vfs_bio.c revision 1.247 1 /* $NetBSD: vfs_bio.c,v 1.247 2013/09/30 18:58:00 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.247 2013/09/30 18:58:00 hannken Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146
147 #include <uvm/uvm.h> /* extern struct uvm uvm */
148
149 #include <miscfs/specfs/specdev.h>
150
151 #ifndef BUFPAGES
152 # define BUFPAGES 0
153 #endif
154
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 # error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
162
163 u_int nbuf; /* desired number of buffer headers */
164 u_int bufpages = BUFPAGES; /* optional hardwired count */
165 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
166
167 /* Function prototypes */
168 struct bqueue;
169
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194
195 /*
196 * Definitions for the buffer hash lists.
197 */
198 #define BUFHASH(dvp, lbn) \
199 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long bufhash;
202 struct bqueue bufqueues[BQUEUES];
203
204 static kcondvar_t needbuffer_cv;
205
206 /*
207 * Buffer queue lock.
208 */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399 vsize_t mapsz = 0;
400
401 /*
402 * Determine the upper bound of memory to use for buffers.
403 *
404 * - If bufpages is specified, use that as the number
405 * pages.
406 *
407 * - Otherwise, use bufcache as the percentage of
408 * physical memory.
409 */
410 if (bufpages != 0) {
411 n = bufpages;
412 } else {
413 if (bufcache < 5) {
414 printf("forcing bufcache %d -> 5", bufcache);
415 bufcache = 5;
416 }
417 if (bufcache > 95) {
418 printf("forcing bufcache %d -> 95", bufcache);
419 bufcache = 95;
420 }
421 if (buf_map != NULL)
422 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
423 n = calc_cache_size(mapsz, bufcache,
424 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
425 / PAGE_SIZE;
426 }
427
428 n <<= PAGE_SHIFT;
429 if (bufmem_valimit != 0 && n > bufmem_valimit)
430 n = bufmem_valimit;
431
432 return (n);
433 }
434
435 /*
436 * Initialize buffers and hash links for buffers.
437 */
438 void
439 bufinit(void)
440 {
441 struct bqueue *dp;
442 int use_std;
443 u_int i;
444
445 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
446 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
447 cv_init(&needbuffer_cv, "needbuf");
448
449 if (bufmem_valimit != 0) {
450 vaddr_t minaddr = 0, maxaddr;
451 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
452 bufmem_valimit, 0, false, 0);
453 if (buf_map == NULL)
454 panic("bufinit: cannot allocate submap");
455 } else
456 buf_map = kernel_map;
457
458 /*
459 * Initialize buffer cache memory parameters.
460 */
461 bufmem = 0;
462 buf_setwm();
463
464 /* On "small" machines use small pool page sizes where possible */
465 use_std = (physmem < atop(16*1024*1024));
466
467 /*
468 * Also use them on systems that can map the pool pages using
469 * a direct-mapped segment.
470 */
471 #ifdef PMAP_MAP_POOLPAGE
472 use_std = 1;
473 #endif
474
475 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
476 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
477 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
478 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
479
480 for (i = 0; i < NMEMPOOLS; i++) {
481 struct pool_allocator *pa;
482 struct pool *pp = &bmempools[i];
483 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
484 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
485 if (__predict_false(size >= 1048576))
486 (void)snprintf(name, 8, "buf%um", size / 1048576);
487 else if (__predict_true(size >= 1024))
488 (void)snprintf(name, 8, "buf%uk", size / 1024);
489 else
490 (void)snprintf(name, 8, "buf%ub", size);
491 pa = (size <= PAGE_SIZE && use_std)
492 ? &pool_allocator_nointr
493 : &bufmempool_allocator;
494 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
495 pool_setlowat(pp, 1);
496 pool_sethiwat(pp, 1);
497 }
498
499 /* Initialize the buffer queues */
500 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
501 TAILQ_INIT(&dp->bq_queue);
502 dp->bq_bytes = 0;
503 }
504
505 /*
506 * Estimate hash table size based on the amount of memory we
507 * intend to use for the buffer cache. The average buffer
508 * size is dependent on our clients (i.e. filesystems).
509 *
510 * For now, use an empirical 3K per buffer.
511 */
512 nbuf = (bufmem_hiwater / 1024) / 3;
513 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
514
515 sysctl_kern_buf_setup();
516 sysctl_vm_buf_setup();
517 }
518
519 void
520 bufinit2(void)
521 {
522
523 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
524 NULL);
525 if (biodone_sih == NULL)
526 panic("bufinit2: can't establish soft interrupt");
527 }
528
529 static int
530 buf_lotsfree(void)
531 {
532 int try, thresh;
533
534 /* Always allocate if less than the low water mark. */
535 if (bufmem < bufmem_lowater)
536 return 1;
537
538 /* Never allocate if greater than the high water mark. */
539 if (bufmem > bufmem_hiwater)
540 return 0;
541
542 /* If there's anything on the AGE list, it should be eaten. */
543 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
544 return 0;
545
546 /*
547 * The probabily of getting a new allocation is inversely
548 * proportional to the current size of the cache, using
549 * a granularity of 16 steps.
550 */
551 try = random() & 0x0000000fL;
552
553 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
554 thresh = (bufmem - bufmem_lowater) /
555 ((bufmem_hiwater - bufmem_lowater) / 16);
556
557 if (try >= thresh)
558 return 1;
559
560 /* Otherwise don't allocate. */
561 return 0;
562 }
563
564 /*
565 * Return estimate of bytes we think need to be
566 * released to help resolve low memory conditions.
567 *
568 * => called with bufcache_lock held.
569 */
570 static int
571 buf_canrelease(void)
572 {
573 int pagedemand, ninvalid = 0;
574
575 KASSERT(mutex_owned(&bufcache_lock));
576
577 if (bufmem < bufmem_lowater)
578 return 0;
579
580 if (bufmem > bufmem_hiwater)
581 return bufmem - bufmem_hiwater;
582
583 ninvalid += bufqueues[BQ_AGE].bq_bytes;
584
585 pagedemand = uvmexp.freetarg - uvmexp.free;
586 if (pagedemand < 0)
587 return ninvalid;
588 return MAX(ninvalid, MIN(2 * MAXBSIZE,
589 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
590 }
591
592 /*
593 * Buffer memory allocation helper functions
594 */
595 static u_long
596 buf_mempoolidx(u_long size)
597 {
598 u_int n = 0;
599
600 size -= 1;
601 size >>= MEMPOOL_INDEX_OFFSET;
602 while (size) {
603 size >>= 1;
604 n += 1;
605 }
606 if (n >= NMEMPOOLS)
607 panic("buf mem pool index %d", n);
608 return n;
609 }
610
611 static u_long
612 buf_roundsize(u_long size)
613 {
614 /* Round up to nearest power of 2 */
615 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
616 }
617
618 static void *
619 buf_alloc(size_t size)
620 {
621 u_int n = buf_mempoolidx(size);
622 void *addr;
623
624 while (1) {
625 addr = pool_get(&bmempools[n], PR_NOWAIT);
626 if (addr != NULL)
627 break;
628
629 /* No memory, see if we can free some. If so, try again */
630 mutex_enter(&bufcache_lock);
631 if (buf_drain(1) > 0) {
632 mutex_exit(&bufcache_lock);
633 continue;
634 }
635
636 if (curlwp == uvm.pagedaemon_lwp) {
637 mutex_exit(&bufcache_lock);
638 return NULL;
639 }
640
641 /* Wait for buffers to arrive on the LRU queue */
642 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
643 mutex_exit(&bufcache_lock);
644 }
645
646 return addr;
647 }
648
649 static void
650 buf_mrelease(void *addr, size_t size)
651 {
652
653 pool_put(&bmempools[buf_mempoolidx(size)], addr);
654 }
655
656 /*
657 * bread()/breadn() helper.
658 */
659 static buf_t *
660 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
661 int async)
662 {
663 buf_t *bp;
664 struct mount *mp;
665
666 bp = getblk(vp, blkno, size, 0, 0);
667
668 /*
669 * getblk() may return NULL if we are the pagedaemon.
670 */
671 if (bp == NULL) {
672 KASSERT(curlwp == uvm.pagedaemon_lwp);
673 return NULL;
674 }
675
676 /*
677 * If buffer does not have data valid, start a read.
678 * Note that if buffer is BC_INVAL, getblk() won't return it.
679 * Therefore, it's valid if its I/O has completed or been delayed.
680 */
681 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
682 /* Start I/O for the buffer. */
683 SET(bp->b_flags, B_READ | async);
684 if (async)
685 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
686 else
687 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
688 VOP_STRATEGY(vp, bp);
689
690 /* Pay for the read. */
691 curlwp->l_ru.ru_inblock++;
692 } else if (async)
693 brelse(bp, 0);
694
695 if (vp->v_type == VBLK)
696 mp = spec_node_getmountedfs(vp);
697 else
698 mp = vp->v_mount;
699
700 /*
701 * Collect statistics on synchronous and asynchronous reads.
702 * Reads from block devices are charged to their associated
703 * filesystem (if any).
704 */
705 if (mp != NULL) {
706 if (async == 0)
707 mp->mnt_stat.f_syncreads++;
708 else
709 mp->mnt_stat.f_asyncreads++;
710 }
711
712 return (bp);
713 }
714
715 /*
716 * Read a disk block.
717 * This algorithm described in Bach (p.54).
718 */
719 int
720 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
721 int flags, buf_t **bpp)
722 {
723 buf_t *bp;
724 int error;
725
726 /* Get buffer for block. */
727 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
728 if (bp == NULL)
729 return ENOMEM;
730
731 /* Wait for the read to complete, and return result. */
732 error = biowait(bp);
733 if (error == 0 && (flags & B_MODIFY) != 0)
734 error = fscow_run(bp, true);
735 if (error) {
736 brelse(bp, 0);
737 *bpp = NULL;
738 }
739
740 return error;
741 }
742
743 /*
744 * Read-ahead multiple disk blocks. The first is sync, the rest async.
745 * Trivial modification to the breada algorithm presented in Bach (p.55).
746 */
747 int
748 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
749 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
750 {
751 buf_t *bp;
752 int error, i;
753
754 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
755 if (bp == NULL)
756 return ENOMEM;
757
758 /*
759 * For each of the read-ahead blocks, start a read, if necessary.
760 */
761 mutex_enter(&bufcache_lock);
762 for (i = 0; i < nrablks; i++) {
763 /* If it's in the cache, just go on to next one. */
764 if (incore(vp, rablks[i]))
765 continue;
766
767 /* Get a buffer for the read-ahead block */
768 mutex_exit(&bufcache_lock);
769 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
770 mutex_enter(&bufcache_lock);
771 }
772 mutex_exit(&bufcache_lock);
773
774 /* Otherwise, we had to start a read for it; wait until it's valid. */
775 error = biowait(bp);
776 if (error == 0 && (flags & B_MODIFY) != 0)
777 error = fscow_run(bp, true);
778 if (error) {
779 brelse(bp, 0);
780 *bpp = NULL;
781 }
782
783 return error;
784 }
785
786 /*
787 * Block write. Described in Bach (p.56)
788 */
789 int
790 bwrite(buf_t *bp)
791 {
792 int rv, sync, wasdelayed;
793 struct vnode *vp;
794 struct mount *mp;
795
796 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
797 KASSERT(!cv_has_waiters(&bp->b_done));
798
799 vp = bp->b_vp;
800 if (vp != NULL) {
801 KASSERT(bp->b_objlock == vp->v_interlock);
802 if (vp->v_type == VBLK)
803 mp = spec_node_getmountedfs(vp);
804 else
805 mp = vp->v_mount;
806 } else {
807 mp = NULL;
808 }
809
810 if (mp && mp->mnt_wapbl) {
811 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
812 bdwrite(bp);
813 return 0;
814 }
815 }
816
817 /*
818 * Remember buffer type, to switch on it later. If the write was
819 * synchronous, but the file system was mounted with MNT_ASYNC,
820 * convert it to a delayed write.
821 * XXX note that this relies on delayed tape writes being converted
822 * to async, not sync writes (which is safe, but ugly).
823 */
824 sync = !ISSET(bp->b_flags, B_ASYNC);
825 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
826 bdwrite(bp);
827 return (0);
828 }
829
830 /*
831 * Collect statistics on synchronous and asynchronous writes.
832 * Writes to block devices are charged to their associated
833 * filesystem (if any).
834 */
835 if (mp != NULL) {
836 if (sync)
837 mp->mnt_stat.f_syncwrites++;
838 else
839 mp->mnt_stat.f_asyncwrites++;
840 }
841
842 /*
843 * Pay for the I/O operation and make sure the buf is on the correct
844 * vnode queue.
845 */
846 bp->b_error = 0;
847 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
848 CLR(bp->b_flags, B_READ);
849 if (wasdelayed) {
850 mutex_enter(&bufcache_lock);
851 mutex_enter(bp->b_objlock);
852 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
853 reassignbuf(bp, bp->b_vp);
854 mutex_exit(&bufcache_lock);
855 } else {
856 curlwp->l_ru.ru_oublock++;
857 mutex_enter(bp->b_objlock);
858 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
859 }
860 if (vp != NULL)
861 vp->v_numoutput++;
862 mutex_exit(bp->b_objlock);
863
864 /* Initiate disk write. */
865 if (sync)
866 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
867 else
868 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
869
870 VOP_STRATEGY(vp, bp);
871
872 if (sync) {
873 /* If I/O was synchronous, wait for it to complete. */
874 rv = biowait(bp);
875
876 /* Release the buffer. */
877 brelse(bp, 0);
878
879 return (rv);
880 } else {
881 return (0);
882 }
883 }
884
885 int
886 vn_bwrite(void *v)
887 {
888 struct vop_bwrite_args *ap = v;
889
890 return (bwrite(ap->a_bp));
891 }
892
893 /*
894 * Delayed write.
895 *
896 * The buffer is marked dirty, but is not queued for I/O.
897 * This routine should be used when the buffer is expected
898 * to be modified again soon, typically a small write that
899 * partially fills a buffer.
900 *
901 * NB: magnetic tapes cannot be delayed; they must be
902 * written in the order that the writes are requested.
903 *
904 * Described in Leffler, et al. (pp. 208-213).
905 */
906 void
907 bdwrite(buf_t *bp)
908 {
909
910 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
911 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
912 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
913 KASSERT(!cv_has_waiters(&bp->b_done));
914
915 /* If this is a tape block, write the block now. */
916 if (bdev_type(bp->b_dev) == D_TAPE) {
917 bawrite(bp);
918 return;
919 }
920
921 if (wapbl_vphaswapbl(bp->b_vp)) {
922 struct mount *mp = wapbl_vptomp(bp->b_vp);
923
924 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
925 WAPBL_ADD_BUF(mp, bp);
926 }
927 }
928
929 /*
930 * If the block hasn't been seen before:
931 * (1) Mark it as having been seen,
932 * (2) Charge for the write,
933 * (3) Make sure it's on its vnode's correct block list.
934 */
935 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
936
937 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
938 mutex_enter(&bufcache_lock);
939 mutex_enter(bp->b_objlock);
940 SET(bp->b_oflags, BO_DELWRI);
941 curlwp->l_ru.ru_oublock++;
942 reassignbuf(bp, bp->b_vp);
943 mutex_exit(&bufcache_lock);
944 } else {
945 mutex_enter(bp->b_objlock);
946 }
947 /* Otherwise, the "write" is done, so mark and release the buffer. */
948 CLR(bp->b_oflags, BO_DONE);
949 mutex_exit(bp->b_objlock);
950
951 brelse(bp, 0);
952 }
953
954 /*
955 * Asynchronous block write; just an asynchronous bwrite().
956 */
957 void
958 bawrite(buf_t *bp)
959 {
960
961 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
962 KASSERT(bp->b_vp != NULL);
963
964 SET(bp->b_flags, B_ASYNC);
965 VOP_BWRITE(bp->b_vp, bp);
966 }
967
968 /*
969 * Release a buffer on to the free lists.
970 * Described in Bach (p. 46).
971 */
972 void
973 brelsel(buf_t *bp, int set)
974 {
975 struct bqueue *bufq;
976 struct vnode *vp;
977
978 KASSERT(bp != NULL);
979 KASSERT(mutex_owned(&bufcache_lock));
980 KASSERT(!cv_has_waiters(&bp->b_done));
981 KASSERT(bp->b_refcnt > 0);
982
983 SET(bp->b_cflags, set);
984
985 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
986 KASSERT(bp->b_iodone == NULL);
987
988 /* Wake up any processes waiting for any buffer to become free. */
989 cv_signal(&needbuffer_cv);
990
991 /* Wake up any proceeses waiting for _this_ buffer to become */
992 if (ISSET(bp->b_cflags, BC_WANTED))
993 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
994
995 /* If it's clean clear the copy-on-write flag. */
996 if (ISSET(bp->b_flags, B_COWDONE)) {
997 mutex_enter(bp->b_objlock);
998 if (!ISSET(bp->b_oflags, BO_DELWRI))
999 CLR(bp->b_flags, B_COWDONE);
1000 mutex_exit(bp->b_objlock);
1001 }
1002
1003 /*
1004 * Determine which queue the buffer should be on, then put it there.
1005 */
1006
1007 /* If it's locked, don't report an error; try again later. */
1008 if (ISSET(bp->b_flags, B_LOCKED))
1009 bp->b_error = 0;
1010
1011 /* If it's not cacheable, or an error, mark it invalid. */
1012 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1013 SET(bp->b_cflags, BC_INVAL);
1014
1015 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1016 /*
1017 * This is a delayed write buffer that was just flushed to
1018 * disk. It is still on the LRU queue. If it's become
1019 * invalid, then we need to move it to a different queue;
1020 * otherwise leave it in its current position.
1021 */
1022 CLR(bp->b_cflags, BC_VFLUSH);
1023 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1024 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1025 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1026 goto already_queued;
1027 } else {
1028 bremfree(bp);
1029 }
1030 }
1031
1032 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1033 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1034 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1035
1036 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1037 /*
1038 * If it's invalid or empty, dissociate it from its vnode
1039 * and put on the head of the appropriate queue.
1040 */
1041 if (ISSET(bp->b_flags, B_LOCKED)) {
1042 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1043 struct mount *mp = wapbl_vptomp(vp);
1044
1045 KASSERT(bp->b_iodone
1046 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1047 WAPBL_REMOVE_BUF(mp, bp);
1048 }
1049 }
1050
1051 mutex_enter(bp->b_objlock);
1052 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1053 if ((vp = bp->b_vp) != NULL) {
1054 KASSERT(bp->b_objlock == vp->v_interlock);
1055 reassignbuf(bp, bp->b_vp);
1056 brelvp(bp);
1057 mutex_exit(vp->v_interlock);
1058 } else {
1059 KASSERT(bp->b_objlock == &buffer_lock);
1060 mutex_exit(bp->b_objlock);
1061 }
1062
1063 if (bp->b_bufsize <= 0)
1064 /* no data */
1065 goto already_queued;
1066 else
1067 /* invalid data */
1068 bufq = &bufqueues[BQ_AGE];
1069 binsheadfree(bp, bufq);
1070 } else {
1071 /*
1072 * It has valid data. Put it on the end of the appropriate
1073 * queue, so that it'll stick around for as long as possible.
1074 * If buf is AGE, but has dependencies, must put it on last
1075 * bufqueue to be scanned, ie LRU. This protects against the
1076 * livelock where BQ_AGE only has buffers with dependencies,
1077 * and we thus never get to the dependent buffers in BQ_LRU.
1078 */
1079 if (ISSET(bp->b_flags, B_LOCKED)) {
1080 /* locked in core */
1081 bufq = &bufqueues[BQ_LOCKED];
1082 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1083 /* valid data */
1084 bufq = &bufqueues[BQ_LRU];
1085 } else {
1086 /* stale but valid data */
1087 bufq = &bufqueues[BQ_AGE];
1088 }
1089 binstailfree(bp, bufq);
1090 }
1091 already_queued:
1092 /* Unlock the buffer. */
1093 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1094 CLR(bp->b_flags, B_ASYNC);
1095 cv_broadcast(&bp->b_busy);
1096
1097 if (bp->b_bufsize <= 0)
1098 brele(bp);
1099 }
1100
1101 void
1102 brelse(buf_t *bp, int set)
1103 {
1104
1105 mutex_enter(&bufcache_lock);
1106 brelsel(bp, set);
1107 mutex_exit(&bufcache_lock);
1108 }
1109
1110 /*
1111 * Determine if a block is in the cache.
1112 * Just look on what would be its hash chain. If it's there, return
1113 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1114 * we normally don't return the buffer, unless the caller explicitly
1115 * wants us to.
1116 */
1117 buf_t *
1118 incore(struct vnode *vp, daddr_t blkno)
1119 {
1120 buf_t *bp;
1121
1122 KASSERT(mutex_owned(&bufcache_lock));
1123
1124 /* Search hash chain */
1125 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1126 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1127 !ISSET(bp->b_cflags, BC_INVAL)) {
1128 KASSERT(bp->b_objlock == vp->v_interlock);
1129 return (bp);
1130 }
1131 }
1132
1133 return (NULL);
1134 }
1135
1136 /*
1137 * Get a block of requested size that is associated with
1138 * a given vnode and block offset. If it is found in the
1139 * block cache, mark it as having been found, make it busy
1140 * and return it. Otherwise, return an empty block of the
1141 * correct size. It is up to the caller to insure that the
1142 * cached blocks be of the correct size.
1143 */
1144 buf_t *
1145 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1146 {
1147 int err, preserve;
1148 buf_t *bp;
1149
1150 mutex_enter(&bufcache_lock);
1151 loop:
1152 bp = incore(vp, blkno);
1153 if (bp != NULL) {
1154 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1155 if (err != 0) {
1156 if (err == EPASSTHROUGH)
1157 goto loop;
1158 mutex_exit(&bufcache_lock);
1159 return (NULL);
1160 }
1161 KASSERT(!cv_has_waiters(&bp->b_done));
1162 #ifdef DIAGNOSTIC
1163 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1164 bp->b_bcount < size && vp->v_type != VBLK)
1165 panic("getblk: block size invariant failed");
1166 #endif
1167 bremfree(bp);
1168 preserve = 1;
1169 } else {
1170 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1171 goto loop;
1172
1173 if (incore(vp, blkno) != NULL) {
1174 /* The block has come into memory in the meantime. */
1175 brelsel(bp, 0);
1176 goto loop;
1177 }
1178
1179 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1180 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1181 mutex_enter(vp->v_interlock);
1182 bgetvp(vp, bp);
1183 mutex_exit(vp->v_interlock);
1184 preserve = 0;
1185 }
1186 mutex_exit(&bufcache_lock);
1187
1188 /*
1189 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1190 * if we re-size buffers here.
1191 */
1192 if (ISSET(bp->b_flags, B_LOCKED)) {
1193 KASSERT(bp->b_bufsize >= size);
1194 } else {
1195 if (allocbuf(bp, size, preserve)) {
1196 mutex_enter(&bufcache_lock);
1197 LIST_REMOVE(bp, b_hash);
1198 mutex_exit(&bufcache_lock);
1199 brelse(bp, BC_INVAL);
1200 return NULL;
1201 }
1202 }
1203 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1204 return (bp);
1205 }
1206
1207 /*
1208 * Get an empty, disassociated buffer of given size.
1209 */
1210 buf_t *
1211 geteblk(int size)
1212 {
1213 buf_t *bp;
1214 int error;
1215
1216 mutex_enter(&bufcache_lock);
1217 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1218 ;
1219
1220 SET(bp->b_cflags, BC_INVAL);
1221 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1222 mutex_exit(&bufcache_lock);
1223 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1224 error = allocbuf(bp, size, 0);
1225 KASSERT(error == 0);
1226 return (bp);
1227 }
1228
1229 /*
1230 * Expand or contract the actual memory allocated to a buffer.
1231 *
1232 * If the buffer shrinks, data is lost, so it's up to the
1233 * caller to have written it out *first*; this routine will not
1234 * start a write. If the buffer grows, it's the callers
1235 * responsibility to fill out the buffer's additional contents.
1236 */
1237 int
1238 allocbuf(buf_t *bp, int size, int preserve)
1239 {
1240 void *addr;
1241 vsize_t oldsize, desired_size;
1242 int oldcount;
1243 int delta;
1244
1245 desired_size = buf_roundsize(size);
1246 if (desired_size > MAXBSIZE)
1247 printf("allocbuf: buffer larger than MAXBSIZE requested");
1248
1249 oldcount = bp->b_bcount;
1250
1251 bp->b_bcount = size;
1252
1253 oldsize = bp->b_bufsize;
1254 if (oldsize == desired_size) {
1255 /*
1256 * Do not short cut the WAPBL resize, as the buffer length
1257 * could still have changed and this would corrupt the
1258 * tracking of the transaction length.
1259 */
1260 goto out;
1261 }
1262
1263 /*
1264 * If we want a buffer of a different size, re-allocate the
1265 * buffer's memory; copy old content only if needed.
1266 */
1267 addr = buf_alloc(desired_size);
1268 if (addr == NULL)
1269 return ENOMEM;
1270 if (preserve)
1271 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1272 if (bp->b_data != NULL)
1273 buf_mrelease(bp->b_data, oldsize);
1274 bp->b_data = addr;
1275 bp->b_bufsize = desired_size;
1276
1277 /*
1278 * Update overall buffer memory counter (protected by bufcache_lock)
1279 */
1280 delta = (long)desired_size - (long)oldsize;
1281
1282 mutex_enter(&bufcache_lock);
1283 if ((bufmem += delta) > bufmem_hiwater) {
1284 /*
1285 * Need to trim overall memory usage.
1286 */
1287 while (buf_canrelease()) {
1288 if (curcpu()->ci_schedstate.spc_flags &
1289 SPCF_SHOULDYIELD) {
1290 mutex_exit(&bufcache_lock);
1291 preempt();
1292 mutex_enter(&bufcache_lock);
1293 }
1294 if (buf_trim() == 0)
1295 break;
1296 }
1297 }
1298 mutex_exit(&bufcache_lock);
1299
1300 out:
1301 if (wapbl_vphaswapbl(bp->b_vp))
1302 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1303
1304 return 0;
1305 }
1306
1307 /*
1308 * Find a buffer which is available for use.
1309 * Select something from a free list.
1310 * Preference is to AGE list, then LRU list.
1311 *
1312 * Called with the buffer queues locked.
1313 * Return buffer locked.
1314 */
1315 buf_t *
1316 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1317 {
1318 buf_t *bp;
1319 struct vnode *vp;
1320
1321 start:
1322 KASSERT(mutex_owned(&bufcache_lock));
1323
1324 /*
1325 * Get a new buffer from the pool.
1326 */
1327 if (!from_bufq && buf_lotsfree()) {
1328 mutex_exit(&bufcache_lock);
1329 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1330 if (bp != NULL) {
1331 memset((char *)bp, 0, sizeof(*bp));
1332 buf_init(bp);
1333 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1334 mutex_enter(&bufcache_lock);
1335 #if defined(DIAGNOSTIC)
1336 bp->b_freelistindex = -1;
1337 #endif /* defined(DIAGNOSTIC) */
1338 return (bp);
1339 }
1340 mutex_enter(&bufcache_lock);
1341 }
1342
1343 KASSERT(mutex_owned(&bufcache_lock));
1344 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1345 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1346 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1347 bremfree(bp);
1348
1349 /* Buffer is no longer on free lists. */
1350 SET(bp->b_cflags, BC_BUSY);
1351 } else {
1352 /*
1353 * XXX: !from_bufq should be removed.
1354 */
1355 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1356 /* wait for a free buffer of any kind */
1357 if ((slpflag & PCATCH) != 0)
1358 (void)cv_timedwait_sig(&needbuffer_cv,
1359 &bufcache_lock, slptimeo);
1360 else
1361 (void)cv_timedwait(&needbuffer_cv,
1362 &bufcache_lock, slptimeo);
1363 }
1364 return (NULL);
1365 }
1366
1367 #ifdef DIAGNOSTIC
1368 if (bp->b_bufsize <= 0)
1369 panic("buffer %p: on queue but empty", bp);
1370 #endif
1371
1372 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1373 /*
1374 * This is a delayed write buffer being flushed to disk. Make
1375 * sure it gets aged out of the queue when it's finished, and
1376 * leave it off the LRU queue.
1377 */
1378 CLR(bp->b_cflags, BC_VFLUSH);
1379 SET(bp->b_cflags, BC_AGE);
1380 goto start;
1381 }
1382
1383 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1384 KASSERT(bp->b_refcnt > 0);
1385 KASSERT(!cv_has_waiters(&bp->b_done));
1386
1387 /*
1388 * If buffer was a delayed write, start it and return NULL
1389 * (since we might sleep while starting the write).
1390 */
1391 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1392 /*
1393 * This buffer has gone through the LRU, so make sure it gets
1394 * reused ASAP.
1395 */
1396 SET(bp->b_cflags, BC_AGE);
1397 mutex_exit(&bufcache_lock);
1398 bawrite(bp);
1399 mutex_enter(&bufcache_lock);
1400 return (NULL);
1401 }
1402
1403 vp = bp->b_vp;
1404
1405 /* clear out various other fields */
1406 bp->b_cflags = BC_BUSY;
1407 bp->b_oflags = 0;
1408 bp->b_flags = 0;
1409 bp->b_dev = NODEV;
1410 bp->b_blkno = 0;
1411 bp->b_lblkno = 0;
1412 bp->b_rawblkno = 0;
1413 bp->b_iodone = 0;
1414 bp->b_error = 0;
1415 bp->b_resid = 0;
1416 bp->b_bcount = 0;
1417
1418 LIST_REMOVE(bp, b_hash);
1419
1420 /* Disassociate us from our vnode, if we had one... */
1421 if (vp != NULL) {
1422 mutex_enter(vp->v_interlock);
1423 brelvp(bp);
1424 mutex_exit(vp->v_interlock);
1425 }
1426
1427 return (bp);
1428 }
1429
1430 /*
1431 * Attempt to free an aged buffer off the queues.
1432 * Called with queue lock held.
1433 * Returns the amount of buffer memory freed.
1434 */
1435 static int
1436 buf_trim(void)
1437 {
1438 buf_t *bp;
1439 long size;
1440
1441 KASSERT(mutex_owned(&bufcache_lock));
1442
1443 /* Instruct getnewbuf() to get buffers off the queues */
1444 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1445 return 0;
1446
1447 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1448 size = bp->b_bufsize;
1449 bufmem -= size;
1450 if (size > 0) {
1451 buf_mrelease(bp->b_data, size);
1452 bp->b_bcount = bp->b_bufsize = 0;
1453 }
1454 /* brelse() will return the buffer to the global buffer pool */
1455 brelsel(bp, 0);
1456 return size;
1457 }
1458
1459 int
1460 buf_drain(int n)
1461 {
1462 int size = 0, sz;
1463
1464 KASSERT(mutex_owned(&bufcache_lock));
1465
1466 while (size < n && bufmem > bufmem_lowater) {
1467 sz = buf_trim();
1468 if (sz <= 0)
1469 break;
1470 size += sz;
1471 }
1472
1473 return size;
1474 }
1475
1476 /*
1477 * Wait for operations on the buffer to complete.
1478 * When they do, extract and return the I/O's error value.
1479 */
1480 int
1481 biowait(buf_t *bp)
1482 {
1483
1484 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1485 KASSERT(bp->b_refcnt > 0);
1486
1487 mutex_enter(bp->b_objlock);
1488 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1489 cv_wait(&bp->b_done, bp->b_objlock);
1490 mutex_exit(bp->b_objlock);
1491
1492 return bp->b_error;
1493 }
1494
1495 /*
1496 * Mark I/O complete on a buffer.
1497 *
1498 * If a callback has been requested, e.g. the pageout
1499 * daemon, do so. Otherwise, awaken waiting processes.
1500 *
1501 * [ Leffler, et al., says on p.247:
1502 * "This routine wakes up the blocked process, frees the buffer
1503 * for an asynchronous write, or, for a request by the pagedaemon
1504 * process, invokes a procedure specified in the buffer structure" ]
1505 *
1506 * In real life, the pagedaemon (or other system processes) wants
1507 * to do async stuff to, and doesn't want the buffer brelse()'d.
1508 * (for swap pager, that puts swap buffers on the free lists (!!!),
1509 * for the vn device, that puts allocated buffers on the free lists!)
1510 */
1511 void
1512 biodone(buf_t *bp)
1513 {
1514 int s;
1515
1516 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1517
1518 if (cpu_intr_p()) {
1519 /* From interrupt mode: defer to a soft interrupt. */
1520 s = splvm();
1521 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1522 softint_schedule(biodone_sih);
1523 splx(s);
1524 } else {
1525 /* Process now - the buffer may be freed soon. */
1526 biodone2(bp);
1527 }
1528 }
1529
1530 static void
1531 biodone2(buf_t *bp)
1532 {
1533 void (*callout)(buf_t *);
1534
1535 mutex_enter(bp->b_objlock);
1536 /* Note that the transfer is done. */
1537 if (ISSET(bp->b_oflags, BO_DONE))
1538 panic("biodone2 already");
1539 CLR(bp->b_flags, B_COWDONE);
1540 SET(bp->b_oflags, BO_DONE);
1541 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1542
1543 /* Wake up waiting writers. */
1544 if (!ISSET(bp->b_flags, B_READ))
1545 vwakeup(bp);
1546
1547 if ((callout = bp->b_iodone) != NULL) {
1548 /* Note callout done, then call out. */
1549 KASSERT(!cv_has_waiters(&bp->b_done));
1550 KERNEL_LOCK(1, NULL); /* XXXSMP */
1551 bp->b_iodone = NULL;
1552 mutex_exit(bp->b_objlock);
1553 (*callout)(bp);
1554 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1555 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1556 /* If async, release. */
1557 KASSERT(!cv_has_waiters(&bp->b_done));
1558 mutex_exit(bp->b_objlock);
1559 brelse(bp, 0);
1560 } else {
1561 /* Otherwise just wake up waiters in biowait(). */
1562 cv_broadcast(&bp->b_done);
1563 mutex_exit(bp->b_objlock);
1564 }
1565 }
1566
1567 static void
1568 biointr(void *cookie)
1569 {
1570 struct cpu_info *ci;
1571 buf_t *bp;
1572 int s;
1573
1574 ci = curcpu();
1575
1576 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1577 KASSERT(curcpu() == ci);
1578
1579 s = splvm();
1580 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1581 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1582 splx(s);
1583
1584 biodone2(bp);
1585 }
1586 }
1587
1588 /*
1589 * Wait for all buffers to complete I/O
1590 * Return the number of "stuck" buffers.
1591 */
1592 int
1593 buf_syncwait(void)
1594 {
1595 buf_t *bp;
1596 int iter, nbusy, nbusy_prev = 0, ihash;
1597
1598 for (iter = 0; iter < 20;) {
1599 mutex_enter(&bufcache_lock);
1600 nbusy = 0;
1601 for (ihash = 0; ihash < bufhash+1; ihash++) {
1602 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1603 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1604 nbusy += ((bp->b_flags & B_READ) == 0);
1605 }
1606 }
1607 mutex_exit(&bufcache_lock);
1608
1609 if (nbusy == 0)
1610 break;
1611 if (nbusy_prev == 0)
1612 nbusy_prev = nbusy;
1613 printf("%d ", nbusy);
1614 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1615 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1616 iter++;
1617 else
1618 nbusy_prev = nbusy;
1619 }
1620
1621 if (nbusy) {
1622 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1623 printf("giving up\nPrinting vnodes for busy buffers\n");
1624 for (ihash = 0; ihash < bufhash+1; ihash++) {
1625 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1626 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1627 (bp->b_flags & B_READ) == 0)
1628 vprint(NULL, bp->b_vp);
1629 }
1630 }
1631 #endif
1632 }
1633
1634 return nbusy;
1635 }
1636
1637 static void
1638 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1639 {
1640
1641 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1642 o->b_error = i->b_error;
1643 o->b_prio = i->b_prio;
1644 o->b_dev = i->b_dev;
1645 o->b_bufsize = i->b_bufsize;
1646 o->b_bcount = i->b_bcount;
1647 o->b_resid = i->b_resid;
1648 o->b_addr = PTRTOUINT64(i->b_data);
1649 o->b_blkno = i->b_blkno;
1650 o->b_rawblkno = i->b_rawblkno;
1651 o->b_iodone = PTRTOUINT64(i->b_iodone);
1652 o->b_proc = PTRTOUINT64(i->b_proc);
1653 o->b_vp = PTRTOUINT64(i->b_vp);
1654 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1655 o->b_lblkno = i->b_lblkno;
1656 }
1657
1658 #define KERN_BUFSLOP 20
1659 static int
1660 sysctl_dobuf(SYSCTLFN_ARGS)
1661 {
1662 buf_t *bp;
1663 struct buf_sysctl bs;
1664 struct bqueue *bq;
1665 char *dp;
1666 u_int i, op, arg;
1667 size_t len, needed, elem_size, out_size;
1668 int error, elem_count, retries;
1669
1670 if (namelen == 1 && name[0] == CTL_QUERY)
1671 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1672
1673 if (namelen != 4)
1674 return (EINVAL);
1675
1676 retries = 100;
1677 retry:
1678 dp = oldp;
1679 len = (oldp != NULL) ? *oldlenp : 0;
1680 op = name[0];
1681 arg = name[1];
1682 elem_size = name[2];
1683 elem_count = name[3];
1684 out_size = MIN(sizeof(bs), elem_size);
1685
1686 /*
1687 * at the moment, these are just "placeholders" to make the
1688 * API for retrieving kern.buf data more extensible in the
1689 * future.
1690 *
1691 * XXX kern.buf currently has "netbsd32" issues. hopefully
1692 * these will be resolved at a later point.
1693 */
1694 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1695 elem_size < 1 || elem_count < 0)
1696 return (EINVAL);
1697
1698 error = 0;
1699 needed = 0;
1700 sysctl_unlock();
1701 mutex_enter(&bufcache_lock);
1702 for (i = 0; i < BQUEUES; i++) {
1703 bq = &bufqueues[i];
1704 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1705 bq->bq_marker = bp;
1706 if (len >= elem_size && elem_count > 0) {
1707 sysctl_fillbuf(bp, &bs);
1708 mutex_exit(&bufcache_lock);
1709 error = copyout(&bs, dp, out_size);
1710 mutex_enter(&bufcache_lock);
1711 if (error)
1712 break;
1713 if (bq->bq_marker != bp) {
1714 /*
1715 * This sysctl node is only for
1716 * statistics. Retry; if the
1717 * queue keeps changing, then
1718 * bail out.
1719 */
1720 if (retries-- == 0) {
1721 error = EAGAIN;
1722 break;
1723 }
1724 mutex_exit(&bufcache_lock);
1725 sysctl_relock();
1726 goto retry;
1727 }
1728 dp += elem_size;
1729 len -= elem_size;
1730 }
1731 needed += elem_size;
1732 if (elem_count > 0 && elem_count != INT_MAX)
1733 elem_count--;
1734 }
1735 if (error != 0)
1736 break;
1737 }
1738 mutex_exit(&bufcache_lock);
1739 sysctl_relock();
1740
1741 *oldlenp = needed;
1742 if (oldp == NULL)
1743 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1744
1745 return (error);
1746 }
1747
1748 static int
1749 sysctl_bufvm_update(SYSCTLFN_ARGS)
1750 {
1751 int error, rv;
1752 struct sysctlnode node;
1753 unsigned int temp_bufcache;
1754 unsigned long temp_water;
1755
1756 /* Take a copy of the supplied node and its data */
1757 node = *rnode;
1758 if (node.sysctl_data == &bufcache) {
1759 node.sysctl_data = &temp_bufcache;
1760 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1761 } else {
1762 node.sysctl_data = &temp_water;
1763 temp_water = *(unsigned long *)rnode->sysctl_data;
1764 }
1765
1766 /* Update the copy */
1767 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1768 if (error || newp == NULL)
1769 return (error);
1770
1771 if (rnode->sysctl_data == &bufcache) {
1772 if (temp_bufcache > 100)
1773 return (EINVAL);
1774 bufcache = temp_bufcache;
1775 buf_setwm();
1776 } else if (rnode->sysctl_data == &bufmem_lowater) {
1777 if (bufmem_hiwater - temp_water < 16)
1778 return (EINVAL);
1779 bufmem_lowater = temp_water;
1780 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1781 if (temp_water - bufmem_lowater < 16)
1782 return (EINVAL);
1783 bufmem_hiwater = temp_water;
1784 } else
1785 return (EINVAL);
1786
1787 /* Drain until below new high water mark */
1788 sysctl_unlock();
1789 mutex_enter(&bufcache_lock);
1790 while (bufmem > bufmem_hiwater) {
1791 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1792 if (rv <= 0)
1793 break;
1794 }
1795 mutex_exit(&bufcache_lock);
1796 sysctl_relock();
1797
1798 return 0;
1799 }
1800
1801 static struct sysctllog *vfsbio_sysctllog;
1802
1803 static void
1804 sysctl_kern_buf_setup(void)
1805 {
1806
1807 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1808 CTLFLAG_PERMANENT,
1809 CTLTYPE_NODE, "kern", NULL,
1810 NULL, 0, NULL, 0,
1811 CTL_KERN, CTL_EOL);
1812 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1813 CTLFLAG_PERMANENT,
1814 CTLTYPE_NODE, "buf",
1815 SYSCTL_DESCR("Kernel buffer cache information"),
1816 sysctl_dobuf, 0, NULL, 0,
1817 CTL_KERN, KERN_BUF, CTL_EOL);
1818 }
1819
1820 static void
1821 sysctl_vm_buf_setup(void)
1822 {
1823
1824 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1825 CTLFLAG_PERMANENT,
1826 CTLTYPE_NODE, "vm", NULL,
1827 NULL, 0, NULL, 0,
1828 CTL_VM, CTL_EOL);
1829 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1830 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1831 CTLTYPE_INT, "bufcache",
1832 SYSCTL_DESCR("Percentage of physical memory to use for "
1833 "buffer cache"),
1834 sysctl_bufvm_update, 0, &bufcache, 0,
1835 CTL_VM, CTL_CREATE, CTL_EOL);
1836 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1837 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1838 CTLTYPE_LONG, "bufmem",
1839 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1840 "cache"),
1841 NULL, 0, &bufmem, 0,
1842 CTL_VM, CTL_CREATE, CTL_EOL);
1843 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1844 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1845 CTLTYPE_LONG, "bufmem_lowater",
1846 SYSCTL_DESCR("Minimum amount of kernel memory to "
1847 "reserve for buffer cache"),
1848 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1849 CTL_VM, CTL_CREATE, CTL_EOL);
1850 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1851 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1852 CTLTYPE_LONG, "bufmem_hiwater",
1853 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1854 "for buffer cache"),
1855 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1856 CTL_VM, CTL_CREATE, CTL_EOL);
1857 }
1858
1859 #ifdef DEBUG
1860 /*
1861 * Print out statistics on the current allocation of the buffer pool.
1862 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1863 * in vfs_syscalls.c using sysctl.
1864 */
1865 void
1866 vfs_bufstats(void)
1867 {
1868 int i, j, count;
1869 buf_t *bp;
1870 struct bqueue *dp;
1871 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1872 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1873
1874 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1875 count = 0;
1876 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1877 counts[j] = 0;
1878 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1879 counts[bp->b_bufsize/PAGE_SIZE]++;
1880 count++;
1881 }
1882 printf("%s: total-%d", bname[i], count);
1883 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1884 if (counts[j] != 0)
1885 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1886 printf("\n");
1887 }
1888 }
1889 #endif /* DEBUG */
1890
1891 /* ------------------------------ */
1892
1893 buf_t *
1894 getiobuf(struct vnode *vp, bool waitok)
1895 {
1896 buf_t *bp;
1897
1898 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1899 if (bp == NULL)
1900 return bp;
1901
1902 buf_init(bp);
1903
1904 if ((bp->b_vp = vp) == NULL)
1905 bp->b_objlock = &buffer_lock;
1906 else
1907 bp->b_objlock = vp->v_interlock;
1908
1909 return bp;
1910 }
1911
1912 void
1913 putiobuf(buf_t *bp)
1914 {
1915
1916 buf_destroy(bp);
1917 pool_cache_put(bufio_cache, bp);
1918 }
1919
1920 /*
1921 * nestiobuf_iodone: b_iodone callback for nested buffers.
1922 */
1923
1924 void
1925 nestiobuf_iodone(buf_t *bp)
1926 {
1927 buf_t *mbp = bp->b_private;
1928 int error;
1929 int donebytes;
1930
1931 KASSERT(bp->b_bcount <= bp->b_bufsize);
1932 KASSERT(mbp != bp);
1933
1934 error = bp->b_error;
1935 if (bp->b_error == 0 &&
1936 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1937 /*
1938 * Not all got transfered, raise an error. We have no way to
1939 * propagate these conditions to mbp.
1940 */
1941 error = EIO;
1942 }
1943
1944 donebytes = bp->b_bufsize;
1945
1946 putiobuf(bp);
1947 nestiobuf_done(mbp, donebytes, error);
1948 }
1949
1950 /*
1951 * nestiobuf_setup: setup a "nested" buffer.
1952 *
1953 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1954 * => 'bp' should be a buffer allocated by getiobuf.
1955 * => 'offset' is a byte offset in the master buffer.
1956 * => 'size' is a size in bytes of this nested buffer.
1957 */
1958
1959 void
1960 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1961 {
1962 const int b_read = mbp->b_flags & B_READ;
1963 struct vnode *vp = mbp->b_vp;
1964
1965 KASSERT(mbp->b_bcount >= offset + size);
1966 bp->b_vp = vp;
1967 bp->b_dev = mbp->b_dev;
1968 bp->b_objlock = mbp->b_objlock;
1969 bp->b_cflags = BC_BUSY;
1970 bp->b_flags = B_ASYNC | b_read;
1971 bp->b_iodone = nestiobuf_iodone;
1972 bp->b_data = (char *)mbp->b_data + offset;
1973 bp->b_resid = bp->b_bcount = size;
1974 bp->b_bufsize = bp->b_bcount;
1975 bp->b_private = mbp;
1976 BIO_COPYPRIO(bp, mbp);
1977 if (!b_read && vp != NULL) {
1978 mutex_enter(vp->v_interlock);
1979 vp->v_numoutput++;
1980 mutex_exit(vp->v_interlock);
1981 }
1982 }
1983
1984 /*
1985 * nestiobuf_done: propagate completion to the master buffer.
1986 *
1987 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1988 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1989 */
1990
1991 void
1992 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1993 {
1994
1995 if (donebytes == 0) {
1996 return;
1997 }
1998 mutex_enter(mbp->b_objlock);
1999 KASSERT(mbp->b_resid >= donebytes);
2000 mbp->b_resid -= donebytes;
2001 if (error)
2002 mbp->b_error = error;
2003 if (mbp->b_resid == 0) {
2004 if (mbp->b_error)
2005 mbp->b_resid = mbp->b_bcount;
2006 mutex_exit(mbp->b_objlock);
2007 biodone(mbp);
2008 } else
2009 mutex_exit(mbp->b_objlock);
2010 }
2011
2012 void
2013 buf_init(buf_t *bp)
2014 {
2015
2016 cv_init(&bp->b_busy, "biolock");
2017 cv_init(&bp->b_done, "biowait");
2018 bp->b_dev = NODEV;
2019 bp->b_error = 0;
2020 bp->b_flags = 0;
2021 bp->b_cflags = 0;
2022 bp->b_oflags = 0;
2023 bp->b_objlock = &buffer_lock;
2024 bp->b_iodone = NULL;
2025 bp->b_refcnt = 1;
2026 bp->b_dev = NODEV;
2027 bp->b_vnbufs.le_next = NOLIST;
2028 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2029 }
2030
2031 void
2032 buf_destroy(buf_t *bp)
2033 {
2034
2035 cv_destroy(&bp->b_done);
2036 cv_destroy(&bp->b_busy);
2037 }
2038
2039 int
2040 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2041 {
2042 int error;
2043
2044 KASSERT(mutex_owned(&bufcache_lock));
2045
2046 if ((bp->b_cflags & BC_BUSY) != 0) {
2047 if (curlwp == uvm.pagedaemon_lwp)
2048 return EDEADLK;
2049 bp->b_cflags |= BC_WANTED;
2050 bref(bp);
2051 if (interlock != NULL)
2052 mutex_exit(interlock);
2053 if (intr) {
2054 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2055 timo);
2056 } else {
2057 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2058 timo);
2059 }
2060 brele(bp);
2061 if (interlock != NULL)
2062 mutex_enter(interlock);
2063 if (error != 0)
2064 return error;
2065 return EPASSTHROUGH;
2066 }
2067 bp->b_cflags |= BC_BUSY;
2068
2069 return 0;
2070 }
2071