Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.255
      1 /*	$NetBSD: vfs_bio.c,v 1.255 2015/03/28 19:24:04 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.255 2015/03/28 19:24:04 maxv Exp $");
    127 
    128 #include "opt_bufcache.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/kernel.h>
    133 #include <sys/proc.h>
    134 #include <sys/buf.h>
    135 #include <sys/vnode.h>
    136 #include <sys/mount.h>
    137 #include <sys/resourcevar.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/conf.h>
    140 #include <sys/kauth.h>
    141 #include <sys/fstrans.h>
    142 #include <sys/intr.h>
    143 #include <sys/cpu.h>
    144 #include <sys/wapbl.h>
    145 #include <sys/bitops.h>
    146 #include <sys/cprng.h>
    147 
    148 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    149 
    150 #include <miscfs/specfs/specdev.h>
    151 
    152 #ifndef	BUFPAGES
    153 # define BUFPAGES 0
    154 #endif
    155 
    156 #ifdef BUFCACHE
    157 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    158 #  error BUFCACHE is not between 5 and 95
    159 # endif
    160 #else
    161 # define BUFCACHE 15
    162 #endif
    163 
    164 u_int	nbuf;			/* desired number of buffer headers */
    165 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    166 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    167 
    168 /* Function prototypes */
    169 struct bqueue;
    170 
    171 static void buf_setwm(void);
    172 static int buf_trim(void);
    173 static void *bufpool_page_alloc(struct pool *, int);
    174 static void bufpool_page_free(struct pool *, void *);
    175 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
    176 static buf_t *getnewbuf(int, int, int);
    177 static int buf_lotsfree(void);
    178 static int buf_canrelease(void);
    179 static u_long buf_mempoolidx(u_long);
    180 static u_long buf_roundsize(u_long);
    181 static void *buf_alloc(size_t);
    182 static void buf_mrelease(void *, size_t);
    183 static void binsheadfree(buf_t *, struct bqueue *);
    184 static void binstailfree(buf_t *, struct bqueue *);
    185 #ifdef DEBUG
    186 static int checkfreelist(buf_t *, struct bqueue *, int);
    187 #endif
    188 static void biointr(void *);
    189 static void biodone2(buf_t *);
    190 static void bref(buf_t *);
    191 static void brele(buf_t *);
    192 static void sysctl_kern_buf_setup(void);
    193 static void sysctl_vm_buf_setup(void);
    194 
    195 /*
    196  * Definitions for the buffer hash lists.
    197  */
    198 #define	BUFHASH(dvp, lbn)	\
    199 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    201 u_long	bufhash;
    202 struct bqueue bufqueues[BQUEUES];
    203 
    204 static kcondvar_t needbuffer_cv;
    205 
    206 /*
    207  * Buffer queue lock.
    208  */
    209 kmutex_t bufcache_lock;
    210 kmutex_t buffer_lock;
    211 
    212 /* Software ISR for completed transfers. */
    213 static void *biodone_sih;
    214 
    215 /* Buffer pool for I/O buffers. */
    216 static pool_cache_t buf_cache;
    217 static pool_cache_t bufio_cache;
    218 
    219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    222 
    223 /* Buffer memory pools */
    224 static struct pool bmempools[NMEMPOOLS];
    225 
    226 static struct vm_map *buf_map;
    227 
    228 /*
    229  * Buffer memory pool allocator.
    230  */
    231 static void *
    232 bufpool_page_alloc(struct pool *pp, int flags)
    233 {
    234 
    235 	return (void *)uvm_km_alloc(buf_map,
    236 	    MAXBSIZE, MAXBSIZE,
    237 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    238 	    | UVM_KMF_WIRED);
    239 }
    240 
    241 static void
    242 bufpool_page_free(struct pool *pp, void *v)
    243 {
    244 
    245 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    246 }
    247 
    248 static struct pool_allocator bufmempool_allocator = {
    249 	.pa_alloc = bufpool_page_alloc,
    250 	.pa_free = bufpool_page_free,
    251 	.pa_pagesz = MAXBSIZE,
    252 };
    253 
    254 /* Buffer memory management variables */
    255 u_long bufmem_valimit;
    256 u_long bufmem_hiwater;
    257 u_long bufmem_lowater;
    258 u_long bufmem;
    259 
    260 /*
    261  * MD code can call this to set a hard limit on the amount
    262  * of virtual memory used by the buffer cache.
    263  */
    264 int
    265 buf_setvalimit(vsize_t sz)
    266 {
    267 
    268 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    269 	if (sz < NMEMPOOLS * MAXBSIZE)
    270 		return EINVAL;
    271 
    272 	bufmem_valimit = sz;
    273 	return 0;
    274 }
    275 
    276 static void
    277 buf_setwm(void)
    278 {
    279 
    280 	bufmem_hiwater = buf_memcalc();
    281 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    282 #define	BUFMEM_WMSHIFT	3
    283 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    284 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    285 		/* Ensure a reasonable minimum value */
    286 		bufmem_hiwater = BUFMEM_HIWMMIN;
    287 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    288 }
    289 
    290 #ifdef DEBUG
    291 int debug_verify_freelist = 0;
    292 static int
    293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    294 {
    295 	buf_t *b;
    296 
    297 	if (!debug_verify_freelist)
    298 		return 1;
    299 
    300 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    301 		if (b == bp)
    302 			return ison ? 1 : 0;
    303 	}
    304 
    305 	return ison ? 0 : 1;
    306 }
    307 #endif
    308 
    309 /*
    310  * Insq/Remq for the buffer hash lists.
    311  * Call with buffer queue locked.
    312  */
    313 static void
    314 binsheadfree(buf_t *bp, struct bqueue *dp)
    315 {
    316 
    317 	KASSERT(mutex_owned(&bufcache_lock));
    318 	KASSERT(bp->b_freelistindex == -1);
    319 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    320 	dp->bq_bytes += bp->b_bufsize;
    321 	bp->b_freelistindex = dp - bufqueues;
    322 }
    323 
    324 static void
    325 binstailfree(buf_t *bp, struct bqueue *dp)
    326 {
    327 
    328 	KASSERT(mutex_owned(&bufcache_lock));
    329 	KASSERT(bp->b_freelistindex == -1);
    330 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    331 	dp->bq_bytes += bp->b_bufsize;
    332 	bp->b_freelistindex = dp - bufqueues;
    333 }
    334 
    335 void
    336 bremfree(buf_t *bp)
    337 {
    338 	struct bqueue *dp;
    339 	int bqidx = bp->b_freelistindex;
    340 
    341 	KASSERT(mutex_owned(&bufcache_lock));
    342 
    343 	KASSERT(bqidx != -1);
    344 	dp = &bufqueues[bqidx];
    345 	KDASSERT(checkfreelist(bp, dp, 1));
    346 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    347 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    348 	dp->bq_bytes -= bp->b_bufsize;
    349 
    350 	/* For the sysctl helper. */
    351 	if (bp == dp->bq_marker)
    352 		dp->bq_marker = NULL;
    353 
    354 #if defined(DIAGNOSTIC)
    355 	bp->b_freelistindex = -1;
    356 #endif /* defined(DIAGNOSTIC) */
    357 }
    358 
    359 /*
    360  * Add a reference to an buffer structure that came from buf_cache.
    361  */
    362 static inline void
    363 bref(buf_t *bp)
    364 {
    365 
    366 	KASSERT(mutex_owned(&bufcache_lock));
    367 	KASSERT(bp->b_refcnt > 0);
    368 
    369 	bp->b_refcnt++;
    370 }
    371 
    372 /*
    373  * Free an unused buffer structure that came from buf_cache.
    374  */
    375 static inline void
    376 brele(buf_t *bp)
    377 {
    378 
    379 	KASSERT(mutex_owned(&bufcache_lock));
    380 	KASSERT(bp->b_refcnt > 0);
    381 
    382 	if (bp->b_refcnt-- == 1) {
    383 		buf_destroy(bp);
    384 #ifdef DEBUG
    385 		memset((char *)bp, 0, sizeof(*bp));
    386 #endif
    387 		pool_cache_put(buf_cache, bp);
    388 	}
    389 }
    390 
    391 /*
    392  * note that for some ports this is used by pmap bootstrap code to
    393  * determine kva size.
    394  */
    395 u_long
    396 buf_memcalc(void)
    397 {
    398 	u_long n;
    399 	vsize_t mapsz = 0;
    400 
    401 	/*
    402 	 * Determine the upper bound of memory to use for buffers.
    403 	 *
    404 	 *	- If bufpages is specified, use that as the number
    405 	 *	  pages.
    406 	 *
    407 	 *	- Otherwise, use bufcache as the percentage of
    408 	 *	  physical memory.
    409 	 */
    410 	if (bufpages != 0) {
    411 		n = bufpages;
    412 	} else {
    413 		if (bufcache < 5) {
    414 			printf("forcing bufcache %d -> 5", bufcache);
    415 			bufcache = 5;
    416 		}
    417 		if (bufcache > 95) {
    418 			printf("forcing bufcache %d -> 95", bufcache);
    419 			bufcache = 95;
    420 		}
    421 		if (buf_map != NULL)
    422 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
    423 		n = calc_cache_size(mapsz, bufcache,
    424 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    425 		    / PAGE_SIZE;
    426 	}
    427 
    428 	n <<= PAGE_SHIFT;
    429 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    430 		n = bufmem_valimit;
    431 
    432 	return (n);
    433 }
    434 
    435 /*
    436  * Initialize buffers and hash links for buffers.
    437  */
    438 void
    439 bufinit(void)
    440 {
    441 	struct bqueue *dp;
    442 	int use_std;
    443 	u_int i;
    444 	extern void (*biodone_vfs)(buf_t *);
    445 
    446 	biodone_vfs = biodone;
    447 
    448 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    449 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    450 	cv_init(&needbuffer_cv, "needbuf");
    451 
    452 	if (bufmem_valimit != 0) {
    453 		vaddr_t minaddr = 0, maxaddr;
    454 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    455 					  bufmem_valimit, 0, false, 0);
    456 		if (buf_map == NULL)
    457 			panic("bufinit: cannot allocate submap");
    458 	} else
    459 		buf_map = kernel_map;
    460 
    461 	/*
    462 	 * Initialize buffer cache memory parameters.
    463 	 */
    464 	bufmem = 0;
    465 	buf_setwm();
    466 
    467 	/* On "small" machines use small pool page sizes where possible */
    468 	use_std = (physmem < atop(16*1024*1024));
    469 
    470 	/*
    471 	 * Also use them on systems that can map the pool pages using
    472 	 * a direct-mapped segment.
    473 	 */
    474 #ifdef PMAP_MAP_POOLPAGE
    475 	use_std = 1;
    476 #endif
    477 
    478 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    479 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    480 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    481 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    482 
    483 	for (i = 0; i < NMEMPOOLS; i++) {
    484 		struct pool_allocator *pa;
    485 		struct pool *pp = &bmempools[i];
    486 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    487 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    488 		if (__predict_false(size >= 1048576))
    489 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    490 		else if (__predict_true(size >= 1024))
    491 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    492 		else
    493 			(void)snprintf(name, 8, "buf%ub", size);
    494 		pa = (size <= PAGE_SIZE && use_std)
    495 			? &pool_allocator_nointr
    496 			: &bufmempool_allocator;
    497 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    498 		pool_setlowat(pp, 1);
    499 		pool_sethiwat(pp, 1);
    500 	}
    501 
    502 	/* Initialize the buffer queues */
    503 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    504 		TAILQ_INIT(&dp->bq_queue);
    505 		dp->bq_bytes = 0;
    506 	}
    507 
    508 	/*
    509 	 * Estimate hash table size based on the amount of memory we
    510 	 * intend to use for the buffer cache. The average buffer
    511 	 * size is dependent on our clients (i.e. filesystems).
    512 	 *
    513 	 * For now, use an empirical 3K per buffer.
    514 	 */
    515 	nbuf = (bufmem_hiwater / 1024) / 3;
    516 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    517 
    518 	sysctl_kern_buf_setup();
    519 	sysctl_vm_buf_setup();
    520 }
    521 
    522 void
    523 bufinit2(void)
    524 {
    525 
    526 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    527 	    NULL);
    528 	if (biodone_sih == NULL)
    529 		panic("bufinit2: can't establish soft interrupt");
    530 }
    531 
    532 static int
    533 buf_lotsfree(void)
    534 {
    535 	u_long guess;
    536 
    537 	/* Always allocate if less than the low water mark. */
    538 	if (bufmem < bufmem_lowater)
    539 		return 1;
    540 
    541 	/* Never allocate if greater than the high water mark. */
    542 	if (bufmem > bufmem_hiwater)
    543 		return 0;
    544 
    545 	/* If there's anything on the AGE list, it should be eaten. */
    546 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    547 		return 0;
    548 
    549 	/*
    550 	 * The probabily of getting a new allocation is inversely
    551 	 * proportional  to the current size of the cache above
    552 	 * the low water mark.  Divide the total first to avoid overflows
    553 	 * in the product.
    554 	 */
    555 	guess = cprng_fast32() % 16;
    556 
    557 	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
    558 	    (bufmem - bufmem_lowater))
    559 		return 1;
    560 
    561 	/* Otherwise don't allocate. */
    562 	return 0;
    563 }
    564 
    565 /*
    566  * Return estimate of bytes we think need to be
    567  * released to help resolve low memory conditions.
    568  *
    569  * => called with bufcache_lock held.
    570  */
    571 static int
    572 buf_canrelease(void)
    573 {
    574 	int pagedemand, ninvalid = 0;
    575 
    576 	KASSERT(mutex_owned(&bufcache_lock));
    577 
    578 	if (bufmem < bufmem_lowater)
    579 		return 0;
    580 
    581 	if (bufmem > bufmem_hiwater)
    582 		return bufmem - bufmem_hiwater;
    583 
    584 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    585 
    586 	pagedemand = uvmexp.freetarg - uvmexp.free;
    587 	if (pagedemand < 0)
    588 		return ninvalid;
    589 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    590 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    591 }
    592 
    593 /*
    594  * Buffer memory allocation helper functions
    595  */
    596 static u_long
    597 buf_mempoolidx(u_long size)
    598 {
    599 	u_int n = 0;
    600 
    601 	size -= 1;
    602 	size >>= MEMPOOL_INDEX_OFFSET;
    603 	while (size) {
    604 		size >>= 1;
    605 		n += 1;
    606 	}
    607 	if (n >= NMEMPOOLS)
    608 		panic("buf mem pool index %d", n);
    609 	return n;
    610 }
    611 
    612 static u_long
    613 buf_roundsize(u_long size)
    614 {
    615 	/* Round up to nearest power of 2 */
    616 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    617 }
    618 
    619 static void *
    620 buf_alloc(size_t size)
    621 {
    622 	u_int n = buf_mempoolidx(size);
    623 	void *addr;
    624 
    625 	while (1) {
    626 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    627 		if (addr != NULL)
    628 			break;
    629 
    630 		/* No memory, see if we can free some. If so, try again */
    631 		mutex_enter(&bufcache_lock);
    632 		if (buf_drain(1) > 0) {
    633 			mutex_exit(&bufcache_lock);
    634 			continue;
    635 		}
    636 
    637 		if (curlwp == uvm.pagedaemon_lwp) {
    638 			mutex_exit(&bufcache_lock);
    639 			return NULL;
    640 		}
    641 
    642 		/* Wait for buffers to arrive on the LRU queue */
    643 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    644 		mutex_exit(&bufcache_lock);
    645 	}
    646 
    647 	return addr;
    648 }
    649 
    650 static void
    651 buf_mrelease(void *addr, size_t size)
    652 {
    653 
    654 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    655 }
    656 
    657 /*
    658  * bread()/breadn() helper.
    659  */
    660 static buf_t *
    661 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
    662 {
    663 	buf_t *bp;
    664 	struct mount *mp;
    665 
    666 	bp = getblk(vp, blkno, size, 0, 0);
    667 
    668 	/*
    669 	 * getblk() may return NULL if we are the pagedaemon.
    670 	 */
    671 	if (bp == NULL) {
    672 		KASSERT(curlwp == uvm.pagedaemon_lwp);
    673 		return NULL;
    674 	}
    675 
    676 	/*
    677 	 * If buffer does not have data valid, start a read.
    678 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    679 	 * Therefore, it's valid if its I/O has completed or been delayed.
    680 	 */
    681 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    682 		/* Start I/O for the buffer. */
    683 		SET(bp->b_flags, B_READ | async);
    684 		if (async)
    685 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    686 		else
    687 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    688 		VOP_STRATEGY(vp, bp);
    689 
    690 		/* Pay for the read. */
    691 		curlwp->l_ru.ru_inblock++;
    692 	} else if (async)
    693 		brelse(bp, 0);
    694 
    695 	if (vp->v_type == VBLK)
    696 		mp = spec_node_getmountedfs(vp);
    697 	else
    698 		mp = vp->v_mount;
    699 
    700 	/*
    701 	 * Collect statistics on synchronous and asynchronous reads.
    702 	 * Reads from block devices are charged to their associated
    703 	 * filesystem (if any).
    704 	 */
    705 	if (mp != NULL) {
    706 		if (async == 0)
    707 			mp->mnt_stat.f_syncreads++;
    708 		else
    709 			mp->mnt_stat.f_asyncreads++;
    710 	}
    711 
    712 	return (bp);
    713 }
    714 
    715 /*
    716  * Read a disk block.
    717  * This algorithm described in Bach (p.54).
    718  */
    719 int
    720 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
    721 {
    722 	buf_t *bp;
    723 	int error;
    724 
    725 	/* Get buffer for block. */
    726 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    727 	if (bp == NULL)
    728 		return ENOMEM;
    729 
    730 	/* Wait for the read to complete, and return result. */
    731 	error = biowait(bp);
    732 	if (error == 0 && (flags & B_MODIFY) != 0)
    733 		error = fscow_run(bp, true);
    734 	if (error) {
    735 		brelse(bp, 0);
    736 		*bpp = NULL;
    737 	}
    738 
    739 	return error;
    740 }
    741 
    742 /*
    743  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    744  * Trivial modification to the breada algorithm presented in Bach (p.55).
    745  */
    746 int
    747 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    748     int *rasizes, int nrablks, int flags, buf_t **bpp)
    749 {
    750 	buf_t *bp;
    751 	int error, i;
    752 
    753 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    754 	if (bp == NULL)
    755 		return ENOMEM;
    756 
    757 	/*
    758 	 * For each of the read-ahead blocks, start a read, if necessary.
    759 	 */
    760 	mutex_enter(&bufcache_lock);
    761 	for (i = 0; i < nrablks; i++) {
    762 		/* If it's in the cache, just go on to next one. */
    763 		if (incore(vp, rablks[i]))
    764 			continue;
    765 
    766 		/* Get a buffer for the read-ahead block */
    767 		mutex_exit(&bufcache_lock);
    768 		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
    769 		mutex_enter(&bufcache_lock);
    770 	}
    771 	mutex_exit(&bufcache_lock);
    772 
    773 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    774 	error = biowait(bp);
    775 	if (error == 0 && (flags & B_MODIFY) != 0)
    776 		error = fscow_run(bp, true);
    777 	if (error) {
    778 		brelse(bp, 0);
    779 		*bpp = NULL;
    780 	}
    781 
    782 	return error;
    783 }
    784 
    785 /*
    786  * Block write.  Described in Bach (p.56)
    787  */
    788 int
    789 bwrite(buf_t *bp)
    790 {
    791 	int rv, sync, wasdelayed;
    792 	struct vnode *vp;
    793 	struct mount *mp;
    794 
    795 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    796 	KASSERT(!cv_has_waiters(&bp->b_done));
    797 
    798 	vp = bp->b_vp;
    799 	if (vp != NULL) {
    800 		KASSERT(bp->b_objlock == vp->v_interlock);
    801 		if (vp->v_type == VBLK)
    802 			mp = spec_node_getmountedfs(vp);
    803 		else
    804 			mp = vp->v_mount;
    805 	} else {
    806 		mp = NULL;
    807 	}
    808 
    809 	if (mp && mp->mnt_wapbl) {
    810 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    811 			bdwrite(bp);
    812 			return 0;
    813 		}
    814 	}
    815 
    816 	/*
    817 	 * Remember buffer type, to switch on it later.  If the write was
    818 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    819 	 * convert it to a delayed write.
    820 	 * XXX note that this relies on delayed tape writes being converted
    821 	 * to async, not sync writes (which is safe, but ugly).
    822 	 */
    823 	sync = !ISSET(bp->b_flags, B_ASYNC);
    824 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    825 		bdwrite(bp);
    826 		return (0);
    827 	}
    828 
    829 	/*
    830 	 * Collect statistics on synchronous and asynchronous writes.
    831 	 * Writes to block devices are charged to their associated
    832 	 * filesystem (if any).
    833 	 */
    834 	if (mp != NULL) {
    835 		if (sync)
    836 			mp->mnt_stat.f_syncwrites++;
    837 		else
    838 			mp->mnt_stat.f_asyncwrites++;
    839 	}
    840 
    841 	/*
    842 	 * Pay for the I/O operation and make sure the buf is on the correct
    843 	 * vnode queue.
    844 	 */
    845 	bp->b_error = 0;
    846 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    847 	CLR(bp->b_flags, B_READ);
    848 	if (wasdelayed) {
    849 		mutex_enter(&bufcache_lock);
    850 		mutex_enter(bp->b_objlock);
    851 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    852 		reassignbuf(bp, bp->b_vp);
    853 		mutex_exit(&bufcache_lock);
    854 	} else {
    855 		curlwp->l_ru.ru_oublock++;
    856 		mutex_enter(bp->b_objlock);
    857 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    858 	}
    859 	if (vp != NULL)
    860 		vp->v_numoutput++;
    861 	mutex_exit(bp->b_objlock);
    862 
    863 	/* Initiate disk write. */
    864 	if (sync)
    865 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    866 	else
    867 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    868 
    869 	VOP_STRATEGY(vp, bp);
    870 
    871 	if (sync) {
    872 		/* If I/O was synchronous, wait for it to complete. */
    873 		rv = biowait(bp);
    874 
    875 		/* Release the buffer. */
    876 		brelse(bp, 0);
    877 
    878 		return (rv);
    879 	} else {
    880 		return (0);
    881 	}
    882 }
    883 
    884 int
    885 vn_bwrite(void *v)
    886 {
    887 	struct vop_bwrite_args *ap = v;
    888 
    889 	return (bwrite(ap->a_bp));
    890 }
    891 
    892 /*
    893  * Delayed write.
    894  *
    895  * The buffer is marked dirty, but is not queued for I/O.
    896  * This routine should be used when the buffer is expected
    897  * to be modified again soon, typically a small write that
    898  * partially fills a buffer.
    899  *
    900  * NB: magnetic tapes cannot be delayed; they must be
    901  * written in the order that the writes are requested.
    902  *
    903  * Described in Leffler, et al. (pp. 208-213).
    904  */
    905 void
    906 bdwrite(buf_t *bp)
    907 {
    908 
    909 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    910 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    911 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    912 	KASSERT(!cv_has_waiters(&bp->b_done));
    913 
    914 	/* If this is a tape block, write the block now. */
    915 	if (bdev_type(bp->b_dev) == D_TAPE) {
    916 		bawrite(bp);
    917 		return;
    918 	}
    919 
    920 	if (wapbl_vphaswapbl(bp->b_vp)) {
    921 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    922 
    923 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    924 			WAPBL_ADD_BUF(mp, bp);
    925 		}
    926 	}
    927 
    928 	/*
    929 	 * If the block hasn't been seen before:
    930 	 *	(1) Mark it as having been seen,
    931 	 *	(2) Charge for the write,
    932 	 *	(3) Make sure it's on its vnode's correct block list.
    933 	 */
    934 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    935 
    936 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    937 		mutex_enter(&bufcache_lock);
    938 		mutex_enter(bp->b_objlock);
    939 		SET(bp->b_oflags, BO_DELWRI);
    940 		curlwp->l_ru.ru_oublock++;
    941 		reassignbuf(bp, bp->b_vp);
    942 		mutex_exit(&bufcache_lock);
    943 	} else {
    944 		mutex_enter(bp->b_objlock);
    945 	}
    946 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    947 	CLR(bp->b_oflags, BO_DONE);
    948 	mutex_exit(bp->b_objlock);
    949 
    950 	brelse(bp, 0);
    951 }
    952 
    953 /*
    954  * Asynchronous block write; just an asynchronous bwrite().
    955  */
    956 void
    957 bawrite(buf_t *bp)
    958 {
    959 
    960 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    961 	KASSERT(bp->b_vp != NULL);
    962 
    963 	SET(bp->b_flags, B_ASYNC);
    964 	VOP_BWRITE(bp->b_vp, bp);
    965 }
    966 
    967 /*
    968  * Release a buffer on to the free lists.
    969  * Described in Bach (p. 46).
    970  */
    971 void
    972 brelsel(buf_t *bp, int set)
    973 {
    974 	struct bqueue *bufq;
    975 	struct vnode *vp;
    976 
    977 	KASSERT(bp != NULL);
    978 	KASSERT(mutex_owned(&bufcache_lock));
    979 	KASSERT(!cv_has_waiters(&bp->b_done));
    980 	KASSERT(bp->b_refcnt > 0);
    981 
    982 	SET(bp->b_cflags, set);
    983 
    984 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    985 	KASSERT(bp->b_iodone == NULL);
    986 
    987 	/* Wake up any processes waiting for any buffer to become free. */
    988 	cv_signal(&needbuffer_cv);
    989 
    990 	/* Wake up any proceeses waiting for _this_ buffer to become */
    991 	if (ISSET(bp->b_cflags, BC_WANTED))
    992 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
    993 
    994 	/* If it's clean clear the copy-on-write flag. */
    995 	if (ISSET(bp->b_flags, B_COWDONE)) {
    996 		mutex_enter(bp->b_objlock);
    997 		if (!ISSET(bp->b_oflags, BO_DELWRI))
    998 			CLR(bp->b_flags, B_COWDONE);
    999 		mutex_exit(bp->b_objlock);
   1000 	}
   1001 
   1002 	/*
   1003 	 * Determine which queue the buffer should be on, then put it there.
   1004 	 */
   1005 
   1006 	/* If it's locked, don't report an error; try again later. */
   1007 	if (ISSET(bp->b_flags, B_LOCKED))
   1008 		bp->b_error = 0;
   1009 
   1010 	/* If it's not cacheable, or an error, mark it invalid. */
   1011 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1012 		SET(bp->b_cflags, BC_INVAL);
   1013 
   1014 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1015 		/*
   1016 		 * This is a delayed write buffer that was just flushed to
   1017 		 * disk.  It is still on the LRU queue.  If it's become
   1018 		 * invalid, then we need to move it to a different queue;
   1019 		 * otherwise leave it in its current position.
   1020 		 */
   1021 		CLR(bp->b_cflags, BC_VFLUSH);
   1022 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1023 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1024 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1025 			goto already_queued;
   1026 		} else {
   1027 			bremfree(bp);
   1028 		}
   1029 	}
   1030 
   1031 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1032 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1033 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1034 
   1035 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1036 		/*
   1037 		 * If it's invalid or empty, dissociate it from its vnode
   1038 		 * and put on the head of the appropriate queue.
   1039 		 */
   1040 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1041 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1042 				struct mount *mp = wapbl_vptomp(vp);
   1043 
   1044 				KASSERT(bp->b_iodone
   1045 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1046 				WAPBL_REMOVE_BUF(mp, bp);
   1047 			}
   1048 		}
   1049 
   1050 		mutex_enter(bp->b_objlock);
   1051 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1052 		if ((vp = bp->b_vp) != NULL) {
   1053 			KASSERT(bp->b_objlock == vp->v_interlock);
   1054 			reassignbuf(bp, bp->b_vp);
   1055 			brelvp(bp);
   1056 			mutex_exit(vp->v_interlock);
   1057 		} else {
   1058 			KASSERT(bp->b_objlock == &buffer_lock);
   1059 			mutex_exit(bp->b_objlock);
   1060 		}
   1061 
   1062 		if (bp->b_bufsize <= 0)
   1063 			/* no data */
   1064 			goto already_queued;
   1065 		else
   1066 			/* invalid data */
   1067 			bufq = &bufqueues[BQ_AGE];
   1068 		binsheadfree(bp, bufq);
   1069 	} else  {
   1070 		/*
   1071 		 * It has valid data.  Put it on the end of the appropriate
   1072 		 * queue, so that it'll stick around for as long as possible.
   1073 		 * If buf is AGE, but has dependencies, must put it on last
   1074 		 * bufqueue to be scanned, ie LRU. This protects against the
   1075 		 * livelock where BQ_AGE only has buffers with dependencies,
   1076 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1077 		 */
   1078 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1079 			/* locked in core */
   1080 			bufq = &bufqueues[BQ_LOCKED];
   1081 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1082 			/* valid data */
   1083 			bufq = &bufqueues[BQ_LRU];
   1084 		} else {
   1085 			/* stale but valid data */
   1086 			bufq = &bufqueues[BQ_AGE];
   1087 		}
   1088 		binstailfree(bp, bufq);
   1089 	}
   1090 already_queued:
   1091 	/* Unlock the buffer. */
   1092 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1093 	CLR(bp->b_flags, B_ASYNC);
   1094 	cv_broadcast(&bp->b_busy);
   1095 
   1096 	if (bp->b_bufsize <= 0)
   1097 		brele(bp);
   1098 }
   1099 
   1100 void
   1101 brelse(buf_t *bp, int set)
   1102 {
   1103 
   1104 	mutex_enter(&bufcache_lock);
   1105 	brelsel(bp, set);
   1106 	mutex_exit(&bufcache_lock);
   1107 }
   1108 
   1109 /*
   1110  * Determine if a block is in the cache.
   1111  * Just look on what would be its hash chain.  If it's there, return
   1112  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1113  * we normally don't return the buffer, unless the caller explicitly
   1114  * wants us to.
   1115  */
   1116 buf_t *
   1117 incore(struct vnode *vp, daddr_t blkno)
   1118 {
   1119 	buf_t *bp;
   1120 
   1121 	KASSERT(mutex_owned(&bufcache_lock));
   1122 
   1123 	/* Search hash chain */
   1124 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1125 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1126 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1127 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1128 		    	return (bp);
   1129 		}
   1130 	}
   1131 
   1132 	return (NULL);
   1133 }
   1134 
   1135 /*
   1136  * Get a block of requested size that is associated with
   1137  * a given vnode and block offset. If it is found in the
   1138  * block cache, mark it as having been found, make it busy
   1139  * and return it. Otherwise, return an empty block of the
   1140  * correct size. It is up to the caller to insure that the
   1141  * cached blocks be of the correct size.
   1142  */
   1143 buf_t *
   1144 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1145 {
   1146 	int err, preserve;
   1147 	buf_t *bp;
   1148 
   1149 	mutex_enter(&bufcache_lock);
   1150  loop:
   1151 	bp = incore(vp, blkno);
   1152 	if (bp != NULL) {
   1153 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1154 		if (err != 0) {
   1155 			if (err == EPASSTHROUGH)
   1156 				goto loop;
   1157 			mutex_exit(&bufcache_lock);
   1158 			return (NULL);
   1159 		}
   1160 		KASSERT(!cv_has_waiters(&bp->b_done));
   1161 #ifdef DIAGNOSTIC
   1162 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1163 		    bp->b_bcount < size && vp->v_type != VBLK)
   1164 			panic("getblk: block size invariant failed");
   1165 #endif
   1166 		bremfree(bp);
   1167 		preserve = 1;
   1168 	} else {
   1169 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1170 			goto loop;
   1171 
   1172 		if (incore(vp, blkno) != NULL) {
   1173 			/* The block has come into memory in the meantime. */
   1174 			brelsel(bp, 0);
   1175 			goto loop;
   1176 		}
   1177 
   1178 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1179 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1180 		mutex_enter(vp->v_interlock);
   1181 		bgetvp(vp, bp);
   1182 		mutex_exit(vp->v_interlock);
   1183 		preserve = 0;
   1184 	}
   1185 	mutex_exit(&bufcache_lock);
   1186 
   1187 	/*
   1188 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1189 	 * if we re-size buffers here.
   1190 	 */
   1191 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1192 		KASSERT(bp->b_bufsize >= size);
   1193 	} else {
   1194 		if (allocbuf(bp, size, preserve)) {
   1195 			mutex_enter(&bufcache_lock);
   1196 			LIST_REMOVE(bp, b_hash);
   1197 			mutex_exit(&bufcache_lock);
   1198 			brelse(bp, BC_INVAL);
   1199 			return NULL;
   1200 		}
   1201 	}
   1202 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1203 	return (bp);
   1204 }
   1205 
   1206 /*
   1207  * Get an empty, disassociated buffer of given size.
   1208  */
   1209 buf_t *
   1210 geteblk(int size)
   1211 {
   1212 	buf_t *bp;
   1213 	int error __diagused;
   1214 
   1215 	mutex_enter(&bufcache_lock);
   1216 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1217 		;
   1218 
   1219 	SET(bp->b_cflags, BC_INVAL);
   1220 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1221 	mutex_exit(&bufcache_lock);
   1222 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1223 	error = allocbuf(bp, size, 0);
   1224 	KASSERT(error == 0);
   1225 	return (bp);
   1226 }
   1227 
   1228 /*
   1229  * Expand or contract the actual memory allocated to a buffer.
   1230  *
   1231  * If the buffer shrinks, data is lost, so it's up to the
   1232  * caller to have written it out *first*; this routine will not
   1233  * start a write.  If the buffer grows, it's the callers
   1234  * responsibility to fill out the buffer's additional contents.
   1235  */
   1236 int
   1237 allocbuf(buf_t *bp, int size, int preserve)
   1238 {
   1239 	void *addr;
   1240 	vsize_t oldsize, desired_size;
   1241 	int oldcount;
   1242 	int delta;
   1243 
   1244 	desired_size = buf_roundsize(size);
   1245 	if (desired_size > MAXBSIZE)
   1246 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1247 
   1248 	oldcount = bp->b_bcount;
   1249 
   1250 	bp->b_bcount = size;
   1251 
   1252 	oldsize = bp->b_bufsize;
   1253 	if (oldsize == desired_size) {
   1254 		/*
   1255 		 * Do not short cut the WAPBL resize, as the buffer length
   1256 		 * could still have changed and this would corrupt the
   1257 		 * tracking of the transaction length.
   1258 		 */
   1259 		goto out;
   1260 	}
   1261 
   1262 	/*
   1263 	 * If we want a buffer of a different size, re-allocate the
   1264 	 * buffer's memory; copy old content only if needed.
   1265 	 */
   1266 	addr = buf_alloc(desired_size);
   1267 	if (addr == NULL)
   1268 		return ENOMEM;
   1269 	if (preserve)
   1270 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1271 	if (bp->b_data != NULL)
   1272 		buf_mrelease(bp->b_data, oldsize);
   1273 	bp->b_data = addr;
   1274 	bp->b_bufsize = desired_size;
   1275 
   1276 	/*
   1277 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1278 	 */
   1279 	delta = (long)desired_size - (long)oldsize;
   1280 
   1281 	mutex_enter(&bufcache_lock);
   1282 	if ((bufmem += delta) > bufmem_hiwater) {
   1283 		/*
   1284 		 * Need to trim overall memory usage.
   1285 		 */
   1286 		while (buf_canrelease()) {
   1287 			if (curcpu()->ci_schedstate.spc_flags &
   1288 			    SPCF_SHOULDYIELD) {
   1289 				mutex_exit(&bufcache_lock);
   1290 				preempt();
   1291 				mutex_enter(&bufcache_lock);
   1292 			}
   1293 			if (buf_trim() == 0)
   1294 				break;
   1295 		}
   1296 	}
   1297 	mutex_exit(&bufcache_lock);
   1298 
   1299  out:
   1300 	if (wapbl_vphaswapbl(bp->b_vp))
   1301 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1302 
   1303 	return 0;
   1304 }
   1305 
   1306 /*
   1307  * Find a buffer which is available for use.
   1308  * Select something from a free list.
   1309  * Preference is to AGE list, then LRU list.
   1310  *
   1311  * Called with the buffer queues locked.
   1312  * Return buffer locked.
   1313  */
   1314 buf_t *
   1315 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1316 {
   1317 	buf_t *bp;
   1318 	struct vnode *vp;
   1319 
   1320  start:
   1321 	KASSERT(mutex_owned(&bufcache_lock));
   1322 
   1323 	/*
   1324 	 * Get a new buffer from the pool.
   1325 	 */
   1326 	if (!from_bufq && buf_lotsfree()) {
   1327 		mutex_exit(&bufcache_lock);
   1328 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1329 		if (bp != NULL) {
   1330 			memset((char *)bp, 0, sizeof(*bp));
   1331 			buf_init(bp);
   1332 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1333 			mutex_enter(&bufcache_lock);
   1334 #if defined(DIAGNOSTIC)
   1335 			bp->b_freelistindex = -1;
   1336 #endif /* defined(DIAGNOSTIC) */
   1337 			return (bp);
   1338 		}
   1339 		mutex_enter(&bufcache_lock);
   1340 	}
   1341 
   1342 	KASSERT(mutex_owned(&bufcache_lock));
   1343 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
   1344 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
   1345 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1346 		bremfree(bp);
   1347 
   1348 		/* Buffer is no longer on free lists. */
   1349 		SET(bp->b_cflags, BC_BUSY);
   1350 	} else {
   1351 		/*
   1352 		 * XXX: !from_bufq should be removed.
   1353 		 */
   1354 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1355 			/* wait for a free buffer of any kind */
   1356 			if ((slpflag & PCATCH) != 0)
   1357 				(void)cv_timedwait_sig(&needbuffer_cv,
   1358 				    &bufcache_lock, slptimeo);
   1359 			else
   1360 				(void)cv_timedwait(&needbuffer_cv,
   1361 				    &bufcache_lock, slptimeo);
   1362 		}
   1363 		return (NULL);
   1364 	}
   1365 
   1366 #ifdef DIAGNOSTIC
   1367 	if (bp->b_bufsize <= 0)
   1368 		panic("buffer %p: on queue but empty", bp);
   1369 #endif
   1370 
   1371 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1372 		/*
   1373 		 * This is a delayed write buffer being flushed to disk.  Make
   1374 		 * sure it gets aged out of the queue when it's finished, and
   1375 		 * leave it off the LRU queue.
   1376 		 */
   1377 		CLR(bp->b_cflags, BC_VFLUSH);
   1378 		SET(bp->b_cflags, BC_AGE);
   1379 		goto start;
   1380 	}
   1381 
   1382 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1383 	KASSERT(bp->b_refcnt > 0);
   1384     	KASSERT(!cv_has_waiters(&bp->b_done));
   1385 
   1386 	/*
   1387 	 * If buffer was a delayed write, start it and return NULL
   1388 	 * (since we might sleep while starting the write).
   1389 	 */
   1390 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1391 		/*
   1392 		 * This buffer has gone through the LRU, so make sure it gets
   1393 		 * reused ASAP.
   1394 		 */
   1395 		SET(bp->b_cflags, BC_AGE);
   1396 		mutex_exit(&bufcache_lock);
   1397 		bawrite(bp);
   1398 		mutex_enter(&bufcache_lock);
   1399 		return (NULL);
   1400 	}
   1401 
   1402 	vp = bp->b_vp;
   1403 
   1404 	/* clear out various other fields */
   1405 	bp->b_cflags = BC_BUSY;
   1406 	bp->b_oflags = 0;
   1407 	bp->b_flags = 0;
   1408 	bp->b_dev = NODEV;
   1409 	bp->b_blkno = 0;
   1410 	bp->b_lblkno = 0;
   1411 	bp->b_rawblkno = 0;
   1412 	bp->b_iodone = 0;
   1413 	bp->b_error = 0;
   1414 	bp->b_resid = 0;
   1415 	bp->b_bcount = 0;
   1416 
   1417 	LIST_REMOVE(bp, b_hash);
   1418 
   1419 	/* Disassociate us from our vnode, if we had one... */
   1420 	if (vp != NULL) {
   1421 		mutex_enter(vp->v_interlock);
   1422 		brelvp(bp);
   1423 		mutex_exit(vp->v_interlock);
   1424 	}
   1425 
   1426 	return (bp);
   1427 }
   1428 
   1429 /*
   1430  * Attempt to free an aged buffer off the queues.
   1431  * Called with queue lock held.
   1432  * Returns the amount of buffer memory freed.
   1433  */
   1434 static int
   1435 buf_trim(void)
   1436 {
   1437 	buf_t *bp;
   1438 	long size;
   1439 
   1440 	KASSERT(mutex_owned(&bufcache_lock));
   1441 
   1442 	/* Instruct getnewbuf() to get buffers off the queues */
   1443 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1444 		return 0;
   1445 
   1446 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1447 	size = bp->b_bufsize;
   1448 	bufmem -= size;
   1449 	if (size > 0) {
   1450 		buf_mrelease(bp->b_data, size);
   1451 		bp->b_bcount = bp->b_bufsize = 0;
   1452 	}
   1453 	/* brelse() will return the buffer to the global buffer pool */
   1454 	brelsel(bp, 0);
   1455 	return size;
   1456 }
   1457 
   1458 int
   1459 buf_drain(int n)
   1460 {
   1461 	int size = 0, sz;
   1462 
   1463 	KASSERT(mutex_owned(&bufcache_lock));
   1464 
   1465 	while (size < n && bufmem > bufmem_lowater) {
   1466 		sz = buf_trim();
   1467 		if (sz <= 0)
   1468 			break;
   1469 		size += sz;
   1470 	}
   1471 
   1472 	return size;
   1473 }
   1474 
   1475 /*
   1476  * Wait for operations on the buffer to complete.
   1477  * When they do, extract and return the I/O's error value.
   1478  */
   1479 int
   1480 biowait(buf_t *bp)
   1481 {
   1482 
   1483 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1484 	KASSERT(bp->b_refcnt > 0);
   1485 
   1486 	mutex_enter(bp->b_objlock);
   1487 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
   1488 		cv_wait(&bp->b_done, bp->b_objlock);
   1489 	mutex_exit(bp->b_objlock);
   1490 
   1491 	return bp->b_error;
   1492 }
   1493 
   1494 /*
   1495  * Mark I/O complete on a buffer.
   1496  *
   1497  * If a callback has been requested, e.g. the pageout
   1498  * daemon, do so. Otherwise, awaken waiting processes.
   1499  *
   1500  * [ Leffler, et al., says on p.247:
   1501  *	"This routine wakes up the blocked process, frees the buffer
   1502  *	for an asynchronous write, or, for a request by the pagedaemon
   1503  *	process, invokes a procedure specified in the buffer structure" ]
   1504  *
   1505  * In real life, the pagedaemon (or other system processes) wants
   1506  * to do async stuff to, and doesn't want the buffer brelse()'d.
   1507  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1508  * for the vn device, that puts allocated buffers on the free lists!)
   1509  */
   1510 void
   1511 biodone(buf_t *bp)
   1512 {
   1513 	int s;
   1514 
   1515 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1516 
   1517 	if (cpu_intr_p()) {
   1518 		/* From interrupt mode: defer to a soft interrupt. */
   1519 		s = splvm();
   1520 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1521 		softint_schedule(biodone_sih);
   1522 		splx(s);
   1523 	} else {
   1524 		/* Process now - the buffer may be freed soon. */
   1525 		biodone2(bp);
   1526 	}
   1527 }
   1528 
   1529 static void
   1530 biodone2(buf_t *bp)
   1531 {
   1532 	void (*callout)(buf_t *);
   1533 
   1534 	mutex_enter(bp->b_objlock);
   1535 	/* Note that the transfer is done. */
   1536 	if (ISSET(bp->b_oflags, BO_DONE))
   1537 		panic("biodone2 already");
   1538 	CLR(bp->b_flags, B_COWDONE);
   1539 	SET(bp->b_oflags, BO_DONE);
   1540 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1541 
   1542 	/* Wake up waiting writers. */
   1543 	if (!ISSET(bp->b_flags, B_READ))
   1544 		vwakeup(bp);
   1545 
   1546 	if ((callout = bp->b_iodone) != NULL) {
   1547 		/* Note callout done, then call out. */
   1548 		KASSERT(!cv_has_waiters(&bp->b_done));
   1549 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1550 		bp->b_iodone = NULL;
   1551 		mutex_exit(bp->b_objlock);
   1552 		(*callout)(bp);
   1553 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1554 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1555 		/* If async, release. */
   1556 		KASSERT(!cv_has_waiters(&bp->b_done));
   1557 		mutex_exit(bp->b_objlock);
   1558 		brelse(bp, 0);
   1559 	} else {
   1560 		/* Otherwise just wake up waiters in biowait(). */
   1561 		cv_broadcast(&bp->b_done);
   1562 		mutex_exit(bp->b_objlock);
   1563 	}
   1564 }
   1565 
   1566 static void
   1567 biointr(void *cookie)
   1568 {
   1569 	struct cpu_info *ci;
   1570 	buf_t *bp;
   1571 	int s;
   1572 
   1573 	ci = curcpu();
   1574 
   1575 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1576 		KASSERT(curcpu() == ci);
   1577 
   1578 		s = splvm();
   1579 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1580 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1581 		splx(s);
   1582 
   1583 		biodone2(bp);
   1584 	}
   1585 }
   1586 
   1587 /*
   1588  * Wait for all buffers to complete I/O
   1589  * Return the number of "stuck" buffers.
   1590  */
   1591 int
   1592 buf_syncwait(void)
   1593 {
   1594 	buf_t *bp;
   1595 	int iter, nbusy, nbusy_prev = 0, ihash;
   1596 
   1597 	for (iter = 0; iter < 20;) {
   1598 		mutex_enter(&bufcache_lock);
   1599 		nbusy = 0;
   1600 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1601 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1602 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1603 				nbusy += ((bp->b_flags & B_READ) == 0);
   1604 		    }
   1605 		}
   1606 		mutex_exit(&bufcache_lock);
   1607 
   1608 		if (nbusy == 0)
   1609 			break;
   1610 		if (nbusy_prev == 0)
   1611 			nbusy_prev = nbusy;
   1612 		printf("%d ", nbusy);
   1613 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
   1614 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1615 			iter++;
   1616 		else
   1617 			nbusy_prev = nbusy;
   1618 	}
   1619 
   1620 	if (nbusy) {
   1621 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1622 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1623 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1624 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1625 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1626 			    (bp->b_flags & B_READ) == 0)
   1627 				vprint(NULL, bp->b_vp);
   1628 		    }
   1629 		}
   1630 #endif
   1631 	}
   1632 
   1633 	return nbusy;
   1634 }
   1635 
   1636 static void
   1637 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
   1638 {
   1639 
   1640 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1641 	o->b_error = i->b_error;
   1642 	o->b_prio = i->b_prio;
   1643 	o->b_dev = i->b_dev;
   1644 	o->b_bufsize = i->b_bufsize;
   1645 	o->b_bcount = i->b_bcount;
   1646 	o->b_resid = i->b_resid;
   1647 	o->b_addr = PTRTOUINT64(i->b_data);
   1648 	o->b_blkno = i->b_blkno;
   1649 	o->b_rawblkno = i->b_rawblkno;
   1650 	o->b_iodone = PTRTOUINT64(i->b_iodone);
   1651 	o->b_proc = PTRTOUINT64(i->b_proc);
   1652 	o->b_vp = PTRTOUINT64(i->b_vp);
   1653 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
   1654 	o->b_lblkno = i->b_lblkno;
   1655 }
   1656 
   1657 #define KERN_BUFSLOP 20
   1658 static int
   1659 sysctl_dobuf(SYSCTLFN_ARGS)
   1660 {
   1661 	buf_t *bp;
   1662 	struct buf_sysctl bs;
   1663 	struct bqueue *bq;
   1664 	char *dp;
   1665 	u_int i, op, arg;
   1666 	size_t len, needed, elem_size, out_size;
   1667 	int error, elem_count, retries;
   1668 
   1669 	if (namelen == 1 && name[0] == CTL_QUERY)
   1670 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1671 
   1672 	if (namelen != 4)
   1673 		return (EINVAL);
   1674 
   1675 	retries = 100;
   1676  retry:
   1677 	dp = oldp;
   1678 	len = (oldp != NULL) ? *oldlenp : 0;
   1679 	op = name[0];
   1680 	arg = name[1];
   1681 	elem_size = name[2];
   1682 	elem_count = name[3];
   1683 	out_size = MIN(sizeof(bs), elem_size);
   1684 
   1685 	/*
   1686 	 * at the moment, these are just "placeholders" to make the
   1687 	 * API for retrieving kern.buf data more extensible in the
   1688 	 * future.
   1689 	 *
   1690 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1691 	 * these will be resolved at a later point.
   1692 	 */
   1693 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1694 	    elem_size < 1 || elem_count < 0)
   1695 		return (EINVAL);
   1696 
   1697 	error = 0;
   1698 	needed = 0;
   1699 	sysctl_unlock();
   1700 	mutex_enter(&bufcache_lock);
   1701 	for (i = 0; i < BQUEUES; i++) {
   1702 		bq = &bufqueues[i];
   1703 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1704 			bq->bq_marker = bp;
   1705 			if (len >= elem_size && elem_count > 0) {
   1706 				sysctl_fillbuf(bp, &bs);
   1707 				mutex_exit(&bufcache_lock);
   1708 				error = copyout(&bs, dp, out_size);
   1709 				mutex_enter(&bufcache_lock);
   1710 				if (error)
   1711 					break;
   1712 				if (bq->bq_marker != bp) {
   1713 					/*
   1714 					 * This sysctl node is only for
   1715 					 * statistics.  Retry; if the
   1716 					 * queue keeps changing, then
   1717 					 * bail out.
   1718 					 */
   1719 					if (retries-- == 0) {
   1720 						error = EAGAIN;
   1721 						break;
   1722 					}
   1723 					mutex_exit(&bufcache_lock);
   1724 					sysctl_relock();
   1725 					goto retry;
   1726 				}
   1727 				dp += elem_size;
   1728 				len -= elem_size;
   1729 			}
   1730 			needed += elem_size;
   1731 			if (elem_count > 0 && elem_count != INT_MAX)
   1732 				elem_count--;
   1733 		}
   1734 		if (error != 0)
   1735 			break;
   1736 	}
   1737 	mutex_exit(&bufcache_lock);
   1738 	sysctl_relock();
   1739 
   1740 	*oldlenp = needed;
   1741 	if (oldp == NULL)
   1742 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1743 
   1744 	return (error);
   1745 }
   1746 
   1747 static int
   1748 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1749 {
   1750 	int error, rv;
   1751 	struct sysctlnode node;
   1752 	unsigned int temp_bufcache;
   1753 	unsigned long temp_water;
   1754 
   1755 	/* Take a copy of the supplied node and its data */
   1756 	node = *rnode;
   1757 	if (node.sysctl_data == &bufcache) {
   1758 	    node.sysctl_data = &temp_bufcache;
   1759 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
   1760 	} else {
   1761 	    node.sysctl_data = &temp_water;
   1762 	    temp_water = *(unsigned long *)rnode->sysctl_data;
   1763 	}
   1764 
   1765 	/* Update the copy */
   1766 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1767 	if (error || newp == NULL)
   1768 		return (error);
   1769 
   1770 	if (rnode->sysctl_data == &bufcache) {
   1771 		if (temp_bufcache > 100)
   1772 			return (EINVAL);
   1773 		bufcache = temp_bufcache;
   1774 		buf_setwm();
   1775 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1776 		if (bufmem_hiwater - temp_water < 16)
   1777 			return (EINVAL);
   1778 		bufmem_lowater = temp_water;
   1779 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1780 		if (temp_water - bufmem_lowater < 16)
   1781 			return (EINVAL);
   1782 		bufmem_hiwater = temp_water;
   1783 	} else
   1784 		return (EINVAL);
   1785 
   1786 	/* Drain until below new high water mark */
   1787 	sysctl_unlock();
   1788 	mutex_enter(&bufcache_lock);
   1789 	while (bufmem > bufmem_hiwater) {
   1790 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
   1791 		if (rv <= 0)
   1792 			break;
   1793 	}
   1794 	mutex_exit(&bufcache_lock);
   1795 	sysctl_relock();
   1796 
   1797 	return 0;
   1798 }
   1799 
   1800 static struct sysctllog *vfsbio_sysctllog;
   1801 
   1802 static void
   1803 sysctl_kern_buf_setup(void)
   1804 {
   1805 
   1806 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1807 		       CTLFLAG_PERMANENT,
   1808 		       CTLTYPE_NODE, "buf",
   1809 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1810 		       sysctl_dobuf, 0, NULL, 0,
   1811 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1812 }
   1813 
   1814 static void
   1815 sysctl_vm_buf_setup(void)
   1816 {
   1817 
   1818 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1819 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1820 		       CTLTYPE_INT, "bufcache",
   1821 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1822 				    "buffer cache"),
   1823 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1824 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1825 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1826 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1827 		       CTLTYPE_LONG, "bufmem",
   1828 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1829 				    "cache"),
   1830 		       NULL, 0, &bufmem, 0,
   1831 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1832 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1833 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1834 		       CTLTYPE_LONG, "bufmem_lowater",
   1835 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1836 				    "reserve for buffer cache"),
   1837 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1838 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1839 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1840 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1841 		       CTLTYPE_LONG, "bufmem_hiwater",
   1842 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1843 				    "for buffer cache"),
   1844 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1845 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1846 }
   1847 
   1848 #ifdef DEBUG
   1849 /*
   1850  * Print out statistics on the current allocation of the buffer pool.
   1851  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1852  * in vfs_syscalls.c using sysctl.
   1853  */
   1854 void
   1855 vfs_bufstats(void)
   1856 {
   1857 	int i, j, count;
   1858 	buf_t *bp;
   1859 	struct bqueue *dp;
   1860 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
   1861 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1862 
   1863 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1864 		count = 0;
   1865 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1866 			counts[j] = 0;
   1867 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1868 			counts[bp->b_bufsize/PAGE_SIZE]++;
   1869 			count++;
   1870 		}
   1871 		printf("%s: total-%d", bname[i], count);
   1872 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
   1873 			if (counts[j] != 0)
   1874 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   1875 		printf("\n");
   1876 	}
   1877 }
   1878 #endif /* DEBUG */
   1879 
   1880 /* ------------------------------ */
   1881 
   1882 buf_t *
   1883 getiobuf(struct vnode *vp, bool waitok)
   1884 {
   1885 	buf_t *bp;
   1886 
   1887 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   1888 	if (bp == NULL)
   1889 		return bp;
   1890 
   1891 	buf_init(bp);
   1892 
   1893 	if ((bp->b_vp = vp) == NULL)
   1894 		bp->b_objlock = &buffer_lock;
   1895 	else
   1896 		bp->b_objlock = vp->v_interlock;
   1897 
   1898 	return bp;
   1899 }
   1900 
   1901 void
   1902 putiobuf(buf_t *bp)
   1903 {
   1904 
   1905 	buf_destroy(bp);
   1906 	pool_cache_put(bufio_cache, bp);
   1907 }
   1908 
   1909 /*
   1910  * nestiobuf_iodone: b_iodone callback for nested buffers.
   1911  */
   1912 
   1913 void
   1914 nestiobuf_iodone(buf_t *bp)
   1915 {
   1916 	buf_t *mbp = bp->b_private;
   1917 	int error;
   1918 	int donebytes;
   1919 
   1920 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   1921 	KASSERT(mbp != bp);
   1922 
   1923 	error = bp->b_error;
   1924 	if (bp->b_error == 0 &&
   1925 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   1926 		/*
   1927 		 * Not all got transfered, raise an error. We have no way to
   1928 		 * propagate these conditions to mbp.
   1929 		 */
   1930 		error = EIO;
   1931 	}
   1932 
   1933 	donebytes = bp->b_bufsize;
   1934 
   1935 	putiobuf(bp);
   1936 	nestiobuf_done(mbp, donebytes, error);
   1937 }
   1938 
   1939 /*
   1940  * nestiobuf_setup: setup a "nested" buffer.
   1941  *
   1942  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   1943  * => 'bp' should be a buffer allocated by getiobuf.
   1944  * => 'offset' is a byte offset in the master buffer.
   1945  * => 'size' is a size in bytes of this nested buffer.
   1946  */
   1947 
   1948 void
   1949 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   1950 {
   1951 	const int b_read = mbp->b_flags & B_READ;
   1952 	struct vnode *vp = mbp->b_vp;
   1953 
   1954 	KASSERT(mbp->b_bcount >= offset + size);
   1955 	bp->b_vp = vp;
   1956 	bp->b_dev = mbp->b_dev;
   1957 	bp->b_objlock = mbp->b_objlock;
   1958 	bp->b_cflags = BC_BUSY;
   1959 	bp->b_flags = B_ASYNC | b_read;
   1960 	bp->b_iodone = nestiobuf_iodone;
   1961 	bp->b_data = (char *)mbp->b_data + offset;
   1962 	bp->b_resid = bp->b_bcount = size;
   1963 	bp->b_bufsize = bp->b_bcount;
   1964 	bp->b_private = mbp;
   1965 	BIO_COPYPRIO(bp, mbp);
   1966 	if (!b_read && vp != NULL) {
   1967 		mutex_enter(vp->v_interlock);
   1968 		vp->v_numoutput++;
   1969 		mutex_exit(vp->v_interlock);
   1970 	}
   1971 }
   1972 
   1973 /*
   1974  * nestiobuf_done: propagate completion to the master buffer.
   1975  *
   1976  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   1977  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   1978  */
   1979 
   1980 void
   1981 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   1982 {
   1983 
   1984 	if (donebytes == 0) {
   1985 		return;
   1986 	}
   1987 	mutex_enter(mbp->b_objlock);
   1988 	KASSERT(mbp->b_resid >= donebytes);
   1989 	mbp->b_resid -= donebytes;
   1990 	if (error)
   1991 		mbp->b_error = error;
   1992 	if (mbp->b_resid == 0) {
   1993 		if (mbp->b_error)
   1994 			mbp->b_resid = mbp->b_bcount;
   1995 		mutex_exit(mbp->b_objlock);
   1996 		biodone(mbp);
   1997 	} else
   1998 		mutex_exit(mbp->b_objlock);
   1999 }
   2000 
   2001 void
   2002 buf_init(buf_t *bp)
   2003 {
   2004 
   2005 	cv_init(&bp->b_busy, "biolock");
   2006 	cv_init(&bp->b_done, "biowait");
   2007 	bp->b_dev = NODEV;
   2008 	bp->b_error = 0;
   2009 	bp->b_flags = 0;
   2010 	bp->b_cflags = 0;
   2011 	bp->b_oflags = 0;
   2012 	bp->b_objlock = &buffer_lock;
   2013 	bp->b_iodone = NULL;
   2014 	bp->b_refcnt = 1;
   2015 	bp->b_dev = NODEV;
   2016 	bp->b_vnbufs.le_next = NOLIST;
   2017 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2018 }
   2019 
   2020 void
   2021 buf_destroy(buf_t *bp)
   2022 {
   2023 
   2024 	cv_destroy(&bp->b_done);
   2025 	cv_destroy(&bp->b_busy);
   2026 }
   2027 
   2028 int
   2029 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2030 {
   2031 	int error;
   2032 
   2033 	KASSERT(mutex_owned(&bufcache_lock));
   2034 
   2035 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2036 		if (curlwp == uvm.pagedaemon_lwp)
   2037 			return EDEADLK;
   2038 		bp->b_cflags |= BC_WANTED;
   2039 		bref(bp);
   2040 		if (interlock != NULL)
   2041 			mutex_exit(interlock);
   2042 		if (intr) {
   2043 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2044 			    timo);
   2045 		} else {
   2046 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2047 			    timo);
   2048 		}
   2049 		brele(bp);
   2050 		if (interlock != NULL)
   2051 			mutex_enter(interlock);
   2052 		if (error != 0)
   2053 			return error;
   2054 		return EPASSTHROUGH;
   2055 	}
   2056 	bp->b_cflags |= BC_BUSY;
   2057 
   2058 	return 0;
   2059 }
   2060