vfs_bio.c revision 1.250 1 /* $NetBSD: vfs_bio.c,v 1.250 2014/05/25 16:31:51 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.250 2014/05/25 16:31:51 pooka Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146
147 #include <uvm/uvm.h> /* extern struct uvm uvm */
148
149 #include <miscfs/specfs/specdev.h>
150
151 #ifndef BUFPAGES
152 # define BUFPAGES 0
153 #endif
154
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 # error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
162
163 u_int nbuf; /* desired number of buffer headers */
164 u_int bufpages = BUFPAGES; /* optional hardwired count */
165 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
166
167 /* Function prototypes */
168 struct bqueue;
169
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194
195 /*
196 * Definitions for the buffer hash lists.
197 */
198 #define BUFHASH(dvp, lbn) \
199 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long bufhash;
202 struct bqueue bufqueues[BQUEUES];
203
204 static kcondvar_t needbuffer_cv;
205
206 /*
207 * Buffer queue lock.
208 */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399 vsize_t mapsz = 0;
400
401 /*
402 * Determine the upper bound of memory to use for buffers.
403 *
404 * - If bufpages is specified, use that as the number
405 * pages.
406 *
407 * - Otherwise, use bufcache as the percentage of
408 * physical memory.
409 */
410 if (bufpages != 0) {
411 n = bufpages;
412 } else {
413 if (bufcache < 5) {
414 printf("forcing bufcache %d -> 5", bufcache);
415 bufcache = 5;
416 }
417 if (bufcache > 95) {
418 printf("forcing bufcache %d -> 95", bufcache);
419 bufcache = 95;
420 }
421 if (buf_map != NULL)
422 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
423 n = calc_cache_size(mapsz, bufcache,
424 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
425 / PAGE_SIZE;
426 }
427
428 n <<= PAGE_SHIFT;
429 if (bufmem_valimit != 0 && n > bufmem_valimit)
430 n = bufmem_valimit;
431
432 return (n);
433 }
434
435 /*
436 * Initialize buffers and hash links for buffers.
437 */
438 void
439 bufinit(void)
440 {
441 struct bqueue *dp;
442 int use_std;
443 u_int i;
444 extern void (*biodone_vfs)(buf_t *);
445
446 biodone_vfs = biodone;
447
448 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
449 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
450 cv_init(&needbuffer_cv, "needbuf");
451
452 if (bufmem_valimit != 0) {
453 vaddr_t minaddr = 0, maxaddr;
454 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
455 bufmem_valimit, 0, false, 0);
456 if (buf_map == NULL)
457 panic("bufinit: cannot allocate submap");
458 } else
459 buf_map = kernel_map;
460
461 /*
462 * Initialize buffer cache memory parameters.
463 */
464 bufmem = 0;
465 buf_setwm();
466
467 /* On "small" machines use small pool page sizes where possible */
468 use_std = (physmem < atop(16*1024*1024));
469
470 /*
471 * Also use them on systems that can map the pool pages using
472 * a direct-mapped segment.
473 */
474 #ifdef PMAP_MAP_POOLPAGE
475 use_std = 1;
476 #endif
477
478 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
479 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
480 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
481 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
482
483 for (i = 0; i < NMEMPOOLS; i++) {
484 struct pool_allocator *pa;
485 struct pool *pp = &bmempools[i];
486 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
487 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
488 if (__predict_false(size >= 1048576))
489 (void)snprintf(name, 8, "buf%um", size / 1048576);
490 else if (__predict_true(size >= 1024))
491 (void)snprintf(name, 8, "buf%uk", size / 1024);
492 else
493 (void)snprintf(name, 8, "buf%ub", size);
494 pa = (size <= PAGE_SIZE && use_std)
495 ? &pool_allocator_nointr
496 : &bufmempool_allocator;
497 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
498 pool_setlowat(pp, 1);
499 pool_sethiwat(pp, 1);
500 }
501
502 /* Initialize the buffer queues */
503 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
504 TAILQ_INIT(&dp->bq_queue);
505 dp->bq_bytes = 0;
506 }
507
508 /*
509 * Estimate hash table size based on the amount of memory we
510 * intend to use for the buffer cache. The average buffer
511 * size is dependent on our clients (i.e. filesystems).
512 *
513 * For now, use an empirical 3K per buffer.
514 */
515 nbuf = (bufmem_hiwater / 1024) / 3;
516 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
517
518 sysctl_kern_buf_setup();
519 sysctl_vm_buf_setup();
520 }
521
522 void
523 bufinit2(void)
524 {
525
526 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
527 NULL);
528 if (biodone_sih == NULL)
529 panic("bufinit2: can't establish soft interrupt");
530 }
531
532 static int
533 buf_lotsfree(void)
534 {
535 int try, thresh;
536
537 /* Always allocate if less than the low water mark. */
538 if (bufmem < bufmem_lowater)
539 return 1;
540
541 /* Never allocate if greater than the high water mark. */
542 if (bufmem > bufmem_hiwater)
543 return 0;
544
545 /* If there's anything on the AGE list, it should be eaten. */
546 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
547 return 0;
548
549 /*
550 * The probabily of getting a new allocation is inversely
551 * proportional to the current size of the cache, using
552 * a granularity of 16 steps.
553 */
554 try = random() & 0x0000000fL;
555
556 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
557 thresh = (bufmem - bufmem_lowater) /
558 ((bufmem_hiwater - bufmem_lowater) / 16);
559
560 if (try >= thresh)
561 return 1;
562
563 /* Otherwise don't allocate. */
564 return 0;
565 }
566
567 /*
568 * Return estimate of bytes we think need to be
569 * released to help resolve low memory conditions.
570 *
571 * => called with bufcache_lock held.
572 */
573 static int
574 buf_canrelease(void)
575 {
576 int pagedemand, ninvalid = 0;
577
578 KASSERT(mutex_owned(&bufcache_lock));
579
580 if (bufmem < bufmem_lowater)
581 return 0;
582
583 if (bufmem > bufmem_hiwater)
584 return bufmem - bufmem_hiwater;
585
586 ninvalid += bufqueues[BQ_AGE].bq_bytes;
587
588 pagedemand = uvmexp.freetarg - uvmexp.free;
589 if (pagedemand < 0)
590 return ninvalid;
591 return MAX(ninvalid, MIN(2 * MAXBSIZE,
592 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
593 }
594
595 /*
596 * Buffer memory allocation helper functions
597 */
598 static u_long
599 buf_mempoolidx(u_long size)
600 {
601 u_int n = 0;
602
603 size -= 1;
604 size >>= MEMPOOL_INDEX_OFFSET;
605 while (size) {
606 size >>= 1;
607 n += 1;
608 }
609 if (n >= NMEMPOOLS)
610 panic("buf mem pool index %d", n);
611 return n;
612 }
613
614 static u_long
615 buf_roundsize(u_long size)
616 {
617 /* Round up to nearest power of 2 */
618 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
619 }
620
621 static void *
622 buf_alloc(size_t size)
623 {
624 u_int n = buf_mempoolidx(size);
625 void *addr;
626
627 while (1) {
628 addr = pool_get(&bmempools[n], PR_NOWAIT);
629 if (addr != NULL)
630 break;
631
632 /* No memory, see if we can free some. If so, try again */
633 mutex_enter(&bufcache_lock);
634 if (buf_drain(1) > 0) {
635 mutex_exit(&bufcache_lock);
636 continue;
637 }
638
639 if (curlwp == uvm.pagedaemon_lwp) {
640 mutex_exit(&bufcache_lock);
641 return NULL;
642 }
643
644 /* Wait for buffers to arrive on the LRU queue */
645 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
646 mutex_exit(&bufcache_lock);
647 }
648
649 return addr;
650 }
651
652 static void
653 buf_mrelease(void *addr, size_t size)
654 {
655
656 pool_put(&bmempools[buf_mempoolidx(size)], addr);
657 }
658
659 /*
660 * bread()/breadn() helper.
661 */
662 static buf_t *
663 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
664 int async)
665 {
666 buf_t *bp;
667 struct mount *mp;
668
669 bp = getblk(vp, blkno, size, 0, 0);
670
671 /*
672 * getblk() may return NULL if we are the pagedaemon.
673 */
674 if (bp == NULL) {
675 KASSERT(curlwp == uvm.pagedaemon_lwp);
676 return NULL;
677 }
678
679 /*
680 * If buffer does not have data valid, start a read.
681 * Note that if buffer is BC_INVAL, getblk() won't return it.
682 * Therefore, it's valid if its I/O has completed or been delayed.
683 */
684 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
685 /* Start I/O for the buffer. */
686 SET(bp->b_flags, B_READ | async);
687 if (async)
688 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
689 else
690 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
691 VOP_STRATEGY(vp, bp);
692
693 /* Pay for the read. */
694 curlwp->l_ru.ru_inblock++;
695 } else if (async)
696 brelse(bp, 0);
697
698 if (vp->v_type == VBLK)
699 mp = spec_node_getmountedfs(vp);
700 else
701 mp = vp->v_mount;
702
703 /*
704 * Collect statistics on synchronous and asynchronous reads.
705 * Reads from block devices are charged to their associated
706 * filesystem (if any).
707 */
708 if (mp != NULL) {
709 if (async == 0)
710 mp->mnt_stat.f_syncreads++;
711 else
712 mp->mnt_stat.f_asyncreads++;
713 }
714
715 return (bp);
716 }
717
718 /*
719 * Read a disk block.
720 * This algorithm described in Bach (p.54).
721 */
722 int
723 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
724 int flags, buf_t **bpp)
725 {
726 buf_t *bp;
727 int error;
728
729 /* Get buffer for block. */
730 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
731 if (bp == NULL)
732 return ENOMEM;
733
734 /* Wait for the read to complete, and return result. */
735 error = biowait(bp);
736 if (error == 0 && (flags & B_MODIFY) != 0)
737 error = fscow_run(bp, true);
738 if (error) {
739 brelse(bp, 0);
740 *bpp = NULL;
741 }
742
743 return error;
744 }
745
746 /*
747 * Read-ahead multiple disk blocks. The first is sync, the rest async.
748 * Trivial modification to the breada algorithm presented in Bach (p.55).
749 */
750 int
751 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
752 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
753 {
754 buf_t *bp;
755 int error, i;
756
757 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
758 if (bp == NULL)
759 return ENOMEM;
760
761 /*
762 * For each of the read-ahead blocks, start a read, if necessary.
763 */
764 mutex_enter(&bufcache_lock);
765 for (i = 0; i < nrablks; i++) {
766 /* If it's in the cache, just go on to next one. */
767 if (incore(vp, rablks[i]))
768 continue;
769
770 /* Get a buffer for the read-ahead block */
771 mutex_exit(&bufcache_lock);
772 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
773 mutex_enter(&bufcache_lock);
774 }
775 mutex_exit(&bufcache_lock);
776
777 /* Otherwise, we had to start a read for it; wait until it's valid. */
778 error = biowait(bp);
779 if (error == 0 && (flags & B_MODIFY) != 0)
780 error = fscow_run(bp, true);
781 if (error) {
782 brelse(bp, 0);
783 *bpp = NULL;
784 }
785
786 return error;
787 }
788
789 /*
790 * Block write. Described in Bach (p.56)
791 */
792 int
793 bwrite(buf_t *bp)
794 {
795 int rv, sync, wasdelayed;
796 struct vnode *vp;
797 struct mount *mp;
798
799 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
800 KASSERT(!cv_has_waiters(&bp->b_done));
801
802 vp = bp->b_vp;
803 if (vp != NULL) {
804 KASSERT(bp->b_objlock == vp->v_interlock);
805 if (vp->v_type == VBLK)
806 mp = spec_node_getmountedfs(vp);
807 else
808 mp = vp->v_mount;
809 } else {
810 mp = NULL;
811 }
812
813 if (mp && mp->mnt_wapbl) {
814 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
815 bdwrite(bp);
816 return 0;
817 }
818 }
819
820 /*
821 * Remember buffer type, to switch on it later. If the write was
822 * synchronous, but the file system was mounted with MNT_ASYNC,
823 * convert it to a delayed write.
824 * XXX note that this relies on delayed tape writes being converted
825 * to async, not sync writes (which is safe, but ugly).
826 */
827 sync = !ISSET(bp->b_flags, B_ASYNC);
828 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
829 bdwrite(bp);
830 return (0);
831 }
832
833 /*
834 * Collect statistics on synchronous and asynchronous writes.
835 * Writes to block devices are charged to their associated
836 * filesystem (if any).
837 */
838 if (mp != NULL) {
839 if (sync)
840 mp->mnt_stat.f_syncwrites++;
841 else
842 mp->mnt_stat.f_asyncwrites++;
843 }
844
845 /*
846 * Pay for the I/O operation and make sure the buf is on the correct
847 * vnode queue.
848 */
849 bp->b_error = 0;
850 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
851 CLR(bp->b_flags, B_READ);
852 if (wasdelayed) {
853 mutex_enter(&bufcache_lock);
854 mutex_enter(bp->b_objlock);
855 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
856 reassignbuf(bp, bp->b_vp);
857 mutex_exit(&bufcache_lock);
858 } else {
859 curlwp->l_ru.ru_oublock++;
860 mutex_enter(bp->b_objlock);
861 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
862 }
863 if (vp != NULL)
864 vp->v_numoutput++;
865 mutex_exit(bp->b_objlock);
866
867 /* Initiate disk write. */
868 if (sync)
869 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
870 else
871 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
872
873 VOP_STRATEGY(vp, bp);
874
875 if (sync) {
876 /* If I/O was synchronous, wait for it to complete. */
877 rv = biowait(bp);
878
879 /* Release the buffer. */
880 brelse(bp, 0);
881
882 return (rv);
883 } else {
884 return (0);
885 }
886 }
887
888 int
889 vn_bwrite(void *v)
890 {
891 struct vop_bwrite_args *ap = v;
892
893 return (bwrite(ap->a_bp));
894 }
895
896 /*
897 * Delayed write.
898 *
899 * The buffer is marked dirty, but is not queued for I/O.
900 * This routine should be used when the buffer is expected
901 * to be modified again soon, typically a small write that
902 * partially fills a buffer.
903 *
904 * NB: magnetic tapes cannot be delayed; they must be
905 * written in the order that the writes are requested.
906 *
907 * Described in Leffler, et al. (pp. 208-213).
908 */
909 void
910 bdwrite(buf_t *bp)
911 {
912
913 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
914 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
915 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
916 KASSERT(!cv_has_waiters(&bp->b_done));
917
918 /* If this is a tape block, write the block now. */
919 if (bdev_type(bp->b_dev) == D_TAPE) {
920 bawrite(bp);
921 return;
922 }
923
924 if (wapbl_vphaswapbl(bp->b_vp)) {
925 struct mount *mp = wapbl_vptomp(bp->b_vp);
926
927 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
928 WAPBL_ADD_BUF(mp, bp);
929 }
930 }
931
932 /*
933 * If the block hasn't been seen before:
934 * (1) Mark it as having been seen,
935 * (2) Charge for the write,
936 * (3) Make sure it's on its vnode's correct block list.
937 */
938 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
939
940 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
941 mutex_enter(&bufcache_lock);
942 mutex_enter(bp->b_objlock);
943 SET(bp->b_oflags, BO_DELWRI);
944 curlwp->l_ru.ru_oublock++;
945 reassignbuf(bp, bp->b_vp);
946 mutex_exit(&bufcache_lock);
947 } else {
948 mutex_enter(bp->b_objlock);
949 }
950 /* Otherwise, the "write" is done, so mark and release the buffer. */
951 CLR(bp->b_oflags, BO_DONE);
952 mutex_exit(bp->b_objlock);
953
954 brelse(bp, 0);
955 }
956
957 /*
958 * Asynchronous block write; just an asynchronous bwrite().
959 */
960 void
961 bawrite(buf_t *bp)
962 {
963
964 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
965 KASSERT(bp->b_vp != NULL);
966
967 SET(bp->b_flags, B_ASYNC);
968 VOP_BWRITE(bp->b_vp, bp);
969 }
970
971 /*
972 * Release a buffer on to the free lists.
973 * Described in Bach (p. 46).
974 */
975 void
976 brelsel(buf_t *bp, int set)
977 {
978 struct bqueue *bufq;
979 struct vnode *vp;
980
981 KASSERT(bp != NULL);
982 KASSERT(mutex_owned(&bufcache_lock));
983 KASSERT(!cv_has_waiters(&bp->b_done));
984 KASSERT(bp->b_refcnt > 0);
985
986 SET(bp->b_cflags, set);
987
988 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
989 KASSERT(bp->b_iodone == NULL);
990
991 /* Wake up any processes waiting for any buffer to become free. */
992 cv_signal(&needbuffer_cv);
993
994 /* Wake up any proceeses waiting for _this_ buffer to become */
995 if (ISSET(bp->b_cflags, BC_WANTED))
996 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
997
998 /* If it's clean clear the copy-on-write flag. */
999 if (ISSET(bp->b_flags, B_COWDONE)) {
1000 mutex_enter(bp->b_objlock);
1001 if (!ISSET(bp->b_oflags, BO_DELWRI))
1002 CLR(bp->b_flags, B_COWDONE);
1003 mutex_exit(bp->b_objlock);
1004 }
1005
1006 /*
1007 * Determine which queue the buffer should be on, then put it there.
1008 */
1009
1010 /* If it's locked, don't report an error; try again later. */
1011 if (ISSET(bp->b_flags, B_LOCKED))
1012 bp->b_error = 0;
1013
1014 /* If it's not cacheable, or an error, mark it invalid. */
1015 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1016 SET(bp->b_cflags, BC_INVAL);
1017
1018 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1019 /*
1020 * This is a delayed write buffer that was just flushed to
1021 * disk. It is still on the LRU queue. If it's become
1022 * invalid, then we need to move it to a different queue;
1023 * otherwise leave it in its current position.
1024 */
1025 CLR(bp->b_cflags, BC_VFLUSH);
1026 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1027 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1028 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1029 goto already_queued;
1030 } else {
1031 bremfree(bp);
1032 }
1033 }
1034
1035 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1036 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1037 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1038
1039 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1040 /*
1041 * If it's invalid or empty, dissociate it from its vnode
1042 * and put on the head of the appropriate queue.
1043 */
1044 if (ISSET(bp->b_flags, B_LOCKED)) {
1045 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1046 struct mount *mp = wapbl_vptomp(vp);
1047
1048 KASSERT(bp->b_iodone
1049 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1050 WAPBL_REMOVE_BUF(mp, bp);
1051 }
1052 }
1053
1054 mutex_enter(bp->b_objlock);
1055 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1056 if ((vp = bp->b_vp) != NULL) {
1057 KASSERT(bp->b_objlock == vp->v_interlock);
1058 reassignbuf(bp, bp->b_vp);
1059 brelvp(bp);
1060 mutex_exit(vp->v_interlock);
1061 } else {
1062 KASSERT(bp->b_objlock == &buffer_lock);
1063 mutex_exit(bp->b_objlock);
1064 }
1065
1066 if (bp->b_bufsize <= 0)
1067 /* no data */
1068 goto already_queued;
1069 else
1070 /* invalid data */
1071 bufq = &bufqueues[BQ_AGE];
1072 binsheadfree(bp, bufq);
1073 } else {
1074 /*
1075 * It has valid data. Put it on the end of the appropriate
1076 * queue, so that it'll stick around for as long as possible.
1077 * If buf is AGE, but has dependencies, must put it on last
1078 * bufqueue to be scanned, ie LRU. This protects against the
1079 * livelock where BQ_AGE only has buffers with dependencies,
1080 * and we thus never get to the dependent buffers in BQ_LRU.
1081 */
1082 if (ISSET(bp->b_flags, B_LOCKED)) {
1083 /* locked in core */
1084 bufq = &bufqueues[BQ_LOCKED];
1085 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1086 /* valid data */
1087 bufq = &bufqueues[BQ_LRU];
1088 } else {
1089 /* stale but valid data */
1090 bufq = &bufqueues[BQ_AGE];
1091 }
1092 binstailfree(bp, bufq);
1093 }
1094 already_queued:
1095 /* Unlock the buffer. */
1096 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1097 CLR(bp->b_flags, B_ASYNC);
1098 cv_broadcast(&bp->b_busy);
1099
1100 if (bp->b_bufsize <= 0)
1101 brele(bp);
1102 }
1103
1104 void
1105 brelse(buf_t *bp, int set)
1106 {
1107
1108 mutex_enter(&bufcache_lock);
1109 brelsel(bp, set);
1110 mutex_exit(&bufcache_lock);
1111 }
1112
1113 /*
1114 * Determine if a block is in the cache.
1115 * Just look on what would be its hash chain. If it's there, return
1116 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1117 * we normally don't return the buffer, unless the caller explicitly
1118 * wants us to.
1119 */
1120 buf_t *
1121 incore(struct vnode *vp, daddr_t blkno)
1122 {
1123 buf_t *bp;
1124
1125 KASSERT(mutex_owned(&bufcache_lock));
1126
1127 /* Search hash chain */
1128 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1129 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1130 !ISSET(bp->b_cflags, BC_INVAL)) {
1131 KASSERT(bp->b_objlock == vp->v_interlock);
1132 return (bp);
1133 }
1134 }
1135
1136 return (NULL);
1137 }
1138
1139 /*
1140 * Get a block of requested size that is associated with
1141 * a given vnode and block offset. If it is found in the
1142 * block cache, mark it as having been found, make it busy
1143 * and return it. Otherwise, return an empty block of the
1144 * correct size. It is up to the caller to insure that the
1145 * cached blocks be of the correct size.
1146 */
1147 buf_t *
1148 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1149 {
1150 int err, preserve;
1151 buf_t *bp;
1152
1153 mutex_enter(&bufcache_lock);
1154 loop:
1155 bp = incore(vp, blkno);
1156 if (bp != NULL) {
1157 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1158 if (err != 0) {
1159 if (err == EPASSTHROUGH)
1160 goto loop;
1161 mutex_exit(&bufcache_lock);
1162 return (NULL);
1163 }
1164 KASSERT(!cv_has_waiters(&bp->b_done));
1165 #ifdef DIAGNOSTIC
1166 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1167 bp->b_bcount < size && vp->v_type != VBLK)
1168 panic("getblk: block size invariant failed");
1169 #endif
1170 bremfree(bp);
1171 preserve = 1;
1172 } else {
1173 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1174 goto loop;
1175
1176 if (incore(vp, blkno) != NULL) {
1177 /* The block has come into memory in the meantime. */
1178 brelsel(bp, 0);
1179 goto loop;
1180 }
1181
1182 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1183 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1184 mutex_enter(vp->v_interlock);
1185 bgetvp(vp, bp);
1186 mutex_exit(vp->v_interlock);
1187 preserve = 0;
1188 }
1189 mutex_exit(&bufcache_lock);
1190
1191 /*
1192 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1193 * if we re-size buffers here.
1194 */
1195 if (ISSET(bp->b_flags, B_LOCKED)) {
1196 KASSERT(bp->b_bufsize >= size);
1197 } else {
1198 if (allocbuf(bp, size, preserve)) {
1199 mutex_enter(&bufcache_lock);
1200 LIST_REMOVE(bp, b_hash);
1201 mutex_exit(&bufcache_lock);
1202 brelse(bp, BC_INVAL);
1203 return NULL;
1204 }
1205 }
1206 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1207 return (bp);
1208 }
1209
1210 /*
1211 * Get an empty, disassociated buffer of given size.
1212 */
1213 buf_t *
1214 geteblk(int size)
1215 {
1216 buf_t *bp;
1217 int error __diagused;
1218
1219 mutex_enter(&bufcache_lock);
1220 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1221 ;
1222
1223 SET(bp->b_cflags, BC_INVAL);
1224 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1225 mutex_exit(&bufcache_lock);
1226 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1227 error = allocbuf(bp, size, 0);
1228 KASSERT(error == 0);
1229 return (bp);
1230 }
1231
1232 /*
1233 * Expand or contract the actual memory allocated to a buffer.
1234 *
1235 * If the buffer shrinks, data is lost, so it's up to the
1236 * caller to have written it out *first*; this routine will not
1237 * start a write. If the buffer grows, it's the callers
1238 * responsibility to fill out the buffer's additional contents.
1239 */
1240 int
1241 allocbuf(buf_t *bp, int size, int preserve)
1242 {
1243 void *addr;
1244 vsize_t oldsize, desired_size;
1245 int oldcount;
1246 int delta;
1247
1248 desired_size = buf_roundsize(size);
1249 if (desired_size > MAXBSIZE)
1250 printf("allocbuf: buffer larger than MAXBSIZE requested");
1251
1252 oldcount = bp->b_bcount;
1253
1254 bp->b_bcount = size;
1255
1256 oldsize = bp->b_bufsize;
1257 if (oldsize == desired_size) {
1258 /*
1259 * Do not short cut the WAPBL resize, as the buffer length
1260 * could still have changed and this would corrupt the
1261 * tracking of the transaction length.
1262 */
1263 goto out;
1264 }
1265
1266 /*
1267 * If we want a buffer of a different size, re-allocate the
1268 * buffer's memory; copy old content only if needed.
1269 */
1270 addr = buf_alloc(desired_size);
1271 if (addr == NULL)
1272 return ENOMEM;
1273 if (preserve)
1274 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1275 if (bp->b_data != NULL)
1276 buf_mrelease(bp->b_data, oldsize);
1277 bp->b_data = addr;
1278 bp->b_bufsize = desired_size;
1279
1280 /*
1281 * Update overall buffer memory counter (protected by bufcache_lock)
1282 */
1283 delta = (long)desired_size - (long)oldsize;
1284
1285 mutex_enter(&bufcache_lock);
1286 if ((bufmem += delta) > bufmem_hiwater) {
1287 /*
1288 * Need to trim overall memory usage.
1289 */
1290 while (buf_canrelease()) {
1291 if (curcpu()->ci_schedstate.spc_flags &
1292 SPCF_SHOULDYIELD) {
1293 mutex_exit(&bufcache_lock);
1294 preempt();
1295 mutex_enter(&bufcache_lock);
1296 }
1297 if (buf_trim() == 0)
1298 break;
1299 }
1300 }
1301 mutex_exit(&bufcache_lock);
1302
1303 out:
1304 if (wapbl_vphaswapbl(bp->b_vp))
1305 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * Find a buffer which is available for use.
1312 * Select something from a free list.
1313 * Preference is to AGE list, then LRU list.
1314 *
1315 * Called with the buffer queues locked.
1316 * Return buffer locked.
1317 */
1318 buf_t *
1319 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1320 {
1321 buf_t *bp;
1322 struct vnode *vp;
1323
1324 start:
1325 KASSERT(mutex_owned(&bufcache_lock));
1326
1327 /*
1328 * Get a new buffer from the pool.
1329 */
1330 if (!from_bufq && buf_lotsfree()) {
1331 mutex_exit(&bufcache_lock);
1332 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1333 if (bp != NULL) {
1334 memset((char *)bp, 0, sizeof(*bp));
1335 buf_init(bp);
1336 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1337 mutex_enter(&bufcache_lock);
1338 #if defined(DIAGNOSTIC)
1339 bp->b_freelistindex = -1;
1340 #endif /* defined(DIAGNOSTIC) */
1341 return (bp);
1342 }
1343 mutex_enter(&bufcache_lock);
1344 }
1345
1346 KASSERT(mutex_owned(&bufcache_lock));
1347 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1348 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1349 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1350 bremfree(bp);
1351
1352 /* Buffer is no longer on free lists. */
1353 SET(bp->b_cflags, BC_BUSY);
1354 } else {
1355 /*
1356 * XXX: !from_bufq should be removed.
1357 */
1358 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1359 /* wait for a free buffer of any kind */
1360 if ((slpflag & PCATCH) != 0)
1361 (void)cv_timedwait_sig(&needbuffer_cv,
1362 &bufcache_lock, slptimeo);
1363 else
1364 (void)cv_timedwait(&needbuffer_cv,
1365 &bufcache_lock, slptimeo);
1366 }
1367 return (NULL);
1368 }
1369
1370 #ifdef DIAGNOSTIC
1371 if (bp->b_bufsize <= 0)
1372 panic("buffer %p: on queue but empty", bp);
1373 #endif
1374
1375 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1376 /*
1377 * This is a delayed write buffer being flushed to disk. Make
1378 * sure it gets aged out of the queue when it's finished, and
1379 * leave it off the LRU queue.
1380 */
1381 CLR(bp->b_cflags, BC_VFLUSH);
1382 SET(bp->b_cflags, BC_AGE);
1383 goto start;
1384 }
1385
1386 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1387 KASSERT(bp->b_refcnt > 0);
1388 KASSERT(!cv_has_waiters(&bp->b_done));
1389
1390 /*
1391 * If buffer was a delayed write, start it and return NULL
1392 * (since we might sleep while starting the write).
1393 */
1394 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1395 /*
1396 * This buffer has gone through the LRU, so make sure it gets
1397 * reused ASAP.
1398 */
1399 SET(bp->b_cflags, BC_AGE);
1400 mutex_exit(&bufcache_lock);
1401 bawrite(bp);
1402 mutex_enter(&bufcache_lock);
1403 return (NULL);
1404 }
1405
1406 vp = bp->b_vp;
1407
1408 /* clear out various other fields */
1409 bp->b_cflags = BC_BUSY;
1410 bp->b_oflags = 0;
1411 bp->b_flags = 0;
1412 bp->b_dev = NODEV;
1413 bp->b_blkno = 0;
1414 bp->b_lblkno = 0;
1415 bp->b_rawblkno = 0;
1416 bp->b_iodone = 0;
1417 bp->b_error = 0;
1418 bp->b_resid = 0;
1419 bp->b_bcount = 0;
1420
1421 LIST_REMOVE(bp, b_hash);
1422
1423 /* Disassociate us from our vnode, if we had one... */
1424 if (vp != NULL) {
1425 mutex_enter(vp->v_interlock);
1426 brelvp(bp);
1427 mutex_exit(vp->v_interlock);
1428 }
1429
1430 return (bp);
1431 }
1432
1433 /*
1434 * Attempt to free an aged buffer off the queues.
1435 * Called with queue lock held.
1436 * Returns the amount of buffer memory freed.
1437 */
1438 static int
1439 buf_trim(void)
1440 {
1441 buf_t *bp;
1442 long size;
1443
1444 KASSERT(mutex_owned(&bufcache_lock));
1445
1446 /* Instruct getnewbuf() to get buffers off the queues */
1447 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1448 return 0;
1449
1450 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1451 size = bp->b_bufsize;
1452 bufmem -= size;
1453 if (size > 0) {
1454 buf_mrelease(bp->b_data, size);
1455 bp->b_bcount = bp->b_bufsize = 0;
1456 }
1457 /* brelse() will return the buffer to the global buffer pool */
1458 brelsel(bp, 0);
1459 return size;
1460 }
1461
1462 int
1463 buf_drain(int n)
1464 {
1465 int size = 0, sz;
1466
1467 KASSERT(mutex_owned(&bufcache_lock));
1468
1469 while (size < n && bufmem > bufmem_lowater) {
1470 sz = buf_trim();
1471 if (sz <= 0)
1472 break;
1473 size += sz;
1474 }
1475
1476 return size;
1477 }
1478
1479 /*
1480 * Wait for operations on the buffer to complete.
1481 * When they do, extract and return the I/O's error value.
1482 */
1483 int
1484 biowait(buf_t *bp)
1485 {
1486
1487 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1488 KASSERT(bp->b_refcnt > 0);
1489
1490 mutex_enter(bp->b_objlock);
1491 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1492 cv_wait(&bp->b_done, bp->b_objlock);
1493 mutex_exit(bp->b_objlock);
1494
1495 return bp->b_error;
1496 }
1497
1498 /*
1499 * Mark I/O complete on a buffer.
1500 *
1501 * If a callback has been requested, e.g. the pageout
1502 * daemon, do so. Otherwise, awaken waiting processes.
1503 *
1504 * [ Leffler, et al., says on p.247:
1505 * "This routine wakes up the blocked process, frees the buffer
1506 * for an asynchronous write, or, for a request by the pagedaemon
1507 * process, invokes a procedure specified in the buffer structure" ]
1508 *
1509 * In real life, the pagedaemon (or other system processes) wants
1510 * to do async stuff to, and doesn't want the buffer brelse()'d.
1511 * (for swap pager, that puts swap buffers on the free lists (!!!),
1512 * for the vn device, that puts allocated buffers on the free lists!)
1513 */
1514 void
1515 biodone(buf_t *bp)
1516 {
1517 int s;
1518
1519 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1520
1521 if (cpu_intr_p()) {
1522 /* From interrupt mode: defer to a soft interrupt. */
1523 s = splvm();
1524 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1525 softint_schedule(biodone_sih);
1526 splx(s);
1527 } else {
1528 /* Process now - the buffer may be freed soon. */
1529 biodone2(bp);
1530 }
1531 }
1532
1533 static void
1534 biodone2(buf_t *bp)
1535 {
1536 void (*callout)(buf_t *);
1537
1538 mutex_enter(bp->b_objlock);
1539 /* Note that the transfer is done. */
1540 if (ISSET(bp->b_oflags, BO_DONE))
1541 panic("biodone2 already");
1542 CLR(bp->b_flags, B_COWDONE);
1543 SET(bp->b_oflags, BO_DONE);
1544 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1545
1546 /* Wake up waiting writers. */
1547 if (!ISSET(bp->b_flags, B_READ))
1548 vwakeup(bp);
1549
1550 if ((callout = bp->b_iodone) != NULL) {
1551 /* Note callout done, then call out. */
1552 KASSERT(!cv_has_waiters(&bp->b_done));
1553 KERNEL_LOCK(1, NULL); /* XXXSMP */
1554 bp->b_iodone = NULL;
1555 mutex_exit(bp->b_objlock);
1556 (*callout)(bp);
1557 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1558 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1559 /* If async, release. */
1560 KASSERT(!cv_has_waiters(&bp->b_done));
1561 mutex_exit(bp->b_objlock);
1562 brelse(bp, 0);
1563 } else {
1564 /* Otherwise just wake up waiters in biowait(). */
1565 cv_broadcast(&bp->b_done);
1566 mutex_exit(bp->b_objlock);
1567 }
1568 }
1569
1570 static void
1571 biointr(void *cookie)
1572 {
1573 struct cpu_info *ci;
1574 buf_t *bp;
1575 int s;
1576
1577 ci = curcpu();
1578
1579 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1580 KASSERT(curcpu() == ci);
1581
1582 s = splvm();
1583 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1584 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1585 splx(s);
1586
1587 biodone2(bp);
1588 }
1589 }
1590
1591 /*
1592 * Wait for all buffers to complete I/O
1593 * Return the number of "stuck" buffers.
1594 */
1595 int
1596 buf_syncwait(void)
1597 {
1598 buf_t *bp;
1599 int iter, nbusy, nbusy_prev = 0, ihash;
1600
1601 for (iter = 0; iter < 20;) {
1602 mutex_enter(&bufcache_lock);
1603 nbusy = 0;
1604 for (ihash = 0; ihash < bufhash+1; ihash++) {
1605 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1606 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1607 nbusy += ((bp->b_flags & B_READ) == 0);
1608 }
1609 }
1610 mutex_exit(&bufcache_lock);
1611
1612 if (nbusy == 0)
1613 break;
1614 if (nbusy_prev == 0)
1615 nbusy_prev = nbusy;
1616 printf("%d ", nbusy);
1617 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1618 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1619 iter++;
1620 else
1621 nbusy_prev = nbusy;
1622 }
1623
1624 if (nbusy) {
1625 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1626 printf("giving up\nPrinting vnodes for busy buffers\n");
1627 for (ihash = 0; ihash < bufhash+1; ihash++) {
1628 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1629 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1630 (bp->b_flags & B_READ) == 0)
1631 vprint(NULL, bp->b_vp);
1632 }
1633 }
1634 #endif
1635 }
1636
1637 return nbusy;
1638 }
1639
1640 static void
1641 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1642 {
1643
1644 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1645 o->b_error = i->b_error;
1646 o->b_prio = i->b_prio;
1647 o->b_dev = i->b_dev;
1648 o->b_bufsize = i->b_bufsize;
1649 o->b_bcount = i->b_bcount;
1650 o->b_resid = i->b_resid;
1651 o->b_addr = PTRTOUINT64(i->b_data);
1652 o->b_blkno = i->b_blkno;
1653 o->b_rawblkno = i->b_rawblkno;
1654 o->b_iodone = PTRTOUINT64(i->b_iodone);
1655 o->b_proc = PTRTOUINT64(i->b_proc);
1656 o->b_vp = PTRTOUINT64(i->b_vp);
1657 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1658 o->b_lblkno = i->b_lblkno;
1659 }
1660
1661 #define KERN_BUFSLOP 20
1662 static int
1663 sysctl_dobuf(SYSCTLFN_ARGS)
1664 {
1665 buf_t *bp;
1666 struct buf_sysctl bs;
1667 struct bqueue *bq;
1668 char *dp;
1669 u_int i, op, arg;
1670 size_t len, needed, elem_size, out_size;
1671 int error, elem_count, retries;
1672
1673 if (namelen == 1 && name[0] == CTL_QUERY)
1674 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1675
1676 if (namelen != 4)
1677 return (EINVAL);
1678
1679 retries = 100;
1680 retry:
1681 dp = oldp;
1682 len = (oldp != NULL) ? *oldlenp : 0;
1683 op = name[0];
1684 arg = name[1];
1685 elem_size = name[2];
1686 elem_count = name[3];
1687 out_size = MIN(sizeof(bs), elem_size);
1688
1689 /*
1690 * at the moment, these are just "placeholders" to make the
1691 * API for retrieving kern.buf data more extensible in the
1692 * future.
1693 *
1694 * XXX kern.buf currently has "netbsd32" issues. hopefully
1695 * these will be resolved at a later point.
1696 */
1697 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1698 elem_size < 1 || elem_count < 0)
1699 return (EINVAL);
1700
1701 error = 0;
1702 needed = 0;
1703 sysctl_unlock();
1704 mutex_enter(&bufcache_lock);
1705 for (i = 0; i < BQUEUES; i++) {
1706 bq = &bufqueues[i];
1707 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1708 bq->bq_marker = bp;
1709 if (len >= elem_size && elem_count > 0) {
1710 sysctl_fillbuf(bp, &bs);
1711 mutex_exit(&bufcache_lock);
1712 error = copyout(&bs, dp, out_size);
1713 mutex_enter(&bufcache_lock);
1714 if (error)
1715 break;
1716 if (bq->bq_marker != bp) {
1717 /*
1718 * This sysctl node is only for
1719 * statistics. Retry; if the
1720 * queue keeps changing, then
1721 * bail out.
1722 */
1723 if (retries-- == 0) {
1724 error = EAGAIN;
1725 break;
1726 }
1727 mutex_exit(&bufcache_lock);
1728 sysctl_relock();
1729 goto retry;
1730 }
1731 dp += elem_size;
1732 len -= elem_size;
1733 }
1734 needed += elem_size;
1735 if (elem_count > 0 && elem_count != INT_MAX)
1736 elem_count--;
1737 }
1738 if (error != 0)
1739 break;
1740 }
1741 mutex_exit(&bufcache_lock);
1742 sysctl_relock();
1743
1744 *oldlenp = needed;
1745 if (oldp == NULL)
1746 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1747
1748 return (error);
1749 }
1750
1751 static int
1752 sysctl_bufvm_update(SYSCTLFN_ARGS)
1753 {
1754 int error, rv;
1755 struct sysctlnode node;
1756 unsigned int temp_bufcache;
1757 unsigned long temp_water;
1758
1759 /* Take a copy of the supplied node and its data */
1760 node = *rnode;
1761 if (node.sysctl_data == &bufcache) {
1762 node.sysctl_data = &temp_bufcache;
1763 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1764 } else {
1765 node.sysctl_data = &temp_water;
1766 temp_water = *(unsigned long *)rnode->sysctl_data;
1767 }
1768
1769 /* Update the copy */
1770 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1771 if (error || newp == NULL)
1772 return (error);
1773
1774 if (rnode->sysctl_data == &bufcache) {
1775 if (temp_bufcache > 100)
1776 return (EINVAL);
1777 bufcache = temp_bufcache;
1778 buf_setwm();
1779 } else if (rnode->sysctl_data == &bufmem_lowater) {
1780 if (bufmem_hiwater - temp_water < 16)
1781 return (EINVAL);
1782 bufmem_lowater = temp_water;
1783 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1784 if (temp_water - bufmem_lowater < 16)
1785 return (EINVAL);
1786 bufmem_hiwater = temp_water;
1787 } else
1788 return (EINVAL);
1789
1790 /* Drain until below new high water mark */
1791 sysctl_unlock();
1792 mutex_enter(&bufcache_lock);
1793 while (bufmem > bufmem_hiwater) {
1794 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1795 if (rv <= 0)
1796 break;
1797 }
1798 mutex_exit(&bufcache_lock);
1799 sysctl_relock();
1800
1801 return 0;
1802 }
1803
1804 static struct sysctllog *vfsbio_sysctllog;
1805
1806 static void
1807 sysctl_kern_buf_setup(void)
1808 {
1809
1810 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1811 CTLFLAG_PERMANENT,
1812 CTLTYPE_NODE, "buf",
1813 SYSCTL_DESCR("Kernel buffer cache information"),
1814 sysctl_dobuf, 0, NULL, 0,
1815 CTL_KERN, KERN_BUF, CTL_EOL);
1816 }
1817
1818 static void
1819 sysctl_vm_buf_setup(void)
1820 {
1821
1822 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1823 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1824 CTLTYPE_INT, "bufcache",
1825 SYSCTL_DESCR("Percentage of physical memory to use for "
1826 "buffer cache"),
1827 sysctl_bufvm_update, 0, &bufcache, 0,
1828 CTL_VM, CTL_CREATE, CTL_EOL);
1829 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1830 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1831 CTLTYPE_LONG, "bufmem",
1832 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1833 "cache"),
1834 NULL, 0, &bufmem, 0,
1835 CTL_VM, CTL_CREATE, CTL_EOL);
1836 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1837 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1838 CTLTYPE_LONG, "bufmem_lowater",
1839 SYSCTL_DESCR("Minimum amount of kernel memory to "
1840 "reserve for buffer cache"),
1841 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1842 CTL_VM, CTL_CREATE, CTL_EOL);
1843 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1844 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1845 CTLTYPE_LONG, "bufmem_hiwater",
1846 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1847 "for buffer cache"),
1848 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1849 CTL_VM, CTL_CREATE, CTL_EOL);
1850 }
1851
1852 #ifdef DEBUG
1853 /*
1854 * Print out statistics on the current allocation of the buffer pool.
1855 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1856 * in vfs_syscalls.c using sysctl.
1857 */
1858 void
1859 vfs_bufstats(void)
1860 {
1861 int i, j, count;
1862 buf_t *bp;
1863 struct bqueue *dp;
1864 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1865 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1866
1867 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1868 count = 0;
1869 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1870 counts[j] = 0;
1871 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1872 counts[bp->b_bufsize/PAGE_SIZE]++;
1873 count++;
1874 }
1875 printf("%s: total-%d", bname[i], count);
1876 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1877 if (counts[j] != 0)
1878 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1879 printf("\n");
1880 }
1881 }
1882 #endif /* DEBUG */
1883
1884 /* ------------------------------ */
1885
1886 buf_t *
1887 getiobuf(struct vnode *vp, bool waitok)
1888 {
1889 buf_t *bp;
1890
1891 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1892 if (bp == NULL)
1893 return bp;
1894
1895 buf_init(bp);
1896
1897 if ((bp->b_vp = vp) == NULL)
1898 bp->b_objlock = &buffer_lock;
1899 else
1900 bp->b_objlock = vp->v_interlock;
1901
1902 return bp;
1903 }
1904
1905 void
1906 putiobuf(buf_t *bp)
1907 {
1908
1909 buf_destroy(bp);
1910 pool_cache_put(bufio_cache, bp);
1911 }
1912
1913 /*
1914 * nestiobuf_iodone: b_iodone callback for nested buffers.
1915 */
1916
1917 void
1918 nestiobuf_iodone(buf_t *bp)
1919 {
1920 buf_t *mbp = bp->b_private;
1921 int error;
1922 int donebytes;
1923
1924 KASSERT(bp->b_bcount <= bp->b_bufsize);
1925 KASSERT(mbp != bp);
1926
1927 error = bp->b_error;
1928 if (bp->b_error == 0 &&
1929 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1930 /*
1931 * Not all got transfered, raise an error. We have no way to
1932 * propagate these conditions to mbp.
1933 */
1934 error = EIO;
1935 }
1936
1937 donebytes = bp->b_bufsize;
1938
1939 putiobuf(bp);
1940 nestiobuf_done(mbp, donebytes, error);
1941 }
1942
1943 /*
1944 * nestiobuf_setup: setup a "nested" buffer.
1945 *
1946 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1947 * => 'bp' should be a buffer allocated by getiobuf.
1948 * => 'offset' is a byte offset in the master buffer.
1949 * => 'size' is a size in bytes of this nested buffer.
1950 */
1951
1952 void
1953 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1954 {
1955 const int b_read = mbp->b_flags & B_READ;
1956 struct vnode *vp = mbp->b_vp;
1957
1958 KASSERT(mbp->b_bcount >= offset + size);
1959 bp->b_vp = vp;
1960 bp->b_dev = mbp->b_dev;
1961 bp->b_objlock = mbp->b_objlock;
1962 bp->b_cflags = BC_BUSY;
1963 bp->b_flags = B_ASYNC | b_read;
1964 bp->b_iodone = nestiobuf_iodone;
1965 bp->b_data = (char *)mbp->b_data + offset;
1966 bp->b_resid = bp->b_bcount = size;
1967 bp->b_bufsize = bp->b_bcount;
1968 bp->b_private = mbp;
1969 BIO_COPYPRIO(bp, mbp);
1970 if (!b_read && vp != NULL) {
1971 mutex_enter(vp->v_interlock);
1972 vp->v_numoutput++;
1973 mutex_exit(vp->v_interlock);
1974 }
1975 }
1976
1977 /*
1978 * nestiobuf_done: propagate completion to the master buffer.
1979 *
1980 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1981 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1982 */
1983
1984 void
1985 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1986 {
1987
1988 if (donebytes == 0) {
1989 return;
1990 }
1991 mutex_enter(mbp->b_objlock);
1992 KASSERT(mbp->b_resid >= donebytes);
1993 mbp->b_resid -= donebytes;
1994 if (error)
1995 mbp->b_error = error;
1996 if (mbp->b_resid == 0) {
1997 if (mbp->b_error)
1998 mbp->b_resid = mbp->b_bcount;
1999 mutex_exit(mbp->b_objlock);
2000 biodone(mbp);
2001 } else
2002 mutex_exit(mbp->b_objlock);
2003 }
2004
2005 void
2006 buf_init(buf_t *bp)
2007 {
2008
2009 cv_init(&bp->b_busy, "biolock");
2010 cv_init(&bp->b_done, "biowait");
2011 bp->b_dev = NODEV;
2012 bp->b_error = 0;
2013 bp->b_flags = 0;
2014 bp->b_cflags = 0;
2015 bp->b_oflags = 0;
2016 bp->b_objlock = &buffer_lock;
2017 bp->b_iodone = NULL;
2018 bp->b_refcnt = 1;
2019 bp->b_dev = NODEV;
2020 bp->b_vnbufs.le_next = NOLIST;
2021 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2022 }
2023
2024 void
2025 buf_destroy(buf_t *bp)
2026 {
2027
2028 cv_destroy(&bp->b_done);
2029 cv_destroy(&bp->b_busy);
2030 }
2031
2032 int
2033 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2034 {
2035 int error;
2036
2037 KASSERT(mutex_owned(&bufcache_lock));
2038
2039 if ((bp->b_cflags & BC_BUSY) != 0) {
2040 if (curlwp == uvm.pagedaemon_lwp)
2041 return EDEADLK;
2042 bp->b_cflags |= BC_WANTED;
2043 bref(bp);
2044 if (interlock != NULL)
2045 mutex_exit(interlock);
2046 if (intr) {
2047 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2048 timo);
2049 } else {
2050 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2051 timo);
2052 }
2053 brele(bp);
2054 if (interlock != NULL)
2055 mutex_enter(interlock);
2056 if (error != 0)
2057 return error;
2058 return EPASSTHROUGH;
2059 }
2060 bp->b_cflags |= BC_BUSY;
2061
2062 return 0;
2063 }
2064