Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.247
      1 /*	$NetBSD: vfs_bio.c,v 1.247 2013/09/30 18:58:00 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.247 2013/09/30 18:58:00 hannken Exp $");
    127 
    128 #include "opt_bufcache.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/kernel.h>
    133 #include <sys/proc.h>
    134 #include <sys/buf.h>
    135 #include <sys/vnode.h>
    136 #include <sys/mount.h>
    137 #include <sys/resourcevar.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/conf.h>
    140 #include <sys/kauth.h>
    141 #include <sys/fstrans.h>
    142 #include <sys/intr.h>
    143 #include <sys/cpu.h>
    144 #include <sys/wapbl.h>
    145 #include <sys/bitops.h>
    146 
    147 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    148 
    149 #include <miscfs/specfs/specdev.h>
    150 
    151 #ifndef	BUFPAGES
    152 # define BUFPAGES 0
    153 #endif
    154 
    155 #ifdef BUFCACHE
    156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    157 #  error BUFCACHE is not between 5 and 95
    158 # endif
    159 #else
    160 # define BUFCACHE 15
    161 #endif
    162 
    163 u_int	nbuf;			/* desired number of buffer headers */
    164 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    165 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    166 
    167 /* Function prototypes */
    168 struct bqueue;
    169 
    170 static void buf_setwm(void);
    171 static int buf_trim(void);
    172 static void *bufpool_page_alloc(struct pool *, int);
    173 static void bufpool_page_free(struct pool *, void *);
    174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
    175     kauth_cred_t, int);
    176 static buf_t *getnewbuf(int, int, int);
    177 static int buf_lotsfree(void);
    178 static int buf_canrelease(void);
    179 static u_long buf_mempoolidx(u_long);
    180 static u_long buf_roundsize(u_long);
    181 static void *buf_alloc(size_t);
    182 static void buf_mrelease(void *, size_t);
    183 static void binsheadfree(buf_t *, struct bqueue *);
    184 static void binstailfree(buf_t *, struct bqueue *);
    185 #ifdef DEBUG
    186 static int checkfreelist(buf_t *, struct bqueue *, int);
    187 #endif
    188 static void biointr(void *);
    189 static void biodone2(buf_t *);
    190 static void bref(buf_t *);
    191 static void brele(buf_t *);
    192 static void sysctl_kern_buf_setup(void);
    193 static void sysctl_vm_buf_setup(void);
    194 
    195 /*
    196  * Definitions for the buffer hash lists.
    197  */
    198 #define	BUFHASH(dvp, lbn)	\
    199 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    201 u_long	bufhash;
    202 struct bqueue bufqueues[BQUEUES];
    203 
    204 static kcondvar_t needbuffer_cv;
    205 
    206 /*
    207  * Buffer queue lock.
    208  */
    209 kmutex_t bufcache_lock;
    210 kmutex_t buffer_lock;
    211 
    212 /* Software ISR for completed transfers. */
    213 static void *biodone_sih;
    214 
    215 /* Buffer pool for I/O buffers. */
    216 static pool_cache_t buf_cache;
    217 static pool_cache_t bufio_cache;
    218 
    219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    222 
    223 /* Buffer memory pools */
    224 static struct pool bmempools[NMEMPOOLS];
    225 
    226 static struct vm_map *buf_map;
    227 
    228 /*
    229  * Buffer memory pool allocator.
    230  */
    231 static void *
    232 bufpool_page_alloc(struct pool *pp, int flags)
    233 {
    234 
    235 	return (void *)uvm_km_alloc(buf_map,
    236 	    MAXBSIZE, MAXBSIZE,
    237 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    238 	    | UVM_KMF_WIRED);
    239 }
    240 
    241 static void
    242 bufpool_page_free(struct pool *pp, void *v)
    243 {
    244 
    245 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    246 }
    247 
    248 static struct pool_allocator bufmempool_allocator = {
    249 	.pa_alloc = bufpool_page_alloc,
    250 	.pa_free = bufpool_page_free,
    251 	.pa_pagesz = MAXBSIZE,
    252 };
    253 
    254 /* Buffer memory management variables */
    255 u_long bufmem_valimit;
    256 u_long bufmem_hiwater;
    257 u_long bufmem_lowater;
    258 u_long bufmem;
    259 
    260 /*
    261  * MD code can call this to set a hard limit on the amount
    262  * of virtual memory used by the buffer cache.
    263  */
    264 int
    265 buf_setvalimit(vsize_t sz)
    266 {
    267 
    268 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    269 	if (sz < NMEMPOOLS * MAXBSIZE)
    270 		return EINVAL;
    271 
    272 	bufmem_valimit = sz;
    273 	return 0;
    274 }
    275 
    276 static void
    277 buf_setwm(void)
    278 {
    279 
    280 	bufmem_hiwater = buf_memcalc();
    281 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    282 #define	BUFMEM_WMSHIFT	3
    283 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    284 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    285 		/* Ensure a reasonable minimum value */
    286 		bufmem_hiwater = BUFMEM_HIWMMIN;
    287 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    288 }
    289 
    290 #ifdef DEBUG
    291 int debug_verify_freelist = 0;
    292 static int
    293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    294 {
    295 	buf_t *b;
    296 
    297 	if (!debug_verify_freelist)
    298 		return 1;
    299 
    300 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    301 		if (b == bp)
    302 			return ison ? 1 : 0;
    303 	}
    304 
    305 	return ison ? 0 : 1;
    306 }
    307 #endif
    308 
    309 /*
    310  * Insq/Remq for the buffer hash lists.
    311  * Call with buffer queue locked.
    312  */
    313 static void
    314 binsheadfree(buf_t *bp, struct bqueue *dp)
    315 {
    316 
    317 	KASSERT(mutex_owned(&bufcache_lock));
    318 	KASSERT(bp->b_freelistindex == -1);
    319 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    320 	dp->bq_bytes += bp->b_bufsize;
    321 	bp->b_freelistindex = dp - bufqueues;
    322 }
    323 
    324 static void
    325 binstailfree(buf_t *bp, struct bqueue *dp)
    326 {
    327 
    328 	KASSERT(mutex_owned(&bufcache_lock));
    329 	KASSERT(bp->b_freelistindex == -1);
    330 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    331 	dp->bq_bytes += bp->b_bufsize;
    332 	bp->b_freelistindex = dp - bufqueues;
    333 }
    334 
    335 void
    336 bremfree(buf_t *bp)
    337 {
    338 	struct bqueue *dp;
    339 	int bqidx = bp->b_freelistindex;
    340 
    341 	KASSERT(mutex_owned(&bufcache_lock));
    342 
    343 	KASSERT(bqidx != -1);
    344 	dp = &bufqueues[bqidx];
    345 	KDASSERT(checkfreelist(bp, dp, 1));
    346 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    347 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    348 	dp->bq_bytes -= bp->b_bufsize;
    349 
    350 	/* For the sysctl helper. */
    351 	if (bp == dp->bq_marker)
    352 		dp->bq_marker = NULL;
    353 
    354 #if defined(DIAGNOSTIC)
    355 	bp->b_freelistindex = -1;
    356 #endif /* defined(DIAGNOSTIC) */
    357 }
    358 
    359 /*
    360  * Add a reference to an buffer structure that came from buf_cache.
    361  */
    362 static inline void
    363 bref(buf_t *bp)
    364 {
    365 
    366 	KASSERT(mutex_owned(&bufcache_lock));
    367 	KASSERT(bp->b_refcnt > 0);
    368 
    369 	bp->b_refcnt++;
    370 }
    371 
    372 /*
    373  * Free an unused buffer structure that came from buf_cache.
    374  */
    375 static inline void
    376 brele(buf_t *bp)
    377 {
    378 
    379 	KASSERT(mutex_owned(&bufcache_lock));
    380 	KASSERT(bp->b_refcnt > 0);
    381 
    382 	if (bp->b_refcnt-- == 1) {
    383 		buf_destroy(bp);
    384 #ifdef DEBUG
    385 		memset((char *)bp, 0, sizeof(*bp));
    386 #endif
    387 		pool_cache_put(buf_cache, bp);
    388 	}
    389 }
    390 
    391 /*
    392  * note that for some ports this is used by pmap bootstrap code to
    393  * determine kva size.
    394  */
    395 u_long
    396 buf_memcalc(void)
    397 {
    398 	u_long n;
    399 	vsize_t mapsz = 0;
    400 
    401 	/*
    402 	 * Determine the upper bound of memory to use for buffers.
    403 	 *
    404 	 *	- If bufpages is specified, use that as the number
    405 	 *	  pages.
    406 	 *
    407 	 *	- Otherwise, use bufcache as the percentage of
    408 	 *	  physical memory.
    409 	 */
    410 	if (bufpages != 0) {
    411 		n = bufpages;
    412 	} else {
    413 		if (bufcache < 5) {
    414 			printf("forcing bufcache %d -> 5", bufcache);
    415 			bufcache = 5;
    416 		}
    417 		if (bufcache > 95) {
    418 			printf("forcing bufcache %d -> 95", bufcache);
    419 			bufcache = 95;
    420 		}
    421 		if (buf_map != NULL)
    422 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
    423 		n = calc_cache_size(mapsz, bufcache,
    424 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    425 		    / PAGE_SIZE;
    426 	}
    427 
    428 	n <<= PAGE_SHIFT;
    429 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    430 		n = bufmem_valimit;
    431 
    432 	return (n);
    433 }
    434 
    435 /*
    436  * Initialize buffers and hash links for buffers.
    437  */
    438 void
    439 bufinit(void)
    440 {
    441 	struct bqueue *dp;
    442 	int use_std;
    443 	u_int i;
    444 
    445 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    446 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    447 	cv_init(&needbuffer_cv, "needbuf");
    448 
    449 	if (bufmem_valimit != 0) {
    450 		vaddr_t minaddr = 0, maxaddr;
    451 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    452 					  bufmem_valimit, 0, false, 0);
    453 		if (buf_map == NULL)
    454 			panic("bufinit: cannot allocate submap");
    455 	} else
    456 		buf_map = kernel_map;
    457 
    458 	/*
    459 	 * Initialize buffer cache memory parameters.
    460 	 */
    461 	bufmem = 0;
    462 	buf_setwm();
    463 
    464 	/* On "small" machines use small pool page sizes where possible */
    465 	use_std = (physmem < atop(16*1024*1024));
    466 
    467 	/*
    468 	 * Also use them on systems that can map the pool pages using
    469 	 * a direct-mapped segment.
    470 	 */
    471 #ifdef PMAP_MAP_POOLPAGE
    472 	use_std = 1;
    473 #endif
    474 
    475 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    476 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    477 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    478 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    479 
    480 	for (i = 0; i < NMEMPOOLS; i++) {
    481 		struct pool_allocator *pa;
    482 		struct pool *pp = &bmempools[i];
    483 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    484 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    485 		if (__predict_false(size >= 1048576))
    486 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    487 		else if (__predict_true(size >= 1024))
    488 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    489 		else
    490 			(void)snprintf(name, 8, "buf%ub", size);
    491 		pa = (size <= PAGE_SIZE && use_std)
    492 			? &pool_allocator_nointr
    493 			: &bufmempool_allocator;
    494 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    495 		pool_setlowat(pp, 1);
    496 		pool_sethiwat(pp, 1);
    497 	}
    498 
    499 	/* Initialize the buffer queues */
    500 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    501 		TAILQ_INIT(&dp->bq_queue);
    502 		dp->bq_bytes = 0;
    503 	}
    504 
    505 	/*
    506 	 * Estimate hash table size based on the amount of memory we
    507 	 * intend to use for the buffer cache. The average buffer
    508 	 * size is dependent on our clients (i.e. filesystems).
    509 	 *
    510 	 * For now, use an empirical 3K per buffer.
    511 	 */
    512 	nbuf = (bufmem_hiwater / 1024) / 3;
    513 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    514 
    515 	sysctl_kern_buf_setup();
    516 	sysctl_vm_buf_setup();
    517 }
    518 
    519 void
    520 bufinit2(void)
    521 {
    522 
    523 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    524 	    NULL);
    525 	if (biodone_sih == NULL)
    526 		panic("bufinit2: can't establish soft interrupt");
    527 }
    528 
    529 static int
    530 buf_lotsfree(void)
    531 {
    532 	int try, thresh;
    533 
    534 	/* Always allocate if less than the low water mark. */
    535 	if (bufmem < bufmem_lowater)
    536 		return 1;
    537 
    538 	/* Never allocate if greater than the high water mark. */
    539 	if (bufmem > bufmem_hiwater)
    540 		return 0;
    541 
    542 	/* If there's anything on the AGE list, it should be eaten. */
    543 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    544 		return 0;
    545 
    546 	/*
    547 	 * The probabily of getting a new allocation is inversely
    548 	 * proportional to the current size of the cache, using
    549 	 * a granularity of 16 steps.
    550 	 */
    551 	try = random() & 0x0000000fL;
    552 
    553 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
    554 	thresh = (bufmem - bufmem_lowater) /
    555 	    ((bufmem_hiwater - bufmem_lowater) / 16);
    556 
    557 	if (try >= thresh)
    558 		return 1;
    559 
    560 	/* Otherwise don't allocate. */
    561 	return 0;
    562 }
    563 
    564 /*
    565  * Return estimate of bytes we think need to be
    566  * released to help resolve low memory conditions.
    567  *
    568  * => called with bufcache_lock held.
    569  */
    570 static int
    571 buf_canrelease(void)
    572 {
    573 	int pagedemand, ninvalid = 0;
    574 
    575 	KASSERT(mutex_owned(&bufcache_lock));
    576 
    577 	if (bufmem < bufmem_lowater)
    578 		return 0;
    579 
    580 	if (bufmem > bufmem_hiwater)
    581 		return bufmem - bufmem_hiwater;
    582 
    583 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    584 
    585 	pagedemand = uvmexp.freetarg - uvmexp.free;
    586 	if (pagedemand < 0)
    587 		return ninvalid;
    588 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    589 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    590 }
    591 
    592 /*
    593  * Buffer memory allocation helper functions
    594  */
    595 static u_long
    596 buf_mempoolidx(u_long size)
    597 {
    598 	u_int n = 0;
    599 
    600 	size -= 1;
    601 	size >>= MEMPOOL_INDEX_OFFSET;
    602 	while (size) {
    603 		size >>= 1;
    604 		n += 1;
    605 	}
    606 	if (n >= NMEMPOOLS)
    607 		panic("buf mem pool index %d", n);
    608 	return n;
    609 }
    610 
    611 static u_long
    612 buf_roundsize(u_long size)
    613 {
    614 	/* Round up to nearest power of 2 */
    615 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    616 }
    617 
    618 static void *
    619 buf_alloc(size_t size)
    620 {
    621 	u_int n = buf_mempoolidx(size);
    622 	void *addr;
    623 
    624 	while (1) {
    625 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    626 		if (addr != NULL)
    627 			break;
    628 
    629 		/* No memory, see if we can free some. If so, try again */
    630 		mutex_enter(&bufcache_lock);
    631 		if (buf_drain(1) > 0) {
    632 			mutex_exit(&bufcache_lock);
    633 			continue;
    634 		}
    635 
    636 		if (curlwp == uvm.pagedaemon_lwp) {
    637 			mutex_exit(&bufcache_lock);
    638 			return NULL;
    639 		}
    640 
    641 		/* Wait for buffers to arrive on the LRU queue */
    642 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    643 		mutex_exit(&bufcache_lock);
    644 	}
    645 
    646 	return addr;
    647 }
    648 
    649 static void
    650 buf_mrelease(void *addr, size_t size)
    651 {
    652 
    653 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    654 }
    655 
    656 /*
    657  * bread()/breadn() helper.
    658  */
    659 static buf_t *
    660 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    661     int async)
    662 {
    663 	buf_t *bp;
    664 	struct mount *mp;
    665 
    666 	bp = getblk(vp, blkno, size, 0, 0);
    667 
    668 	/*
    669 	 * getblk() may return NULL if we are the pagedaemon.
    670 	 */
    671 	if (bp == NULL) {
    672 		KASSERT(curlwp == uvm.pagedaemon_lwp);
    673 		return NULL;
    674 	}
    675 
    676 	/*
    677 	 * If buffer does not have data valid, start a read.
    678 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    679 	 * Therefore, it's valid if its I/O has completed or been delayed.
    680 	 */
    681 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    682 		/* Start I/O for the buffer. */
    683 		SET(bp->b_flags, B_READ | async);
    684 		if (async)
    685 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    686 		else
    687 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    688 		VOP_STRATEGY(vp, bp);
    689 
    690 		/* Pay for the read. */
    691 		curlwp->l_ru.ru_inblock++;
    692 	} else if (async)
    693 		brelse(bp, 0);
    694 
    695 	if (vp->v_type == VBLK)
    696 		mp = spec_node_getmountedfs(vp);
    697 	else
    698 		mp = vp->v_mount;
    699 
    700 	/*
    701 	 * Collect statistics on synchronous and asynchronous reads.
    702 	 * Reads from block devices are charged to their associated
    703 	 * filesystem (if any).
    704 	 */
    705 	if (mp != NULL) {
    706 		if (async == 0)
    707 			mp->mnt_stat.f_syncreads++;
    708 		else
    709 			mp->mnt_stat.f_asyncreads++;
    710 	}
    711 
    712 	return (bp);
    713 }
    714 
    715 /*
    716  * Read a disk block.
    717  * This algorithm described in Bach (p.54).
    718  */
    719 int
    720 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
    721     int flags, buf_t **bpp)
    722 {
    723 	buf_t *bp;
    724 	int error;
    725 
    726 	/* Get buffer for block. */
    727 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    728 	if (bp == NULL)
    729 		return ENOMEM;
    730 
    731 	/* Wait for the read to complete, and return result. */
    732 	error = biowait(bp);
    733 	if (error == 0 && (flags & B_MODIFY) != 0)
    734 		error = fscow_run(bp, true);
    735 	if (error) {
    736 		brelse(bp, 0);
    737 		*bpp = NULL;
    738 	}
    739 
    740 	return error;
    741 }
    742 
    743 /*
    744  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    745  * Trivial modification to the breada algorithm presented in Bach (p.55).
    746  */
    747 int
    748 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    749     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
    750 {
    751 	buf_t *bp;
    752 	int error, i;
    753 
    754 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    755 	if (bp == NULL)
    756 		return ENOMEM;
    757 
    758 	/*
    759 	 * For each of the read-ahead blocks, start a read, if necessary.
    760 	 */
    761 	mutex_enter(&bufcache_lock);
    762 	for (i = 0; i < nrablks; i++) {
    763 		/* If it's in the cache, just go on to next one. */
    764 		if (incore(vp, rablks[i]))
    765 			continue;
    766 
    767 		/* Get a buffer for the read-ahead block */
    768 		mutex_exit(&bufcache_lock);
    769 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    770 		mutex_enter(&bufcache_lock);
    771 	}
    772 	mutex_exit(&bufcache_lock);
    773 
    774 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    775 	error = biowait(bp);
    776 	if (error == 0 && (flags & B_MODIFY) != 0)
    777 		error = fscow_run(bp, true);
    778 	if (error) {
    779 		brelse(bp, 0);
    780 		*bpp = NULL;
    781 	}
    782 
    783 	return error;
    784 }
    785 
    786 /*
    787  * Block write.  Described in Bach (p.56)
    788  */
    789 int
    790 bwrite(buf_t *bp)
    791 {
    792 	int rv, sync, wasdelayed;
    793 	struct vnode *vp;
    794 	struct mount *mp;
    795 
    796 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    797 	KASSERT(!cv_has_waiters(&bp->b_done));
    798 
    799 	vp = bp->b_vp;
    800 	if (vp != NULL) {
    801 		KASSERT(bp->b_objlock == vp->v_interlock);
    802 		if (vp->v_type == VBLK)
    803 			mp = spec_node_getmountedfs(vp);
    804 		else
    805 			mp = vp->v_mount;
    806 	} else {
    807 		mp = NULL;
    808 	}
    809 
    810 	if (mp && mp->mnt_wapbl) {
    811 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    812 			bdwrite(bp);
    813 			return 0;
    814 		}
    815 	}
    816 
    817 	/*
    818 	 * Remember buffer type, to switch on it later.  If the write was
    819 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    820 	 * convert it to a delayed write.
    821 	 * XXX note that this relies on delayed tape writes being converted
    822 	 * to async, not sync writes (which is safe, but ugly).
    823 	 */
    824 	sync = !ISSET(bp->b_flags, B_ASYNC);
    825 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    826 		bdwrite(bp);
    827 		return (0);
    828 	}
    829 
    830 	/*
    831 	 * Collect statistics on synchronous and asynchronous writes.
    832 	 * Writes to block devices are charged to their associated
    833 	 * filesystem (if any).
    834 	 */
    835 	if (mp != NULL) {
    836 		if (sync)
    837 			mp->mnt_stat.f_syncwrites++;
    838 		else
    839 			mp->mnt_stat.f_asyncwrites++;
    840 	}
    841 
    842 	/*
    843 	 * Pay for the I/O operation and make sure the buf is on the correct
    844 	 * vnode queue.
    845 	 */
    846 	bp->b_error = 0;
    847 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    848 	CLR(bp->b_flags, B_READ);
    849 	if (wasdelayed) {
    850 		mutex_enter(&bufcache_lock);
    851 		mutex_enter(bp->b_objlock);
    852 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    853 		reassignbuf(bp, bp->b_vp);
    854 		mutex_exit(&bufcache_lock);
    855 	} else {
    856 		curlwp->l_ru.ru_oublock++;
    857 		mutex_enter(bp->b_objlock);
    858 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    859 	}
    860 	if (vp != NULL)
    861 		vp->v_numoutput++;
    862 	mutex_exit(bp->b_objlock);
    863 
    864 	/* Initiate disk write. */
    865 	if (sync)
    866 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    867 	else
    868 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    869 
    870 	VOP_STRATEGY(vp, bp);
    871 
    872 	if (sync) {
    873 		/* If I/O was synchronous, wait for it to complete. */
    874 		rv = biowait(bp);
    875 
    876 		/* Release the buffer. */
    877 		brelse(bp, 0);
    878 
    879 		return (rv);
    880 	} else {
    881 		return (0);
    882 	}
    883 }
    884 
    885 int
    886 vn_bwrite(void *v)
    887 {
    888 	struct vop_bwrite_args *ap = v;
    889 
    890 	return (bwrite(ap->a_bp));
    891 }
    892 
    893 /*
    894  * Delayed write.
    895  *
    896  * The buffer is marked dirty, but is not queued for I/O.
    897  * This routine should be used when the buffer is expected
    898  * to be modified again soon, typically a small write that
    899  * partially fills a buffer.
    900  *
    901  * NB: magnetic tapes cannot be delayed; they must be
    902  * written in the order that the writes are requested.
    903  *
    904  * Described in Leffler, et al. (pp. 208-213).
    905  */
    906 void
    907 bdwrite(buf_t *bp)
    908 {
    909 
    910 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    911 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    912 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    913 	KASSERT(!cv_has_waiters(&bp->b_done));
    914 
    915 	/* If this is a tape block, write the block now. */
    916 	if (bdev_type(bp->b_dev) == D_TAPE) {
    917 		bawrite(bp);
    918 		return;
    919 	}
    920 
    921 	if (wapbl_vphaswapbl(bp->b_vp)) {
    922 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    923 
    924 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    925 			WAPBL_ADD_BUF(mp, bp);
    926 		}
    927 	}
    928 
    929 	/*
    930 	 * If the block hasn't been seen before:
    931 	 *	(1) Mark it as having been seen,
    932 	 *	(2) Charge for the write,
    933 	 *	(3) Make sure it's on its vnode's correct block list.
    934 	 */
    935 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    936 
    937 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    938 		mutex_enter(&bufcache_lock);
    939 		mutex_enter(bp->b_objlock);
    940 		SET(bp->b_oflags, BO_DELWRI);
    941 		curlwp->l_ru.ru_oublock++;
    942 		reassignbuf(bp, bp->b_vp);
    943 		mutex_exit(&bufcache_lock);
    944 	} else {
    945 		mutex_enter(bp->b_objlock);
    946 	}
    947 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    948 	CLR(bp->b_oflags, BO_DONE);
    949 	mutex_exit(bp->b_objlock);
    950 
    951 	brelse(bp, 0);
    952 }
    953 
    954 /*
    955  * Asynchronous block write; just an asynchronous bwrite().
    956  */
    957 void
    958 bawrite(buf_t *bp)
    959 {
    960 
    961 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    962 	KASSERT(bp->b_vp != NULL);
    963 
    964 	SET(bp->b_flags, B_ASYNC);
    965 	VOP_BWRITE(bp->b_vp, bp);
    966 }
    967 
    968 /*
    969  * Release a buffer on to the free lists.
    970  * Described in Bach (p. 46).
    971  */
    972 void
    973 brelsel(buf_t *bp, int set)
    974 {
    975 	struct bqueue *bufq;
    976 	struct vnode *vp;
    977 
    978 	KASSERT(bp != NULL);
    979 	KASSERT(mutex_owned(&bufcache_lock));
    980 	KASSERT(!cv_has_waiters(&bp->b_done));
    981 	KASSERT(bp->b_refcnt > 0);
    982 
    983 	SET(bp->b_cflags, set);
    984 
    985 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    986 	KASSERT(bp->b_iodone == NULL);
    987 
    988 	/* Wake up any processes waiting for any buffer to become free. */
    989 	cv_signal(&needbuffer_cv);
    990 
    991 	/* Wake up any proceeses waiting for _this_ buffer to become */
    992 	if (ISSET(bp->b_cflags, BC_WANTED))
    993 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    994 
    995 	/* If it's clean clear the copy-on-write flag. */
    996 	if (ISSET(bp->b_flags, B_COWDONE)) {
    997 		mutex_enter(bp->b_objlock);
    998 		if (!ISSET(bp->b_oflags, BO_DELWRI))
    999 			CLR(bp->b_flags, B_COWDONE);
   1000 		mutex_exit(bp->b_objlock);
   1001 	}
   1002 
   1003 	/*
   1004 	 * Determine which queue the buffer should be on, then put it there.
   1005 	 */
   1006 
   1007 	/* If it's locked, don't report an error; try again later. */
   1008 	if (ISSET(bp->b_flags, B_LOCKED))
   1009 		bp->b_error = 0;
   1010 
   1011 	/* If it's not cacheable, or an error, mark it invalid. */
   1012 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1013 		SET(bp->b_cflags, BC_INVAL);
   1014 
   1015 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1016 		/*
   1017 		 * This is a delayed write buffer that was just flushed to
   1018 		 * disk.  It is still on the LRU queue.  If it's become
   1019 		 * invalid, then we need to move it to a different queue;
   1020 		 * otherwise leave it in its current position.
   1021 		 */
   1022 		CLR(bp->b_cflags, BC_VFLUSH);
   1023 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1024 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1025 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1026 			goto already_queued;
   1027 		} else {
   1028 			bremfree(bp);
   1029 		}
   1030 	}
   1031 
   1032 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1033 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1034 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1035 
   1036 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1037 		/*
   1038 		 * If it's invalid or empty, dissociate it from its vnode
   1039 		 * and put on the head of the appropriate queue.
   1040 		 */
   1041 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1042 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1043 				struct mount *mp = wapbl_vptomp(vp);
   1044 
   1045 				KASSERT(bp->b_iodone
   1046 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1047 				WAPBL_REMOVE_BUF(mp, bp);
   1048 			}
   1049 		}
   1050 
   1051 		mutex_enter(bp->b_objlock);
   1052 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1053 		if ((vp = bp->b_vp) != NULL) {
   1054 			KASSERT(bp->b_objlock == vp->v_interlock);
   1055 			reassignbuf(bp, bp->b_vp);
   1056 			brelvp(bp);
   1057 			mutex_exit(vp->v_interlock);
   1058 		} else {
   1059 			KASSERT(bp->b_objlock == &buffer_lock);
   1060 			mutex_exit(bp->b_objlock);
   1061 		}
   1062 
   1063 		if (bp->b_bufsize <= 0)
   1064 			/* no data */
   1065 			goto already_queued;
   1066 		else
   1067 			/* invalid data */
   1068 			bufq = &bufqueues[BQ_AGE];
   1069 		binsheadfree(bp, bufq);
   1070 	} else  {
   1071 		/*
   1072 		 * It has valid data.  Put it on the end of the appropriate
   1073 		 * queue, so that it'll stick around for as long as possible.
   1074 		 * If buf is AGE, but has dependencies, must put it on last
   1075 		 * bufqueue to be scanned, ie LRU. This protects against the
   1076 		 * livelock where BQ_AGE only has buffers with dependencies,
   1077 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1078 		 */
   1079 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1080 			/* locked in core */
   1081 			bufq = &bufqueues[BQ_LOCKED];
   1082 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1083 			/* valid data */
   1084 			bufq = &bufqueues[BQ_LRU];
   1085 		} else {
   1086 			/* stale but valid data */
   1087 			bufq = &bufqueues[BQ_AGE];
   1088 		}
   1089 		binstailfree(bp, bufq);
   1090 	}
   1091 already_queued:
   1092 	/* Unlock the buffer. */
   1093 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1094 	CLR(bp->b_flags, B_ASYNC);
   1095 	cv_broadcast(&bp->b_busy);
   1096 
   1097 	if (bp->b_bufsize <= 0)
   1098 		brele(bp);
   1099 }
   1100 
   1101 void
   1102 brelse(buf_t *bp, int set)
   1103 {
   1104 
   1105 	mutex_enter(&bufcache_lock);
   1106 	brelsel(bp, set);
   1107 	mutex_exit(&bufcache_lock);
   1108 }
   1109 
   1110 /*
   1111  * Determine if a block is in the cache.
   1112  * Just look on what would be its hash chain.  If it's there, return
   1113  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1114  * we normally don't return the buffer, unless the caller explicitly
   1115  * wants us to.
   1116  */
   1117 buf_t *
   1118 incore(struct vnode *vp, daddr_t blkno)
   1119 {
   1120 	buf_t *bp;
   1121 
   1122 	KASSERT(mutex_owned(&bufcache_lock));
   1123 
   1124 	/* Search hash chain */
   1125 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1126 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1127 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1128 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1129 		    	return (bp);
   1130 		}
   1131 	}
   1132 
   1133 	return (NULL);
   1134 }
   1135 
   1136 /*
   1137  * Get a block of requested size that is associated with
   1138  * a given vnode and block offset. If it is found in the
   1139  * block cache, mark it as having been found, make it busy
   1140  * and return it. Otherwise, return an empty block of the
   1141  * correct size. It is up to the caller to insure that the
   1142  * cached blocks be of the correct size.
   1143  */
   1144 buf_t *
   1145 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1146 {
   1147 	int err, preserve;
   1148 	buf_t *bp;
   1149 
   1150 	mutex_enter(&bufcache_lock);
   1151  loop:
   1152 	bp = incore(vp, blkno);
   1153 	if (bp != NULL) {
   1154 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1155 		if (err != 0) {
   1156 			if (err == EPASSTHROUGH)
   1157 				goto loop;
   1158 			mutex_exit(&bufcache_lock);
   1159 			return (NULL);
   1160 		}
   1161 		KASSERT(!cv_has_waiters(&bp->b_done));
   1162 #ifdef DIAGNOSTIC
   1163 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1164 		    bp->b_bcount < size && vp->v_type != VBLK)
   1165 			panic("getblk: block size invariant failed");
   1166 #endif
   1167 		bremfree(bp);
   1168 		preserve = 1;
   1169 	} else {
   1170 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1171 			goto loop;
   1172 
   1173 		if (incore(vp, blkno) != NULL) {
   1174 			/* The block has come into memory in the meantime. */
   1175 			brelsel(bp, 0);
   1176 			goto loop;
   1177 		}
   1178 
   1179 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1180 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1181 		mutex_enter(vp->v_interlock);
   1182 		bgetvp(vp, bp);
   1183 		mutex_exit(vp->v_interlock);
   1184 		preserve = 0;
   1185 	}
   1186 	mutex_exit(&bufcache_lock);
   1187 
   1188 	/*
   1189 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1190 	 * if we re-size buffers here.
   1191 	 */
   1192 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1193 		KASSERT(bp->b_bufsize >= size);
   1194 	} else {
   1195 		if (allocbuf(bp, size, preserve)) {
   1196 			mutex_enter(&bufcache_lock);
   1197 			LIST_REMOVE(bp, b_hash);
   1198 			mutex_exit(&bufcache_lock);
   1199 			brelse(bp, BC_INVAL);
   1200 			return NULL;
   1201 		}
   1202 	}
   1203 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1204 	return (bp);
   1205 }
   1206 
   1207 /*
   1208  * Get an empty, disassociated buffer of given size.
   1209  */
   1210 buf_t *
   1211 geteblk(int size)
   1212 {
   1213 	buf_t *bp;
   1214 	int error;
   1215 
   1216 	mutex_enter(&bufcache_lock);
   1217 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1218 		;
   1219 
   1220 	SET(bp->b_cflags, BC_INVAL);
   1221 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1222 	mutex_exit(&bufcache_lock);
   1223 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1224 	error = allocbuf(bp, size, 0);
   1225 	KASSERT(error == 0);
   1226 	return (bp);
   1227 }
   1228 
   1229 /*
   1230  * Expand or contract the actual memory allocated to a buffer.
   1231  *
   1232  * If the buffer shrinks, data is lost, so it's up to the
   1233  * caller to have written it out *first*; this routine will not
   1234  * start a write.  If the buffer grows, it's the callers
   1235  * responsibility to fill out the buffer's additional contents.
   1236  */
   1237 int
   1238 allocbuf(buf_t *bp, int size, int preserve)
   1239 {
   1240 	void *addr;
   1241 	vsize_t oldsize, desired_size;
   1242 	int oldcount;
   1243 	int delta;
   1244 
   1245 	desired_size = buf_roundsize(size);
   1246 	if (desired_size > MAXBSIZE)
   1247 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1248 
   1249 	oldcount = bp->b_bcount;
   1250 
   1251 	bp->b_bcount = size;
   1252 
   1253 	oldsize = bp->b_bufsize;
   1254 	if (oldsize == desired_size) {
   1255 		/*
   1256 		 * Do not short cut the WAPBL resize, as the buffer length
   1257 		 * could still have changed and this would corrupt the
   1258 		 * tracking of the transaction length.
   1259 		 */
   1260 		goto out;
   1261 	}
   1262 
   1263 	/*
   1264 	 * If we want a buffer of a different size, re-allocate the
   1265 	 * buffer's memory; copy old content only if needed.
   1266 	 */
   1267 	addr = buf_alloc(desired_size);
   1268 	if (addr == NULL)
   1269 		return ENOMEM;
   1270 	if (preserve)
   1271 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1272 	if (bp->b_data != NULL)
   1273 		buf_mrelease(bp->b_data, oldsize);
   1274 	bp->b_data = addr;
   1275 	bp->b_bufsize = desired_size;
   1276 
   1277 	/*
   1278 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1279 	 */
   1280 	delta = (long)desired_size - (long)oldsize;
   1281 
   1282 	mutex_enter(&bufcache_lock);
   1283 	if ((bufmem += delta) > bufmem_hiwater) {
   1284 		/*
   1285 		 * Need to trim overall memory usage.
   1286 		 */
   1287 		while (buf_canrelease()) {
   1288 			if (curcpu()->ci_schedstate.spc_flags &
   1289 			    SPCF_SHOULDYIELD) {
   1290 				mutex_exit(&bufcache_lock);
   1291 				preempt();
   1292 				mutex_enter(&bufcache_lock);
   1293 			}
   1294 			if (buf_trim() == 0)
   1295 				break;
   1296 		}
   1297 	}
   1298 	mutex_exit(&bufcache_lock);
   1299 
   1300  out:
   1301 	if (wapbl_vphaswapbl(bp->b_vp))
   1302 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1303 
   1304 	return 0;
   1305 }
   1306 
   1307 /*
   1308  * Find a buffer which is available for use.
   1309  * Select something from a free list.
   1310  * Preference is to AGE list, then LRU list.
   1311  *
   1312  * Called with the buffer queues locked.
   1313  * Return buffer locked.
   1314  */
   1315 buf_t *
   1316 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1317 {
   1318 	buf_t *bp;
   1319 	struct vnode *vp;
   1320 
   1321  start:
   1322 	KASSERT(mutex_owned(&bufcache_lock));
   1323 
   1324 	/*
   1325 	 * Get a new buffer from the pool.
   1326 	 */
   1327 	if (!from_bufq && buf_lotsfree()) {
   1328 		mutex_exit(&bufcache_lock);
   1329 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1330 		if (bp != NULL) {
   1331 			memset((char *)bp, 0, sizeof(*bp));
   1332 			buf_init(bp);
   1333 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1334 			mutex_enter(&bufcache_lock);
   1335 #if defined(DIAGNOSTIC)
   1336 			bp->b_freelistindex = -1;
   1337 #endif /* defined(DIAGNOSTIC) */
   1338 			return (bp);
   1339 		}
   1340 		mutex_enter(&bufcache_lock);
   1341 	}
   1342 
   1343 	KASSERT(mutex_owned(&bufcache_lock));
   1344 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1345 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1346 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1347 		bremfree(bp);
   1348 
   1349 		/* Buffer is no longer on free lists. */
   1350 		SET(bp->b_cflags, BC_BUSY);
   1351 	} else {
   1352 		/*
   1353 		 * XXX: !from_bufq should be removed.
   1354 		 */
   1355 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1356 			/* wait for a free buffer of any kind */
   1357 			if ((slpflag & PCATCH) != 0)
   1358 				(void)cv_timedwait_sig(&needbuffer_cv,
   1359 				    &bufcache_lock, slptimeo);
   1360 			else
   1361 				(void)cv_timedwait(&needbuffer_cv,
   1362 				    &bufcache_lock, slptimeo);
   1363 		}
   1364 		return (NULL);
   1365 	}
   1366 
   1367 #ifdef DIAGNOSTIC
   1368 	if (bp->b_bufsize <= 0)
   1369 		panic("buffer %p: on queue but empty", bp);
   1370 #endif
   1371 
   1372 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1373 		/*
   1374 		 * This is a delayed write buffer being flushed to disk.  Make
   1375 		 * sure it gets aged out of the queue when it's finished, and
   1376 		 * leave it off the LRU queue.
   1377 		 */
   1378 		CLR(bp->b_cflags, BC_VFLUSH);
   1379 		SET(bp->b_cflags, BC_AGE);
   1380 		goto start;
   1381 	}
   1382 
   1383 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1384 	KASSERT(bp->b_refcnt > 0);
   1385     	KASSERT(!cv_has_waiters(&bp->b_done));
   1386 
   1387 	/*
   1388 	 * If buffer was a delayed write, start it and return NULL
   1389 	 * (since we might sleep while starting the write).
   1390 	 */
   1391 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1392 		/*
   1393 		 * This buffer has gone through the LRU, so make sure it gets
   1394 		 * reused ASAP.
   1395 		 */
   1396 		SET(bp->b_cflags, BC_AGE);
   1397 		mutex_exit(&bufcache_lock);
   1398 		bawrite(bp);
   1399 		mutex_enter(&bufcache_lock);
   1400 		return (NULL);
   1401 	}
   1402 
   1403 	vp = bp->b_vp;
   1404 
   1405 	/* clear out various other fields */
   1406 	bp->b_cflags = BC_BUSY;
   1407 	bp->b_oflags = 0;
   1408 	bp->b_flags = 0;
   1409 	bp->b_dev = NODEV;
   1410 	bp->b_blkno = 0;
   1411 	bp->b_lblkno = 0;
   1412 	bp->b_rawblkno = 0;
   1413 	bp->b_iodone = 0;
   1414 	bp->b_error = 0;
   1415 	bp->b_resid = 0;
   1416 	bp->b_bcount = 0;
   1417 
   1418 	LIST_REMOVE(bp, b_hash);
   1419 
   1420 	/* Disassociate us from our vnode, if we had one... */
   1421 	if (vp != NULL) {
   1422 		mutex_enter(vp->v_interlock);
   1423 		brelvp(bp);
   1424 		mutex_exit(vp->v_interlock);
   1425 	}
   1426 
   1427 	return (bp);
   1428 }
   1429 
   1430 /*
   1431  * Attempt to free an aged buffer off the queues.
   1432  * Called with queue lock held.
   1433  * Returns the amount of buffer memory freed.
   1434  */
   1435 static int
   1436 buf_trim(void)
   1437 {
   1438 	buf_t *bp;
   1439 	long size;
   1440 
   1441 	KASSERT(mutex_owned(&bufcache_lock));
   1442 
   1443 	/* Instruct getnewbuf() to get buffers off the queues */
   1444 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1445 		return 0;
   1446 
   1447 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1448 	size = bp->b_bufsize;
   1449 	bufmem -= size;
   1450 	if (size > 0) {
   1451 		buf_mrelease(bp->b_data, size);
   1452 		bp->b_bcount = bp->b_bufsize = 0;
   1453 	}
   1454 	/* brelse() will return the buffer to the global buffer pool */
   1455 	brelsel(bp, 0);
   1456 	return size;
   1457 }
   1458 
   1459 int
   1460 buf_drain(int n)
   1461 {
   1462 	int size = 0, sz;
   1463 
   1464 	KASSERT(mutex_owned(&bufcache_lock));
   1465 
   1466 	while (size < n && bufmem > bufmem_lowater) {
   1467 		sz = buf_trim();
   1468 		if (sz <= 0)
   1469 			break;
   1470 		size += sz;
   1471 	}
   1472 
   1473 	return size;
   1474 }
   1475 
   1476 /*
   1477  * Wait for operations on the buffer to complete.
   1478  * When they do, extract and return the I/O's error value.
   1479  */
   1480 int
   1481 biowait(buf_t *bp)
   1482 {
   1483 
   1484 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1485 	KASSERT(bp->b_refcnt > 0);
   1486 
   1487 	mutex_enter(bp->b_objlock);
   1488 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1489 		cv_wait(&bp->b_done, bp->b_objlock);
   1490 	mutex_exit(bp->b_objlock);
   1491 
   1492 	return bp->b_error;
   1493 }
   1494 
   1495 /*
   1496  * Mark I/O complete on a buffer.
   1497  *
   1498  * If a callback has been requested, e.g. the pageout
   1499  * daemon, do so. Otherwise, awaken waiting processes.
   1500  *
   1501  * [ Leffler, et al., says on p.247:
   1502  *	"This routine wakes up the blocked process, frees the buffer
   1503  *	for an asynchronous write, or, for a request by the pagedaemon
   1504  *	process, invokes a procedure specified in the buffer structure" ]
   1505  *
   1506  * In real life, the pagedaemon (or other system processes) wants
   1507  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1508  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1509  * for the vn device, that puts allocated buffers on the free lists!)
   1510  */
   1511 void
   1512 biodone(buf_t *bp)
   1513 {
   1514 	int s;
   1515 
   1516 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1517 
   1518 	if (cpu_intr_p()) {
   1519 		/* From interrupt mode: defer to a soft interrupt. */
   1520 		s = splvm();
   1521 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1522 		softint_schedule(biodone_sih);
   1523 		splx(s);
   1524 	} else {
   1525 		/* Process now - the buffer may be freed soon. */
   1526 		biodone2(bp);
   1527 	}
   1528 }
   1529 
   1530 static void
   1531 biodone2(buf_t *bp)
   1532 {
   1533 	void (*callout)(buf_t *);
   1534 
   1535 	mutex_enter(bp->b_objlock);
   1536 	/* Note that the transfer is done. */
   1537 	if (ISSET(bp->b_oflags, BO_DONE))
   1538 		panic("biodone2 already");
   1539 	CLR(bp->b_flags, B_COWDONE);
   1540 	SET(bp->b_oflags, BO_DONE);
   1541 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1542 
   1543 	/* Wake up waiting writers. */
   1544 	if (!ISSET(bp->b_flags, B_READ))
   1545 		vwakeup(bp);
   1546 
   1547 	if ((callout = bp->b_iodone) != NULL) {
   1548 		/* Note callout done, then call out. */
   1549 		KASSERT(!cv_has_waiters(&bp->b_done));
   1550 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1551 		bp->b_iodone = NULL;
   1552 		mutex_exit(bp->b_objlock);
   1553 		(*callout)(bp);
   1554 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1555 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1556 		/* If async, release. */
   1557 		KASSERT(!cv_has_waiters(&bp->b_done));
   1558 		mutex_exit(bp->b_objlock);
   1559 		brelse(bp, 0);
   1560 	} else {
   1561 		/* Otherwise just wake up waiters in biowait(). */
   1562 		cv_broadcast(&bp->b_done);
   1563 		mutex_exit(bp->b_objlock);
   1564 	}
   1565 }
   1566 
   1567 static void
   1568 biointr(void *cookie)
   1569 {
   1570 	struct cpu_info *ci;
   1571 	buf_t *bp;
   1572 	int s;
   1573 
   1574 	ci = curcpu();
   1575 
   1576 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1577 		KASSERT(curcpu() == ci);
   1578 
   1579 		s = splvm();
   1580 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1581 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1582 		splx(s);
   1583 
   1584 		biodone2(bp);
   1585 	}
   1586 }
   1587 
   1588 /*
   1589  * Wait for all buffers to complete I/O
   1590  * Return the number of "stuck" buffers.
   1591  */
   1592 int
   1593 buf_syncwait(void)
   1594 {
   1595 	buf_t *bp;
   1596 	int iter, nbusy, nbusy_prev = 0, ihash;
   1597 
   1598 	for (iter = 0; iter < 20;) {
   1599 		mutex_enter(&bufcache_lock);
   1600 		nbusy = 0;
   1601 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1602 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1603 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1604 				nbusy += ((bp->b_flags & B_READ) == 0);
   1605 		    }
   1606 		}
   1607 		mutex_exit(&bufcache_lock);
   1608 
   1609 		if (nbusy == 0)
   1610 			break;
   1611 		if (nbusy_prev == 0)
   1612 			nbusy_prev = nbusy;
   1613 		printf("%d ", nbusy);
   1614 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
   1615 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1616 			iter++;
   1617 		else
   1618 			nbusy_prev = nbusy;
   1619 	}
   1620 
   1621 	if (nbusy) {
   1622 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1623 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1624 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1625 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1626 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1627 			    (bp->b_flags & B_READ) == 0)
   1628 				vprint(NULL, bp->b_vp);
   1629 		    }
   1630 		}
   1631 #endif
   1632 	}
   1633 
   1634 	return nbusy;
   1635 }
   1636 
   1637 static void
   1638 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1639 {
   1640 
   1641 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1642 	o->b_error = i->b_error;
   1643 	o->b_prio = i->b_prio;
   1644 	o->b_dev = i->b_dev;
   1645 	o->b_bufsize = i->b_bufsize;
   1646 	o->b_bcount = i->b_bcount;
   1647 	o->b_resid = i->b_resid;
   1648 	o->b_addr = PTRTOUINT64(i->b_data);
   1649 	o->b_blkno = i->b_blkno;
   1650 	o->b_rawblkno = i->b_rawblkno;
   1651 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1652 	o->b_proc = PTRTOUINT64(i->b_proc);
   1653 	o->b_vp = PTRTOUINT64(i->b_vp);
   1654 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1655 	o->b_lblkno = i->b_lblkno;
   1656 }
   1657 
   1658 #define KERN_BUFSLOP 20
   1659 static int
   1660 sysctl_dobuf(SYSCTLFN_ARGS)
   1661 {
   1662 	buf_t *bp;
   1663 	struct buf_sysctl bs;
   1664 	struct bqueue *bq;
   1665 	char *dp;
   1666 	u_int i, op, arg;
   1667 	size_t len, needed, elem_size, out_size;
   1668 	int error, elem_count, retries;
   1669 
   1670 	if (namelen == 1 && name[0] == CTL_QUERY)
   1671 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1672 
   1673 	if (namelen != 4)
   1674 		return (EINVAL);
   1675 
   1676 	retries = 100;
   1677  retry:
   1678 	dp = oldp;
   1679 	len = (oldp != NULL) ? *oldlenp : 0;
   1680 	op = name[0];
   1681 	arg = name[1];
   1682 	elem_size = name[2];
   1683 	elem_count = name[3];
   1684 	out_size = MIN(sizeof(bs), elem_size);
   1685 
   1686 	/*
   1687 	 * at the moment, these are just "placeholders" to make the
   1688 	 * API for retrieving kern.buf data more extensible in the
   1689 	 * future.
   1690 	 *
   1691 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1692 	 * these will be resolved at a later point.
   1693 	 */
   1694 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1695 	    elem_size < 1 || elem_count < 0)
   1696 		return (EINVAL);
   1697 
   1698 	error = 0;
   1699 	needed = 0;
   1700 	sysctl_unlock();
   1701 	mutex_enter(&bufcache_lock);
   1702 	for (i = 0; i < BQUEUES; i++) {
   1703 		bq = &bufqueues[i];
   1704 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1705 			bq->bq_marker = bp;
   1706 			if (len >= elem_size && elem_count > 0) {
   1707 				sysctl_fillbuf(bp, &bs);
   1708 				mutex_exit(&bufcache_lock);
   1709 				error = copyout(&bs, dp, out_size);
   1710 				mutex_enter(&bufcache_lock);
   1711 				if (error)
   1712 					break;
   1713 				if (bq->bq_marker != bp) {
   1714 					/*
   1715 					 * This sysctl node is only for
   1716 					 * statistics.  Retry; if the
   1717 					 * queue keeps changing, then
   1718 					 * bail out.
   1719 					 */
   1720 					if (retries-- == 0) {
   1721 						error = EAGAIN;
   1722 						break;
   1723 					}
   1724 					mutex_exit(&bufcache_lock);
   1725 					sysctl_relock();
   1726 					goto retry;
   1727 				}
   1728 				dp += elem_size;
   1729 				len -= elem_size;
   1730 			}
   1731 			needed += elem_size;
   1732 			if (elem_count > 0 && elem_count != INT_MAX)
   1733 				elem_count--;
   1734 		}
   1735 		if (error != 0)
   1736 			break;
   1737 	}
   1738 	mutex_exit(&bufcache_lock);
   1739 	sysctl_relock();
   1740 
   1741 	*oldlenp = needed;
   1742 	if (oldp == NULL)
   1743 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1744 
   1745 	return (error);
   1746 }
   1747 
   1748 static int
   1749 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1750 {
   1751 	int error, rv;
   1752 	struct sysctlnode node;
   1753 	unsigned int temp_bufcache;
   1754 	unsigned long temp_water;
   1755 
   1756 	/* Take a copy of the supplied node and its data */
   1757 	node = *rnode;
   1758 	if (node.sysctl_data == &bufcache) {
   1759 	    node.sysctl_data = &temp_bufcache;
   1760 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
   1761 	} else {
   1762 	    node.sysctl_data = &temp_water;
   1763 	    temp_water = *(unsigned long *)rnode->sysctl_data;
   1764 	}
   1765 
   1766 	/* Update the copy */
   1767 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1768 	if (error || newp == NULL)
   1769 		return (error);
   1770 
   1771 	if (rnode->sysctl_data == &bufcache) {
   1772 		if (temp_bufcache > 100)
   1773 			return (EINVAL);
   1774 		bufcache = temp_bufcache;
   1775 		buf_setwm();
   1776 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1777 		if (bufmem_hiwater - temp_water < 16)
   1778 			return (EINVAL);
   1779 		bufmem_lowater = temp_water;
   1780 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1781 		if (temp_water - bufmem_lowater < 16)
   1782 			return (EINVAL);
   1783 		bufmem_hiwater = temp_water;
   1784 	} else
   1785 		return (EINVAL);
   1786 
   1787 	/* Drain until below new high water mark */
   1788 	sysctl_unlock();
   1789 	mutex_enter(&bufcache_lock);
   1790 	while (bufmem > bufmem_hiwater) {
   1791 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
   1792 		if (rv <= 0)
   1793 			break;
   1794 	}
   1795 	mutex_exit(&bufcache_lock);
   1796 	sysctl_relock();
   1797 
   1798 	return 0;
   1799 }
   1800 
   1801 static struct sysctllog *vfsbio_sysctllog;
   1802 
   1803 static void
   1804 sysctl_kern_buf_setup(void)
   1805 {
   1806 
   1807 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1808 		       CTLFLAG_PERMANENT,
   1809 		       CTLTYPE_NODE, "kern", NULL,
   1810 		       NULL, 0, NULL, 0,
   1811 		       CTL_KERN, CTL_EOL);
   1812 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1813 		       CTLFLAG_PERMANENT,
   1814 		       CTLTYPE_NODE, "buf",
   1815 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1816 		       sysctl_dobuf, 0, NULL, 0,
   1817 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1818 }
   1819 
   1820 static void
   1821 sysctl_vm_buf_setup(void)
   1822 {
   1823 
   1824 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1825 		       CTLFLAG_PERMANENT,
   1826 		       CTLTYPE_NODE, "vm", NULL,
   1827 		       NULL, 0, NULL, 0,
   1828 		       CTL_VM, CTL_EOL);
   1829 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1830 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1831 		       CTLTYPE_INT, "bufcache",
   1832 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1833 				    "buffer cache"),
   1834 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1835 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1836 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1837 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1838 		       CTLTYPE_LONG, "bufmem",
   1839 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1840 				    "cache"),
   1841 		       NULL, 0, &bufmem, 0,
   1842 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1843 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1844 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1845 		       CTLTYPE_LONG, "bufmem_lowater",
   1846 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1847 				    "reserve for buffer cache"),
   1848 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1849 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1850 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1851 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1852 		       CTLTYPE_LONG, "bufmem_hiwater",
   1853 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1854 				    "for buffer cache"),
   1855 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1856 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1857 }
   1858 
   1859 #ifdef DEBUG
   1860 /*
   1861  * Print out statistics on the current allocation of the buffer pool.
   1862  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1863  * in vfs_syscalls.c using sysctl.
   1864  */
   1865 void
   1866 vfs_bufstats(void)
   1867 {
   1868 	int i, j, count;
   1869 	buf_t *bp;
   1870 	struct bqueue *dp;
   1871 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1872 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1873 
   1874 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1875 		count = 0;
   1876 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1877 			counts[j] = 0;
   1878 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1879 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1880 			count++;
   1881 		}
   1882 		printf("%s: total-%d", bname[i], count);
   1883 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1884 			if (counts[j] != 0)
   1885 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1886 		printf("\n");
   1887 	}
   1888 }
   1889 #endif /* DEBUG */
   1890 
   1891 /* ------------------------------ */
   1892 
   1893 buf_t *
   1894 getiobuf(struct vnode *vp, bool waitok)
   1895 {
   1896 	buf_t *bp;
   1897 
   1898 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1899 	if (bp == NULL)
   1900 		return bp;
   1901 
   1902 	buf_init(bp);
   1903 
   1904 	if ((bp->b_vp = vp) == NULL)
   1905 		bp->b_objlock = &buffer_lock;
   1906 	else
   1907 		bp->b_objlock = vp->v_interlock;
   1908 
   1909 	return bp;
   1910 }
   1911 
   1912 void
   1913 putiobuf(buf_t *bp)
   1914 {
   1915 
   1916 	buf_destroy(bp);
   1917 	pool_cache_put(bufio_cache, bp);
   1918 }
   1919 
   1920 /*
   1921  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1922  */
   1923 
   1924 void
   1925 nestiobuf_iodone(buf_t *bp)
   1926 {
   1927 	buf_t *mbp = bp->b_private;
   1928 	int error;
   1929 	int donebytes;
   1930 
   1931 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1932 	KASSERT(mbp != bp);
   1933 
   1934 	error = bp->b_error;
   1935 	if (bp->b_error == 0 &&
   1936 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1937 		/*
   1938 		 * Not all got transfered, raise an error. We have no way to
   1939 		 * propagate these conditions to mbp.
   1940 		 */
   1941 		error = EIO;
   1942 	}
   1943 
   1944 	donebytes = bp->b_bufsize;
   1945 
   1946 	putiobuf(bp);
   1947 	nestiobuf_done(mbp, donebytes, error);
   1948 }
   1949 
   1950 /*
   1951  * nestiobuf_setup: setup a "nested" buffer.
   1952  *
   1953  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1954  * => 'bp' should be a buffer allocated by getiobuf.
   1955  * => 'offset' is a byte offset in the master buffer.
   1956  * => 'size' is a size in bytes of this nested buffer.
   1957  */
   1958 
   1959 void
   1960 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1961 {
   1962 	const int b_read = mbp->b_flags & B_READ;
   1963 	struct vnode *vp = mbp->b_vp;
   1964 
   1965 	KASSERT(mbp->b_bcount >= offset + size);
   1966 	bp->b_vp = vp;
   1967 	bp->b_dev = mbp->b_dev;
   1968 	bp->b_objlock = mbp->b_objlock;
   1969 	bp->b_cflags = BC_BUSY;
   1970 	bp->b_flags = B_ASYNC | b_read;
   1971 	bp->b_iodone = nestiobuf_iodone;
   1972 	bp->b_data = (char *)mbp->b_data + offset;
   1973 	bp->b_resid = bp->b_bcount = size;
   1974 	bp->b_bufsize = bp->b_bcount;
   1975 	bp->b_private = mbp;
   1976 	BIO_COPYPRIO(bp, mbp);
   1977 	if (!b_read && vp != NULL) {
   1978 		mutex_enter(vp->v_interlock);
   1979 		vp->v_numoutput++;
   1980 		mutex_exit(vp->v_interlock);
   1981 	}
   1982 }
   1983 
   1984 /*
   1985  * nestiobuf_done: propagate completion to the master buffer.
   1986  *
   1987  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1988  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1989  */
   1990 
   1991 void
   1992 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1993 {
   1994 
   1995 	if (donebytes == 0) {
   1996 		return;
   1997 	}
   1998 	mutex_enter(mbp->b_objlock);
   1999 	KASSERT(mbp->b_resid >= donebytes);
   2000 	mbp->b_resid -= donebytes;
   2001 	if (error)
   2002 		mbp->b_error = error;
   2003 	if (mbp->b_resid == 0) {
   2004 		if (mbp->b_error)
   2005 			mbp->b_resid = mbp->b_bcount;
   2006 		mutex_exit(mbp->b_objlock);
   2007 		biodone(mbp);
   2008 	} else
   2009 		mutex_exit(mbp->b_objlock);
   2010 }
   2011 
   2012 void
   2013 buf_init(buf_t *bp)
   2014 {
   2015 
   2016 	cv_init(&bp->b_busy, "biolock");
   2017 	cv_init(&bp->b_done, "biowait");
   2018 	bp->b_dev = NODEV;
   2019 	bp->b_error = 0;
   2020 	bp->b_flags = 0;
   2021 	bp->b_cflags = 0;
   2022 	bp->b_oflags = 0;
   2023 	bp->b_objlock = &buffer_lock;
   2024 	bp->b_iodone = NULL;
   2025 	bp->b_refcnt = 1;
   2026 	bp->b_dev = NODEV;
   2027 	bp->b_vnbufs.le_next = NOLIST;
   2028 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2029 }
   2030 
   2031 void
   2032 buf_destroy(buf_t *bp)
   2033 {
   2034 
   2035 	cv_destroy(&bp->b_done);
   2036 	cv_destroy(&bp->b_busy);
   2037 }
   2038 
   2039 int
   2040 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2041 {
   2042 	int error;
   2043 
   2044 	KASSERT(mutex_owned(&bufcache_lock));
   2045 
   2046 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2047 		if (curlwp == uvm.pagedaemon_lwp)
   2048 			return EDEADLK;
   2049 		bp->b_cflags |= BC_WANTED;
   2050 		bref(bp);
   2051 		if (interlock != NULL)
   2052 			mutex_exit(interlock);
   2053 		if (intr) {
   2054 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2055 			    timo);
   2056 		} else {
   2057 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2058 			    timo);
   2059 		}
   2060 		brele(bp);
   2061 		if (interlock != NULL)
   2062 			mutex_enter(interlock);
   2063 		if (error != 0)
   2064 			return error;
   2065 		return EPASSTHROUGH;
   2066 	}
   2067 	bp->b_cflags |= BC_BUSY;
   2068 
   2069 	return 0;
   2070 }
   2071