vfs_bio.c revision 1.242 1 /* $NetBSD: vfs_bio.c,v 1.242 2012/12/30 09:19:24 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.242 2012/12/30 09:19:24 hannken Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146
147 #include <uvm/uvm.h> /* extern struct uvm uvm */
148
149 #include <miscfs/specfs/specdev.h>
150
151 #ifndef BUFPAGES
152 # define BUFPAGES 0
153 #endif
154
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 # error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
162
163 u_int nbuf; /* desired number of buffer headers */
164 u_int bufpages = BUFPAGES; /* optional hardwired count */
165 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
166
167 /* Function prototypes */
168 struct bqueue;
169
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194
195 /*
196 * Definitions for the buffer hash lists.
197 */
198 #define BUFHASH(dvp, lbn) \
199 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long bufhash;
202 struct bqueue bufqueues[BQUEUES];
203
204 static kcondvar_t needbuffer_cv;
205
206 /*
207 * Buffer queue lock.
208 */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399
400 /*
401 * Determine the upper bound of memory to use for buffers.
402 *
403 * - If bufpages is specified, use that as the number
404 * pages.
405 *
406 * - Otherwise, use bufcache as the percentage of
407 * physical memory.
408 */
409 if (bufpages != 0) {
410 n = bufpages;
411 } else {
412 if (bufcache < 5) {
413 printf("forcing bufcache %d -> 5", bufcache);
414 bufcache = 5;
415 }
416 if (bufcache > 95) {
417 printf("forcing bufcache %d -> 95", bufcache);
418 bufcache = 95;
419 }
420 n = calc_cache_size(buf_map, bufcache,
421 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
422 / PAGE_SIZE;
423 }
424
425 n <<= PAGE_SHIFT;
426 if (bufmem_valimit != 0 && n > bufmem_valimit)
427 n = bufmem_valimit;
428
429 return (n);
430 }
431
432 /*
433 * Initialize buffers and hash links for buffers.
434 */
435 void
436 bufinit(void)
437 {
438 struct bqueue *dp;
439 int use_std;
440 u_int i;
441
442 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
443 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
444 cv_init(&needbuffer_cv, "needbuf");
445
446 if (bufmem_valimit != 0) {
447 vaddr_t minaddr = 0, maxaddr;
448 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 bufmem_valimit, 0, false, 0);
450 if (buf_map == NULL)
451 panic("bufinit: cannot allocate submap");
452 } else
453 buf_map = kernel_map;
454
455 /*
456 * Initialize buffer cache memory parameters.
457 */
458 bufmem = 0;
459 buf_setwm();
460
461 /* On "small" machines use small pool page sizes where possible */
462 use_std = (physmem < atop(16*1024*1024));
463
464 /*
465 * Also use them on systems that can map the pool pages using
466 * a direct-mapped segment.
467 */
468 #ifdef PMAP_MAP_POOLPAGE
469 use_std = 1;
470 #endif
471
472 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
473 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
474 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
475 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
476
477 for (i = 0; i < NMEMPOOLS; i++) {
478 struct pool_allocator *pa;
479 struct pool *pp = &bmempools[i];
480 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
481 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
482 if (__predict_false(size >= 1048576))
483 (void)snprintf(name, 8, "buf%um", size / 1048576);
484 else if (__predict_true(size >= 1024))
485 (void)snprintf(name, 8, "buf%uk", size / 1024);
486 else
487 (void)snprintf(name, 8, "buf%ub", size);
488 pa = (size <= PAGE_SIZE && use_std)
489 ? &pool_allocator_nointr
490 : &bufmempool_allocator;
491 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
492 pool_setlowat(pp, 1);
493 pool_sethiwat(pp, 1);
494 }
495
496 /* Initialize the buffer queues */
497 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
498 TAILQ_INIT(&dp->bq_queue);
499 dp->bq_bytes = 0;
500 }
501
502 /*
503 * Estimate hash table size based on the amount of memory we
504 * intend to use for the buffer cache. The average buffer
505 * size is dependent on our clients (i.e. filesystems).
506 *
507 * For now, use an empirical 3K per buffer.
508 */
509 nbuf = (bufmem_hiwater / 1024) / 3;
510 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
511
512 sysctl_kern_buf_setup();
513 sysctl_vm_buf_setup();
514 }
515
516 void
517 bufinit2(void)
518 {
519
520 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
521 NULL);
522 if (biodone_sih == NULL)
523 panic("bufinit2: can't establish soft interrupt");
524 }
525
526 static int
527 buf_lotsfree(void)
528 {
529 int try, thresh;
530
531 /* Always allocate if less than the low water mark. */
532 if (bufmem < bufmem_lowater)
533 return 1;
534
535 /* Never allocate if greater than the high water mark. */
536 if (bufmem > bufmem_hiwater)
537 return 0;
538
539 /* If there's anything on the AGE list, it should be eaten. */
540 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
541 return 0;
542
543 /*
544 * The probabily of getting a new allocation is inversely
545 * proportional to the current size of the cache, using
546 * a granularity of 16 steps.
547 */
548 try = random() & 0x0000000fL;
549
550 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
551 thresh = (bufmem - bufmem_lowater) /
552 ((bufmem_hiwater - bufmem_lowater) / 16);
553
554 if (try >= thresh)
555 return 1;
556
557 /* Otherwise don't allocate. */
558 return 0;
559 }
560
561 /*
562 * Return estimate of bytes we think need to be
563 * released to help resolve low memory conditions.
564 *
565 * => called with bufcache_lock held.
566 */
567 static int
568 buf_canrelease(void)
569 {
570 int pagedemand, ninvalid = 0;
571
572 KASSERT(mutex_owned(&bufcache_lock));
573
574 if (bufmem < bufmem_lowater)
575 return 0;
576
577 if (bufmem > bufmem_hiwater)
578 return bufmem - bufmem_hiwater;
579
580 ninvalid += bufqueues[BQ_AGE].bq_bytes;
581
582 pagedemand = uvmexp.freetarg - uvmexp.free;
583 if (pagedemand < 0)
584 return ninvalid;
585 return MAX(ninvalid, MIN(2 * MAXBSIZE,
586 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
587 }
588
589 /*
590 * Buffer memory allocation helper functions
591 */
592 static u_long
593 buf_mempoolidx(u_long size)
594 {
595 u_int n = 0;
596
597 size -= 1;
598 size >>= MEMPOOL_INDEX_OFFSET;
599 while (size) {
600 size >>= 1;
601 n += 1;
602 }
603 if (n >= NMEMPOOLS)
604 panic("buf mem pool index %d", n);
605 return n;
606 }
607
608 static u_long
609 buf_roundsize(u_long size)
610 {
611 /* Round up to nearest power of 2 */
612 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
613 }
614
615 static void *
616 buf_alloc(size_t size)
617 {
618 u_int n = buf_mempoolidx(size);
619 void *addr;
620
621 while (1) {
622 addr = pool_get(&bmempools[n], PR_NOWAIT);
623 if (addr != NULL)
624 break;
625
626 /* No memory, see if we can free some. If so, try again */
627 mutex_enter(&bufcache_lock);
628 if (buf_drain(1) > 0) {
629 mutex_exit(&bufcache_lock);
630 continue;
631 }
632
633 if (curlwp == uvm.pagedaemon_lwp) {
634 mutex_exit(&bufcache_lock);
635 return NULL;
636 }
637
638 /* Wait for buffers to arrive on the LRU queue */
639 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
640 mutex_exit(&bufcache_lock);
641 }
642
643 return addr;
644 }
645
646 static void
647 buf_mrelease(void *addr, size_t size)
648 {
649
650 pool_put(&bmempools[buf_mempoolidx(size)], addr);
651 }
652
653 /*
654 * bread()/breadn() helper.
655 */
656 static buf_t *
657 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
658 int async)
659 {
660 buf_t *bp;
661 struct mount *mp;
662
663 bp = getblk(vp, blkno, size, 0, 0);
664
665 /*
666 * getblk() may return NULL if we are the pagedaemon.
667 */
668 if (bp == NULL) {
669 KASSERT(curlwp == uvm.pagedaemon_lwp);
670 return NULL;
671 }
672
673 /*
674 * If buffer does not have data valid, start a read.
675 * Note that if buffer is BC_INVAL, getblk() won't return it.
676 * Therefore, it's valid if its I/O has completed or been delayed.
677 */
678 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
679 /* Start I/O for the buffer. */
680 SET(bp->b_flags, B_READ | async);
681 if (async)
682 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
683 else
684 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
685 VOP_STRATEGY(vp, bp);
686
687 /* Pay for the read. */
688 curlwp->l_ru.ru_inblock++;
689 } else if (async)
690 brelse(bp, 0);
691
692 if (vp->v_type == VBLK)
693 mp = vp->v_specmountpoint;
694 else
695 mp = vp->v_mount;
696
697 /*
698 * Collect statistics on synchronous and asynchronous reads.
699 * Reads from block devices are charged to their associated
700 * filesystem (if any).
701 */
702 if (mp != NULL) {
703 if (async == 0)
704 mp->mnt_stat.f_syncreads++;
705 else
706 mp->mnt_stat.f_asyncreads++;
707 }
708
709 return (bp);
710 }
711
712 /*
713 * Read a disk block.
714 * This algorithm described in Bach (p.54).
715 */
716 int
717 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
718 int flags, buf_t **bpp)
719 {
720 buf_t *bp;
721 int error;
722
723 /* Get buffer for block. */
724 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
725 if (bp == NULL)
726 return ENOMEM;
727
728 /* Wait for the read to complete, and return result. */
729 error = biowait(bp);
730 if (error == 0 && (flags & B_MODIFY) != 0)
731 error = fscow_run(bp, true);
732 if (error) {
733 brelse(bp, 0);
734 *bpp = NULL;
735 }
736
737 return error;
738 }
739
740 /*
741 * Read-ahead multiple disk blocks. The first is sync, the rest async.
742 * Trivial modification to the breada algorithm presented in Bach (p.55).
743 */
744 int
745 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
746 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
747 {
748 buf_t *bp;
749 int error, i;
750
751 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
752 if (bp == NULL)
753 return ENOMEM;
754
755 /*
756 * For each of the read-ahead blocks, start a read, if necessary.
757 */
758 mutex_enter(&bufcache_lock);
759 for (i = 0; i < nrablks; i++) {
760 /* If it's in the cache, just go on to next one. */
761 if (incore(vp, rablks[i]))
762 continue;
763
764 /* Get a buffer for the read-ahead block */
765 mutex_exit(&bufcache_lock);
766 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
767 mutex_enter(&bufcache_lock);
768 }
769 mutex_exit(&bufcache_lock);
770
771 /* Otherwise, we had to start a read for it; wait until it's valid. */
772 error = biowait(bp);
773 if (error == 0 && (flags & B_MODIFY) != 0)
774 error = fscow_run(bp, true);
775 if (error) {
776 brelse(bp, 0);
777 *bpp = NULL;
778 }
779
780 return error;
781 }
782
783 /*
784 * Block write. Described in Bach (p.56)
785 */
786 int
787 bwrite(buf_t *bp)
788 {
789 int rv, sync, wasdelayed;
790 struct vnode *vp;
791 struct mount *mp;
792
793 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
794 KASSERT(!cv_has_waiters(&bp->b_done));
795
796 vp = bp->b_vp;
797 if (vp != NULL) {
798 KASSERT(bp->b_objlock == vp->v_interlock);
799 if (vp->v_type == VBLK)
800 mp = vp->v_specmountpoint;
801 else
802 mp = vp->v_mount;
803 } else {
804 mp = NULL;
805 }
806
807 if (mp && mp->mnt_wapbl) {
808 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
809 bdwrite(bp);
810 return 0;
811 }
812 }
813
814 /*
815 * Remember buffer type, to switch on it later. If the write was
816 * synchronous, but the file system was mounted with MNT_ASYNC,
817 * convert it to a delayed write.
818 * XXX note that this relies on delayed tape writes being converted
819 * to async, not sync writes (which is safe, but ugly).
820 */
821 sync = !ISSET(bp->b_flags, B_ASYNC);
822 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
823 bdwrite(bp);
824 return (0);
825 }
826
827 /*
828 * Collect statistics on synchronous and asynchronous writes.
829 * Writes to block devices are charged to their associated
830 * filesystem (if any).
831 */
832 if (mp != NULL) {
833 if (sync)
834 mp->mnt_stat.f_syncwrites++;
835 else
836 mp->mnt_stat.f_asyncwrites++;
837 }
838
839 /*
840 * Pay for the I/O operation and make sure the buf is on the correct
841 * vnode queue.
842 */
843 bp->b_error = 0;
844 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
845 CLR(bp->b_flags, B_READ);
846 if (wasdelayed) {
847 mutex_enter(&bufcache_lock);
848 mutex_enter(bp->b_objlock);
849 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
850 reassignbuf(bp, bp->b_vp);
851 mutex_exit(&bufcache_lock);
852 } else {
853 curlwp->l_ru.ru_oublock++;
854 mutex_enter(bp->b_objlock);
855 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
856 }
857 if (vp != NULL)
858 vp->v_numoutput++;
859 mutex_exit(bp->b_objlock);
860
861 /* Initiate disk write. */
862 if (sync)
863 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
864 else
865 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
866
867 VOP_STRATEGY(vp, bp);
868
869 if (sync) {
870 /* If I/O was synchronous, wait for it to complete. */
871 rv = biowait(bp);
872
873 /* Release the buffer. */
874 brelse(bp, 0);
875
876 return (rv);
877 } else {
878 return (0);
879 }
880 }
881
882 int
883 vn_bwrite(void *v)
884 {
885 struct vop_bwrite_args *ap = v;
886
887 return (bwrite(ap->a_bp));
888 }
889
890 /*
891 * Delayed write.
892 *
893 * The buffer is marked dirty, but is not queued for I/O.
894 * This routine should be used when the buffer is expected
895 * to be modified again soon, typically a small write that
896 * partially fills a buffer.
897 *
898 * NB: magnetic tapes cannot be delayed; they must be
899 * written in the order that the writes are requested.
900 *
901 * Described in Leffler, et al. (pp. 208-213).
902 */
903 void
904 bdwrite(buf_t *bp)
905 {
906
907 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
908 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
909 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
910 KASSERT(!cv_has_waiters(&bp->b_done));
911
912 /* If this is a tape block, write the block now. */
913 if (bdev_type(bp->b_dev) == D_TAPE) {
914 bawrite(bp);
915 return;
916 }
917
918 if (wapbl_vphaswapbl(bp->b_vp)) {
919 struct mount *mp = wapbl_vptomp(bp->b_vp);
920
921 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
922 WAPBL_ADD_BUF(mp, bp);
923 }
924 }
925
926 /*
927 * If the block hasn't been seen before:
928 * (1) Mark it as having been seen,
929 * (2) Charge for the write,
930 * (3) Make sure it's on its vnode's correct block list.
931 */
932 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
933
934 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
935 mutex_enter(&bufcache_lock);
936 mutex_enter(bp->b_objlock);
937 SET(bp->b_oflags, BO_DELWRI);
938 curlwp->l_ru.ru_oublock++;
939 reassignbuf(bp, bp->b_vp);
940 mutex_exit(&bufcache_lock);
941 } else {
942 mutex_enter(bp->b_objlock);
943 }
944 /* Otherwise, the "write" is done, so mark and release the buffer. */
945 CLR(bp->b_oflags, BO_DONE);
946 mutex_exit(bp->b_objlock);
947
948 brelse(bp, 0);
949 }
950
951 /*
952 * Asynchronous block write; just an asynchronous bwrite().
953 */
954 void
955 bawrite(buf_t *bp)
956 {
957
958 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
959 KASSERT(bp->b_vp != NULL);
960
961 SET(bp->b_flags, B_ASYNC);
962 VOP_BWRITE(bp->b_vp, bp);
963 }
964
965 /*
966 * Release a buffer on to the free lists.
967 * Described in Bach (p. 46).
968 */
969 void
970 brelsel(buf_t *bp, int set)
971 {
972 struct bqueue *bufq;
973 struct vnode *vp;
974
975 KASSERT(bp != NULL);
976 KASSERT(mutex_owned(&bufcache_lock));
977 KASSERT(!cv_has_waiters(&bp->b_done));
978 KASSERT(bp->b_refcnt > 0);
979
980 SET(bp->b_cflags, set);
981
982 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
983 KASSERT(bp->b_iodone == NULL);
984
985 /* Wake up any processes waiting for any buffer to become free. */
986 cv_signal(&needbuffer_cv);
987
988 /* Wake up any proceeses waiting for _this_ buffer to become */
989 if (ISSET(bp->b_cflags, BC_WANTED))
990 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
991
992 /* If it's clean clear the copy-on-write flag. */
993 if (ISSET(bp->b_flags, B_COWDONE)) {
994 mutex_enter(bp->b_objlock);
995 if (!ISSET(bp->b_oflags, BO_DELWRI))
996 CLR(bp->b_flags, B_COWDONE);
997 mutex_exit(bp->b_objlock);
998 }
999
1000 /*
1001 * Determine which queue the buffer should be on, then put it there.
1002 */
1003
1004 /* If it's locked, don't report an error; try again later. */
1005 if (ISSET(bp->b_flags, B_LOCKED))
1006 bp->b_error = 0;
1007
1008 /* If it's not cacheable, or an error, mark it invalid. */
1009 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1010 SET(bp->b_cflags, BC_INVAL);
1011
1012 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1013 /*
1014 * This is a delayed write buffer that was just flushed to
1015 * disk. It is still on the LRU queue. If it's become
1016 * invalid, then we need to move it to a different queue;
1017 * otherwise leave it in its current position.
1018 */
1019 CLR(bp->b_cflags, BC_VFLUSH);
1020 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1021 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1022 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1023 goto already_queued;
1024 } else {
1025 bremfree(bp);
1026 }
1027 }
1028
1029 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1030 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1031 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1032
1033 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1034 /*
1035 * If it's invalid or empty, dissociate it from its vnode
1036 * and put on the head of the appropriate queue.
1037 */
1038 if (ISSET(bp->b_flags, B_LOCKED)) {
1039 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1040 struct mount *mp = wapbl_vptomp(vp);
1041
1042 KASSERT(bp->b_iodone
1043 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1044 WAPBL_REMOVE_BUF(mp, bp);
1045 }
1046 }
1047
1048 mutex_enter(bp->b_objlock);
1049 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1050 if ((vp = bp->b_vp) != NULL) {
1051 KASSERT(bp->b_objlock == vp->v_interlock);
1052 reassignbuf(bp, bp->b_vp);
1053 brelvp(bp);
1054 mutex_exit(vp->v_interlock);
1055 } else {
1056 KASSERT(bp->b_objlock == &buffer_lock);
1057 mutex_exit(bp->b_objlock);
1058 }
1059
1060 if (bp->b_bufsize <= 0)
1061 /* no data */
1062 goto already_queued;
1063 else
1064 /* invalid data */
1065 bufq = &bufqueues[BQ_AGE];
1066 binsheadfree(bp, bufq);
1067 } else {
1068 /*
1069 * It has valid data. Put it on the end of the appropriate
1070 * queue, so that it'll stick around for as long as possible.
1071 * If buf is AGE, but has dependencies, must put it on last
1072 * bufqueue to be scanned, ie LRU. This protects against the
1073 * livelock where BQ_AGE only has buffers with dependencies,
1074 * and we thus never get to the dependent buffers in BQ_LRU.
1075 */
1076 if (ISSET(bp->b_flags, B_LOCKED)) {
1077 /* locked in core */
1078 bufq = &bufqueues[BQ_LOCKED];
1079 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1080 /* valid data */
1081 bufq = &bufqueues[BQ_LRU];
1082 } else {
1083 /* stale but valid data */
1084 bufq = &bufqueues[BQ_AGE];
1085 }
1086 binstailfree(bp, bufq);
1087 }
1088 already_queued:
1089 /* Unlock the buffer. */
1090 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1091 CLR(bp->b_flags, B_ASYNC);
1092 cv_broadcast(&bp->b_busy);
1093
1094 if (bp->b_bufsize <= 0)
1095 brele(bp);
1096 }
1097
1098 void
1099 brelse(buf_t *bp, int set)
1100 {
1101
1102 mutex_enter(&bufcache_lock);
1103 brelsel(bp, set);
1104 mutex_exit(&bufcache_lock);
1105 }
1106
1107 /*
1108 * Determine if a block is in the cache.
1109 * Just look on what would be its hash chain. If it's there, return
1110 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1111 * we normally don't return the buffer, unless the caller explicitly
1112 * wants us to.
1113 */
1114 buf_t *
1115 incore(struct vnode *vp, daddr_t blkno)
1116 {
1117 buf_t *bp;
1118
1119 KASSERT(mutex_owned(&bufcache_lock));
1120
1121 /* Search hash chain */
1122 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1123 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1124 !ISSET(bp->b_cflags, BC_INVAL)) {
1125 KASSERT(bp->b_objlock == vp->v_interlock);
1126 return (bp);
1127 }
1128 }
1129
1130 return (NULL);
1131 }
1132
1133 /*
1134 * Get a block of requested size that is associated with
1135 * a given vnode and block offset. If it is found in the
1136 * block cache, mark it as having been found, make it busy
1137 * and return it. Otherwise, return an empty block of the
1138 * correct size. It is up to the caller to insure that the
1139 * cached blocks be of the correct size.
1140 */
1141 buf_t *
1142 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1143 {
1144 int err, preserve;
1145 buf_t *bp;
1146
1147 mutex_enter(&bufcache_lock);
1148 loop:
1149 bp = incore(vp, blkno);
1150 if (bp != NULL) {
1151 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1152 if (err != 0) {
1153 if (err == EPASSTHROUGH)
1154 goto loop;
1155 mutex_exit(&bufcache_lock);
1156 return (NULL);
1157 }
1158 KASSERT(!cv_has_waiters(&bp->b_done));
1159 #ifdef DIAGNOSTIC
1160 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1161 bp->b_bcount < size && vp->v_type != VBLK)
1162 panic("getblk: block size invariant failed");
1163 #endif
1164 bremfree(bp);
1165 preserve = 1;
1166 } else {
1167 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1168 goto loop;
1169
1170 if (incore(vp, blkno) != NULL) {
1171 /* The block has come into memory in the meantime. */
1172 brelsel(bp, 0);
1173 goto loop;
1174 }
1175
1176 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1177 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1178 mutex_enter(vp->v_interlock);
1179 bgetvp(vp, bp);
1180 mutex_exit(vp->v_interlock);
1181 preserve = 0;
1182 }
1183 mutex_exit(&bufcache_lock);
1184
1185 /*
1186 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1187 * if we re-size buffers here.
1188 */
1189 if (ISSET(bp->b_flags, B_LOCKED)) {
1190 KASSERT(bp->b_bufsize >= size);
1191 } else {
1192 if (allocbuf(bp, size, preserve)) {
1193 mutex_enter(&bufcache_lock);
1194 LIST_REMOVE(bp, b_hash);
1195 mutex_exit(&bufcache_lock);
1196 brelse(bp, BC_INVAL);
1197 return NULL;
1198 }
1199 }
1200 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1201 return (bp);
1202 }
1203
1204 /*
1205 * Get an empty, disassociated buffer of given size.
1206 */
1207 buf_t *
1208 geteblk(int size)
1209 {
1210 buf_t *bp;
1211 int error;
1212
1213 mutex_enter(&bufcache_lock);
1214 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1215 ;
1216
1217 SET(bp->b_cflags, BC_INVAL);
1218 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1219 mutex_exit(&bufcache_lock);
1220 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1221 error = allocbuf(bp, size, 0);
1222 KASSERT(error == 0);
1223 return (bp);
1224 }
1225
1226 /*
1227 * Expand or contract the actual memory allocated to a buffer.
1228 *
1229 * If the buffer shrinks, data is lost, so it's up to the
1230 * caller to have written it out *first*; this routine will not
1231 * start a write. If the buffer grows, it's the callers
1232 * responsibility to fill out the buffer's additional contents.
1233 */
1234 int
1235 allocbuf(buf_t *bp, int size, int preserve)
1236 {
1237 void *addr;
1238 vsize_t oldsize, desired_size;
1239 int oldcount;
1240 int delta;
1241
1242 desired_size = buf_roundsize(size);
1243 if (desired_size > MAXBSIZE)
1244 printf("allocbuf: buffer larger than MAXBSIZE requested");
1245
1246 oldcount = bp->b_bcount;
1247
1248 bp->b_bcount = size;
1249
1250 oldsize = bp->b_bufsize;
1251 if (oldsize == desired_size) {
1252 /*
1253 * Do not short cut the WAPBL resize, as the buffer length
1254 * could still have changed and this would corrupt the
1255 * tracking of the transaction length.
1256 */
1257 goto out;
1258 }
1259
1260 /*
1261 * If we want a buffer of a different size, re-allocate the
1262 * buffer's memory; copy old content only if needed.
1263 */
1264 addr = buf_alloc(desired_size);
1265 if (addr == NULL)
1266 return ENOMEM;
1267 if (preserve)
1268 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1269 if (bp->b_data != NULL)
1270 buf_mrelease(bp->b_data, oldsize);
1271 bp->b_data = addr;
1272 bp->b_bufsize = desired_size;
1273
1274 /*
1275 * Update overall buffer memory counter (protected by bufcache_lock)
1276 */
1277 delta = (long)desired_size - (long)oldsize;
1278
1279 mutex_enter(&bufcache_lock);
1280 if ((bufmem += delta) > bufmem_hiwater) {
1281 /*
1282 * Need to trim overall memory usage.
1283 */
1284 while (buf_canrelease()) {
1285 if (curcpu()->ci_schedstate.spc_flags &
1286 SPCF_SHOULDYIELD) {
1287 mutex_exit(&bufcache_lock);
1288 preempt();
1289 mutex_enter(&bufcache_lock);
1290 }
1291 if (buf_trim() == 0)
1292 break;
1293 }
1294 }
1295 mutex_exit(&bufcache_lock);
1296
1297 out:
1298 if (wapbl_vphaswapbl(bp->b_vp))
1299 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1300
1301 return 0;
1302 }
1303
1304 /*
1305 * Find a buffer which is available for use.
1306 * Select something from a free list.
1307 * Preference is to AGE list, then LRU list.
1308 *
1309 * Called with the buffer queues locked.
1310 * Return buffer locked.
1311 */
1312 buf_t *
1313 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1314 {
1315 buf_t *bp;
1316 struct vnode *vp;
1317
1318 start:
1319 KASSERT(mutex_owned(&bufcache_lock));
1320
1321 /*
1322 * Get a new buffer from the pool.
1323 */
1324 if (!from_bufq && buf_lotsfree()) {
1325 mutex_exit(&bufcache_lock);
1326 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1327 if (bp != NULL) {
1328 memset((char *)bp, 0, sizeof(*bp));
1329 buf_init(bp);
1330 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1331 mutex_enter(&bufcache_lock);
1332 #if defined(DIAGNOSTIC)
1333 bp->b_freelistindex = -1;
1334 #endif /* defined(DIAGNOSTIC) */
1335 return (bp);
1336 }
1337 mutex_enter(&bufcache_lock);
1338 }
1339
1340 KASSERT(mutex_owned(&bufcache_lock));
1341 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1342 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1343 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1344 bremfree(bp);
1345
1346 /* Buffer is no longer on free lists. */
1347 SET(bp->b_cflags, BC_BUSY);
1348 } else {
1349 /*
1350 * XXX: !from_bufq should be removed.
1351 */
1352 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1353 /* wait for a free buffer of any kind */
1354 if ((slpflag & PCATCH) != 0)
1355 (void)cv_timedwait_sig(&needbuffer_cv,
1356 &bufcache_lock, slptimeo);
1357 else
1358 (void)cv_timedwait(&needbuffer_cv,
1359 &bufcache_lock, slptimeo);
1360 }
1361 return (NULL);
1362 }
1363
1364 #ifdef DIAGNOSTIC
1365 if (bp->b_bufsize <= 0)
1366 panic("buffer %p: on queue but empty", bp);
1367 #endif
1368
1369 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1370 /*
1371 * This is a delayed write buffer being flushed to disk. Make
1372 * sure it gets aged out of the queue when it's finished, and
1373 * leave it off the LRU queue.
1374 */
1375 CLR(bp->b_cflags, BC_VFLUSH);
1376 SET(bp->b_cflags, BC_AGE);
1377 goto start;
1378 }
1379
1380 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1381 KASSERT(bp->b_refcnt > 0);
1382 KASSERT(!cv_has_waiters(&bp->b_done));
1383
1384 /*
1385 * If buffer was a delayed write, start it and return NULL
1386 * (since we might sleep while starting the write).
1387 */
1388 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1389 /*
1390 * This buffer has gone through the LRU, so make sure it gets
1391 * reused ASAP.
1392 */
1393 SET(bp->b_cflags, BC_AGE);
1394 mutex_exit(&bufcache_lock);
1395 bawrite(bp);
1396 mutex_enter(&bufcache_lock);
1397 return (NULL);
1398 }
1399
1400 vp = bp->b_vp;
1401
1402 /* clear out various other fields */
1403 bp->b_cflags = BC_BUSY;
1404 bp->b_oflags = 0;
1405 bp->b_flags = 0;
1406 bp->b_dev = NODEV;
1407 bp->b_blkno = 0;
1408 bp->b_lblkno = 0;
1409 bp->b_rawblkno = 0;
1410 bp->b_iodone = 0;
1411 bp->b_error = 0;
1412 bp->b_resid = 0;
1413 bp->b_bcount = 0;
1414
1415 LIST_REMOVE(bp, b_hash);
1416
1417 /* Disassociate us from our vnode, if we had one... */
1418 if (vp != NULL) {
1419 mutex_enter(vp->v_interlock);
1420 brelvp(bp);
1421 mutex_exit(vp->v_interlock);
1422 }
1423
1424 return (bp);
1425 }
1426
1427 /*
1428 * Attempt to free an aged buffer off the queues.
1429 * Called with queue lock held.
1430 * Returns the amount of buffer memory freed.
1431 */
1432 static int
1433 buf_trim(void)
1434 {
1435 buf_t *bp;
1436 long size = 0;
1437
1438 KASSERT(mutex_owned(&bufcache_lock));
1439
1440 /* Instruct getnewbuf() to get buffers off the queues */
1441 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1442 return 0;
1443
1444 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1445 size = bp->b_bufsize;
1446 bufmem -= size;
1447 if (size > 0) {
1448 buf_mrelease(bp->b_data, size);
1449 bp->b_bcount = bp->b_bufsize = 0;
1450 }
1451 /* brelse() will return the buffer to the global buffer pool */
1452 brelsel(bp, 0);
1453 return size;
1454 }
1455
1456 int
1457 buf_drain(int n)
1458 {
1459 int size = 0, sz;
1460
1461 KASSERT(mutex_owned(&bufcache_lock));
1462
1463 while (size < n && bufmem > bufmem_lowater) {
1464 sz = buf_trim();
1465 if (sz <= 0)
1466 break;
1467 size += sz;
1468 }
1469
1470 return size;
1471 }
1472
1473 /*
1474 * Wait for operations on the buffer to complete.
1475 * When they do, extract and return the I/O's error value.
1476 */
1477 int
1478 biowait(buf_t *bp)
1479 {
1480
1481 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1482 KASSERT(bp->b_refcnt > 0);
1483
1484 mutex_enter(bp->b_objlock);
1485 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1486 cv_wait(&bp->b_done, bp->b_objlock);
1487 mutex_exit(bp->b_objlock);
1488
1489 return bp->b_error;
1490 }
1491
1492 /*
1493 * Mark I/O complete on a buffer.
1494 *
1495 * If a callback has been requested, e.g. the pageout
1496 * daemon, do so. Otherwise, awaken waiting processes.
1497 *
1498 * [ Leffler, et al., says on p.247:
1499 * "This routine wakes up the blocked process, frees the buffer
1500 * for an asynchronous write, or, for a request by the pagedaemon
1501 * process, invokes a procedure specified in the buffer structure" ]
1502 *
1503 * In real life, the pagedaemon (or other system processes) wants
1504 * to do async stuff to, and doesn't want the buffer brelse()'d.
1505 * (for swap pager, that puts swap buffers on the free lists (!!!),
1506 * for the vn device, that puts allocated buffers on the free lists!)
1507 */
1508 void
1509 biodone(buf_t *bp)
1510 {
1511 int s;
1512
1513 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1514
1515 if (cpu_intr_p()) {
1516 /* From interrupt mode: defer to a soft interrupt. */
1517 s = splvm();
1518 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1519 softint_schedule(biodone_sih);
1520 splx(s);
1521 } else {
1522 /* Process now - the buffer may be freed soon. */
1523 biodone2(bp);
1524 }
1525 }
1526
1527 static void
1528 biodone2(buf_t *bp)
1529 {
1530 void (*callout)(buf_t *);
1531
1532 mutex_enter(bp->b_objlock);
1533 /* Note that the transfer is done. */
1534 if (ISSET(bp->b_oflags, BO_DONE))
1535 panic("biodone2 already");
1536 CLR(bp->b_flags, B_COWDONE);
1537 SET(bp->b_oflags, BO_DONE);
1538 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1539
1540 /* Wake up waiting writers. */
1541 if (!ISSET(bp->b_flags, B_READ))
1542 vwakeup(bp);
1543
1544 if ((callout = bp->b_iodone) != NULL) {
1545 /* Note callout done, then call out. */
1546 KASSERT(!cv_has_waiters(&bp->b_done));
1547 KERNEL_LOCK(1, NULL); /* XXXSMP */
1548 bp->b_iodone = NULL;
1549 mutex_exit(bp->b_objlock);
1550 (*callout)(bp);
1551 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1552 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1553 /* If async, release. */
1554 KASSERT(!cv_has_waiters(&bp->b_done));
1555 mutex_exit(bp->b_objlock);
1556 brelse(bp, 0);
1557 } else {
1558 /* Otherwise just wake up waiters in biowait(). */
1559 cv_broadcast(&bp->b_done);
1560 mutex_exit(bp->b_objlock);
1561 }
1562 }
1563
1564 static void
1565 biointr(void *cookie)
1566 {
1567 struct cpu_info *ci;
1568 buf_t *bp;
1569 int s;
1570
1571 ci = curcpu();
1572
1573 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1574 KASSERT(curcpu() == ci);
1575
1576 s = splvm();
1577 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1578 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1579 splx(s);
1580
1581 biodone2(bp);
1582 }
1583 }
1584
1585 /*
1586 * Wait for all buffers to complete I/O
1587 * Return the number of "stuck" buffers.
1588 */
1589 int
1590 buf_syncwait(void)
1591 {
1592 buf_t *bp;
1593 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1594
1595 dcount = 10000;
1596 for (iter = 0; iter < 20;) {
1597 mutex_enter(&bufcache_lock);
1598 nbusy = 0;
1599 for (ihash = 0; ihash < bufhash+1; ihash++) {
1600 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1601 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1602 nbusy += ((bp->b_flags & B_READ) == 0);
1603 }
1604 }
1605 mutex_exit(&bufcache_lock);
1606
1607 if (nbusy == 0)
1608 break;
1609 if (nbusy_prev == 0)
1610 nbusy_prev = nbusy;
1611 printf("%d ", nbusy);
1612 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1613 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1614 iter++;
1615 else
1616 nbusy_prev = nbusy;
1617 }
1618
1619 if (nbusy) {
1620 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1621 printf("giving up\nPrinting vnodes for busy buffers\n");
1622 for (ihash = 0; ihash < bufhash+1; ihash++) {
1623 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1624 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1625 (bp->b_flags & B_READ) == 0)
1626 vprint(NULL, bp->b_vp);
1627 }
1628 }
1629 #endif
1630 }
1631
1632 return nbusy;
1633 }
1634
1635 static void
1636 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1637 {
1638
1639 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1640 o->b_error = i->b_error;
1641 o->b_prio = i->b_prio;
1642 o->b_dev = i->b_dev;
1643 o->b_bufsize = i->b_bufsize;
1644 o->b_bcount = i->b_bcount;
1645 o->b_resid = i->b_resid;
1646 o->b_addr = PTRTOUINT64(i->b_data);
1647 o->b_blkno = i->b_blkno;
1648 o->b_rawblkno = i->b_rawblkno;
1649 o->b_iodone = PTRTOUINT64(i->b_iodone);
1650 o->b_proc = PTRTOUINT64(i->b_proc);
1651 o->b_vp = PTRTOUINT64(i->b_vp);
1652 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1653 o->b_lblkno = i->b_lblkno;
1654 }
1655
1656 #define KERN_BUFSLOP 20
1657 static int
1658 sysctl_dobuf(SYSCTLFN_ARGS)
1659 {
1660 buf_t *bp;
1661 struct buf_sysctl bs;
1662 struct bqueue *bq;
1663 char *dp;
1664 u_int i, op, arg;
1665 size_t len, needed, elem_size, out_size;
1666 int error, elem_count, retries;
1667
1668 if (namelen == 1 && name[0] == CTL_QUERY)
1669 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1670
1671 if (namelen != 4)
1672 return (EINVAL);
1673
1674 retries = 100;
1675 retry:
1676 dp = oldp;
1677 len = (oldp != NULL) ? *oldlenp : 0;
1678 op = name[0];
1679 arg = name[1];
1680 elem_size = name[2];
1681 elem_count = name[3];
1682 out_size = MIN(sizeof(bs), elem_size);
1683
1684 /*
1685 * at the moment, these are just "placeholders" to make the
1686 * API for retrieving kern.buf data more extensible in the
1687 * future.
1688 *
1689 * XXX kern.buf currently has "netbsd32" issues. hopefully
1690 * these will be resolved at a later point.
1691 */
1692 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1693 elem_size < 1 || elem_count < 0)
1694 return (EINVAL);
1695
1696 error = 0;
1697 needed = 0;
1698 sysctl_unlock();
1699 mutex_enter(&bufcache_lock);
1700 for (i = 0; i < BQUEUES; i++) {
1701 bq = &bufqueues[i];
1702 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1703 bq->bq_marker = bp;
1704 if (len >= elem_size && elem_count > 0) {
1705 sysctl_fillbuf(bp, &bs);
1706 mutex_exit(&bufcache_lock);
1707 error = copyout(&bs, dp, out_size);
1708 mutex_enter(&bufcache_lock);
1709 if (error)
1710 break;
1711 if (bq->bq_marker != bp) {
1712 /*
1713 * This sysctl node is only for
1714 * statistics. Retry; if the
1715 * queue keeps changing, then
1716 * bail out.
1717 */
1718 if (retries-- == 0) {
1719 error = EAGAIN;
1720 break;
1721 }
1722 mutex_exit(&bufcache_lock);
1723 sysctl_relock();
1724 goto retry;
1725 }
1726 dp += elem_size;
1727 len -= elem_size;
1728 }
1729 needed += elem_size;
1730 if (elem_count > 0 && elem_count != INT_MAX)
1731 elem_count--;
1732 }
1733 if (error != 0)
1734 break;
1735 }
1736 mutex_exit(&bufcache_lock);
1737 sysctl_relock();
1738
1739 *oldlenp = needed;
1740 if (oldp == NULL)
1741 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1742
1743 return (error);
1744 }
1745
1746 static int
1747 sysctl_bufvm_update(SYSCTLFN_ARGS)
1748 {
1749 int error, rv;
1750 struct sysctlnode node;
1751 unsigned int temp_bufcache;
1752 unsigned long temp_water;
1753
1754 /* Take a copy of the supplied node and its data */
1755 node = *rnode;
1756 if (node.sysctl_data == &bufcache) {
1757 node.sysctl_data = &temp_bufcache;
1758 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1759 } else {
1760 node.sysctl_data = &temp_water;
1761 temp_water = *(unsigned long *)rnode->sysctl_data;
1762 }
1763
1764 /* Update the copy */
1765 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1766 if (error || newp == NULL)
1767 return (error);
1768
1769 if (rnode->sysctl_data == &bufcache) {
1770 if (temp_bufcache > 100)
1771 return (EINVAL);
1772 bufcache = temp_bufcache;
1773 buf_setwm();
1774 } else if (rnode->sysctl_data == &bufmem_lowater) {
1775 if (bufmem_hiwater - temp_water < 16)
1776 return (EINVAL);
1777 bufmem_lowater = temp_water;
1778 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1779 if (temp_water - bufmem_lowater < 16)
1780 return (EINVAL);
1781 bufmem_hiwater = temp_water;
1782 } else
1783 return (EINVAL);
1784
1785 /* Drain until below new high water mark */
1786 sysctl_unlock();
1787 mutex_enter(&bufcache_lock);
1788 while (bufmem > bufmem_hiwater) {
1789 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1790 if (rv <= 0)
1791 break;
1792 }
1793 mutex_exit(&bufcache_lock);
1794 sysctl_relock();
1795
1796 return 0;
1797 }
1798
1799 static struct sysctllog *vfsbio_sysctllog;
1800
1801 static void
1802 sysctl_kern_buf_setup(void)
1803 {
1804
1805 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1806 CTLFLAG_PERMANENT,
1807 CTLTYPE_NODE, "kern", NULL,
1808 NULL, 0, NULL, 0,
1809 CTL_KERN, CTL_EOL);
1810 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1811 CTLFLAG_PERMANENT,
1812 CTLTYPE_NODE, "buf",
1813 SYSCTL_DESCR("Kernel buffer cache information"),
1814 sysctl_dobuf, 0, NULL, 0,
1815 CTL_KERN, KERN_BUF, CTL_EOL);
1816 }
1817
1818 static void
1819 sysctl_vm_buf_setup(void)
1820 {
1821
1822 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1823 CTLFLAG_PERMANENT,
1824 CTLTYPE_NODE, "vm", NULL,
1825 NULL, 0, NULL, 0,
1826 CTL_VM, CTL_EOL);
1827 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1828 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1829 CTLTYPE_INT, "bufcache",
1830 SYSCTL_DESCR("Percentage of physical memory to use for "
1831 "buffer cache"),
1832 sysctl_bufvm_update, 0, &bufcache, 0,
1833 CTL_VM, CTL_CREATE, CTL_EOL);
1834 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1835 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1836 CTLTYPE_LONG, "bufmem",
1837 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1838 "cache"),
1839 NULL, 0, &bufmem, 0,
1840 CTL_VM, CTL_CREATE, CTL_EOL);
1841 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1842 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1843 CTLTYPE_LONG, "bufmem_lowater",
1844 SYSCTL_DESCR("Minimum amount of kernel memory to "
1845 "reserve for buffer cache"),
1846 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1847 CTL_VM, CTL_CREATE, CTL_EOL);
1848 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1849 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1850 CTLTYPE_LONG, "bufmem_hiwater",
1851 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1852 "for buffer cache"),
1853 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1854 CTL_VM, CTL_CREATE, CTL_EOL);
1855 }
1856
1857 #ifdef DEBUG
1858 /*
1859 * Print out statistics on the current allocation of the buffer pool.
1860 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1861 * in vfs_syscalls.c using sysctl.
1862 */
1863 void
1864 vfs_bufstats(void)
1865 {
1866 int i, j, count;
1867 buf_t *bp;
1868 struct bqueue *dp;
1869 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1870 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1871
1872 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1873 count = 0;
1874 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1875 counts[j] = 0;
1876 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1877 counts[bp->b_bufsize/PAGE_SIZE]++;
1878 count++;
1879 }
1880 printf("%s: total-%d", bname[i], count);
1881 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1882 if (counts[j] != 0)
1883 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1884 printf("\n");
1885 }
1886 }
1887 #endif /* DEBUG */
1888
1889 /* ------------------------------ */
1890
1891 buf_t *
1892 getiobuf(struct vnode *vp, bool waitok)
1893 {
1894 buf_t *bp;
1895
1896 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1897 if (bp == NULL)
1898 return bp;
1899
1900 buf_init(bp);
1901
1902 if ((bp->b_vp = vp) == NULL)
1903 bp->b_objlock = &buffer_lock;
1904 else
1905 bp->b_objlock = vp->v_interlock;
1906
1907 return bp;
1908 }
1909
1910 void
1911 putiobuf(buf_t *bp)
1912 {
1913
1914 buf_destroy(bp);
1915 pool_cache_put(bufio_cache, bp);
1916 }
1917
1918 /*
1919 * nestiobuf_iodone: b_iodone callback for nested buffers.
1920 */
1921
1922 void
1923 nestiobuf_iodone(buf_t *bp)
1924 {
1925 buf_t *mbp = bp->b_private;
1926 int error;
1927 int donebytes;
1928
1929 KASSERT(bp->b_bcount <= bp->b_bufsize);
1930 KASSERT(mbp != bp);
1931
1932 error = bp->b_error;
1933 if (bp->b_error == 0 &&
1934 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1935 /*
1936 * Not all got transfered, raise an error. We have no way to
1937 * propagate these conditions to mbp.
1938 */
1939 error = EIO;
1940 }
1941
1942 donebytes = bp->b_bufsize;
1943
1944 putiobuf(bp);
1945 nestiobuf_done(mbp, donebytes, error);
1946 }
1947
1948 /*
1949 * nestiobuf_setup: setup a "nested" buffer.
1950 *
1951 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1952 * => 'bp' should be a buffer allocated by getiobuf.
1953 * => 'offset' is a byte offset in the master buffer.
1954 * => 'size' is a size in bytes of this nested buffer.
1955 */
1956
1957 void
1958 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1959 {
1960 const int b_read = mbp->b_flags & B_READ;
1961 struct vnode *vp = mbp->b_vp;
1962
1963 KASSERT(mbp->b_bcount >= offset + size);
1964 bp->b_vp = vp;
1965 bp->b_dev = mbp->b_dev;
1966 bp->b_objlock = mbp->b_objlock;
1967 bp->b_cflags = BC_BUSY;
1968 bp->b_flags = B_ASYNC | b_read;
1969 bp->b_iodone = nestiobuf_iodone;
1970 bp->b_data = (char *)mbp->b_data + offset;
1971 bp->b_resid = bp->b_bcount = size;
1972 bp->b_bufsize = bp->b_bcount;
1973 bp->b_private = mbp;
1974 BIO_COPYPRIO(bp, mbp);
1975 if (!b_read && vp != NULL) {
1976 mutex_enter(vp->v_interlock);
1977 vp->v_numoutput++;
1978 mutex_exit(vp->v_interlock);
1979 }
1980 }
1981
1982 /*
1983 * nestiobuf_done: propagate completion to the master buffer.
1984 *
1985 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1986 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1987 */
1988
1989 void
1990 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1991 {
1992
1993 if (donebytes == 0) {
1994 return;
1995 }
1996 mutex_enter(mbp->b_objlock);
1997 KASSERT(mbp->b_resid >= donebytes);
1998 mbp->b_resid -= donebytes;
1999 if (error)
2000 mbp->b_error = error;
2001 if (mbp->b_resid == 0) {
2002 if (mbp->b_error)
2003 mbp->b_resid = mbp->b_bcount;
2004 mutex_exit(mbp->b_objlock);
2005 biodone(mbp);
2006 } else
2007 mutex_exit(mbp->b_objlock);
2008 }
2009
2010 void
2011 buf_init(buf_t *bp)
2012 {
2013
2014 cv_init(&bp->b_busy, "biolock");
2015 cv_init(&bp->b_done, "biowait");
2016 bp->b_dev = NODEV;
2017 bp->b_error = 0;
2018 bp->b_flags = 0;
2019 bp->b_cflags = 0;
2020 bp->b_oflags = 0;
2021 bp->b_objlock = &buffer_lock;
2022 bp->b_iodone = NULL;
2023 bp->b_refcnt = 1;
2024 bp->b_dev = NODEV;
2025 bp->b_vnbufs.le_next = NOLIST;
2026 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2027 }
2028
2029 void
2030 buf_destroy(buf_t *bp)
2031 {
2032
2033 cv_destroy(&bp->b_done);
2034 cv_destroy(&bp->b_busy);
2035 }
2036
2037 int
2038 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2039 {
2040 int error;
2041
2042 KASSERT(mutex_owned(&bufcache_lock));
2043
2044 if ((bp->b_cflags & BC_BUSY) != 0) {
2045 if (curlwp == uvm.pagedaemon_lwp)
2046 return EDEADLK;
2047 bp->b_cflags |= BC_WANTED;
2048 bref(bp);
2049 if (interlock != NULL)
2050 mutex_exit(interlock);
2051 if (intr) {
2052 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2053 timo);
2054 } else {
2055 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2056 timo);
2057 }
2058 brele(bp);
2059 if (interlock != NULL)
2060 mutex_enter(interlock);
2061 if (error != 0)
2062 return error;
2063 return EPASSTHROUGH;
2064 }
2065 bp->b_cflags |= BC_BUSY;
2066
2067 return 0;
2068 }
2069