vfs_bio.c revision 1.272 1 /* $NetBSD: vfs_bio.c,v 1.272 2017/04/05 20:15:49 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.272 2017/04/05 20:15:49 jdolecek Exp $");
127
128 #ifdef _KERNEL_OPT
129 #include "opt_bufcache.h"
130 #include "opt_dtrace.h"
131 #include "opt_biohist.h"
132 #endif
133
134 #include <sys/param.h>
135 #include <sys/systm.h>
136 #include <sys/kernel.h>
137 #include <sys/proc.h>
138 #include <sys/buf.h>
139 #include <sys/vnode.h>
140 #include <sys/mount.h>
141 #include <sys/resourcevar.h>
142 #include <sys/sysctl.h>
143 #include <sys/conf.h>
144 #include <sys/kauth.h>
145 #include <sys/fstrans.h>
146 #include <sys/intr.h>
147 #include <sys/cpu.h>
148 #include <sys/wapbl.h>
149 #include <sys/bitops.h>
150 #include <sys/cprng.h>
151 #include <sys/sdt.h>
152
153 #include <uvm/uvm.h> /* extern struct uvm uvm */
154
155 #include <miscfs/specfs/specdev.h>
156
157 #ifndef BUFPAGES
158 # define BUFPAGES 0
159 #endif
160
161 #ifdef BUFCACHE
162 # if (BUFCACHE < 5) || (BUFCACHE > 95)
163 # error BUFCACHE is not between 5 and 95
164 # endif
165 #else
166 # define BUFCACHE 15
167 #endif
168
169 u_int nbuf; /* desired number of buffer headers */
170 u_int bufpages = BUFPAGES; /* optional hardwired count */
171 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
172
173 /* Function prototypes */
174 struct bqueue;
175
176 static void buf_setwm(void);
177 static int buf_trim(void);
178 static void *bufpool_page_alloc(struct pool *, int);
179 static void bufpool_page_free(struct pool *, void *);
180 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
181 static buf_t *getnewbuf(int, int, int);
182 static int buf_lotsfree(void);
183 static int buf_canrelease(void);
184 static u_long buf_mempoolidx(u_long);
185 static u_long buf_roundsize(u_long);
186 static void *buf_alloc(size_t);
187 static void buf_mrelease(void *, size_t);
188 static void binsheadfree(buf_t *, struct bqueue *);
189 static void binstailfree(buf_t *, struct bqueue *);
190 #ifdef DEBUG
191 static int checkfreelist(buf_t *, struct bqueue *, int);
192 #endif
193 static void biointr(void *);
194 static void biodone2(buf_t *);
195 static void bref(buf_t *);
196 static void brele(buf_t *);
197 static void sysctl_kern_buf_setup(void);
198 static void sysctl_vm_buf_setup(void);
199
200 /* Initialization for biohist */
201
202 #include <sys/biohist.h>
203
204 BIOHIST_DEFINE(biohist);
205
206 void
207 biohist_init(void)
208 {
209
210 BIOHIST_INIT(biohist, BIOHIST_SIZE);
211 }
212
213 /*
214 * Definitions for the buffer hash lists.
215 */
216 #define BUFHASH(dvp, lbn) \
217 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
218 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
219 u_long bufhash;
220 struct bqueue bufqueues[BQUEUES];
221
222 static kcondvar_t needbuffer_cv;
223
224 /*
225 * Buffer queue lock.
226 */
227 kmutex_t bufcache_lock;
228 kmutex_t buffer_lock;
229
230 /* Software ISR for completed transfers. */
231 static void *biodone_sih;
232
233 /* Buffer pool for I/O buffers. */
234 static pool_cache_t buf_cache;
235 static pool_cache_t bufio_cache;
236
237 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
238 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
239 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
240
241 /* Buffer memory pools */
242 static struct pool bmempools[NMEMPOOLS];
243
244 static struct vm_map *buf_map;
245
246 /*
247 * Buffer memory pool allocator.
248 */
249 static void *
250 bufpool_page_alloc(struct pool *pp, int flags)
251 {
252
253 return (void *)uvm_km_alloc(buf_map,
254 MAXBSIZE, MAXBSIZE,
255 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
256 | UVM_KMF_WIRED);
257 }
258
259 static void
260 bufpool_page_free(struct pool *pp, void *v)
261 {
262
263 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
264 }
265
266 static struct pool_allocator bufmempool_allocator = {
267 .pa_alloc = bufpool_page_alloc,
268 .pa_free = bufpool_page_free,
269 .pa_pagesz = MAXBSIZE,
270 };
271
272 /* Buffer memory management variables */
273 u_long bufmem_valimit;
274 u_long bufmem_hiwater;
275 u_long bufmem_lowater;
276 u_long bufmem;
277
278 /*
279 * MD code can call this to set a hard limit on the amount
280 * of virtual memory used by the buffer cache.
281 */
282 int
283 buf_setvalimit(vsize_t sz)
284 {
285
286 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
287 if (sz < NMEMPOOLS * MAXBSIZE)
288 return EINVAL;
289
290 bufmem_valimit = sz;
291 return 0;
292 }
293
294 static void
295 buf_setwm(void)
296 {
297
298 bufmem_hiwater = buf_memcalc();
299 /* lowater is approx. 2% of memory (with bufcache = 15) */
300 #define BUFMEM_WMSHIFT 3
301 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
302 if (bufmem_hiwater < BUFMEM_HIWMMIN)
303 /* Ensure a reasonable minimum value */
304 bufmem_hiwater = BUFMEM_HIWMMIN;
305 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
306 }
307
308 #ifdef DEBUG
309 int debug_verify_freelist = 0;
310 static int
311 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
312 {
313 buf_t *b;
314
315 if (!debug_verify_freelist)
316 return 1;
317
318 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
319 if (b == bp)
320 return ison ? 1 : 0;
321 }
322
323 return ison ? 0 : 1;
324 }
325 #endif
326
327 /*
328 * Insq/Remq for the buffer hash lists.
329 * Call with buffer queue locked.
330 */
331 static void
332 binsheadfree(buf_t *bp, struct bqueue *dp)
333 {
334
335 KASSERT(mutex_owned(&bufcache_lock));
336 KASSERT(bp->b_freelistindex == -1);
337 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
338 dp->bq_bytes += bp->b_bufsize;
339 bp->b_freelistindex = dp - bufqueues;
340 }
341
342 static void
343 binstailfree(buf_t *bp, struct bqueue *dp)
344 {
345
346 KASSERT(mutex_owned(&bufcache_lock));
347 KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
348 "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
349 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
350 dp->bq_bytes += bp->b_bufsize;
351 bp->b_freelistindex = dp - bufqueues;
352 }
353
354 void
355 bremfree(buf_t *bp)
356 {
357 struct bqueue *dp;
358 int bqidx = bp->b_freelistindex;
359
360 KASSERT(mutex_owned(&bufcache_lock));
361
362 KASSERT(bqidx != -1);
363 dp = &bufqueues[bqidx];
364 KDASSERT(checkfreelist(bp, dp, 1));
365 KASSERT(dp->bq_bytes >= bp->b_bufsize);
366 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
367 dp->bq_bytes -= bp->b_bufsize;
368
369 /* For the sysctl helper. */
370 if (bp == dp->bq_marker)
371 dp->bq_marker = NULL;
372
373 #if defined(DIAGNOSTIC)
374 bp->b_freelistindex = -1;
375 #endif /* defined(DIAGNOSTIC) */
376 }
377
378 /*
379 * Add a reference to an buffer structure that came from buf_cache.
380 */
381 static inline void
382 bref(buf_t *bp)
383 {
384
385 KASSERT(mutex_owned(&bufcache_lock));
386 KASSERT(bp->b_refcnt > 0);
387
388 bp->b_refcnt++;
389 }
390
391 /*
392 * Free an unused buffer structure that came from buf_cache.
393 */
394 static inline void
395 brele(buf_t *bp)
396 {
397
398 KASSERT(mutex_owned(&bufcache_lock));
399 KASSERT(bp->b_refcnt > 0);
400
401 if (bp->b_refcnt-- == 1) {
402 buf_destroy(bp);
403 #ifdef DEBUG
404 memset((char *)bp, 0, sizeof(*bp));
405 #endif
406 pool_cache_put(buf_cache, bp);
407 }
408 }
409
410 /*
411 * note that for some ports this is used by pmap bootstrap code to
412 * determine kva size.
413 */
414 u_long
415 buf_memcalc(void)
416 {
417 u_long n;
418 vsize_t mapsz = 0;
419
420 /*
421 * Determine the upper bound of memory to use for buffers.
422 *
423 * - If bufpages is specified, use that as the number
424 * pages.
425 *
426 * - Otherwise, use bufcache as the percentage of
427 * physical memory.
428 */
429 if (bufpages != 0) {
430 n = bufpages;
431 } else {
432 if (bufcache < 5) {
433 printf("forcing bufcache %d -> 5", bufcache);
434 bufcache = 5;
435 }
436 if (bufcache > 95) {
437 printf("forcing bufcache %d -> 95", bufcache);
438 bufcache = 95;
439 }
440 if (buf_map != NULL)
441 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
442 n = calc_cache_size(mapsz, bufcache,
443 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
444 / PAGE_SIZE;
445 }
446
447 n <<= PAGE_SHIFT;
448 if (bufmem_valimit != 0 && n > bufmem_valimit)
449 n = bufmem_valimit;
450
451 return (n);
452 }
453
454 /*
455 * Initialize buffers and hash links for buffers.
456 */
457 void
458 bufinit(void)
459 {
460 struct bqueue *dp;
461 int use_std;
462 u_int i;
463
464 biodone_vfs = biodone;
465
466 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
467 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
468 cv_init(&needbuffer_cv, "needbuf");
469
470 if (bufmem_valimit != 0) {
471 vaddr_t minaddr = 0, maxaddr;
472 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
473 bufmem_valimit, 0, false, 0);
474 if (buf_map == NULL)
475 panic("bufinit: cannot allocate submap");
476 } else
477 buf_map = kernel_map;
478
479 /*
480 * Initialize buffer cache memory parameters.
481 */
482 bufmem = 0;
483 buf_setwm();
484
485 /* On "small" machines use small pool page sizes where possible */
486 use_std = (physmem < atop(16*1024*1024));
487
488 /*
489 * Also use them on systems that can map the pool pages using
490 * a direct-mapped segment.
491 */
492 #ifdef PMAP_MAP_POOLPAGE
493 use_std = 1;
494 #endif
495
496 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
497 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
498 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
499 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
500
501 for (i = 0; i < NMEMPOOLS; i++) {
502 struct pool_allocator *pa;
503 struct pool *pp = &bmempools[i];
504 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
505 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
506 if (__predict_false(size >= 1048576))
507 (void)snprintf(name, 8, "buf%um", size / 1048576);
508 else if (__predict_true(size >= 1024))
509 (void)snprintf(name, 8, "buf%uk", size / 1024);
510 else
511 (void)snprintf(name, 8, "buf%ub", size);
512 pa = (size <= PAGE_SIZE && use_std)
513 ? &pool_allocator_nointr
514 : &bufmempool_allocator;
515 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
516 pool_setlowat(pp, 1);
517 pool_sethiwat(pp, 1);
518 }
519
520 /* Initialize the buffer queues */
521 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
522 TAILQ_INIT(&dp->bq_queue);
523 dp->bq_bytes = 0;
524 }
525
526 /*
527 * Estimate hash table size based on the amount of memory we
528 * intend to use for the buffer cache. The average buffer
529 * size is dependent on our clients (i.e. filesystems).
530 *
531 * For now, use an empirical 3K per buffer.
532 */
533 nbuf = (bufmem_hiwater / 1024) / 3;
534 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
535
536 sysctl_kern_buf_setup();
537 sysctl_vm_buf_setup();
538 }
539
540 void
541 bufinit2(void)
542 {
543
544 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
545 NULL);
546 if (biodone_sih == NULL)
547 panic("bufinit2: can't establish soft interrupt");
548 }
549
550 static int
551 buf_lotsfree(void)
552 {
553 u_long guess;
554
555 /* Always allocate if less than the low water mark. */
556 if (bufmem < bufmem_lowater)
557 return 1;
558
559 /* Never allocate if greater than the high water mark. */
560 if (bufmem > bufmem_hiwater)
561 return 0;
562
563 /* If there's anything on the AGE list, it should be eaten. */
564 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
565 return 0;
566
567 /*
568 * The probabily of getting a new allocation is inversely
569 * proportional to the current size of the cache above
570 * the low water mark. Divide the total first to avoid overflows
571 * in the product.
572 */
573 guess = cprng_fast32() % 16;
574
575 if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
576 (bufmem - bufmem_lowater))
577 return 1;
578
579 /* Otherwise don't allocate. */
580 return 0;
581 }
582
583 /*
584 * Return estimate of bytes we think need to be
585 * released to help resolve low memory conditions.
586 *
587 * => called with bufcache_lock held.
588 */
589 static int
590 buf_canrelease(void)
591 {
592 int pagedemand, ninvalid = 0;
593
594 KASSERT(mutex_owned(&bufcache_lock));
595
596 if (bufmem < bufmem_lowater)
597 return 0;
598
599 if (bufmem > bufmem_hiwater)
600 return bufmem - bufmem_hiwater;
601
602 ninvalid += bufqueues[BQ_AGE].bq_bytes;
603
604 pagedemand = uvmexp.freetarg - uvmexp.free;
605 if (pagedemand < 0)
606 return ninvalid;
607 return MAX(ninvalid, MIN(2 * MAXBSIZE,
608 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
609 }
610
611 /*
612 * Buffer memory allocation helper functions
613 */
614 static u_long
615 buf_mempoolidx(u_long size)
616 {
617 u_int n = 0;
618
619 size -= 1;
620 size >>= MEMPOOL_INDEX_OFFSET;
621 while (size) {
622 size >>= 1;
623 n += 1;
624 }
625 if (n >= NMEMPOOLS)
626 panic("buf mem pool index %d", n);
627 return n;
628 }
629
630 static u_long
631 buf_roundsize(u_long size)
632 {
633 /* Round up to nearest power of 2 */
634 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
635 }
636
637 static void *
638 buf_alloc(size_t size)
639 {
640 u_int n = buf_mempoolidx(size);
641 void *addr;
642
643 while (1) {
644 addr = pool_get(&bmempools[n], PR_NOWAIT);
645 if (addr != NULL)
646 break;
647
648 /* No memory, see if we can free some. If so, try again */
649 mutex_enter(&bufcache_lock);
650 if (buf_drain(1) > 0) {
651 mutex_exit(&bufcache_lock);
652 continue;
653 }
654
655 if (curlwp == uvm.pagedaemon_lwp) {
656 mutex_exit(&bufcache_lock);
657 return NULL;
658 }
659
660 /* Wait for buffers to arrive on the LRU queue */
661 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
662 mutex_exit(&bufcache_lock);
663 }
664
665 return addr;
666 }
667
668 static void
669 buf_mrelease(void *addr, size_t size)
670 {
671
672 pool_put(&bmempools[buf_mempoolidx(size)], addr);
673 }
674
675 /*
676 * bread()/breadn() helper.
677 */
678 static buf_t *
679 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
680 {
681 buf_t *bp;
682 struct mount *mp;
683
684 bp = getblk(vp, blkno, size, 0, 0);
685
686 /*
687 * getblk() may return NULL if we are the pagedaemon.
688 */
689 if (bp == NULL) {
690 KASSERT(curlwp == uvm.pagedaemon_lwp);
691 return NULL;
692 }
693
694 /*
695 * If buffer does not have data valid, start a read.
696 * Note that if buffer is BC_INVAL, getblk() won't return it.
697 * Therefore, it's valid if its I/O has completed or been delayed.
698 */
699 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
700 /* Start I/O for the buffer. */
701 SET(bp->b_flags, B_READ | async);
702 if (async)
703 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
704 else
705 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
706 VOP_STRATEGY(vp, bp);
707
708 /* Pay for the read. */
709 curlwp->l_ru.ru_inblock++;
710 } else if (async)
711 brelse(bp, 0);
712
713 if (vp->v_type == VBLK)
714 mp = spec_node_getmountedfs(vp);
715 else
716 mp = vp->v_mount;
717
718 /*
719 * Collect statistics on synchronous and asynchronous reads.
720 * Reads from block devices are charged to their associated
721 * filesystem (if any).
722 */
723 if (mp != NULL) {
724 if (async == 0)
725 mp->mnt_stat.f_syncreads++;
726 else
727 mp->mnt_stat.f_asyncreads++;
728 }
729
730 return (bp);
731 }
732
733 /*
734 * Read a disk block.
735 * This algorithm described in Bach (p.54).
736 */
737 int
738 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
739 {
740 buf_t *bp;
741 int error;
742
743 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
744
745 /* Get buffer for block. */
746 bp = *bpp = bio_doread(vp, blkno, size, 0);
747 if (bp == NULL)
748 return ENOMEM;
749
750 /* Wait for the read to complete, and return result. */
751 error = biowait(bp);
752 if (error == 0 && (flags & B_MODIFY) != 0)
753 error = fscow_run(bp, true);
754 if (error) {
755 brelse(bp, 0);
756 *bpp = NULL;
757 }
758
759 return error;
760 }
761
762 /*
763 * Read-ahead multiple disk blocks. The first is sync, the rest async.
764 * Trivial modification to the breada algorithm presented in Bach (p.55).
765 */
766 int
767 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
768 int *rasizes, int nrablks, int flags, buf_t **bpp)
769 {
770 buf_t *bp;
771 int error, i;
772
773 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
774
775 bp = *bpp = bio_doread(vp, blkno, size, 0);
776 if (bp == NULL)
777 return ENOMEM;
778
779 /*
780 * For each of the read-ahead blocks, start a read, if necessary.
781 */
782 mutex_enter(&bufcache_lock);
783 for (i = 0; i < nrablks; i++) {
784 /* If it's in the cache, just go on to next one. */
785 if (incore(vp, rablks[i]))
786 continue;
787
788 /* Get a buffer for the read-ahead block */
789 mutex_exit(&bufcache_lock);
790 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
791 mutex_enter(&bufcache_lock);
792 }
793 mutex_exit(&bufcache_lock);
794
795 /* Otherwise, we had to start a read for it; wait until it's valid. */
796 error = biowait(bp);
797 if (error == 0 && (flags & B_MODIFY) != 0)
798 error = fscow_run(bp, true);
799 if (error) {
800 brelse(bp, 0);
801 *bpp = NULL;
802 }
803
804 return error;
805 }
806
807 /*
808 * Block write. Described in Bach (p.56)
809 */
810 int
811 bwrite(buf_t *bp)
812 {
813 int rv, sync, wasdelayed;
814 struct vnode *vp;
815 struct mount *mp;
816
817 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%p",
818 bp, 0, 0, 0);
819
820 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
821 KASSERT(!cv_has_waiters(&bp->b_done));
822
823 vp = bp->b_vp;
824
825 /*
826 * dholland 20160728 AFAICT vp==NULL must be impossible as it
827 * will crash upon reaching VOP_STRATEGY below... see further
828 * analysis on tech-kern.
829 */
830 KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
831
832 if (vp != NULL) {
833 KASSERT(bp->b_objlock == vp->v_interlock);
834 if (vp->v_type == VBLK)
835 mp = spec_node_getmountedfs(vp);
836 else
837 mp = vp->v_mount;
838 } else {
839 mp = NULL;
840 }
841
842 if (mp && mp->mnt_wapbl) {
843 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
844 bdwrite(bp);
845 return 0;
846 }
847 }
848
849 /*
850 * Remember buffer type, to switch on it later. If the write was
851 * synchronous, but the file system was mounted with MNT_ASYNC,
852 * convert it to a delayed write.
853 * XXX note that this relies on delayed tape writes being converted
854 * to async, not sync writes (which is safe, but ugly).
855 */
856 sync = !ISSET(bp->b_flags, B_ASYNC);
857 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
858 bdwrite(bp);
859 return (0);
860 }
861
862 /*
863 * Collect statistics on synchronous and asynchronous writes.
864 * Writes to block devices are charged to their associated
865 * filesystem (if any).
866 */
867 if (mp != NULL) {
868 if (sync)
869 mp->mnt_stat.f_syncwrites++;
870 else
871 mp->mnt_stat.f_asyncwrites++;
872 }
873
874 /*
875 * Pay for the I/O operation and make sure the buf is on the correct
876 * vnode queue.
877 */
878 bp->b_error = 0;
879 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
880 CLR(bp->b_flags, B_READ);
881 if (wasdelayed) {
882 mutex_enter(&bufcache_lock);
883 mutex_enter(bp->b_objlock);
884 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
885 reassignbuf(bp, bp->b_vp);
886 mutex_exit(&bufcache_lock);
887 } else {
888 curlwp->l_ru.ru_oublock++;
889 mutex_enter(bp->b_objlock);
890 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
891 }
892 if (vp != NULL)
893 vp->v_numoutput++;
894 mutex_exit(bp->b_objlock);
895
896 /* Initiate disk write. */
897 if (sync)
898 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
899 else
900 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
901
902 VOP_STRATEGY(vp, bp);
903
904 if (sync) {
905 /* If I/O was synchronous, wait for it to complete. */
906 rv = biowait(bp);
907
908 /* Release the buffer. */
909 brelse(bp, 0);
910
911 return (rv);
912 } else {
913 return (0);
914 }
915 }
916
917 int
918 vn_bwrite(void *v)
919 {
920 struct vop_bwrite_args *ap = v;
921
922 return (bwrite(ap->a_bp));
923 }
924
925 /*
926 * Delayed write.
927 *
928 * The buffer is marked dirty, but is not queued for I/O.
929 * This routine should be used when the buffer is expected
930 * to be modified again soon, typically a small write that
931 * partially fills a buffer.
932 *
933 * NB: magnetic tapes cannot be delayed; they must be
934 * written in the order that the writes are requested.
935 *
936 * Described in Leffler, et al. (pp. 208-213).
937 */
938 void
939 bdwrite(buf_t *bp)
940 {
941
942 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%p",
943 bp, 0, 0, 0);
944
945 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
946 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
947 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
948 KASSERT(!cv_has_waiters(&bp->b_done));
949
950 /* If this is a tape block, write the block now. */
951 if (bdev_type(bp->b_dev) == D_TAPE) {
952 bawrite(bp);
953 return;
954 }
955
956 if (wapbl_vphaswapbl(bp->b_vp)) {
957 struct mount *mp = wapbl_vptomp(bp->b_vp);
958
959 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
960 WAPBL_ADD_BUF(mp, bp);
961 }
962 }
963
964 /*
965 * If the block hasn't been seen before:
966 * (1) Mark it as having been seen,
967 * (2) Charge for the write,
968 * (3) Make sure it's on its vnode's correct block list.
969 */
970 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
971
972 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
973 mutex_enter(&bufcache_lock);
974 mutex_enter(bp->b_objlock);
975 SET(bp->b_oflags, BO_DELWRI);
976 curlwp->l_ru.ru_oublock++;
977 reassignbuf(bp, bp->b_vp);
978 mutex_exit(&bufcache_lock);
979 } else {
980 mutex_enter(bp->b_objlock);
981 }
982 /* Otherwise, the "write" is done, so mark and release the buffer. */
983 CLR(bp->b_oflags, BO_DONE);
984 mutex_exit(bp->b_objlock);
985
986 brelse(bp, 0);
987 }
988
989 /*
990 * Asynchronous block write; just an asynchronous bwrite().
991 */
992 void
993 bawrite(buf_t *bp)
994 {
995
996 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
997 KASSERT(bp->b_vp != NULL);
998
999 SET(bp->b_flags, B_ASYNC);
1000 VOP_BWRITE(bp->b_vp, bp);
1001 }
1002
1003 /*
1004 * Release a buffer on to the free lists.
1005 * Described in Bach (p. 46).
1006 */
1007 void
1008 brelsel(buf_t *bp, int set)
1009 {
1010 struct bqueue *bufq;
1011 struct vnode *vp;
1012
1013 KASSERT(bp != NULL);
1014 KASSERT(mutex_owned(&bufcache_lock));
1015 KASSERT(!cv_has_waiters(&bp->b_done));
1016 KASSERT(bp->b_refcnt > 0);
1017
1018 SET(bp->b_cflags, set);
1019
1020 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1021 KASSERT(bp->b_iodone == NULL);
1022
1023 /* Wake up any processes waiting for any buffer to become free. */
1024 cv_signal(&needbuffer_cv);
1025
1026 /* Wake up any proceeses waiting for _this_ buffer to become free */
1027 if (ISSET(bp->b_cflags, BC_WANTED))
1028 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1029
1030 /* If it's clean clear the copy-on-write flag. */
1031 if (ISSET(bp->b_flags, B_COWDONE)) {
1032 mutex_enter(bp->b_objlock);
1033 if (!ISSET(bp->b_oflags, BO_DELWRI))
1034 CLR(bp->b_flags, B_COWDONE);
1035 mutex_exit(bp->b_objlock);
1036 }
1037
1038 /*
1039 * Determine which queue the buffer should be on, then put it there.
1040 */
1041
1042 /* If it's locked, don't report an error; try again later. */
1043 if (ISSET(bp->b_flags, B_LOCKED))
1044 bp->b_error = 0;
1045
1046 /* If it's not cacheable, or an error, mark it invalid. */
1047 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1048 SET(bp->b_cflags, BC_INVAL);
1049
1050 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1051 /*
1052 * This is a delayed write buffer that was just flushed to
1053 * disk. It is still on the LRU queue. If it's become
1054 * invalid, then we need to move it to a different queue;
1055 * otherwise leave it in its current position.
1056 */
1057 CLR(bp->b_cflags, BC_VFLUSH);
1058 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1059 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1060 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1061 goto already_queued;
1062 } else {
1063 bremfree(bp);
1064 }
1065 }
1066
1067 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1068 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1069 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1070
1071 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1072 /*
1073 * If it's invalid or empty, dissociate it from its vnode
1074 * and put on the head of the appropriate queue.
1075 */
1076 if (ISSET(bp->b_flags, B_LOCKED)) {
1077 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1078 struct mount *mp = wapbl_vptomp(vp);
1079
1080 KASSERT(bp->b_iodone
1081 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1082 WAPBL_REMOVE_BUF(mp, bp);
1083 }
1084 }
1085
1086 mutex_enter(bp->b_objlock);
1087 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1088 if ((vp = bp->b_vp) != NULL) {
1089 KASSERT(bp->b_objlock == vp->v_interlock);
1090 reassignbuf(bp, bp->b_vp);
1091 brelvp(bp);
1092 mutex_exit(vp->v_interlock);
1093 } else {
1094 KASSERT(bp->b_objlock == &buffer_lock);
1095 mutex_exit(bp->b_objlock);
1096 }
1097
1098 if (bp->b_bufsize <= 0)
1099 /* no data */
1100 goto already_queued;
1101 else
1102 /* invalid data */
1103 bufq = &bufqueues[BQ_AGE];
1104 binsheadfree(bp, bufq);
1105 } else {
1106 /*
1107 * It has valid data. Put it on the end of the appropriate
1108 * queue, so that it'll stick around for as long as possible.
1109 * If buf is AGE, but has dependencies, must put it on last
1110 * bufqueue to be scanned, ie LRU. This protects against the
1111 * livelock where BQ_AGE only has buffers with dependencies,
1112 * and we thus never get to the dependent buffers in BQ_LRU.
1113 */
1114 if (ISSET(bp->b_flags, B_LOCKED)) {
1115 /* locked in core */
1116 bufq = &bufqueues[BQ_LOCKED];
1117 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1118 /* valid data */
1119 bufq = &bufqueues[BQ_LRU];
1120 } else {
1121 /* stale but valid data */
1122 bufq = &bufqueues[BQ_AGE];
1123 }
1124 binstailfree(bp, bufq);
1125 }
1126 already_queued:
1127 /* Unlock the buffer. */
1128 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1129 CLR(bp->b_flags, B_ASYNC);
1130 cv_broadcast(&bp->b_busy);
1131
1132 if (bp->b_bufsize <= 0)
1133 brele(bp);
1134 }
1135
1136 void
1137 brelse(buf_t *bp, int set)
1138 {
1139
1140 mutex_enter(&bufcache_lock);
1141 brelsel(bp, set);
1142 mutex_exit(&bufcache_lock);
1143 }
1144
1145 /*
1146 * Determine if a block is in the cache.
1147 * Just look on what would be its hash chain. If it's there, return
1148 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1149 * we normally don't return the buffer, unless the caller explicitly
1150 * wants us to.
1151 */
1152 buf_t *
1153 incore(struct vnode *vp, daddr_t blkno)
1154 {
1155 buf_t *bp;
1156
1157 KASSERT(mutex_owned(&bufcache_lock));
1158
1159 /* Search hash chain */
1160 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1161 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1162 !ISSET(bp->b_cflags, BC_INVAL)) {
1163 KASSERT(bp->b_objlock == vp->v_interlock);
1164 return (bp);
1165 }
1166 }
1167
1168 return (NULL);
1169 }
1170
1171 /*
1172 * Get a block of requested size that is associated with
1173 * a given vnode and block offset. If it is found in the
1174 * block cache, mark it as having been found, make it busy
1175 * and return it. Otherwise, return an empty block of the
1176 * correct size. It is up to the caller to insure that the
1177 * cached blocks be of the correct size.
1178 */
1179 buf_t *
1180 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1181 {
1182 int err, preserve;
1183 buf_t *bp;
1184
1185 mutex_enter(&bufcache_lock);
1186 loop:
1187 bp = incore(vp, blkno);
1188 if (bp != NULL) {
1189 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1190 if (err != 0) {
1191 if (err == EPASSTHROUGH)
1192 goto loop;
1193 mutex_exit(&bufcache_lock);
1194 return (NULL);
1195 }
1196 KASSERT(!cv_has_waiters(&bp->b_done));
1197 #ifdef DIAGNOSTIC
1198 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1199 bp->b_bcount < size && vp->v_type != VBLK)
1200 panic("getblk: block size invariant failed");
1201 #endif
1202 bremfree(bp);
1203 preserve = 1;
1204 } else {
1205 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1206 goto loop;
1207
1208 if (incore(vp, blkno) != NULL) {
1209 /* The block has come into memory in the meantime. */
1210 brelsel(bp, 0);
1211 goto loop;
1212 }
1213
1214 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1215 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1216 mutex_enter(vp->v_interlock);
1217 bgetvp(vp, bp);
1218 mutex_exit(vp->v_interlock);
1219 preserve = 0;
1220 }
1221 mutex_exit(&bufcache_lock);
1222
1223 /*
1224 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1225 * if we re-size buffers here.
1226 */
1227 if (ISSET(bp->b_flags, B_LOCKED)) {
1228 KASSERT(bp->b_bufsize >= size);
1229 } else {
1230 if (allocbuf(bp, size, preserve)) {
1231 mutex_enter(&bufcache_lock);
1232 LIST_REMOVE(bp, b_hash);
1233 brelsel(bp, BC_INVAL);
1234 mutex_exit(&bufcache_lock);
1235 return NULL;
1236 }
1237 }
1238 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1239 return (bp);
1240 }
1241
1242 /*
1243 * Get an empty, disassociated buffer of given size.
1244 */
1245 buf_t *
1246 geteblk(int size)
1247 {
1248 buf_t *bp;
1249 int error __diagused;
1250
1251 mutex_enter(&bufcache_lock);
1252 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1253 ;
1254
1255 SET(bp->b_cflags, BC_INVAL);
1256 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1257 mutex_exit(&bufcache_lock);
1258 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1259 error = allocbuf(bp, size, 0);
1260 KASSERT(error == 0);
1261 return (bp);
1262 }
1263
1264 /*
1265 * Expand or contract the actual memory allocated to a buffer.
1266 *
1267 * If the buffer shrinks, data is lost, so it's up to the
1268 * caller to have written it out *first*; this routine will not
1269 * start a write. If the buffer grows, it's the callers
1270 * responsibility to fill out the buffer's additional contents.
1271 */
1272 int
1273 allocbuf(buf_t *bp, int size, int preserve)
1274 {
1275 void *addr;
1276 vsize_t oldsize, desired_size;
1277 int oldcount;
1278 int delta;
1279
1280 desired_size = buf_roundsize(size);
1281 if (desired_size > MAXBSIZE)
1282 printf("allocbuf: buffer larger than MAXBSIZE requested");
1283
1284 oldcount = bp->b_bcount;
1285
1286 bp->b_bcount = size;
1287
1288 oldsize = bp->b_bufsize;
1289 if (oldsize == desired_size) {
1290 /*
1291 * Do not short cut the WAPBL resize, as the buffer length
1292 * could still have changed and this would corrupt the
1293 * tracking of the transaction length.
1294 */
1295 goto out;
1296 }
1297
1298 /*
1299 * If we want a buffer of a different size, re-allocate the
1300 * buffer's memory; copy old content only if needed.
1301 */
1302 addr = buf_alloc(desired_size);
1303 if (addr == NULL)
1304 return ENOMEM;
1305 if (preserve)
1306 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1307 if (bp->b_data != NULL)
1308 buf_mrelease(bp->b_data, oldsize);
1309 bp->b_data = addr;
1310 bp->b_bufsize = desired_size;
1311
1312 /*
1313 * Update overall buffer memory counter (protected by bufcache_lock)
1314 */
1315 delta = (long)desired_size - (long)oldsize;
1316
1317 mutex_enter(&bufcache_lock);
1318 if ((bufmem += delta) > bufmem_hiwater) {
1319 /*
1320 * Need to trim overall memory usage.
1321 */
1322 while (buf_canrelease()) {
1323 if (curcpu()->ci_schedstate.spc_flags &
1324 SPCF_SHOULDYIELD) {
1325 mutex_exit(&bufcache_lock);
1326 preempt();
1327 mutex_enter(&bufcache_lock);
1328 }
1329 if (buf_trim() == 0)
1330 break;
1331 }
1332 }
1333 mutex_exit(&bufcache_lock);
1334
1335 out:
1336 if (wapbl_vphaswapbl(bp->b_vp))
1337 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * Find a buffer which is available for use.
1344 * Select something from a free list.
1345 * Preference is to AGE list, then LRU list.
1346 *
1347 * Called with the buffer queues locked.
1348 * Return buffer locked.
1349 */
1350 buf_t *
1351 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1352 {
1353 buf_t *bp;
1354 struct vnode *vp;
1355
1356 start:
1357 KASSERT(mutex_owned(&bufcache_lock));
1358
1359 /*
1360 * Get a new buffer from the pool.
1361 */
1362 if (!from_bufq && buf_lotsfree()) {
1363 mutex_exit(&bufcache_lock);
1364 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1365 if (bp != NULL) {
1366 memset((char *)bp, 0, sizeof(*bp));
1367 buf_init(bp);
1368 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1369 mutex_enter(&bufcache_lock);
1370 #if defined(DIAGNOSTIC)
1371 bp->b_freelistindex = -1;
1372 #endif /* defined(DIAGNOSTIC) */
1373 return (bp);
1374 }
1375 mutex_enter(&bufcache_lock);
1376 }
1377
1378 KASSERT(mutex_owned(&bufcache_lock));
1379 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1380 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1381 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1382 bremfree(bp);
1383
1384 /* Buffer is no longer on free lists. */
1385 SET(bp->b_cflags, BC_BUSY);
1386 } else {
1387 /*
1388 * XXX: !from_bufq should be removed.
1389 */
1390 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1391 /* wait for a free buffer of any kind */
1392 if ((slpflag & PCATCH) != 0)
1393 (void)cv_timedwait_sig(&needbuffer_cv,
1394 &bufcache_lock, slptimeo);
1395 else
1396 (void)cv_timedwait(&needbuffer_cv,
1397 &bufcache_lock, slptimeo);
1398 }
1399 return (NULL);
1400 }
1401
1402 #ifdef DIAGNOSTIC
1403 if (bp->b_bufsize <= 0)
1404 panic("buffer %p: on queue but empty", bp);
1405 #endif
1406
1407 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1408 /*
1409 * This is a delayed write buffer being flushed to disk. Make
1410 * sure it gets aged out of the queue when it's finished, and
1411 * leave it off the LRU queue.
1412 */
1413 CLR(bp->b_cflags, BC_VFLUSH);
1414 SET(bp->b_cflags, BC_AGE);
1415 goto start;
1416 }
1417
1418 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1419 KASSERT(bp->b_refcnt > 0);
1420 KASSERT(!cv_has_waiters(&bp->b_done));
1421
1422 /*
1423 * If buffer was a delayed write, start it and return NULL
1424 * (since we might sleep while starting the write).
1425 */
1426 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1427 /*
1428 * This buffer has gone through the LRU, so make sure it gets
1429 * reused ASAP.
1430 */
1431 SET(bp->b_cflags, BC_AGE);
1432 mutex_exit(&bufcache_lock);
1433 bawrite(bp);
1434 mutex_enter(&bufcache_lock);
1435 return (NULL);
1436 }
1437
1438 vp = bp->b_vp;
1439
1440 /* clear out various other fields */
1441 bp->b_cflags = BC_BUSY;
1442 bp->b_oflags = 0;
1443 bp->b_flags = 0;
1444 bp->b_dev = NODEV;
1445 bp->b_blkno = 0;
1446 bp->b_lblkno = 0;
1447 bp->b_rawblkno = 0;
1448 bp->b_iodone = 0;
1449 bp->b_error = 0;
1450 bp->b_resid = 0;
1451 bp->b_bcount = 0;
1452
1453 LIST_REMOVE(bp, b_hash);
1454
1455 /* Disassociate us from our vnode, if we had one... */
1456 if (vp != NULL) {
1457 mutex_enter(vp->v_interlock);
1458 brelvp(bp);
1459 mutex_exit(vp->v_interlock);
1460 }
1461
1462 return (bp);
1463 }
1464
1465 /*
1466 * Attempt to free an aged buffer off the queues.
1467 * Called with queue lock held.
1468 * Returns the amount of buffer memory freed.
1469 */
1470 static int
1471 buf_trim(void)
1472 {
1473 buf_t *bp;
1474 long size;
1475
1476 KASSERT(mutex_owned(&bufcache_lock));
1477
1478 /* Instruct getnewbuf() to get buffers off the queues */
1479 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1480 return 0;
1481
1482 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1483 size = bp->b_bufsize;
1484 bufmem -= size;
1485 if (size > 0) {
1486 buf_mrelease(bp->b_data, size);
1487 bp->b_bcount = bp->b_bufsize = 0;
1488 }
1489 /* brelse() will return the buffer to the global buffer pool */
1490 brelsel(bp, 0);
1491 return size;
1492 }
1493
1494 int
1495 buf_drain(int n)
1496 {
1497 int size = 0, sz;
1498
1499 KASSERT(mutex_owned(&bufcache_lock));
1500
1501 while (size < n && bufmem > bufmem_lowater) {
1502 sz = buf_trim();
1503 if (sz <= 0)
1504 break;
1505 size += sz;
1506 }
1507
1508 return size;
1509 }
1510
1511 SDT_PROVIDER_DEFINE(io);
1512
1513 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1514 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1515
1516 /*
1517 * Wait for operations on the buffer to complete.
1518 * When they do, extract and return the I/O's error value.
1519 */
1520 int
1521 biowait(buf_t *bp)
1522 {
1523
1524 BIOHIST_FUNC(__func__);
1525
1526 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1527 KASSERT(bp->b_refcnt > 0);
1528
1529 SDT_PROBE1(io, kernel, , wait__start, bp);
1530
1531 mutex_enter(bp->b_objlock);
1532
1533 BIOHIST_CALLARGS(biohist, "bp=%p, oflags=0x%x",
1534 bp, bp->b_oflags, 0, 0);
1535
1536 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1537 BIOHIST_LOG(biohist, "waiting bp=%p", bp, 0, 0, 0);
1538 cv_wait(&bp->b_done, bp->b_objlock);
1539 }
1540 mutex_exit(bp->b_objlock);
1541
1542 SDT_PROBE1(io, kernel, , wait__done, bp);
1543
1544 BIOHIST_LOG(biohist, "return %d", bp->b_error, 0, 0, 0);
1545
1546 return bp->b_error;
1547 }
1548
1549 /*
1550 * Mark I/O complete on a buffer.
1551 *
1552 * If a callback has been requested, e.g. the pageout
1553 * daemon, do so. Otherwise, awaken waiting processes.
1554 *
1555 * [ Leffler, et al., says on p.247:
1556 * "This routine wakes up the blocked process, frees the buffer
1557 * for an asynchronous write, or, for a request by the pagedaemon
1558 * process, invokes a procedure specified in the buffer structure" ]
1559 *
1560 * In real life, the pagedaemon (or other system processes) wants
1561 * to do async stuff too, and doesn't want the buffer brelse()'d.
1562 * (for swap pager, that puts swap buffers on the free lists (!!!),
1563 * for the vn device, that puts allocated buffers on the free lists!)
1564 */
1565 void
1566 biodone(buf_t *bp)
1567 {
1568 int s;
1569
1570 BIOHIST_FUNC(__func__);
1571
1572 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1573
1574 if (cpu_intr_p()) {
1575 /* From interrupt mode: defer to a soft interrupt. */
1576 s = splvm();
1577 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1578
1579 BIOHIST_CALLARGS(biohist, "bp=%p, softint scheduled",
1580 bp, 0, 0, 0);
1581 softint_schedule(biodone_sih);
1582 splx(s);
1583 } else {
1584 /* Process now - the buffer may be freed soon. */
1585 biodone2(bp);
1586 }
1587 }
1588
1589 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1590
1591 static void
1592 biodone2(buf_t *bp)
1593 {
1594 void (*callout)(buf_t *);
1595
1596 SDT_PROBE1(io, kernel, ,done, bp);
1597
1598 BIOHIST_FUNC(__func__);
1599 BIOHIST_CALLARGS(biohist, "bp=%p", bp, 0, 0, 0);
1600
1601 mutex_enter(bp->b_objlock);
1602 /* Note that the transfer is done. */
1603 if (ISSET(bp->b_oflags, BO_DONE))
1604 panic("biodone2 already");
1605 CLR(bp->b_flags, B_COWDONE);
1606 SET(bp->b_oflags, BO_DONE);
1607 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1608
1609 /* Wake up waiting writers. */
1610 if (!ISSET(bp->b_flags, B_READ))
1611 vwakeup(bp);
1612
1613 if ((callout = bp->b_iodone) != NULL) {
1614 BIOHIST_LOG(biohist, "callout %p", callout, 0, 0, 0);
1615
1616 /* Note callout done, then call out. */
1617 KASSERT(!cv_has_waiters(&bp->b_done));
1618 KERNEL_LOCK(1, NULL); /* XXXSMP */
1619 bp->b_iodone = NULL;
1620 mutex_exit(bp->b_objlock);
1621 (*callout)(bp);
1622 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1623 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1624 /* If async, release. */
1625 BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
1626 KASSERT(!cv_has_waiters(&bp->b_done));
1627 mutex_exit(bp->b_objlock);
1628 brelse(bp, 0);
1629 } else {
1630 /* Otherwise just wake up waiters in biowait(). */
1631 BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1632 cv_broadcast(&bp->b_done);
1633 mutex_exit(bp->b_objlock);
1634 }
1635 }
1636
1637 static void
1638 biointr(void *cookie)
1639 {
1640 struct cpu_info *ci;
1641 buf_t *bp;
1642 int s;
1643
1644 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1645
1646 ci = curcpu();
1647
1648 s = splvm();
1649 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1650 KASSERT(curcpu() == ci);
1651
1652 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1653 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1654 splx(s);
1655
1656 BIOHIST_LOG(biohist, "bp=%p", bp, 0, 0, 0);
1657 biodone2(bp);
1658
1659 s = splvm();
1660 }
1661 splx(s);
1662 }
1663
1664 /*
1665 * Wait for all buffers to complete I/O
1666 * Return the number of "stuck" buffers.
1667 */
1668 int
1669 buf_syncwait(void)
1670 {
1671 buf_t *bp;
1672 int iter, nbusy, nbusy_prev = 0, ihash;
1673
1674 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1675
1676 for (iter = 0; iter < 20;) {
1677 mutex_enter(&bufcache_lock);
1678 nbusy = 0;
1679 for (ihash = 0; ihash < bufhash+1; ihash++) {
1680 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1681 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1682 nbusy += ((bp->b_flags & B_READ) == 0);
1683 }
1684 }
1685 mutex_exit(&bufcache_lock);
1686
1687 if (nbusy == 0)
1688 break;
1689 if (nbusy_prev == 0)
1690 nbusy_prev = nbusy;
1691 printf("%d ", nbusy);
1692 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1693 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1694 iter++;
1695 else
1696 nbusy_prev = nbusy;
1697 }
1698
1699 if (nbusy) {
1700 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1701 printf("giving up\nPrinting vnodes for busy buffers\n");
1702 for (ihash = 0; ihash < bufhash+1; ihash++) {
1703 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1704 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1705 (bp->b_flags & B_READ) == 0)
1706 vprint(NULL, bp->b_vp);
1707 }
1708 }
1709 #endif
1710 }
1711
1712 return nbusy;
1713 }
1714
1715 static void
1716 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1717 {
1718
1719 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1720 o->b_error = i->b_error;
1721 o->b_prio = i->b_prio;
1722 o->b_dev = i->b_dev;
1723 o->b_bufsize = i->b_bufsize;
1724 o->b_bcount = i->b_bcount;
1725 o->b_resid = i->b_resid;
1726 o->b_addr = PTRTOUINT64(i->b_data);
1727 o->b_blkno = i->b_blkno;
1728 o->b_rawblkno = i->b_rawblkno;
1729 o->b_iodone = PTRTOUINT64(i->b_iodone);
1730 o->b_proc = PTRTOUINT64(i->b_proc);
1731 o->b_vp = PTRTOUINT64(i->b_vp);
1732 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1733 o->b_lblkno = i->b_lblkno;
1734 }
1735
1736 #define KERN_BUFSLOP 20
1737 static int
1738 sysctl_dobuf(SYSCTLFN_ARGS)
1739 {
1740 buf_t *bp;
1741 struct buf_sysctl bs;
1742 struct bqueue *bq;
1743 char *dp;
1744 u_int i, op, arg;
1745 size_t len, needed, elem_size, out_size;
1746 int error, elem_count, retries;
1747
1748 if (namelen == 1 && name[0] == CTL_QUERY)
1749 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1750
1751 if (namelen != 4)
1752 return (EINVAL);
1753
1754 retries = 100;
1755 retry:
1756 dp = oldp;
1757 len = (oldp != NULL) ? *oldlenp : 0;
1758 op = name[0];
1759 arg = name[1];
1760 elem_size = name[2];
1761 elem_count = name[3];
1762 out_size = MIN(sizeof(bs), elem_size);
1763
1764 /*
1765 * at the moment, these are just "placeholders" to make the
1766 * API for retrieving kern.buf data more extensible in the
1767 * future.
1768 *
1769 * XXX kern.buf currently has "netbsd32" issues. hopefully
1770 * these will be resolved at a later point.
1771 */
1772 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1773 elem_size < 1 || elem_count < 0)
1774 return (EINVAL);
1775
1776 error = 0;
1777 needed = 0;
1778 sysctl_unlock();
1779 mutex_enter(&bufcache_lock);
1780 for (i = 0; i < BQUEUES; i++) {
1781 bq = &bufqueues[i];
1782 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1783 bq->bq_marker = bp;
1784 if (len >= elem_size && elem_count > 0) {
1785 sysctl_fillbuf(bp, &bs);
1786 mutex_exit(&bufcache_lock);
1787 error = copyout(&bs, dp, out_size);
1788 mutex_enter(&bufcache_lock);
1789 if (error)
1790 break;
1791 if (bq->bq_marker != bp) {
1792 /*
1793 * This sysctl node is only for
1794 * statistics. Retry; if the
1795 * queue keeps changing, then
1796 * bail out.
1797 */
1798 if (retries-- == 0) {
1799 error = EAGAIN;
1800 break;
1801 }
1802 mutex_exit(&bufcache_lock);
1803 sysctl_relock();
1804 goto retry;
1805 }
1806 dp += elem_size;
1807 len -= elem_size;
1808 }
1809 needed += elem_size;
1810 if (elem_count > 0 && elem_count != INT_MAX)
1811 elem_count--;
1812 }
1813 if (error != 0)
1814 break;
1815 }
1816 mutex_exit(&bufcache_lock);
1817 sysctl_relock();
1818
1819 *oldlenp = needed;
1820 if (oldp == NULL)
1821 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1822
1823 return (error);
1824 }
1825
1826 static int
1827 sysctl_bufvm_update(SYSCTLFN_ARGS)
1828 {
1829 int error, rv;
1830 struct sysctlnode node;
1831 unsigned int temp_bufcache;
1832 unsigned long temp_water;
1833
1834 /* Take a copy of the supplied node and its data */
1835 node = *rnode;
1836 if (node.sysctl_data == &bufcache) {
1837 node.sysctl_data = &temp_bufcache;
1838 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1839 } else {
1840 node.sysctl_data = &temp_water;
1841 temp_water = *(unsigned long *)rnode->sysctl_data;
1842 }
1843
1844 /* Update the copy */
1845 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1846 if (error || newp == NULL)
1847 return (error);
1848
1849 if (rnode->sysctl_data == &bufcache) {
1850 if (temp_bufcache > 100)
1851 return (EINVAL);
1852 bufcache = temp_bufcache;
1853 buf_setwm();
1854 } else if (rnode->sysctl_data == &bufmem_lowater) {
1855 if (bufmem_hiwater - temp_water < 16)
1856 return (EINVAL);
1857 bufmem_lowater = temp_water;
1858 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1859 if (temp_water - bufmem_lowater < 16)
1860 return (EINVAL);
1861 bufmem_hiwater = temp_water;
1862 } else
1863 return (EINVAL);
1864
1865 /* Drain until below new high water mark */
1866 sysctl_unlock();
1867 mutex_enter(&bufcache_lock);
1868 while (bufmem > bufmem_hiwater) {
1869 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1870 if (rv <= 0)
1871 break;
1872 }
1873 mutex_exit(&bufcache_lock);
1874 sysctl_relock();
1875
1876 return 0;
1877 }
1878
1879 static struct sysctllog *vfsbio_sysctllog;
1880
1881 static void
1882 sysctl_kern_buf_setup(void)
1883 {
1884
1885 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1886 CTLFLAG_PERMANENT,
1887 CTLTYPE_NODE, "buf",
1888 SYSCTL_DESCR("Kernel buffer cache information"),
1889 sysctl_dobuf, 0, NULL, 0,
1890 CTL_KERN, KERN_BUF, CTL_EOL);
1891 }
1892
1893 static void
1894 sysctl_vm_buf_setup(void)
1895 {
1896
1897 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1898 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1899 CTLTYPE_INT, "bufcache",
1900 SYSCTL_DESCR("Percentage of physical memory to use for "
1901 "buffer cache"),
1902 sysctl_bufvm_update, 0, &bufcache, 0,
1903 CTL_VM, CTL_CREATE, CTL_EOL);
1904 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1905 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1906 CTLTYPE_LONG, "bufmem",
1907 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1908 "cache"),
1909 NULL, 0, &bufmem, 0,
1910 CTL_VM, CTL_CREATE, CTL_EOL);
1911 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1912 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1913 CTLTYPE_LONG, "bufmem_lowater",
1914 SYSCTL_DESCR("Minimum amount of kernel memory to "
1915 "reserve for buffer cache"),
1916 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1917 CTL_VM, CTL_CREATE, CTL_EOL);
1918 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1919 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1920 CTLTYPE_LONG, "bufmem_hiwater",
1921 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1922 "for buffer cache"),
1923 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1924 CTL_VM, CTL_CREATE, CTL_EOL);
1925 }
1926
1927 #ifdef DEBUG
1928 /*
1929 * Print out statistics on the current allocation of the buffer pool.
1930 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1931 * in vfs_syscalls.c using sysctl.
1932 */
1933 void
1934 vfs_bufstats(void)
1935 {
1936 int i, j, count;
1937 buf_t *bp;
1938 struct bqueue *dp;
1939 int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1940 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1941
1942 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1943 count = 0;
1944 memset(counts, 0, sizeof(counts));
1945 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1946 counts[bp->b_bufsize / PAGE_SIZE]++;
1947 count++;
1948 }
1949 printf("%s: total-%d", bname[i], count);
1950 for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1951 if (counts[j] != 0)
1952 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1953 printf("\n");
1954 }
1955 }
1956 #endif /* DEBUG */
1957
1958 /* ------------------------------ */
1959
1960 buf_t *
1961 getiobuf(struct vnode *vp, bool waitok)
1962 {
1963 buf_t *bp;
1964
1965 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1966 if (bp == NULL)
1967 return bp;
1968
1969 buf_init(bp);
1970
1971 if ((bp->b_vp = vp) != NULL) {
1972 bp->b_objlock = vp->v_interlock;
1973 } else {
1974 KASSERT(bp->b_objlock == &buffer_lock);
1975 }
1976
1977 return bp;
1978 }
1979
1980 void
1981 putiobuf(buf_t *bp)
1982 {
1983
1984 buf_destroy(bp);
1985 pool_cache_put(bufio_cache, bp);
1986 }
1987
1988 /*
1989 * nestiobuf_iodone: b_iodone callback for nested buffers.
1990 */
1991
1992 void
1993 nestiobuf_iodone(buf_t *bp)
1994 {
1995 buf_t *mbp = bp->b_private;
1996 int error;
1997 int donebytes;
1998
1999 KASSERT(bp->b_bcount <= bp->b_bufsize);
2000 KASSERT(mbp != bp);
2001
2002 error = bp->b_error;
2003 if (bp->b_error == 0 &&
2004 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2005 /*
2006 * Not all got transfered, raise an error. We have no way to
2007 * propagate these conditions to mbp.
2008 */
2009 error = EIO;
2010 }
2011
2012 donebytes = bp->b_bufsize;
2013
2014 putiobuf(bp);
2015 nestiobuf_done(mbp, donebytes, error);
2016 }
2017
2018 /*
2019 * nestiobuf_setup: setup a "nested" buffer.
2020 *
2021 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2022 * => 'bp' should be a buffer allocated by getiobuf.
2023 * => 'offset' is a byte offset in the master buffer.
2024 * => 'size' is a size in bytes of this nested buffer.
2025 */
2026
2027 void
2028 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2029 {
2030 const int b_pass = mbp->b_flags & (B_READ|B_MEDIA_FLAGS);
2031 struct vnode *vp = mbp->b_vp;
2032
2033 KASSERT(mbp->b_bcount >= offset + size);
2034 bp->b_vp = vp;
2035 bp->b_dev = mbp->b_dev;
2036 bp->b_objlock = mbp->b_objlock;
2037 bp->b_cflags = BC_BUSY;
2038 bp->b_flags = B_ASYNC | b_pass;
2039 bp->b_iodone = nestiobuf_iodone;
2040 bp->b_data = (char *)mbp->b_data + offset;
2041 bp->b_resid = bp->b_bcount = size;
2042 bp->b_bufsize = bp->b_bcount;
2043 bp->b_private = mbp;
2044 BIO_COPYPRIO(bp, mbp);
2045 if (BUF_ISWRITE(bp) && vp != NULL) {
2046 mutex_enter(vp->v_interlock);
2047 vp->v_numoutput++;
2048 mutex_exit(vp->v_interlock);
2049 }
2050 }
2051
2052 /*
2053 * nestiobuf_done: propagate completion to the master buffer.
2054 *
2055 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2056 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2057 */
2058
2059 void
2060 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2061 {
2062
2063 if (donebytes == 0) {
2064 return;
2065 }
2066 mutex_enter(mbp->b_objlock);
2067 KASSERT(mbp->b_resid >= donebytes);
2068 mbp->b_resid -= donebytes;
2069 if (error)
2070 mbp->b_error = error;
2071 if (mbp->b_resid == 0) {
2072 if (mbp->b_error)
2073 mbp->b_resid = mbp->b_bcount;
2074 mutex_exit(mbp->b_objlock);
2075 biodone(mbp);
2076 } else
2077 mutex_exit(mbp->b_objlock);
2078 }
2079
2080 void
2081 buf_init(buf_t *bp)
2082 {
2083
2084 cv_init(&bp->b_busy, "biolock");
2085 cv_init(&bp->b_done, "biowait");
2086 bp->b_dev = NODEV;
2087 bp->b_error = 0;
2088 bp->b_flags = 0;
2089 bp->b_cflags = 0;
2090 bp->b_oflags = 0;
2091 bp->b_objlock = &buffer_lock;
2092 bp->b_iodone = NULL;
2093 bp->b_refcnt = 1;
2094 bp->b_dev = NODEV;
2095 bp->b_vnbufs.le_next = NOLIST;
2096 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2097 }
2098
2099 void
2100 buf_destroy(buf_t *bp)
2101 {
2102
2103 cv_destroy(&bp->b_done);
2104 cv_destroy(&bp->b_busy);
2105 }
2106
2107 int
2108 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2109 {
2110 int error;
2111
2112 KASSERT(mutex_owned(&bufcache_lock));
2113
2114 if ((bp->b_cflags & BC_BUSY) != 0) {
2115 if (curlwp == uvm.pagedaemon_lwp)
2116 return EDEADLK;
2117 bp->b_cflags |= BC_WANTED;
2118 bref(bp);
2119 if (interlock != NULL)
2120 mutex_exit(interlock);
2121 if (intr) {
2122 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2123 timo);
2124 } else {
2125 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2126 timo);
2127 }
2128 brele(bp);
2129 if (interlock != NULL)
2130 mutex_enter(interlock);
2131 if (error != 0)
2132 return error;
2133 return EPASSTHROUGH;
2134 }
2135 bp->b_cflags |= BC_BUSY;
2136
2137 return 0;
2138 }
2139