731
732 /*
733 * Read-ahead multiple disk blocks. The first is sync, the rest async.
734 * Trivial modification to the breada algorithm presented in Bach (p.55).
735 */
736 int
737 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
738 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
739 {
740 buf_t *bp;
741 int error, i;
742
743 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
744
745 /*
746 * For each of the read-ahead blocks, start a read, if necessary.
747 */
748 mutex_enter(&bufcache_lock);
749 for (i = 0; i < nrablks; i++) {
750 /* If it's in the cache, just go on to next one. */
751 if (incore(vp, rablks[i]))
752 continue;
753
754 /* Get a buffer for the read-ahead block */
755 mutex_exit(&bufcache_lock);
756 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
757 mutex_enter(&bufcache_lock);
758 }
759 mutex_exit(&bufcache_lock);
760
761 /* Otherwise, we had to start a read for it; wait until it's valid. */
762 error = biowait(bp);
763 if (error == 0 && (flags & B_MODIFY) != 0)
764 error = fscow_run(bp, true);
765 return error;
766 }
767
768 /*
769 * Block write. Described in Bach (p.56)
770 */
771 int
772 bwrite(buf_t *bp)
773 {
774 int rv, sync, wasdelayed;
775 struct vnode *vp;
776 struct mount *mp;
777
778 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
779 KASSERT(!cv_has_waiters(&bp->b_done));
780
781 vp = bp->b_vp;
782 if (vp != NULL) {
783 KASSERT(bp->b_objlock == vp->v_interlock);
784 if (vp->v_type == VBLK)
785 mp = vp->v_specmountpoint;
786 else
787 mp = vp->v_mount;
788 } else {
789 mp = NULL;
790 }
791
792 if (mp && mp->mnt_wapbl) {
793 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
794 bdwrite(bp);
795 return 0;
796 }
797 }
798
799 /*
800 * Remember buffer type, to switch on it later. If the write was
801 * synchronous, but the file system was mounted with MNT_ASYNC,
802 * convert it to a delayed write.
803 * XXX note that this relies on delayed tape writes being converted
804 * to async, not sync writes (which is safe, but ugly).
805 */
806 sync = !ISSET(bp->b_flags, B_ASYNC);
807 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
808 bdwrite(bp);
809 return (0);
810 }
811
812 /*
813 * Collect statistics on synchronous and asynchronous writes.
814 * Writes to block devices are charged to their associated
815 * filesystem (if any).
816 */
817 if (mp != NULL) {
818 if (sync)
819 mp->mnt_stat.f_syncwrites++;
820 else
821 mp->mnt_stat.f_asyncwrites++;
822 }
823
824 /*
825 * Pay for the I/O operation and make sure the buf is on the correct
826 * vnode queue.
827 */
828 bp->b_error = 0;
829 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
830 CLR(bp->b_flags, B_READ);
831 if (wasdelayed) {
832 mutex_enter(&bufcache_lock);
833 mutex_enter(bp->b_objlock);
834 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
835 reassignbuf(bp, bp->b_vp);
836 mutex_exit(&bufcache_lock);
837 } else {
838 curlwp->l_ru.ru_oublock++;
839 mutex_enter(bp->b_objlock);
840 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
841 }
842 if (vp != NULL)
843 vp->v_numoutput++;
844 mutex_exit(bp->b_objlock);
845
846 /* Initiate disk write. */
847 if (sync)
848 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
849 else
850 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
851
852 VOP_STRATEGY(vp, bp);
853
854 if (sync) {
855 /* If I/O was synchronous, wait for it to complete. */
856 rv = biowait(bp);
857
858 /* Release the buffer. */
859 brelse(bp, 0);
860
861 return (rv);
862 } else {
863 return (0);
864 }
865 }
866
867 int
868 vn_bwrite(void *v)
869 {
870 struct vop_bwrite_args *ap = v;
871
872 return (bwrite(ap->a_bp));
873 }
874
875 /*
876 * Delayed write.
877 *
878 * The buffer is marked dirty, but is not queued for I/O.
879 * This routine should be used when the buffer is expected
880 * to be modified again soon, typically a small write that
881 * partially fills a buffer.
882 *
883 * NB: magnetic tapes cannot be delayed; they must be
884 * written in the order that the writes are requested.
885 *
886 * Described in Leffler, et al. (pp. 208-213).
887 */
888 void
889 bdwrite(buf_t *bp)
890 {
891
892 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
893 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
894 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
895 KASSERT(!cv_has_waiters(&bp->b_done));
896
897 /* If this is a tape block, write the block now. */
898 if (bdev_type(bp->b_dev) == D_TAPE) {
899 bawrite(bp);
900 return;
901 }
902
903 if (wapbl_vphaswapbl(bp->b_vp)) {
904 struct mount *mp = wapbl_vptomp(bp->b_vp);
905
906 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
907 WAPBL_ADD_BUF(mp, bp);
908 }
909 }
910
911 /*
912 * If the block hasn't been seen before:
913 * (1) Mark it as having been seen,
914 * (2) Charge for the write,
915 * (3) Make sure it's on its vnode's correct block list.
916 */
917 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
918
919 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
920 mutex_enter(&bufcache_lock);
921 mutex_enter(bp->b_objlock);
922 SET(bp->b_oflags, BO_DELWRI);
923 curlwp->l_ru.ru_oublock++;
924 reassignbuf(bp, bp->b_vp);
925 mutex_exit(&bufcache_lock);
926 } else {
927 mutex_enter(bp->b_objlock);
928 }
929 /* Otherwise, the "write" is done, so mark and release the buffer. */
930 CLR(bp->b_oflags, BO_DONE);
931 mutex_exit(bp->b_objlock);
932
933 brelse(bp, 0);
934 }
935
936 /*
937 * Asynchronous block write; just an asynchronous bwrite().
938 */
939 void
940 bawrite(buf_t *bp)
941 {
942
943 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
944 KASSERT(bp->b_vp != NULL);
945
946 SET(bp->b_flags, B_ASYNC);
947 VOP_BWRITE(bp->b_vp, bp);
948 }
949
950 /*
951 * Release a buffer on to the free lists.
952 * Described in Bach (p. 46).
953 */
954 void
955 brelsel(buf_t *bp, int set)
956 {
957 struct bqueue *bufq;
958 struct vnode *vp;
959
960 KASSERT(mutex_owned(&bufcache_lock));
961 KASSERT(!cv_has_waiters(&bp->b_done));
962 KASSERT(bp->b_refcnt > 0);
963
964 SET(bp->b_cflags, set);
965
966 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
967 KASSERT(bp->b_iodone == NULL);
968
969 /* Wake up any processes waiting for any buffer to become free. */
970 cv_signal(&needbuffer_cv);
971
972 /* Wake up any proceeses waiting for _this_ buffer to become */
973 if (ISSET(bp->b_cflags, BC_WANTED))
974 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
975
976 /* If it's clean clear the copy-on-write flag. */
977 if (ISSET(bp->b_flags, B_COWDONE)) {
978 mutex_enter(bp->b_objlock);
979 if (!ISSET(bp->b_oflags, BO_DELWRI))
980 CLR(bp->b_flags, B_COWDONE);
981 mutex_exit(bp->b_objlock);
982 }
983
984 /*
985 * Determine which queue the buffer should be on, then put it there.
986 */
987
988 /* If it's locked, don't report an error; try again later. */
989 if (ISSET(bp->b_flags, B_LOCKED))
990 bp->b_error = 0;
991
992 /* If it's not cacheable, or an error, mark it invalid. */
993 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
994 SET(bp->b_cflags, BC_INVAL);
995
996 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
997 /*
998 * This is a delayed write buffer that was just flushed to
999 * disk. It is still on the LRU queue. If it's become
1000 * invalid, then we need to move it to a different queue;
1001 * otherwise leave it in its current position.
1002 */
1003 CLR(bp->b_cflags, BC_VFLUSH);
1004 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1005 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1006 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1007 goto already_queued;
1008 } else {
1009 bremfree(bp);
1010 }
1011 }
1012
1013 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1014 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1015 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1016
1017 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1018 /*
1019 * If it's invalid or empty, dissociate it from its vnode
1020 * and put on the head of the appropriate queue.
1021 */
1022 if (ISSET(bp->b_flags, B_LOCKED)) {
1023 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1024 struct mount *mp = wapbl_vptomp(vp);
1025
1026 KASSERT(bp->b_iodone
1027 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1028 WAPBL_REMOVE_BUF(mp, bp);
1029 }
1030 }
1031
1032 mutex_enter(bp->b_objlock);
1033 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1034 if ((vp = bp->b_vp) != NULL) {
1035 KASSERT(bp->b_objlock == vp->v_interlock);
1036 reassignbuf(bp, bp->b_vp);
1037 brelvp(bp);
1038 mutex_exit(vp->v_interlock);
1039 } else {
1040 KASSERT(bp->b_objlock == &buffer_lock);
1041 mutex_exit(bp->b_objlock);
1042 }
1043
1044 if (bp->b_bufsize <= 0)
1045 /* no data */
1046 goto already_queued;
1047 else
1048 /* invalid data */
1049 bufq = &bufqueues[BQ_AGE];
1050 binsheadfree(bp, bufq);
1051 } else {
1052 /*
1053 * It has valid data. Put it on the end of the appropriate
1054 * queue, so that it'll stick around for as long as possible.
1055 * If buf is AGE, but has dependencies, must put it on last
1056 * bufqueue to be scanned, ie LRU. This protects against the
1057 * livelock where BQ_AGE only has buffers with dependencies,
1058 * and we thus never get to the dependent buffers in BQ_LRU.
1059 */
1060 if (ISSET(bp->b_flags, B_LOCKED)) {
1061 /* locked in core */
1062 bufq = &bufqueues[BQ_LOCKED];
1063 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1064 /* valid data */
1065 bufq = &bufqueues[BQ_LRU];
1066 } else {
1067 /* stale but valid data */
1068 bufq = &bufqueues[BQ_AGE];
1069 }
1070 binstailfree(bp, bufq);
1071 }
1072 already_queued:
1073 /* Unlock the buffer. */
1074 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1075 CLR(bp->b_flags, B_ASYNC);
1076 cv_broadcast(&bp->b_busy);
1077
1078 if (bp->b_bufsize <= 0)
1079 brele(bp);
1080 }
1081
1082 void
1083 brelse(buf_t *bp, int set)
1084 {
1085
1086 mutex_enter(&bufcache_lock);
1087 brelsel(bp, set);
1088 mutex_exit(&bufcache_lock);
1089 }
1090
1091 /*
1092 * Determine if a block is in the cache.
1093 * Just look on what would be its hash chain. If it's there, return
1094 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1095 * we normally don't return the buffer, unless the caller explicitly
1096 * wants us to.
1097 */
1098 buf_t *
1099 incore(struct vnode *vp, daddr_t blkno)
1100 {
1101 buf_t *bp;
1102
1103 KASSERT(mutex_owned(&bufcache_lock));
1104
1105 /* Search hash chain */
1106 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1107 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1108 !ISSET(bp->b_cflags, BC_INVAL)) {
1109 KASSERT(bp->b_objlock == vp->v_interlock);
1110 return (bp);
1111 }
1112 }
1113
1114 return (NULL);
1115 }
1116
1117 /*
1118 * Get a block of requested size that is associated with
1119 * a given vnode and block offset. If it is found in the
1120 * block cache, mark it as having been found, make it busy
1121 * and return it. Otherwise, return an empty block of the
1122 * correct size. It is up to the caller to insure that the
1123 * cached blocks be of the correct size.
1124 */
1125 buf_t *
1126 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1127 {
1128 int err, preserve;
1129 buf_t *bp;
1130
1131 mutex_enter(&bufcache_lock);
1132 loop:
1133 bp = incore(vp, blkno);
1134 if (bp != NULL) {
1135 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1136 if (err != 0) {
1137 if (err == EPASSTHROUGH)
1138 goto loop;
1139 mutex_exit(&bufcache_lock);
1140 return (NULL);
1141 }
1142 KASSERT(!cv_has_waiters(&bp->b_done));
1143 #ifdef DIAGNOSTIC
1144 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1145 bp->b_bcount < size && vp->v_type != VBLK)
1146 panic("getblk: block size invariant failed");
1147 #endif
1148 bremfree(bp);
1149 preserve = 1;
1150 } else {
1151 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1152 goto loop;
1153
1154 if (incore(vp, blkno) != NULL) {
1155 /* The block has come into memory in the meantime. */
1156 brelsel(bp, 0);
1157 goto loop;
1158 }
1159
1160 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1161 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1162 mutex_enter(vp->v_interlock);
1163 bgetvp(vp, bp);
1164 mutex_exit(vp->v_interlock);
1165 preserve = 0;
1166 }
1167 mutex_exit(&bufcache_lock);
1168
1169 /*
1170 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1171 * if we re-size buffers here.
1172 */
1173 if (ISSET(bp->b_flags, B_LOCKED)) {
1174 KASSERT(bp->b_bufsize >= size);
1175 } else {
1176 if (allocbuf(bp, size, preserve)) {
1177 mutex_enter(&bufcache_lock);
1178 LIST_REMOVE(bp, b_hash);
1179 mutex_exit(&bufcache_lock);
1180 brelse(bp, BC_INVAL);
1181 return NULL;
1182 }
1183 }
1184 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1185 return (bp);
1186 }
1187
1188 /*
1189 * Get an empty, disassociated buffer of given size.
1190 */
1191 buf_t *
1192 geteblk(int size)
1193 {
1194 buf_t *bp;
1195 int error;
1196
1197 mutex_enter(&bufcache_lock);
1198 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1199 ;
1200
1201 SET(bp->b_cflags, BC_INVAL);
1202 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1203 mutex_exit(&bufcache_lock);
1204 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1205 error = allocbuf(bp, size, 0);
1206 KASSERT(error == 0);
1207 return (bp);
1208 }
1209
1210 /*
1211 * Expand or contract the actual memory allocated to a buffer.
1212 *
1213 * If the buffer shrinks, data is lost, so it's up to the
1214 * caller to have written it out *first*; this routine will not
1215 * start a write. If the buffer grows, it's the callers
1216 * responsibility to fill out the buffer's additional contents.
1217 */
1218 int
1219 allocbuf(buf_t *bp, int size, int preserve)
1220 {
1221 void *addr;
1222 vsize_t oldsize, desired_size;
1223 int oldcount;
1224 int delta;
1225
1226 desired_size = buf_roundsize(size);
1227 if (desired_size > MAXBSIZE)
1228 printf("allocbuf: buffer larger than MAXBSIZE requested");
1229
1230 oldcount = bp->b_bcount;
1231
1232 bp->b_bcount = size;
1233
1234 oldsize = bp->b_bufsize;
1235 if (oldsize == desired_size) {
1236 /*
1237 * Do not short cut the WAPBL resize, as the buffer length
1238 * could still have changed and this would corrupt the
1239 * tracking of the transaction length.
1240 */
1241 goto out;
1242 }
1243
1244 /*
1245 * If we want a buffer of a different size, re-allocate the
1246 * buffer's memory; copy old content only if needed.
1247 */
1248 addr = buf_alloc(desired_size);
1249 if (addr == NULL)
1250 return ENOMEM;
1251 if (preserve)
1252 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1253 if (bp->b_data != NULL)
1254 buf_mrelease(bp->b_data, oldsize);
1255 bp->b_data = addr;
1256 bp->b_bufsize = desired_size;
1257
1258 /*
1259 * Update overall buffer memory counter (protected by bufcache_lock)
1260 */
1261 delta = (long)desired_size - (long)oldsize;
1262
1263 mutex_enter(&bufcache_lock);
1264 if ((bufmem += delta) > bufmem_hiwater) {
1265 /*
1266 * Need to trim overall memory usage.
1267 */
1268 while (buf_canrelease()) {
1269 if (curcpu()->ci_schedstate.spc_flags &
1270 SPCF_SHOULDYIELD) {
1271 mutex_exit(&bufcache_lock);
1272 preempt();
1273 mutex_enter(&bufcache_lock);
1274 }
1275 if (buf_trim() == 0)
1276 break;
1277 }
1278 }
1279 mutex_exit(&bufcache_lock);
1280
1281 out:
1282 if (wapbl_vphaswapbl(bp->b_vp))
1283 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1284
1285 return 0;
1286 }
1287
1288 /*
1289 * Find a buffer which is available for use.
1290 * Select something from a free list.
1291 * Preference is to AGE list, then LRU list.
1292 *
1293 * Called with the buffer queues locked.
1294 * Return buffer locked.
1295 */
1296 buf_t *
1297 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1298 {
1299 buf_t *bp;
1300 struct vnode *vp;
1301
1302 start:
1303 KASSERT(mutex_owned(&bufcache_lock));
1304
1305 /*
1306 * Get a new buffer from the pool.
1307 */
1308 if (!from_bufq && buf_lotsfree()) {
1309 mutex_exit(&bufcache_lock);
1310 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1311 if (bp != NULL) {
1312 memset((char *)bp, 0, sizeof(*bp));
1313 buf_init(bp);
1314 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1315 mutex_enter(&bufcache_lock);
1316 #if defined(DIAGNOSTIC)
1317 bp->b_freelistindex = -1;
1318 #endif /* defined(DIAGNOSTIC) */
1319 return (bp);
1320 }
1321 mutex_enter(&bufcache_lock);
1322 }
1323
1324 KASSERT(mutex_owned(&bufcache_lock));
1325 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1326 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1327 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1328 bremfree(bp);
1329
1330 /* Buffer is no longer on free lists. */
1331 SET(bp->b_cflags, BC_BUSY);
1332 } else {
1333 /*
1334 * XXX: !from_bufq should be removed.
1335 */
1336 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1337 /* wait for a free buffer of any kind */
1338 if ((slpflag & PCATCH) != 0)
1339 (void)cv_timedwait_sig(&needbuffer_cv,
1340 &bufcache_lock, slptimeo);
1341 else
1342 (void)cv_timedwait(&needbuffer_cv,
1343 &bufcache_lock, slptimeo);
1344 }
1345 return (NULL);
1346 }
1347
1348 #ifdef DIAGNOSTIC
1349 if (bp->b_bufsize <= 0)
1350 panic("buffer %p: on queue but empty", bp);
1351 #endif
1352
1353 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1354 /*
1355 * This is a delayed write buffer being flushed to disk. Make
1356 * sure it gets aged out of the queue when it's finished, and
1357 * leave it off the LRU queue.
1358 */
1359 CLR(bp->b_cflags, BC_VFLUSH);
1360 SET(bp->b_cflags, BC_AGE);
1361 goto start;
1362 }
1363
1364 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1365 KASSERT(bp->b_refcnt > 0);
1366 KASSERT(!cv_has_waiters(&bp->b_done));
1367
1368 /*
1369 * If buffer was a delayed write, start it and return NULL
1370 * (since we might sleep while starting the write).
1371 */
1372 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1373 /*
1374 * This buffer has gone through the LRU, so make sure it gets
1375 * reused ASAP.
1376 */
1377 SET(bp->b_cflags, BC_AGE);
1378 mutex_exit(&bufcache_lock);
1379 bawrite(bp);
1380 mutex_enter(&bufcache_lock);
1381 return (NULL);
1382 }
1383
1384 vp = bp->b_vp;
1385
1386 /* clear out various other fields */
1387 bp->b_cflags = BC_BUSY;
1388 bp->b_oflags = 0;
1389 bp->b_flags = 0;
1390 bp->b_dev = NODEV;
1391 bp->b_blkno = 0;
1392 bp->b_lblkno = 0;
1393 bp->b_rawblkno = 0;
1394 bp->b_iodone = 0;
1395 bp->b_error = 0;
1396 bp->b_resid = 0;
1397 bp->b_bcount = 0;
1398
1399 LIST_REMOVE(bp, b_hash);
1400
1401 /* Disassociate us from our vnode, if we had one... */
1402 if (vp != NULL) {
1403 mutex_enter(vp->v_interlock);
1404 brelvp(bp);
1405 mutex_exit(vp->v_interlock);
1406 }
1407
1408 return (bp);
1409 }
1410
1411 /*
1412 * Attempt to free an aged buffer off the queues.
1413 * Called with queue lock held.
1414 * Returns the amount of buffer memory freed.
1415 */
1416 static int
1417 buf_trim(void)
1418 {
1419 buf_t *bp;
1420 long size = 0;
1421
1422 KASSERT(mutex_owned(&bufcache_lock));
1423
1424 /* Instruct getnewbuf() to get buffers off the queues */
1425 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1426 return 0;
1427
1428 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1429 size = bp->b_bufsize;
1430 bufmem -= size;
1431 if (size > 0) {
1432 buf_mrelease(bp->b_data, size);
1433 bp->b_bcount = bp->b_bufsize = 0;
1434 }
1435 /* brelse() will return the buffer to the global buffer pool */
1436 brelsel(bp, 0);
1437 return size;
1438 }
1439
1440 int
1441 buf_drain(int n)
1442 {
1443 int size = 0, sz;
1444
1445 KASSERT(mutex_owned(&bufcache_lock));
1446
1447 while (size < n && bufmem > bufmem_lowater) {
1448 sz = buf_trim();
1449 if (sz <= 0)
1450 break;
1451 size += sz;
1452 }
1453
1454 return size;
1455 }
1456
1457 /*
1458 * Wait for operations on the buffer to complete.
1459 * When they do, extract and return the I/O's error value.
1460 */
1461 int
1462 biowait(buf_t *bp)
1463 {
1464
1465 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1466 KASSERT(bp->b_refcnt > 0);
1467
1468 mutex_enter(bp->b_objlock);
1469 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1470 cv_wait(&bp->b_done, bp->b_objlock);
1471 mutex_exit(bp->b_objlock);
1472
1473 return bp->b_error;
1474 }
1475
1476 /*
1477 * Mark I/O complete on a buffer.
1478 *
1479 * If a callback has been requested, e.g. the pageout
1480 * daemon, do so. Otherwise, awaken waiting processes.
1481 *
1482 * [ Leffler, et al., says on p.247:
1483 * "This routine wakes up the blocked process, frees the buffer
1484 * for an asynchronous write, or, for a request by the pagedaemon
1485 * process, invokes a procedure specified in the buffer structure" ]
1486 *
1487 * In real life, the pagedaemon (or other system processes) wants
1488 * to do async stuff to, and doesn't want the buffer brelse()'d.
1489 * (for swap pager, that puts swap buffers on the free lists (!!!),
1490 * for the vn device, that puts allocated buffers on the free lists!)
1491 */
1492 void
1493 biodone(buf_t *bp)
1494 {
1495 int s;
1496
1497 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1498
1499 if (cpu_intr_p()) {
1500 /* From interrupt mode: defer to a soft interrupt. */
1501 s = splvm();
1502 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1503 softint_schedule(biodone_sih);
1504 splx(s);
1505 } else {
1506 /* Process now - the buffer may be freed soon. */
1507 biodone2(bp);
1508 }
1509 }
1510
1511 static void
1512 biodone2(buf_t *bp)
1513 {
1514 void (*callout)(buf_t *);
1515
1516 mutex_enter(bp->b_objlock);
1517 /* Note that the transfer is done. */
1518 if (ISSET(bp->b_oflags, BO_DONE))
1519 panic("biodone2 already");
1520 CLR(bp->b_flags, B_COWDONE);
1521 SET(bp->b_oflags, BO_DONE);
1522 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1523
1524 /* Wake up waiting writers. */
1525 if (!ISSET(bp->b_flags, B_READ))
1526 vwakeup(bp);
1527
1528 if ((callout = bp->b_iodone) != NULL) {
1529 /* Note callout done, then call out. */
1530 KASSERT(!cv_has_waiters(&bp->b_done));
1531 KERNEL_LOCK(1, NULL); /* XXXSMP */
1532 bp->b_iodone = NULL;
1533 mutex_exit(bp->b_objlock);
1534 (*callout)(bp);
1535 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1536 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1537 /* If async, release. */
1538 KASSERT(!cv_has_waiters(&bp->b_done));
1539 mutex_exit(bp->b_objlock);
1540 brelse(bp, 0);
1541 } else {
1542 /* Otherwise just wake up waiters in biowait(). */
1543 cv_broadcast(&bp->b_done);
1544 mutex_exit(bp->b_objlock);
1545 }
1546 }
1547
1548 static void
1549 biointr(void *cookie)
1550 {
1551 struct cpu_info *ci;
1552 buf_t *bp;
1553 int s;
1554
1555 ci = curcpu();
1556
1557 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1558 KASSERT(curcpu() == ci);
1559
1560 s = splvm();
1561 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1562 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1563 splx(s);
1564
1565 biodone2(bp);
1566 }
1567 }
1568
1569 /*
1570 * Wait for all buffers to complete I/O
1571 * Return the number of "stuck" buffers.
1572 */
1573 int
1574 buf_syncwait(void)
1575 {
1576 buf_t *bp;
1577 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1578
1579 dcount = 10000;
1580 for (iter = 0; iter < 20;) {
1581 mutex_enter(&bufcache_lock);
1582 nbusy = 0;
1583 for (ihash = 0; ihash < bufhash+1; ihash++) {
1584 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1585 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1586 nbusy += ((bp->b_flags & B_READ) == 0);
1587 }
1588 }
1589 mutex_exit(&bufcache_lock);
1590
1591 if (nbusy == 0)
1592 break;
1593 if (nbusy_prev == 0)
1594 nbusy_prev = nbusy;
1595 printf("%d ", nbusy);
1596 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1597 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1598 iter++;
1599 else
1600 nbusy_prev = nbusy;
1601 }
1602
1603 if (nbusy) {
1604 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1605 printf("giving up\nPrinting vnodes for busy buffers\n");
1606 for (ihash = 0; ihash < bufhash+1; ihash++) {
1607 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1608 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1609 (bp->b_flags & B_READ) == 0)
1610 vprint(NULL, bp->b_vp);
1611 }
1612 }
1613 #endif
1614 }
1615
1616 return nbusy;
1617 }
1618
1619 static void
1620 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1621 {
1622
1623 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1624 o->b_error = i->b_error;
1625 o->b_prio = i->b_prio;
1626 o->b_dev = i->b_dev;
1627 o->b_bufsize = i->b_bufsize;
1628 o->b_bcount = i->b_bcount;
1629 o->b_resid = i->b_resid;
1630 o->b_addr = PTRTOUINT64(i->b_data);
1631 o->b_blkno = i->b_blkno;
1632 o->b_rawblkno = i->b_rawblkno;
1633 o->b_iodone = PTRTOUINT64(i->b_iodone);
1634 o->b_proc = PTRTOUINT64(i->b_proc);
1635 o->b_vp = PTRTOUINT64(i->b_vp);
1636 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1637 o->b_lblkno = i->b_lblkno;
1638 }
1639
1640 #define KERN_BUFSLOP 20
1641 static int
1642 sysctl_dobuf(SYSCTLFN_ARGS)
1643 {
1644 buf_t *bp;
1645 struct buf_sysctl bs;
1646 struct bqueue *bq;
1647 char *dp;
1648 u_int i, op, arg;
1649 size_t len, needed, elem_size, out_size;
1650 int error, elem_count, retries;
1651
1652 if (namelen == 1 && name[0] == CTL_QUERY)
1653 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1654
1655 if (namelen != 4)
1656 return (EINVAL);
1657
1658 retries = 100;
1659 retry:
1660 dp = oldp;
1661 len = (oldp != NULL) ? *oldlenp : 0;
1662 op = name[0];
1663 arg = name[1];
1664 elem_size = name[2];
1665 elem_count = name[3];
1666 out_size = MIN(sizeof(bs), elem_size);
1667
1668 /*
1669 * at the moment, these are just "placeholders" to make the
1670 * API for retrieving kern.buf data more extensible in the
1671 * future.
1672 *
1673 * XXX kern.buf currently has "netbsd32" issues. hopefully
1674 * these will be resolved at a later point.
1675 */
1676 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1677 elem_size < 1 || elem_count < 0)
1678 return (EINVAL);
1679
1680 error = 0;
1681 needed = 0;
1682 sysctl_unlock();
1683 mutex_enter(&bufcache_lock);
1684 for (i = 0; i < BQUEUES; i++) {
1685 bq = &bufqueues[i];
1686 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1687 bq->bq_marker = bp;
1688 if (len >= elem_size && elem_count > 0) {
1689 sysctl_fillbuf(bp, &bs);
1690 mutex_exit(&bufcache_lock);
1691 error = copyout(&bs, dp, out_size);
1692 mutex_enter(&bufcache_lock);
1693 if (error)
1694 break;
1695 if (bq->bq_marker != bp) {
1696 /*
1697 * This sysctl node is only for
1698 * statistics. Retry; if the
1699 * queue keeps changing, then
1700 * bail out.
1701 */
1702 if (retries-- == 0) {
1703 error = EAGAIN;
1704 break;
1705 }
1706 mutex_exit(&bufcache_lock);
1707 sysctl_relock();
1708 goto retry;
1709 }
1710 dp += elem_size;
1711 len -= elem_size;
1712 }
1713 needed += elem_size;
1714 if (elem_count > 0 && elem_count != INT_MAX)
1715 elem_count--;
1716 }
1717 if (error != 0)
1718 break;
1719 }
1720 mutex_exit(&bufcache_lock);
1721 sysctl_relock();
1722
1723 *oldlenp = needed;
1724 if (oldp == NULL)
1725 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1726
1727 return (error);
1728 }
1729
1730 static int
1731 sysctl_bufvm_update(SYSCTLFN_ARGS)
1732 {
1733 int t, error, rv;
1734 struct sysctlnode node;
1735
1736 node = *rnode;
1737 node.sysctl_data = &t;
1738 t = *(int *)rnode->sysctl_data;
1739 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1740 if (error || newp == NULL)
1741 return (error);
1742
1743 if (t < 0)
1744 return EINVAL;
1745 if (rnode->sysctl_data == &bufcache) {
1746 if (t > 100)
1747 return (EINVAL);
1748 bufcache = t;
1749 buf_setwm();
1750 } else if (rnode->sysctl_data == &bufmem_lowater) {
1751 if (bufmem_hiwater - t < 16)
1752 return (EINVAL);
1753 bufmem_lowater = t;
1754 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1755 if (t - bufmem_lowater < 16)
1756 return (EINVAL);
1757 bufmem_hiwater = t;
1758 } else
1759 return (EINVAL);
1760
1761 /* Drain until below new high water mark */
1762 sysctl_unlock();
1763 mutex_enter(&bufcache_lock);
1764 while ((t = bufmem - bufmem_hiwater) >= 0) {
1765 rv = buf_drain(t / (2 * 1024));
1766 if (rv <= 0)
1767 break;
1768 }
1769 mutex_exit(&bufcache_lock);
1770 sysctl_relock();
1771
1772 return 0;
1773 }
1774
1775 static struct sysctllog *vfsbio_sysctllog;
1776
1777 static void
1778 sysctl_kern_buf_setup(void)
1779 {
1780
1781 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1782 CTLFLAG_PERMANENT,
1783 CTLTYPE_NODE, "kern", NULL,
1784 NULL, 0, NULL, 0,
1785 CTL_KERN, CTL_EOL);
1786 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1787 CTLFLAG_PERMANENT,
1788 CTLTYPE_NODE, "buf",
1789 SYSCTL_DESCR("Kernel buffer cache information"),
1790 sysctl_dobuf, 0, NULL, 0,
1791 CTL_KERN, KERN_BUF, CTL_EOL);
1792 }
1793
1794 static void
1795 sysctl_vm_buf_setup(void)
1796 {
1797
1798 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1799 CTLFLAG_PERMANENT,
1800 CTLTYPE_NODE, "vm", NULL,
1801 NULL, 0, NULL, 0,
1802 CTL_VM, CTL_EOL);
1803 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1804 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1805 CTLTYPE_INT, "bufcache",
1806 SYSCTL_DESCR("Percentage of physical memory to use for "
1807 "buffer cache"),
1808 sysctl_bufvm_update, 0, &bufcache, 0,
1809 CTL_VM, CTL_CREATE, CTL_EOL);
1810 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1811 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1812 CTLTYPE_INT, "bufmem",
1813 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1814 "cache"),
1815 NULL, 0, &bufmem, 0,
1816 CTL_VM, CTL_CREATE, CTL_EOL);
1817 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1818 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1819 CTLTYPE_INT, "bufmem_lowater",
1820 SYSCTL_DESCR("Minimum amount of kernel memory to "
1821 "reserve for buffer cache"),
1822 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1823 CTL_VM, CTL_CREATE, CTL_EOL);
1824 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1825 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1826 CTLTYPE_INT, "bufmem_hiwater",
1827 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1828 "for buffer cache"),
1829 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1830 CTL_VM, CTL_CREATE, CTL_EOL);
1831 }
1832
1833 #ifdef DEBUG
1834 /*
1835 * Print out statistics on the current allocation of the buffer pool.
1836 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1837 * in vfs_syscalls.c using sysctl.
1838 */
1839 void
1840 vfs_bufstats(void)
1841 {
1842 int i, j, count;
1843 buf_t *bp;
1844 struct bqueue *dp;
1845 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1846 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1847
1848 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1849 count = 0;
1850 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1851 counts[j] = 0;
1852 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1853 counts[bp->b_bufsize/PAGE_SIZE]++;
1854 count++;
1855 }
1856 printf("%s: total-%d", bname[i], count);
1857 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1858 if (counts[j] != 0)
1859 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1860 printf("\n");
1861 }
1862 }
1863 #endif /* DEBUG */
1864
1865 /* ------------------------------ */
1866
1867 buf_t *
1868 getiobuf(struct vnode *vp, bool waitok)
1869 {
1870 buf_t *bp;
1871
1872 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1873 if (bp == NULL)
1874 return bp;
1875
1876 buf_init(bp);
1877
1878 if ((bp->b_vp = vp) == NULL)
1879 bp->b_objlock = &buffer_lock;
1880 else
1881 bp->b_objlock = vp->v_interlock;
1882
1883 return bp;
1884 }
1885
1886 void
1887 putiobuf(buf_t *bp)
1888 {
1889
1890 buf_destroy(bp);
1891 pool_cache_put(bufio_cache, bp);
1892 }
1893
1894 /*
1895 * nestiobuf_iodone: b_iodone callback for nested buffers.
1896 */
1897
1898 void
1899 nestiobuf_iodone(buf_t *bp)
1900 {
1901 buf_t *mbp = bp->b_private;
1902 int error;
1903 int donebytes;
1904
1905 KASSERT(bp->b_bcount <= bp->b_bufsize);
1906 KASSERT(mbp != bp);
1907
1908 error = bp->b_error;
1909 if (bp->b_error == 0 &&
1910 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1911 /*
1912 * Not all got transfered, raise an error. We have no way to
1913 * propagate these conditions to mbp.
1914 */
1915 error = EIO;
1916 }
1917
1918 donebytes = bp->b_bufsize;
1919
1920 putiobuf(bp);
1921 nestiobuf_done(mbp, donebytes, error);
1922 }
1923
1924 /*
1925 * nestiobuf_setup: setup a "nested" buffer.
1926 *
1927 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1928 * => 'bp' should be a buffer allocated by getiobuf.
1929 * => 'offset' is a byte offset in the master buffer.
1930 * => 'size' is a size in bytes of this nested buffer.
1931 */
1932
1933 void
1934 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1935 {
1936 const int b_read = mbp->b_flags & B_READ;
1937 struct vnode *vp = mbp->b_vp;
1938
1939 KASSERT(mbp->b_bcount >= offset + size);
1940 bp->b_vp = vp;
1941 bp->b_dev = mbp->b_dev;
1942 bp->b_objlock = mbp->b_objlock;
1943 bp->b_cflags = BC_BUSY;
1944 bp->b_flags = B_ASYNC | b_read;
1945 bp->b_iodone = nestiobuf_iodone;
1946 bp->b_data = (char *)mbp->b_data + offset;
1947 bp->b_resid = bp->b_bcount = size;
1948 bp->b_bufsize = bp->b_bcount;
1949 bp->b_private = mbp;
1950 BIO_COPYPRIO(bp, mbp);
1951 if (!b_read && vp != NULL) {
1952 mutex_enter(vp->v_interlock);
1953 vp->v_numoutput++;
1954 mutex_exit(vp->v_interlock);
1955 }
1956 }
1957
1958 /*
1959 * nestiobuf_done: propagate completion to the master buffer.
1960 *
1961 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1962 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1963 */
1964
1965 void
1966 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1967 {
1968
1969 if (donebytes == 0) {
1970 return;
1971 }
1972 mutex_enter(mbp->b_objlock);
1973 KASSERT(mbp->b_resid >= donebytes);
1974 mbp->b_resid -= donebytes;
1975 if (error)
1976 mbp->b_error = error;
1977 if (mbp->b_resid == 0) {
1978 if (mbp->b_error)
1979 mbp->b_resid = mbp->b_bcount;
1980 mutex_exit(mbp->b_objlock);
1981 biodone(mbp);
1982 } else
1983 mutex_exit(mbp->b_objlock);
1984 }
1985
1986 void
1987 buf_init(buf_t *bp)
1988 {
1989
1990 cv_init(&bp->b_busy, "biolock");
1991 cv_init(&bp->b_done, "biowait");
1992 bp->b_dev = NODEV;
1993 bp->b_error = 0;
1994 bp->b_flags = 0;
1995 bp->b_cflags = 0;
1996 bp->b_oflags = 0;
1997 bp->b_objlock = &buffer_lock;
1998 bp->b_iodone = NULL;
1999 bp->b_refcnt = 1;
2000 bp->b_dev = NODEV;
2001 bp->b_vnbufs.le_next = NOLIST;
2002 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2003 }
2004
2005 void
2006 buf_destroy(buf_t *bp)
2007 {
2008
2009 cv_destroy(&bp->b_done);
2010 cv_destroy(&bp->b_busy);
2011 }
2012
2013 int
2014 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2015 {
2016 int error;
2017
2018 KASSERT(mutex_owned(&bufcache_lock));
2019
2020 if ((bp->b_cflags & BC_BUSY) != 0) {
2021 if (curlwp == uvm.pagedaemon_lwp)
2022 return EDEADLK;
2023 bp->b_cflags |= BC_WANTED;
2024 bref(bp);
2025 if (interlock != NULL)
2026 mutex_exit(interlock);
2027 if (intr) {
2028 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2029 timo);
2030 } else {
2031 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2032 timo);
2033 }
2034 brele(bp);
2035 if (interlock != NULL)
2036 mutex_enter(interlock);
2037 if (error != 0)
2038 return error;
2039 return EPASSTHROUGH;
2040 }
2041 bp->b_cflags |= BC_BUSY;
2042
2043 return 0;
2044 }
2045