vfs_bio.c revision 1.255 1 /* $NetBSD: vfs_bio.c,v 1.255 2015/03/28 19:24:04 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.255 2015/03/28 19:24:04 maxv Exp $");
127
128 #include "opt_bufcache.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146 #include <sys/cprng.h>
147
148 #include <uvm/uvm.h> /* extern struct uvm uvm */
149
150 #include <miscfs/specfs/specdev.h>
151
152 #ifndef BUFPAGES
153 # define BUFPAGES 0
154 #endif
155
156 #ifdef BUFCACHE
157 # if (BUFCACHE < 5) || (BUFCACHE > 95)
158 # error BUFCACHE is not between 5 and 95
159 # endif
160 #else
161 # define BUFCACHE 15
162 #endif
163
164 u_int nbuf; /* desired number of buffer headers */
165 u_int bufpages = BUFPAGES; /* optional hardwired count */
166 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
167
168 /* Function prototypes */
169 struct bqueue;
170
171 static void buf_setwm(void);
172 static int buf_trim(void);
173 static void *bufpool_page_alloc(struct pool *, int);
174 static void bufpool_page_free(struct pool *, void *);
175 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194
195 /*
196 * Definitions for the buffer hash lists.
197 */
198 #define BUFHASH(dvp, lbn) \
199 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long bufhash;
202 struct bqueue bufqueues[BQUEUES];
203
204 static kcondvar_t needbuffer_cv;
205
206 /*
207 * Buffer queue lock.
208 */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225
226 static struct vm_map *buf_map;
227
228 /*
229 * Buffer memory pool allocator.
230 */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(buf_map,
236 MAXBSIZE, MAXBSIZE,
237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
238 | UVM_KMF_WIRED);
239 }
240
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244
245 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247
248 static struct pool_allocator bufmempool_allocator = {
249 .pa_alloc = bufpool_page_alloc,
250 .pa_free = bufpool_page_free,
251 .pa_pagesz = MAXBSIZE,
252 };
253
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259
260 /*
261 * MD code can call this to set a hard limit on the amount
262 * of virtual memory used by the buffer cache.
263 */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267
268 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 if (sz < NMEMPOOLS * MAXBSIZE)
270 return EINVAL;
271
272 bufmem_valimit = sz;
273 return 0;
274 }
275
276 static void
277 buf_setwm(void)
278 {
279
280 bufmem_hiwater = buf_memcalc();
281 /* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define BUFMEM_WMSHIFT 3
283 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
284 if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 /* Ensure a reasonable minimum value */
286 bufmem_hiwater = BUFMEM_HIWMMIN;
287 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 buf_t *b;
296
297 if (!debug_verify_freelist)
298 return 1;
299
300 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 if (b == bp)
302 return ison ? 1 : 0;
303 }
304
305 return ison ? 0 : 1;
306 }
307 #endif
308
309 /*
310 * Insq/Remq for the buffer hash lists.
311 * Call with buffer queue locked.
312 */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316
317 KASSERT(mutex_owned(&bufcache_lock));
318 KASSERT(bp->b_freelistindex == -1);
319 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 dp->bq_bytes += bp->b_bufsize;
321 bp->b_freelistindex = dp - bufqueues;
322 }
323
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327
328 KASSERT(mutex_owned(&bufcache_lock));
329 KASSERT(bp->b_freelistindex == -1);
330 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 dp->bq_bytes += bp->b_bufsize;
332 bp->b_freelistindex = dp - bufqueues;
333 }
334
335 void
336 bremfree(buf_t *bp)
337 {
338 struct bqueue *dp;
339 int bqidx = bp->b_freelistindex;
340
341 KASSERT(mutex_owned(&bufcache_lock));
342
343 KASSERT(bqidx != -1);
344 dp = &bufqueues[bqidx];
345 KDASSERT(checkfreelist(bp, dp, 1));
346 KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 dp->bq_bytes -= bp->b_bufsize;
349
350 /* For the sysctl helper. */
351 if (bp == dp->bq_marker)
352 dp->bq_marker = NULL;
353
354 #if defined(DIAGNOSTIC)
355 bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358
359 /*
360 * Add a reference to an buffer structure that came from buf_cache.
361 */
362 static inline void
363 bref(buf_t *bp)
364 {
365
366 KASSERT(mutex_owned(&bufcache_lock));
367 KASSERT(bp->b_refcnt > 0);
368
369 bp->b_refcnt++;
370 }
371
372 /*
373 * Free an unused buffer structure that came from buf_cache.
374 */
375 static inline void
376 brele(buf_t *bp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
381
382 if (bp->b_refcnt-- == 1) {
383 buf_destroy(bp);
384 #ifdef DEBUG
385 memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 pool_cache_put(buf_cache, bp);
388 }
389 }
390
391 /*
392 * note that for some ports this is used by pmap bootstrap code to
393 * determine kva size.
394 */
395 u_long
396 buf_memcalc(void)
397 {
398 u_long n;
399 vsize_t mapsz = 0;
400
401 /*
402 * Determine the upper bound of memory to use for buffers.
403 *
404 * - If bufpages is specified, use that as the number
405 * pages.
406 *
407 * - Otherwise, use bufcache as the percentage of
408 * physical memory.
409 */
410 if (bufpages != 0) {
411 n = bufpages;
412 } else {
413 if (bufcache < 5) {
414 printf("forcing bufcache %d -> 5", bufcache);
415 bufcache = 5;
416 }
417 if (bufcache > 95) {
418 printf("forcing bufcache %d -> 95", bufcache);
419 bufcache = 95;
420 }
421 if (buf_map != NULL)
422 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
423 n = calc_cache_size(mapsz, bufcache,
424 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
425 / PAGE_SIZE;
426 }
427
428 n <<= PAGE_SHIFT;
429 if (bufmem_valimit != 0 && n > bufmem_valimit)
430 n = bufmem_valimit;
431
432 return (n);
433 }
434
435 /*
436 * Initialize buffers and hash links for buffers.
437 */
438 void
439 bufinit(void)
440 {
441 struct bqueue *dp;
442 int use_std;
443 u_int i;
444 extern void (*biodone_vfs)(buf_t *);
445
446 biodone_vfs = biodone;
447
448 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
449 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
450 cv_init(&needbuffer_cv, "needbuf");
451
452 if (bufmem_valimit != 0) {
453 vaddr_t minaddr = 0, maxaddr;
454 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
455 bufmem_valimit, 0, false, 0);
456 if (buf_map == NULL)
457 panic("bufinit: cannot allocate submap");
458 } else
459 buf_map = kernel_map;
460
461 /*
462 * Initialize buffer cache memory parameters.
463 */
464 bufmem = 0;
465 buf_setwm();
466
467 /* On "small" machines use small pool page sizes where possible */
468 use_std = (physmem < atop(16*1024*1024));
469
470 /*
471 * Also use them on systems that can map the pool pages using
472 * a direct-mapped segment.
473 */
474 #ifdef PMAP_MAP_POOLPAGE
475 use_std = 1;
476 #endif
477
478 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
479 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
480 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
481 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
482
483 for (i = 0; i < NMEMPOOLS; i++) {
484 struct pool_allocator *pa;
485 struct pool *pp = &bmempools[i];
486 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
487 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
488 if (__predict_false(size >= 1048576))
489 (void)snprintf(name, 8, "buf%um", size / 1048576);
490 else if (__predict_true(size >= 1024))
491 (void)snprintf(name, 8, "buf%uk", size / 1024);
492 else
493 (void)snprintf(name, 8, "buf%ub", size);
494 pa = (size <= PAGE_SIZE && use_std)
495 ? &pool_allocator_nointr
496 : &bufmempool_allocator;
497 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
498 pool_setlowat(pp, 1);
499 pool_sethiwat(pp, 1);
500 }
501
502 /* Initialize the buffer queues */
503 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
504 TAILQ_INIT(&dp->bq_queue);
505 dp->bq_bytes = 0;
506 }
507
508 /*
509 * Estimate hash table size based on the amount of memory we
510 * intend to use for the buffer cache. The average buffer
511 * size is dependent on our clients (i.e. filesystems).
512 *
513 * For now, use an empirical 3K per buffer.
514 */
515 nbuf = (bufmem_hiwater / 1024) / 3;
516 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
517
518 sysctl_kern_buf_setup();
519 sysctl_vm_buf_setup();
520 }
521
522 void
523 bufinit2(void)
524 {
525
526 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
527 NULL);
528 if (biodone_sih == NULL)
529 panic("bufinit2: can't establish soft interrupt");
530 }
531
532 static int
533 buf_lotsfree(void)
534 {
535 u_long guess;
536
537 /* Always allocate if less than the low water mark. */
538 if (bufmem < bufmem_lowater)
539 return 1;
540
541 /* Never allocate if greater than the high water mark. */
542 if (bufmem > bufmem_hiwater)
543 return 0;
544
545 /* If there's anything on the AGE list, it should be eaten. */
546 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
547 return 0;
548
549 /*
550 * The probabily of getting a new allocation is inversely
551 * proportional to the current size of the cache above
552 * the low water mark. Divide the total first to avoid overflows
553 * in the product.
554 */
555 guess = cprng_fast32() % 16;
556
557 if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
558 (bufmem - bufmem_lowater))
559 return 1;
560
561 /* Otherwise don't allocate. */
562 return 0;
563 }
564
565 /*
566 * Return estimate of bytes we think need to be
567 * released to help resolve low memory conditions.
568 *
569 * => called with bufcache_lock held.
570 */
571 static int
572 buf_canrelease(void)
573 {
574 int pagedemand, ninvalid = 0;
575
576 KASSERT(mutex_owned(&bufcache_lock));
577
578 if (bufmem < bufmem_lowater)
579 return 0;
580
581 if (bufmem > bufmem_hiwater)
582 return bufmem - bufmem_hiwater;
583
584 ninvalid += bufqueues[BQ_AGE].bq_bytes;
585
586 pagedemand = uvmexp.freetarg - uvmexp.free;
587 if (pagedemand < 0)
588 return ninvalid;
589 return MAX(ninvalid, MIN(2 * MAXBSIZE,
590 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
591 }
592
593 /*
594 * Buffer memory allocation helper functions
595 */
596 static u_long
597 buf_mempoolidx(u_long size)
598 {
599 u_int n = 0;
600
601 size -= 1;
602 size >>= MEMPOOL_INDEX_OFFSET;
603 while (size) {
604 size >>= 1;
605 n += 1;
606 }
607 if (n >= NMEMPOOLS)
608 panic("buf mem pool index %d", n);
609 return n;
610 }
611
612 static u_long
613 buf_roundsize(u_long size)
614 {
615 /* Round up to nearest power of 2 */
616 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
617 }
618
619 static void *
620 buf_alloc(size_t size)
621 {
622 u_int n = buf_mempoolidx(size);
623 void *addr;
624
625 while (1) {
626 addr = pool_get(&bmempools[n], PR_NOWAIT);
627 if (addr != NULL)
628 break;
629
630 /* No memory, see if we can free some. If so, try again */
631 mutex_enter(&bufcache_lock);
632 if (buf_drain(1) > 0) {
633 mutex_exit(&bufcache_lock);
634 continue;
635 }
636
637 if (curlwp == uvm.pagedaemon_lwp) {
638 mutex_exit(&bufcache_lock);
639 return NULL;
640 }
641
642 /* Wait for buffers to arrive on the LRU queue */
643 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
644 mutex_exit(&bufcache_lock);
645 }
646
647 return addr;
648 }
649
650 static void
651 buf_mrelease(void *addr, size_t size)
652 {
653
654 pool_put(&bmempools[buf_mempoolidx(size)], addr);
655 }
656
657 /*
658 * bread()/breadn() helper.
659 */
660 static buf_t *
661 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
662 {
663 buf_t *bp;
664 struct mount *mp;
665
666 bp = getblk(vp, blkno, size, 0, 0);
667
668 /*
669 * getblk() may return NULL if we are the pagedaemon.
670 */
671 if (bp == NULL) {
672 KASSERT(curlwp == uvm.pagedaemon_lwp);
673 return NULL;
674 }
675
676 /*
677 * If buffer does not have data valid, start a read.
678 * Note that if buffer is BC_INVAL, getblk() won't return it.
679 * Therefore, it's valid if its I/O has completed or been delayed.
680 */
681 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
682 /* Start I/O for the buffer. */
683 SET(bp->b_flags, B_READ | async);
684 if (async)
685 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
686 else
687 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
688 VOP_STRATEGY(vp, bp);
689
690 /* Pay for the read. */
691 curlwp->l_ru.ru_inblock++;
692 } else if (async)
693 brelse(bp, 0);
694
695 if (vp->v_type == VBLK)
696 mp = spec_node_getmountedfs(vp);
697 else
698 mp = vp->v_mount;
699
700 /*
701 * Collect statistics on synchronous and asynchronous reads.
702 * Reads from block devices are charged to their associated
703 * filesystem (if any).
704 */
705 if (mp != NULL) {
706 if (async == 0)
707 mp->mnt_stat.f_syncreads++;
708 else
709 mp->mnt_stat.f_asyncreads++;
710 }
711
712 return (bp);
713 }
714
715 /*
716 * Read a disk block.
717 * This algorithm described in Bach (p.54).
718 */
719 int
720 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
721 {
722 buf_t *bp;
723 int error;
724
725 /* Get buffer for block. */
726 bp = *bpp = bio_doread(vp, blkno, size, 0);
727 if (bp == NULL)
728 return ENOMEM;
729
730 /* Wait for the read to complete, and return result. */
731 error = biowait(bp);
732 if (error == 0 && (flags & B_MODIFY) != 0)
733 error = fscow_run(bp, true);
734 if (error) {
735 brelse(bp, 0);
736 *bpp = NULL;
737 }
738
739 return error;
740 }
741
742 /*
743 * Read-ahead multiple disk blocks. The first is sync, the rest async.
744 * Trivial modification to the breada algorithm presented in Bach (p.55).
745 */
746 int
747 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
748 int *rasizes, int nrablks, int flags, buf_t **bpp)
749 {
750 buf_t *bp;
751 int error, i;
752
753 bp = *bpp = bio_doread(vp, blkno, size, 0);
754 if (bp == NULL)
755 return ENOMEM;
756
757 /*
758 * For each of the read-ahead blocks, start a read, if necessary.
759 */
760 mutex_enter(&bufcache_lock);
761 for (i = 0; i < nrablks; i++) {
762 /* If it's in the cache, just go on to next one. */
763 if (incore(vp, rablks[i]))
764 continue;
765
766 /* Get a buffer for the read-ahead block */
767 mutex_exit(&bufcache_lock);
768 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
769 mutex_enter(&bufcache_lock);
770 }
771 mutex_exit(&bufcache_lock);
772
773 /* Otherwise, we had to start a read for it; wait until it's valid. */
774 error = biowait(bp);
775 if (error == 0 && (flags & B_MODIFY) != 0)
776 error = fscow_run(bp, true);
777 if (error) {
778 brelse(bp, 0);
779 *bpp = NULL;
780 }
781
782 return error;
783 }
784
785 /*
786 * Block write. Described in Bach (p.56)
787 */
788 int
789 bwrite(buf_t *bp)
790 {
791 int rv, sync, wasdelayed;
792 struct vnode *vp;
793 struct mount *mp;
794
795 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
796 KASSERT(!cv_has_waiters(&bp->b_done));
797
798 vp = bp->b_vp;
799 if (vp != NULL) {
800 KASSERT(bp->b_objlock == vp->v_interlock);
801 if (vp->v_type == VBLK)
802 mp = spec_node_getmountedfs(vp);
803 else
804 mp = vp->v_mount;
805 } else {
806 mp = NULL;
807 }
808
809 if (mp && mp->mnt_wapbl) {
810 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
811 bdwrite(bp);
812 return 0;
813 }
814 }
815
816 /*
817 * Remember buffer type, to switch on it later. If the write was
818 * synchronous, but the file system was mounted with MNT_ASYNC,
819 * convert it to a delayed write.
820 * XXX note that this relies on delayed tape writes being converted
821 * to async, not sync writes (which is safe, but ugly).
822 */
823 sync = !ISSET(bp->b_flags, B_ASYNC);
824 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
825 bdwrite(bp);
826 return (0);
827 }
828
829 /*
830 * Collect statistics on synchronous and asynchronous writes.
831 * Writes to block devices are charged to their associated
832 * filesystem (if any).
833 */
834 if (mp != NULL) {
835 if (sync)
836 mp->mnt_stat.f_syncwrites++;
837 else
838 mp->mnt_stat.f_asyncwrites++;
839 }
840
841 /*
842 * Pay for the I/O operation and make sure the buf is on the correct
843 * vnode queue.
844 */
845 bp->b_error = 0;
846 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
847 CLR(bp->b_flags, B_READ);
848 if (wasdelayed) {
849 mutex_enter(&bufcache_lock);
850 mutex_enter(bp->b_objlock);
851 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
852 reassignbuf(bp, bp->b_vp);
853 mutex_exit(&bufcache_lock);
854 } else {
855 curlwp->l_ru.ru_oublock++;
856 mutex_enter(bp->b_objlock);
857 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
858 }
859 if (vp != NULL)
860 vp->v_numoutput++;
861 mutex_exit(bp->b_objlock);
862
863 /* Initiate disk write. */
864 if (sync)
865 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
866 else
867 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
868
869 VOP_STRATEGY(vp, bp);
870
871 if (sync) {
872 /* If I/O was synchronous, wait for it to complete. */
873 rv = biowait(bp);
874
875 /* Release the buffer. */
876 brelse(bp, 0);
877
878 return (rv);
879 } else {
880 return (0);
881 }
882 }
883
884 int
885 vn_bwrite(void *v)
886 {
887 struct vop_bwrite_args *ap = v;
888
889 return (bwrite(ap->a_bp));
890 }
891
892 /*
893 * Delayed write.
894 *
895 * The buffer is marked dirty, but is not queued for I/O.
896 * This routine should be used when the buffer is expected
897 * to be modified again soon, typically a small write that
898 * partially fills a buffer.
899 *
900 * NB: magnetic tapes cannot be delayed; they must be
901 * written in the order that the writes are requested.
902 *
903 * Described in Leffler, et al. (pp. 208-213).
904 */
905 void
906 bdwrite(buf_t *bp)
907 {
908
909 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
910 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
911 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
912 KASSERT(!cv_has_waiters(&bp->b_done));
913
914 /* If this is a tape block, write the block now. */
915 if (bdev_type(bp->b_dev) == D_TAPE) {
916 bawrite(bp);
917 return;
918 }
919
920 if (wapbl_vphaswapbl(bp->b_vp)) {
921 struct mount *mp = wapbl_vptomp(bp->b_vp);
922
923 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
924 WAPBL_ADD_BUF(mp, bp);
925 }
926 }
927
928 /*
929 * If the block hasn't been seen before:
930 * (1) Mark it as having been seen,
931 * (2) Charge for the write,
932 * (3) Make sure it's on its vnode's correct block list.
933 */
934 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
935
936 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
937 mutex_enter(&bufcache_lock);
938 mutex_enter(bp->b_objlock);
939 SET(bp->b_oflags, BO_DELWRI);
940 curlwp->l_ru.ru_oublock++;
941 reassignbuf(bp, bp->b_vp);
942 mutex_exit(&bufcache_lock);
943 } else {
944 mutex_enter(bp->b_objlock);
945 }
946 /* Otherwise, the "write" is done, so mark and release the buffer. */
947 CLR(bp->b_oflags, BO_DONE);
948 mutex_exit(bp->b_objlock);
949
950 brelse(bp, 0);
951 }
952
953 /*
954 * Asynchronous block write; just an asynchronous bwrite().
955 */
956 void
957 bawrite(buf_t *bp)
958 {
959
960 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
961 KASSERT(bp->b_vp != NULL);
962
963 SET(bp->b_flags, B_ASYNC);
964 VOP_BWRITE(bp->b_vp, bp);
965 }
966
967 /*
968 * Release a buffer on to the free lists.
969 * Described in Bach (p. 46).
970 */
971 void
972 brelsel(buf_t *bp, int set)
973 {
974 struct bqueue *bufq;
975 struct vnode *vp;
976
977 KASSERT(bp != NULL);
978 KASSERT(mutex_owned(&bufcache_lock));
979 KASSERT(!cv_has_waiters(&bp->b_done));
980 KASSERT(bp->b_refcnt > 0);
981
982 SET(bp->b_cflags, set);
983
984 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
985 KASSERT(bp->b_iodone == NULL);
986
987 /* Wake up any processes waiting for any buffer to become free. */
988 cv_signal(&needbuffer_cv);
989
990 /* Wake up any proceeses waiting for _this_ buffer to become */
991 if (ISSET(bp->b_cflags, BC_WANTED))
992 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
993
994 /* If it's clean clear the copy-on-write flag. */
995 if (ISSET(bp->b_flags, B_COWDONE)) {
996 mutex_enter(bp->b_objlock);
997 if (!ISSET(bp->b_oflags, BO_DELWRI))
998 CLR(bp->b_flags, B_COWDONE);
999 mutex_exit(bp->b_objlock);
1000 }
1001
1002 /*
1003 * Determine which queue the buffer should be on, then put it there.
1004 */
1005
1006 /* If it's locked, don't report an error; try again later. */
1007 if (ISSET(bp->b_flags, B_LOCKED))
1008 bp->b_error = 0;
1009
1010 /* If it's not cacheable, or an error, mark it invalid. */
1011 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1012 SET(bp->b_cflags, BC_INVAL);
1013
1014 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1015 /*
1016 * This is a delayed write buffer that was just flushed to
1017 * disk. It is still on the LRU queue. If it's become
1018 * invalid, then we need to move it to a different queue;
1019 * otherwise leave it in its current position.
1020 */
1021 CLR(bp->b_cflags, BC_VFLUSH);
1022 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1023 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1024 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1025 goto already_queued;
1026 } else {
1027 bremfree(bp);
1028 }
1029 }
1030
1031 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1032 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1033 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1034
1035 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1036 /*
1037 * If it's invalid or empty, dissociate it from its vnode
1038 * and put on the head of the appropriate queue.
1039 */
1040 if (ISSET(bp->b_flags, B_LOCKED)) {
1041 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1042 struct mount *mp = wapbl_vptomp(vp);
1043
1044 KASSERT(bp->b_iodone
1045 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1046 WAPBL_REMOVE_BUF(mp, bp);
1047 }
1048 }
1049
1050 mutex_enter(bp->b_objlock);
1051 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1052 if ((vp = bp->b_vp) != NULL) {
1053 KASSERT(bp->b_objlock == vp->v_interlock);
1054 reassignbuf(bp, bp->b_vp);
1055 brelvp(bp);
1056 mutex_exit(vp->v_interlock);
1057 } else {
1058 KASSERT(bp->b_objlock == &buffer_lock);
1059 mutex_exit(bp->b_objlock);
1060 }
1061
1062 if (bp->b_bufsize <= 0)
1063 /* no data */
1064 goto already_queued;
1065 else
1066 /* invalid data */
1067 bufq = &bufqueues[BQ_AGE];
1068 binsheadfree(bp, bufq);
1069 } else {
1070 /*
1071 * It has valid data. Put it on the end of the appropriate
1072 * queue, so that it'll stick around for as long as possible.
1073 * If buf is AGE, but has dependencies, must put it on last
1074 * bufqueue to be scanned, ie LRU. This protects against the
1075 * livelock where BQ_AGE only has buffers with dependencies,
1076 * and we thus never get to the dependent buffers in BQ_LRU.
1077 */
1078 if (ISSET(bp->b_flags, B_LOCKED)) {
1079 /* locked in core */
1080 bufq = &bufqueues[BQ_LOCKED];
1081 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1082 /* valid data */
1083 bufq = &bufqueues[BQ_LRU];
1084 } else {
1085 /* stale but valid data */
1086 bufq = &bufqueues[BQ_AGE];
1087 }
1088 binstailfree(bp, bufq);
1089 }
1090 already_queued:
1091 /* Unlock the buffer. */
1092 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1093 CLR(bp->b_flags, B_ASYNC);
1094 cv_broadcast(&bp->b_busy);
1095
1096 if (bp->b_bufsize <= 0)
1097 brele(bp);
1098 }
1099
1100 void
1101 brelse(buf_t *bp, int set)
1102 {
1103
1104 mutex_enter(&bufcache_lock);
1105 brelsel(bp, set);
1106 mutex_exit(&bufcache_lock);
1107 }
1108
1109 /*
1110 * Determine if a block is in the cache.
1111 * Just look on what would be its hash chain. If it's there, return
1112 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1113 * we normally don't return the buffer, unless the caller explicitly
1114 * wants us to.
1115 */
1116 buf_t *
1117 incore(struct vnode *vp, daddr_t blkno)
1118 {
1119 buf_t *bp;
1120
1121 KASSERT(mutex_owned(&bufcache_lock));
1122
1123 /* Search hash chain */
1124 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1125 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1126 !ISSET(bp->b_cflags, BC_INVAL)) {
1127 KASSERT(bp->b_objlock == vp->v_interlock);
1128 return (bp);
1129 }
1130 }
1131
1132 return (NULL);
1133 }
1134
1135 /*
1136 * Get a block of requested size that is associated with
1137 * a given vnode and block offset. If it is found in the
1138 * block cache, mark it as having been found, make it busy
1139 * and return it. Otherwise, return an empty block of the
1140 * correct size. It is up to the caller to insure that the
1141 * cached blocks be of the correct size.
1142 */
1143 buf_t *
1144 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1145 {
1146 int err, preserve;
1147 buf_t *bp;
1148
1149 mutex_enter(&bufcache_lock);
1150 loop:
1151 bp = incore(vp, blkno);
1152 if (bp != NULL) {
1153 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1154 if (err != 0) {
1155 if (err == EPASSTHROUGH)
1156 goto loop;
1157 mutex_exit(&bufcache_lock);
1158 return (NULL);
1159 }
1160 KASSERT(!cv_has_waiters(&bp->b_done));
1161 #ifdef DIAGNOSTIC
1162 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1163 bp->b_bcount < size && vp->v_type != VBLK)
1164 panic("getblk: block size invariant failed");
1165 #endif
1166 bremfree(bp);
1167 preserve = 1;
1168 } else {
1169 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1170 goto loop;
1171
1172 if (incore(vp, blkno) != NULL) {
1173 /* The block has come into memory in the meantime. */
1174 brelsel(bp, 0);
1175 goto loop;
1176 }
1177
1178 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1179 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1180 mutex_enter(vp->v_interlock);
1181 bgetvp(vp, bp);
1182 mutex_exit(vp->v_interlock);
1183 preserve = 0;
1184 }
1185 mutex_exit(&bufcache_lock);
1186
1187 /*
1188 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1189 * if we re-size buffers here.
1190 */
1191 if (ISSET(bp->b_flags, B_LOCKED)) {
1192 KASSERT(bp->b_bufsize >= size);
1193 } else {
1194 if (allocbuf(bp, size, preserve)) {
1195 mutex_enter(&bufcache_lock);
1196 LIST_REMOVE(bp, b_hash);
1197 mutex_exit(&bufcache_lock);
1198 brelse(bp, BC_INVAL);
1199 return NULL;
1200 }
1201 }
1202 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1203 return (bp);
1204 }
1205
1206 /*
1207 * Get an empty, disassociated buffer of given size.
1208 */
1209 buf_t *
1210 geteblk(int size)
1211 {
1212 buf_t *bp;
1213 int error __diagused;
1214
1215 mutex_enter(&bufcache_lock);
1216 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1217 ;
1218
1219 SET(bp->b_cflags, BC_INVAL);
1220 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1221 mutex_exit(&bufcache_lock);
1222 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1223 error = allocbuf(bp, size, 0);
1224 KASSERT(error == 0);
1225 return (bp);
1226 }
1227
1228 /*
1229 * Expand or contract the actual memory allocated to a buffer.
1230 *
1231 * If the buffer shrinks, data is lost, so it's up to the
1232 * caller to have written it out *first*; this routine will not
1233 * start a write. If the buffer grows, it's the callers
1234 * responsibility to fill out the buffer's additional contents.
1235 */
1236 int
1237 allocbuf(buf_t *bp, int size, int preserve)
1238 {
1239 void *addr;
1240 vsize_t oldsize, desired_size;
1241 int oldcount;
1242 int delta;
1243
1244 desired_size = buf_roundsize(size);
1245 if (desired_size > MAXBSIZE)
1246 printf("allocbuf: buffer larger than MAXBSIZE requested");
1247
1248 oldcount = bp->b_bcount;
1249
1250 bp->b_bcount = size;
1251
1252 oldsize = bp->b_bufsize;
1253 if (oldsize == desired_size) {
1254 /*
1255 * Do not short cut the WAPBL resize, as the buffer length
1256 * could still have changed and this would corrupt the
1257 * tracking of the transaction length.
1258 */
1259 goto out;
1260 }
1261
1262 /*
1263 * If we want a buffer of a different size, re-allocate the
1264 * buffer's memory; copy old content only if needed.
1265 */
1266 addr = buf_alloc(desired_size);
1267 if (addr == NULL)
1268 return ENOMEM;
1269 if (preserve)
1270 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1271 if (bp->b_data != NULL)
1272 buf_mrelease(bp->b_data, oldsize);
1273 bp->b_data = addr;
1274 bp->b_bufsize = desired_size;
1275
1276 /*
1277 * Update overall buffer memory counter (protected by bufcache_lock)
1278 */
1279 delta = (long)desired_size - (long)oldsize;
1280
1281 mutex_enter(&bufcache_lock);
1282 if ((bufmem += delta) > bufmem_hiwater) {
1283 /*
1284 * Need to trim overall memory usage.
1285 */
1286 while (buf_canrelease()) {
1287 if (curcpu()->ci_schedstate.spc_flags &
1288 SPCF_SHOULDYIELD) {
1289 mutex_exit(&bufcache_lock);
1290 preempt();
1291 mutex_enter(&bufcache_lock);
1292 }
1293 if (buf_trim() == 0)
1294 break;
1295 }
1296 }
1297 mutex_exit(&bufcache_lock);
1298
1299 out:
1300 if (wapbl_vphaswapbl(bp->b_vp))
1301 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * Find a buffer which is available for use.
1308 * Select something from a free list.
1309 * Preference is to AGE list, then LRU list.
1310 *
1311 * Called with the buffer queues locked.
1312 * Return buffer locked.
1313 */
1314 buf_t *
1315 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1316 {
1317 buf_t *bp;
1318 struct vnode *vp;
1319
1320 start:
1321 KASSERT(mutex_owned(&bufcache_lock));
1322
1323 /*
1324 * Get a new buffer from the pool.
1325 */
1326 if (!from_bufq && buf_lotsfree()) {
1327 mutex_exit(&bufcache_lock);
1328 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1329 if (bp != NULL) {
1330 memset((char *)bp, 0, sizeof(*bp));
1331 buf_init(bp);
1332 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1333 mutex_enter(&bufcache_lock);
1334 #if defined(DIAGNOSTIC)
1335 bp->b_freelistindex = -1;
1336 #endif /* defined(DIAGNOSTIC) */
1337 return (bp);
1338 }
1339 mutex_enter(&bufcache_lock);
1340 }
1341
1342 KASSERT(mutex_owned(&bufcache_lock));
1343 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1344 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1345 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1346 bremfree(bp);
1347
1348 /* Buffer is no longer on free lists. */
1349 SET(bp->b_cflags, BC_BUSY);
1350 } else {
1351 /*
1352 * XXX: !from_bufq should be removed.
1353 */
1354 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1355 /* wait for a free buffer of any kind */
1356 if ((slpflag & PCATCH) != 0)
1357 (void)cv_timedwait_sig(&needbuffer_cv,
1358 &bufcache_lock, slptimeo);
1359 else
1360 (void)cv_timedwait(&needbuffer_cv,
1361 &bufcache_lock, slptimeo);
1362 }
1363 return (NULL);
1364 }
1365
1366 #ifdef DIAGNOSTIC
1367 if (bp->b_bufsize <= 0)
1368 panic("buffer %p: on queue but empty", bp);
1369 #endif
1370
1371 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1372 /*
1373 * This is a delayed write buffer being flushed to disk. Make
1374 * sure it gets aged out of the queue when it's finished, and
1375 * leave it off the LRU queue.
1376 */
1377 CLR(bp->b_cflags, BC_VFLUSH);
1378 SET(bp->b_cflags, BC_AGE);
1379 goto start;
1380 }
1381
1382 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1383 KASSERT(bp->b_refcnt > 0);
1384 KASSERT(!cv_has_waiters(&bp->b_done));
1385
1386 /*
1387 * If buffer was a delayed write, start it and return NULL
1388 * (since we might sleep while starting the write).
1389 */
1390 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1391 /*
1392 * This buffer has gone through the LRU, so make sure it gets
1393 * reused ASAP.
1394 */
1395 SET(bp->b_cflags, BC_AGE);
1396 mutex_exit(&bufcache_lock);
1397 bawrite(bp);
1398 mutex_enter(&bufcache_lock);
1399 return (NULL);
1400 }
1401
1402 vp = bp->b_vp;
1403
1404 /* clear out various other fields */
1405 bp->b_cflags = BC_BUSY;
1406 bp->b_oflags = 0;
1407 bp->b_flags = 0;
1408 bp->b_dev = NODEV;
1409 bp->b_blkno = 0;
1410 bp->b_lblkno = 0;
1411 bp->b_rawblkno = 0;
1412 bp->b_iodone = 0;
1413 bp->b_error = 0;
1414 bp->b_resid = 0;
1415 bp->b_bcount = 0;
1416
1417 LIST_REMOVE(bp, b_hash);
1418
1419 /* Disassociate us from our vnode, if we had one... */
1420 if (vp != NULL) {
1421 mutex_enter(vp->v_interlock);
1422 brelvp(bp);
1423 mutex_exit(vp->v_interlock);
1424 }
1425
1426 return (bp);
1427 }
1428
1429 /*
1430 * Attempt to free an aged buffer off the queues.
1431 * Called with queue lock held.
1432 * Returns the amount of buffer memory freed.
1433 */
1434 static int
1435 buf_trim(void)
1436 {
1437 buf_t *bp;
1438 long size;
1439
1440 KASSERT(mutex_owned(&bufcache_lock));
1441
1442 /* Instruct getnewbuf() to get buffers off the queues */
1443 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1444 return 0;
1445
1446 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1447 size = bp->b_bufsize;
1448 bufmem -= size;
1449 if (size > 0) {
1450 buf_mrelease(bp->b_data, size);
1451 bp->b_bcount = bp->b_bufsize = 0;
1452 }
1453 /* brelse() will return the buffer to the global buffer pool */
1454 brelsel(bp, 0);
1455 return size;
1456 }
1457
1458 int
1459 buf_drain(int n)
1460 {
1461 int size = 0, sz;
1462
1463 KASSERT(mutex_owned(&bufcache_lock));
1464
1465 while (size < n && bufmem > bufmem_lowater) {
1466 sz = buf_trim();
1467 if (sz <= 0)
1468 break;
1469 size += sz;
1470 }
1471
1472 return size;
1473 }
1474
1475 /*
1476 * Wait for operations on the buffer to complete.
1477 * When they do, extract and return the I/O's error value.
1478 */
1479 int
1480 biowait(buf_t *bp)
1481 {
1482
1483 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1484 KASSERT(bp->b_refcnt > 0);
1485
1486 mutex_enter(bp->b_objlock);
1487 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1488 cv_wait(&bp->b_done, bp->b_objlock);
1489 mutex_exit(bp->b_objlock);
1490
1491 return bp->b_error;
1492 }
1493
1494 /*
1495 * Mark I/O complete on a buffer.
1496 *
1497 * If a callback has been requested, e.g. the pageout
1498 * daemon, do so. Otherwise, awaken waiting processes.
1499 *
1500 * [ Leffler, et al., says on p.247:
1501 * "This routine wakes up the blocked process, frees the buffer
1502 * for an asynchronous write, or, for a request by the pagedaemon
1503 * process, invokes a procedure specified in the buffer structure" ]
1504 *
1505 * In real life, the pagedaemon (or other system processes) wants
1506 * to do async stuff to, and doesn't want the buffer brelse()'d.
1507 * (for swap pager, that puts swap buffers on the free lists (!!!),
1508 * for the vn device, that puts allocated buffers on the free lists!)
1509 */
1510 void
1511 biodone(buf_t *bp)
1512 {
1513 int s;
1514
1515 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1516
1517 if (cpu_intr_p()) {
1518 /* From interrupt mode: defer to a soft interrupt. */
1519 s = splvm();
1520 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1521 softint_schedule(biodone_sih);
1522 splx(s);
1523 } else {
1524 /* Process now - the buffer may be freed soon. */
1525 biodone2(bp);
1526 }
1527 }
1528
1529 static void
1530 biodone2(buf_t *bp)
1531 {
1532 void (*callout)(buf_t *);
1533
1534 mutex_enter(bp->b_objlock);
1535 /* Note that the transfer is done. */
1536 if (ISSET(bp->b_oflags, BO_DONE))
1537 panic("biodone2 already");
1538 CLR(bp->b_flags, B_COWDONE);
1539 SET(bp->b_oflags, BO_DONE);
1540 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1541
1542 /* Wake up waiting writers. */
1543 if (!ISSET(bp->b_flags, B_READ))
1544 vwakeup(bp);
1545
1546 if ((callout = bp->b_iodone) != NULL) {
1547 /* Note callout done, then call out. */
1548 KASSERT(!cv_has_waiters(&bp->b_done));
1549 KERNEL_LOCK(1, NULL); /* XXXSMP */
1550 bp->b_iodone = NULL;
1551 mutex_exit(bp->b_objlock);
1552 (*callout)(bp);
1553 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1554 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1555 /* If async, release. */
1556 KASSERT(!cv_has_waiters(&bp->b_done));
1557 mutex_exit(bp->b_objlock);
1558 brelse(bp, 0);
1559 } else {
1560 /* Otherwise just wake up waiters in biowait(). */
1561 cv_broadcast(&bp->b_done);
1562 mutex_exit(bp->b_objlock);
1563 }
1564 }
1565
1566 static void
1567 biointr(void *cookie)
1568 {
1569 struct cpu_info *ci;
1570 buf_t *bp;
1571 int s;
1572
1573 ci = curcpu();
1574
1575 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1576 KASSERT(curcpu() == ci);
1577
1578 s = splvm();
1579 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1580 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1581 splx(s);
1582
1583 biodone2(bp);
1584 }
1585 }
1586
1587 /*
1588 * Wait for all buffers to complete I/O
1589 * Return the number of "stuck" buffers.
1590 */
1591 int
1592 buf_syncwait(void)
1593 {
1594 buf_t *bp;
1595 int iter, nbusy, nbusy_prev = 0, ihash;
1596
1597 for (iter = 0; iter < 20;) {
1598 mutex_enter(&bufcache_lock);
1599 nbusy = 0;
1600 for (ihash = 0; ihash < bufhash+1; ihash++) {
1601 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1602 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1603 nbusy += ((bp->b_flags & B_READ) == 0);
1604 }
1605 }
1606 mutex_exit(&bufcache_lock);
1607
1608 if (nbusy == 0)
1609 break;
1610 if (nbusy_prev == 0)
1611 nbusy_prev = nbusy;
1612 printf("%d ", nbusy);
1613 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1614 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1615 iter++;
1616 else
1617 nbusy_prev = nbusy;
1618 }
1619
1620 if (nbusy) {
1621 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1622 printf("giving up\nPrinting vnodes for busy buffers\n");
1623 for (ihash = 0; ihash < bufhash+1; ihash++) {
1624 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1625 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1626 (bp->b_flags & B_READ) == 0)
1627 vprint(NULL, bp->b_vp);
1628 }
1629 }
1630 #endif
1631 }
1632
1633 return nbusy;
1634 }
1635
1636 static void
1637 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1638 {
1639
1640 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1641 o->b_error = i->b_error;
1642 o->b_prio = i->b_prio;
1643 o->b_dev = i->b_dev;
1644 o->b_bufsize = i->b_bufsize;
1645 o->b_bcount = i->b_bcount;
1646 o->b_resid = i->b_resid;
1647 o->b_addr = PTRTOUINT64(i->b_data);
1648 o->b_blkno = i->b_blkno;
1649 o->b_rawblkno = i->b_rawblkno;
1650 o->b_iodone = PTRTOUINT64(i->b_iodone);
1651 o->b_proc = PTRTOUINT64(i->b_proc);
1652 o->b_vp = PTRTOUINT64(i->b_vp);
1653 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1654 o->b_lblkno = i->b_lblkno;
1655 }
1656
1657 #define KERN_BUFSLOP 20
1658 static int
1659 sysctl_dobuf(SYSCTLFN_ARGS)
1660 {
1661 buf_t *bp;
1662 struct buf_sysctl bs;
1663 struct bqueue *bq;
1664 char *dp;
1665 u_int i, op, arg;
1666 size_t len, needed, elem_size, out_size;
1667 int error, elem_count, retries;
1668
1669 if (namelen == 1 && name[0] == CTL_QUERY)
1670 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1671
1672 if (namelen != 4)
1673 return (EINVAL);
1674
1675 retries = 100;
1676 retry:
1677 dp = oldp;
1678 len = (oldp != NULL) ? *oldlenp : 0;
1679 op = name[0];
1680 arg = name[1];
1681 elem_size = name[2];
1682 elem_count = name[3];
1683 out_size = MIN(sizeof(bs), elem_size);
1684
1685 /*
1686 * at the moment, these are just "placeholders" to make the
1687 * API for retrieving kern.buf data more extensible in the
1688 * future.
1689 *
1690 * XXX kern.buf currently has "netbsd32" issues. hopefully
1691 * these will be resolved at a later point.
1692 */
1693 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1694 elem_size < 1 || elem_count < 0)
1695 return (EINVAL);
1696
1697 error = 0;
1698 needed = 0;
1699 sysctl_unlock();
1700 mutex_enter(&bufcache_lock);
1701 for (i = 0; i < BQUEUES; i++) {
1702 bq = &bufqueues[i];
1703 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1704 bq->bq_marker = bp;
1705 if (len >= elem_size && elem_count > 0) {
1706 sysctl_fillbuf(bp, &bs);
1707 mutex_exit(&bufcache_lock);
1708 error = copyout(&bs, dp, out_size);
1709 mutex_enter(&bufcache_lock);
1710 if (error)
1711 break;
1712 if (bq->bq_marker != bp) {
1713 /*
1714 * This sysctl node is only for
1715 * statistics. Retry; if the
1716 * queue keeps changing, then
1717 * bail out.
1718 */
1719 if (retries-- == 0) {
1720 error = EAGAIN;
1721 break;
1722 }
1723 mutex_exit(&bufcache_lock);
1724 sysctl_relock();
1725 goto retry;
1726 }
1727 dp += elem_size;
1728 len -= elem_size;
1729 }
1730 needed += elem_size;
1731 if (elem_count > 0 && elem_count != INT_MAX)
1732 elem_count--;
1733 }
1734 if (error != 0)
1735 break;
1736 }
1737 mutex_exit(&bufcache_lock);
1738 sysctl_relock();
1739
1740 *oldlenp = needed;
1741 if (oldp == NULL)
1742 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1743
1744 return (error);
1745 }
1746
1747 static int
1748 sysctl_bufvm_update(SYSCTLFN_ARGS)
1749 {
1750 int error, rv;
1751 struct sysctlnode node;
1752 unsigned int temp_bufcache;
1753 unsigned long temp_water;
1754
1755 /* Take a copy of the supplied node and its data */
1756 node = *rnode;
1757 if (node.sysctl_data == &bufcache) {
1758 node.sysctl_data = &temp_bufcache;
1759 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1760 } else {
1761 node.sysctl_data = &temp_water;
1762 temp_water = *(unsigned long *)rnode->sysctl_data;
1763 }
1764
1765 /* Update the copy */
1766 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1767 if (error || newp == NULL)
1768 return (error);
1769
1770 if (rnode->sysctl_data == &bufcache) {
1771 if (temp_bufcache > 100)
1772 return (EINVAL);
1773 bufcache = temp_bufcache;
1774 buf_setwm();
1775 } else if (rnode->sysctl_data == &bufmem_lowater) {
1776 if (bufmem_hiwater - temp_water < 16)
1777 return (EINVAL);
1778 bufmem_lowater = temp_water;
1779 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1780 if (temp_water - bufmem_lowater < 16)
1781 return (EINVAL);
1782 bufmem_hiwater = temp_water;
1783 } else
1784 return (EINVAL);
1785
1786 /* Drain until below new high water mark */
1787 sysctl_unlock();
1788 mutex_enter(&bufcache_lock);
1789 while (bufmem > bufmem_hiwater) {
1790 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1791 if (rv <= 0)
1792 break;
1793 }
1794 mutex_exit(&bufcache_lock);
1795 sysctl_relock();
1796
1797 return 0;
1798 }
1799
1800 static struct sysctllog *vfsbio_sysctllog;
1801
1802 static void
1803 sysctl_kern_buf_setup(void)
1804 {
1805
1806 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1807 CTLFLAG_PERMANENT,
1808 CTLTYPE_NODE, "buf",
1809 SYSCTL_DESCR("Kernel buffer cache information"),
1810 sysctl_dobuf, 0, NULL, 0,
1811 CTL_KERN, KERN_BUF, CTL_EOL);
1812 }
1813
1814 static void
1815 sysctl_vm_buf_setup(void)
1816 {
1817
1818 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1819 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1820 CTLTYPE_INT, "bufcache",
1821 SYSCTL_DESCR("Percentage of physical memory to use for "
1822 "buffer cache"),
1823 sysctl_bufvm_update, 0, &bufcache, 0,
1824 CTL_VM, CTL_CREATE, CTL_EOL);
1825 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1826 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1827 CTLTYPE_LONG, "bufmem",
1828 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1829 "cache"),
1830 NULL, 0, &bufmem, 0,
1831 CTL_VM, CTL_CREATE, CTL_EOL);
1832 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1833 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1834 CTLTYPE_LONG, "bufmem_lowater",
1835 SYSCTL_DESCR("Minimum amount of kernel memory to "
1836 "reserve for buffer cache"),
1837 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1838 CTL_VM, CTL_CREATE, CTL_EOL);
1839 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1840 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1841 CTLTYPE_LONG, "bufmem_hiwater",
1842 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1843 "for buffer cache"),
1844 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1845 CTL_VM, CTL_CREATE, CTL_EOL);
1846 }
1847
1848 #ifdef DEBUG
1849 /*
1850 * Print out statistics on the current allocation of the buffer pool.
1851 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1852 * in vfs_syscalls.c using sysctl.
1853 */
1854 void
1855 vfs_bufstats(void)
1856 {
1857 int i, j, count;
1858 buf_t *bp;
1859 struct bqueue *dp;
1860 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1861 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1862
1863 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1864 count = 0;
1865 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1866 counts[j] = 0;
1867 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1868 counts[bp->b_bufsize/PAGE_SIZE]++;
1869 count++;
1870 }
1871 printf("%s: total-%d", bname[i], count);
1872 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1873 if (counts[j] != 0)
1874 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1875 printf("\n");
1876 }
1877 }
1878 #endif /* DEBUG */
1879
1880 /* ------------------------------ */
1881
1882 buf_t *
1883 getiobuf(struct vnode *vp, bool waitok)
1884 {
1885 buf_t *bp;
1886
1887 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1888 if (bp == NULL)
1889 return bp;
1890
1891 buf_init(bp);
1892
1893 if ((bp->b_vp = vp) == NULL)
1894 bp->b_objlock = &buffer_lock;
1895 else
1896 bp->b_objlock = vp->v_interlock;
1897
1898 return bp;
1899 }
1900
1901 void
1902 putiobuf(buf_t *bp)
1903 {
1904
1905 buf_destroy(bp);
1906 pool_cache_put(bufio_cache, bp);
1907 }
1908
1909 /*
1910 * nestiobuf_iodone: b_iodone callback for nested buffers.
1911 */
1912
1913 void
1914 nestiobuf_iodone(buf_t *bp)
1915 {
1916 buf_t *mbp = bp->b_private;
1917 int error;
1918 int donebytes;
1919
1920 KASSERT(bp->b_bcount <= bp->b_bufsize);
1921 KASSERT(mbp != bp);
1922
1923 error = bp->b_error;
1924 if (bp->b_error == 0 &&
1925 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1926 /*
1927 * Not all got transfered, raise an error. We have no way to
1928 * propagate these conditions to mbp.
1929 */
1930 error = EIO;
1931 }
1932
1933 donebytes = bp->b_bufsize;
1934
1935 putiobuf(bp);
1936 nestiobuf_done(mbp, donebytes, error);
1937 }
1938
1939 /*
1940 * nestiobuf_setup: setup a "nested" buffer.
1941 *
1942 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1943 * => 'bp' should be a buffer allocated by getiobuf.
1944 * => 'offset' is a byte offset in the master buffer.
1945 * => 'size' is a size in bytes of this nested buffer.
1946 */
1947
1948 void
1949 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1950 {
1951 const int b_read = mbp->b_flags & B_READ;
1952 struct vnode *vp = mbp->b_vp;
1953
1954 KASSERT(mbp->b_bcount >= offset + size);
1955 bp->b_vp = vp;
1956 bp->b_dev = mbp->b_dev;
1957 bp->b_objlock = mbp->b_objlock;
1958 bp->b_cflags = BC_BUSY;
1959 bp->b_flags = B_ASYNC | b_read;
1960 bp->b_iodone = nestiobuf_iodone;
1961 bp->b_data = (char *)mbp->b_data + offset;
1962 bp->b_resid = bp->b_bcount = size;
1963 bp->b_bufsize = bp->b_bcount;
1964 bp->b_private = mbp;
1965 BIO_COPYPRIO(bp, mbp);
1966 if (!b_read && vp != NULL) {
1967 mutex_enter(vp->v_interlock);
1968 vp->v_numoutput++;
1969 mutex_exit(vp->v_interlock);
1970 }
1971 }
1972
1973 /*
1974 * nestiobuf_done: propagate completion to the master buffer.
1975 *
1976 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1977 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1978 */
1979
1980 void
1981 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1982 {
1983
1984 if (donebytes == 0) {
1985 return;
1986 }
1987 mutex_enter(mbp->b_objlock);
1988 KASSERT(mbp->b_resid >= donebytes);
1989 mbp->b_resid -= donebytes;
1990 if (error)
1991 mbp->b_error = error;
1992 if (mbp->b_resid == 0) {
1993 if (mbp->b_error)
1994 mbp->b_resid = mbp->b_bcount;
1995 mutex_exit(mbp->b_objlock);
1996 biodone(mbp);
1997 } else
1998 mutex_exit(mbp->b_objlock);
1999 }
2000
2001 void
2002 buf_init(buf_t *bp)
2003 {
2004
2005 cv_init(&bp->b_busy, "biolock");
2006 cv_init(&bp->b_done, "biowait");
2007 bp->b_dev = NODEV;
2008 bp->b_error = 0;
2009 bp->b_flags = 0;
2010 bp->b_cflags = 0;
2011 bp->b_oflags = 0;
2012 bp->b_objlock = &buffer_lock;
2013 bp->b_iodone = NULL;
2014 bp->b_refcnt = 1;
2015 bp->b_dev = NODEV;
2016 bp->b_vnbufs.le_next = NOLIST;
2017 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2018 }
2019
2020 void
2021 buf_destroy(buf_t *bp)
2022 {
2023
2024 cv_destroy(&bp->b_done);
2025 cv_destroy(&bp->b_busy);
2026 }
2027
2028 int
2029 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2030 {
2031 int error;
2032
2033 KASSERT(mutex_owned(&bufcache_lock));
2034
2035 if ((bp->b_cflags & BC_BUSY) != 0) {
2036 if (curlwp == uvm.pagedaemon_lwp)
2037 return EDEADLK;
2038 bp->b_cflags |= BC_WANTED;
2039 bref(bp);
2040 if (interlock != NULL)
2041 mutex_exit(interlock);
2042 if (intr) {
2043 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2044 timo);
2045 } else {
2046 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2047 timo);
2048 }
2049 brele(bp);
2050 if (interlock != NULL)
2051 mutex_enter(interlock);
2052 if (error != 0)
2053 return error;
2054 return EPASSTHROUGH;
2055 }
2056 bp->b_cflags |= BC_BUSY;
2057
2058 return 0;
2059 }
2060