vfs_bio.c revision 1.281 1 /* $NetBSD: vfs_bio.c,v 1.281 2019/12/08 19:49:25 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.281 2019/12/08 19:49:25 ad Exp $");
127
128 #ifdef _KERNEL_OPT
129 #include "opt_bufcache.h"
130 #include "opt_dtrace.h"
131 #include "opt_biohist.h"
132 #endif
133
134 #include <sys/param.h>
135 #include <sys/systm.h>
136 #include <sys/kernel.h>
137 #include <sys/proc.h>
138 #include <sys/buf.h>
139 #include <sys/vnode.h>
140 #include <sys/mount.h>
141 #include <sys/resourcevar.h>
142 #include <sys/sysctl.h>
143 #include <sys/conf.h>
144 #include <sys/kauth.h>
145 #include <sys/fstrans.h>
146 #include <sys/intr.h>
147 #include <sys/cpu.h>
148 #include <sys/wapbl.h>
149 #include <sys/bitops.h>
150 #include <sys/cprng.h>
151 #include <sys/sdt.h>
152
153 #include <uvm/uvm.h> /* extern struct uvm uvm */
154
155 #include <miscfs/specfs/specdev.h>
156
157 #ifndef BUFPAGES
158 # define BUFPAGES 0
159 #endif
160
161 #ifdef BUFCACHE
162 # if (BUFCACHE < 5) || (BUFCACHE > 95)
163 # error BUFCACHE is not between 5 and 95
164 # endif
165 #else
166 # define BUFCACHE 15
167 #endif
168
169 u_int nbuf; /* desired number of buffer headers */
170 u_int bufpages = BUFPAGES; /* optional hardwired count */
171 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
172
173 /*
174 * Definitions for the buffer free lists.
175 */
176 #define BQUEUES 3 /* number of free buffer queues */
177
178 #define BQ_LOCKED 0 /* super-blocks &c */
179 #define BQ_LRU 1 /* lru, useful buffers */
180 #define BQ_AGE 2 /* rubbish */
181
182 struct bqueue {
183 TAILQ_HEAD(, buf) bq_queue;
184 uint64_t bq_bytes;
185 buf_t *bq_marker;
186 };
187 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
188
189 /* Function prototypes */
190 static void buf_setwm(void);
191 static int buf_trim(void);
192 static void *bufpool_page_alloc(struct pool *, int);
193 static void bufpool_page_free(struct pool *, void *);
194 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
195 static buf_t *getnewbuf(int, int, int);
196 static int buf_lotsfree(void);
197 static int buf_canrelease(void);
198 static u_long buf_mempoolidx(u_long);
199 static u_long buf_roundsize(u_long);
200 static void *buf_alloc(size_t);
201 static void buf_mrelease(void *, size_t);
202 static void binsheadfree(buf_t *, struct bqueue *);
203 static void binstailfree(buf_t *, struct bqueue *);
204 #ifdef DEBUG
205 static int checkfreelist(buf_t *, struct bqueue *, int);
206 #endif
207 static void biointr(void *);
208 static void biodone2(buf_t *);
209 static void bref(buf_t *);
210 static void brele(buf_t *);
211 static void sysctl_kern_buf_setup(void);
212 static void sysctl_vm_buf_setup(void);
213
214 /* Initialization for biohist */
215
216 #include <sys/biohist.h>
217
218 BIOHIST_DEFINE(biohist);
219
220 void
221 biohist_init(void)
222 {
223
224 BIOHIST_INIT(biohist, BIOHIST_SIZE);
225 }
226
227 /*
228 * Definitions for the buffer hash lists.
229 */
230 #define BUFHASH(dvp, lbn) \
231 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
232 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
233 u_long bufhash;
234
235 static kcondvar_t needbuffer_cv;
236
237 /*
238 * Buffer queue lock.
239 */
240 kmutex_t bufcache_lock __cacheline_aligned;
241 kmutex_t buffer_lock __cacheline_aligned;
242
243 /* Software ISR for completed transfers. */
244 static void *biodone_sih;
245
246 /* Buffer pool for I/O buffers. */
247 static pool_cache_t buf_cache;
248 static pool_cache_t bufio_cache;
249
250 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
251 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
252 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
253
254 /* Buffer memory pools */
255 static struct pool bmempools[NMEMPOOLS];
256
257 static struct vm_map *buf_map;
258
259 /*
260 * Buffer memory pool allocator.
261 */
262 static void *
263 bufpool_page_alloc(struct pool *pp, int flags)
264 {
265
266 return (void *)uvm_km_alloc(buf_map,
267 MAXBSIZE, MAXBSIZE,
268 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
269 | UVM_KMF_WIRED);
270 }
271
272 static void
273 bufpool_page_free(struct pool *pp, void *v)
274 {
275
276 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
277 }
278
279 static struct pool_allocator bufmempool_allocator = {
280 .pa_alloc = bufpool_page_alloc,
281 .pa_free = bufpool_page_free,
282 .pa_pagesz = MAXBSIZE,
283 };
284
285 /* Buffer memory management variables */
286 u_long bufmem_valimit;
287 u_long bufmem_hiwater;
288 u_long bufmem_lowater;
289 u_long bufmem;
290
291 /*
292 * MD code can call this to set a hard limit on the amount
293 * of virtual memory used by the buffer cache.
294 */
295 int
296 buf_setvalimit(vsize_t sz)
297 {
298
299 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
300 if (sz < NMEMPOOLS * MAXBSIZE)
301 return EINVAL;
302
303 bufmem_valimit = sz;
304 return 0;
305 }
306
307 static void
308 buf_setwm(void)
309 {
310
311 bufmem_hiwater = buf_memcalc();
312 /* lowater is approx. 2% of memory (with bufcache = 15) */
313 #define BUFMEM_WMSHIFT 3
314 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
315 if (bufmem_hiwater < BUFMEM_HIWMMIN)
316 /* Ensure a reasonable minimum value */
317 bufmem_hiwater = BUFMEM_HIWMMIN;
318 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
319 }
320
321 #ifdef DEBUG
322 int debug_verify_freelist = 0;
323 static int
324 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
325 {
326 buf_t *b;
327
328 if (!debug_verify_freelist)
329 return 1;
330
331 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
332 if (b == bp)
333 return ison ? 1 : 0;
334 }
335
336 return ison ? 0 : 1;
337 }
338 #endif
339
340 /*
341 * Insq/Remq for the buffer hash lists.
342 * Call with buffer queue locked.
343 */
344 static void
345 binsheadfree(buf_t *bp, struct bqueue *dp)
346 {
347
348 KASSERT(mutex_owned(&bufcache_lock));
349 KASSERT(bp->b_freelistindex == -1);
350 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
351 dp->bq_bytes += bp->b_bufsize;
352 bp->b_freelistindex = dp - bufqueues;
353 }
354
355 static void
356 binstailfree(buf_t *bp, struct bqueue *dp)
357 {
358
359 KASSERT(mutex_owned(&bufcache_lock));
360 KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
361 "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
362 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
363 dp->bq_bytes += bp->b_bufsize;
364 bp->b_freelistindex = dp - bufqueues;
365 }
366
367 void
368 bremfree(buf_t *bp)
369 {
370 struct bqueue *dp;
371 int bqidx = bp->b_freelistindex;
372
373 KASSERT(mutex_owned(&bufcache_lock));
374
375 KASSERT(bqidx != -1);
376 dp = &bufqueues[bqidx];
377 KDASSERT(checkfreelist(bp, dp, 1));
378 KASSERT(dp->bq_bytes >= bp->b_bufsize);
379 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
380 dp->bq_bytes -= bp->b_bufsize;
381
382 /* For the sysctl helper. */
383 if (bp == dp->bq_marker)
384 dp->bq_marker = NULL;
385
386 #if defined(DIAGNOSTIC)
387 bp->b_freelistindex = -1;
388 #endif /* defined(DIAGNOSTIC) */
389 }
390
391 /*
392 * Add a reference to an buffer structure that came from buf_cache.
393 */
394 static inline void
395 bref(buf_t *bp)
396 {
397
398 KASSERT(mutex_owned(&bufcache_lock));
399 KASSERT(bp->b_refcnt > 0);
400
401 bp->b_refcnt++;
402 }
403
404 /*
405 * Free an unused buffer structure that came from buf_cache.
406 */
407 static inline void
408 brele(buf_t *bp)
409 {
410
411 KASSERT(mutex_owned(&bufcache_lock));
412 KASSERT(bp->b_refcnt > 0);
413
414 if (bp->b_refcnt-- == 1) {
415 buf_destroy(bp);
416 #ifdef DEBUG
417 memset((char *)bp, 0, sizeof(*bp));
418 #endif
419 pool_cache_put(buf_cache, bp);
420 }
421 }
422
423 /*
424 * note that for some ports this is used by pmap bootstrap code to
425 * determine kva size.
426 */
427 u_long
428 buf_memcalc(void)
429 {
430 u_long n;
431 vsize_t mapsz = 0;
432
433 /*
434 * Determine the upper bound of memory to use for buffers.
435 *
436 * - If bufpages is specified, use that as the number
437 * pages.
438 *
439 * - Otherwise, use bufcache as the percentage of
440 * physical memory.
441 */
442 if (bufpages != 0) {
443 n = bufpages;
444 } else {
445 if (bufcache < 5) {
446 printf("forcing bufcache %d -> 5", bufcache);
447 bufcache = 5;
448 }
449 if (bufcache > 95) {
450 printf("forcing bufcache %d -> 95", bufcache);
451 bufcache = 95;
452 }
453 if (buf_map != NULL)
454 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
455 n = calc_cache_size(mapsz, bufcache,
456 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
457 / PAGE_SIZE;
458 }
459
460 n <<= PAGE_SHIFT;
461 if (bufmem_valimit != 0 && n > bufmem_valimit)
462 n = bufmem_valimit;
463
464 return (n);
465 }
466
467 /*
468 * Initialize buffers and hash links for buffers.
469 */
470 void
471 bufinit(void)
472 {
473 struct bqueue *dp;
474 int use_std;
475 u_int i;
476
477 biodone_vfs = biodone;
478
479 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
480 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
481 cv_init(&needbuffer_cv, "needbuf");
482
483 if (bufmem_valimit != 0) {
484 vaddr_t minaddr = 0, maxaddr;
485 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
486 bufmem_valimit, 0, false, 0);
487 if (buf_map == NULL)
488 panic("bufinit: cannot allocate submap");
489 } else
490 buf_map = kernel_map;
491
492 /*
493 * Initialize buffer cache memory parameters.
494 */
495 bufmem = 0;
496 buf_setwm();
497
498 /* On "small" machines use small pool page sizes where possible */
499 use_std = (physmem < atop(16*1024*1024));
500
501 /*
502 * Also use them on systems that can map the pool pages using
503 * a direct-mapped segment.
504 */
505 #ifdef PMAP_MAP_POOLPAGE
506 use_std = 1;
507 #endif
508
509 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
510 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
511 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
512 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
513
514 for (i = 0; i < NMEMPOOLS; i++) {
515 struct pool_allocator *pa;
516 struct pool *pp = &bmempools[i];
517 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
518 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
519 if (__predict_false(size >= 1048576))
520 (void)snprintf(name, 8, "buf%um", size / 1048576);
521 else if (__predict_true(size >= 1024))
522 (void)snprintf(name, 8, "buf%uk", size / 1024);
523 else
524 (void)snprintf(name, 8, "buf%ub", size);
525 pa = (size <= PAGE_SIZE && use_std)
526 ? &pool_allocator_nointr
527 : &bufmempool_allocator;
528 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
529 pool_setlowat(pp, 1);
530 pool_sethiwat(pp, 1);
531 }
532
533 /* Initialize the buffer queues */
534 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
535 TAILQ_INIT(&dp->bq_queue);
536 dp->bq_bytes = 0;
537 }
538
539 /*
540 * Estimate hash table size based on the amount of memory we
541 * intend to use for the buffer cache. The average buffer
542 * size is dependent on our clients (i.e. filesystems).
543 *
544 * For now, use an empirical 3K per buffer.
545 */
546 nbuf = (bufmem_hiwater / 1024) / 3;
547 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
548
549 sysctl_kern_buf_setup();
550 sysctl_vm_buf_setup();
551 }
552
553 void
554 bufinit2(void)
555 {
556
557 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
558 NULL);
559 if (biodone_sih == NULL)
560 panic("bufinit2: can't establish soft interrupt");
561 }
562
563 static int
564 buf_lotsfree(void)
565 {
566 u_long guess;
567
568 /* Always allocate if less than the low water mark. */
569 if (bufmem < bufmem_lowater)
570 return 1;
571
572 /* Never allocate if greater than the high water mark. */
573 if (bufmem > bufmem_hiwater)
574 return 0;
575
576 /* If there's anything on the AGE list, it should be eaten. */
577 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
578 return 0;
579
580 /*
581 * The probabily of getting a new allocation is inversely
582 * proportional to the current size of the cache above
583 * the low water mark. Divide the total first to avoid overflows
584 * in the product.
585 */
586 guess = cprng_fast32() % 16;
587
588 if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
589 (bufmem - bufmem_lowater))
590 return 1;
591
592 /* Otherwise don't allocate. */
593 return 0;
594 }
595
596 /*
597 * Return estimate of bytes we think need to be
598 * released to help resolve low memory conditions.
599 *
600 * => called with bufcache_lock held.
601 */
602 static int
603 buf_canrelease(void)
604 {
605 int pagedemand, ninvalid = 0;
606
607 KASSERT(mutex_owned(&bufcache_lock));
608
609 if (bufmem < bufmem_lowater)
610 return 0;
611
612 if (bufmem > bufmem_hiwater)
613 return bufmem - bufmem_hiwater;
614
615 ninvalid += bufqueues[BQ_AGE].bq_bytes;
616
617 pagedemand = uvmexp.freetarg - uvmexp.free;
618 if (pagedemand < 0)
619 return ninvalid;
620 return MAX(ninvalid, MIN(2 * MAXBSIZE,
621 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
622 }
623
624 /*
625 * Buffer memory allocation helper functions
626 */
627 static u_long
628 buf_mempoolidx(u_long size)
629 {
630 u_int n = 0;
631
632 size -= 1;
633 size >>= MEMPOOL_INDEX_OFFSET;
634 while (size) {
635 size >>= 1;
636 n += 1;
637 }
638 if (n >= NMEMPOOLS)
639 panic("buf mem pool index %d", n);
640 return n;
641 }
642
643 static u_long
644 buf_roundsize(u_long size)
645 {
646 /* Round up to nearest power of 2 */
647 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
648 }
649
650 static void *
651 buf_alloc(size_t size)
652 {
653 u_int n = buf_mempoolidx(size);
654 void *addr;
655
656 while (1) {
657 addr = pool_get(&bmempools[n], PR_NOWAIT);
658 if (addr != NULL)
659 break;
660
661 /* No memory, see if we can free some. If so, try again */
662 mutex_enter(&bufcache_lock);
663 if (buf_drain(1) > 0) {
664 mutex_exit(&bufcache_lock);
665 continue;
666 }
667
668 if (curlwp == uvm.pagedaemon_lwp) {
669 mutex_exit(&bufcache_lock);
670 return NULL;
671 }
672
673 /* Wait for buffers to arrive on the LRU queue */
674 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
675 mutex_exit(&bufcache_lock);
676 }
677
678 return addr;
679 }
680
681 static void
682 buf_mrelease(void *addr, size_t size)
683 {
684
685 pool_put(&bmempools[buf_mempoolidx(size)], addr);
686 }
687
688 /*
689 * bread()/breadn() helper.
690 */
691 static buf_t *
692 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
693 {
694 buf_t *bp;
695 struct mount *mp;
696
697 bp = getblk(vp, blkno, size, 0, 0);
698
699 /*
700 * getblk() may return NULL if we are the pagedaemon.
701 */
702 if (bp == NULL) {
703 KASSERT(curlwp == uvm.pagedaemon_lwp);
704 return NULL;
705 }
706
707 /*
708 * If buffer does not have data valid, start a read.
709 * Note that if buffer is BC_INVAL, getblk() won't return it.
710 * Therefore, it's valid if its I/O has completed or been delayed.
711 */
712 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
713 /* Start I/O for the buffer. */
714 SET(bp->b_flags, B_READ | async);
715 if (async)
716 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
717 else
718 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
719 VOP_STRATEGY(vp, bp);
720
721 /* Pay for the read. */
722 curlwp->l_ru.ru_inblock++;
723 } else if (async)
724 brelse(bp, 0);
725
726 if (vp->v_type == VBLK)
727 mp = spec_node_getmountedfs(vp);
728 else
729 mp = vp->v_mount;
730
731 /*
732 * Collect statistics on synchronous and asynchronous reads.
733 * Reads from block devices are charged to their associated
734 * filesystem (if any).
735 */
736 if (mp != NULL) {
737 if (async == 0)
738 mp->mnt_stat.f_syncreads++;
739 else
740 mp->mnt_stat.f_asyncreads++;
741 }
742
743 return (bp);
744 }
745
746 /*
747 * Read a disk block.
748 * This algorithm described in Bach (p.54).
749 */
750 int
751 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
752 {
753 buf_t *bp;
754 int error;
755
756 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
757
758 /* Get buffer for block. */
759 bp = *bpp = bio_doread(vp, blkno, size, 0);
760 if (bp == NULL)
761 return ENOMEM;
762
763 /* Wait for the read to complete, and return result. */
764 error = biowait(bp);
765 if (error == 0 && (flags & B_MODIFY) != 0)
766 error = fscow_run(bp, true);
767 if (error) {
768 brelse(bp, 0);
769 *bpp = NULL;
770 }
771
772 return error;
773 }
774
775 /*
776 * Read-ahead multiple disk blocks. The first is sync, the rest async.
777 * Trivial modification to the breada algorithm presented in Bach (p.55).
778 */
779 int
780 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
781 int *rasizes, int nrablks, int flags, buf_t **bpp)
782 {
783 buf_t *bp;
784 int error, i;
785
786 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
787
788 bp = *bpp = bio_doread(vp, blkno, size, 0);
789 if (bp == NULL)
790 return ENOMEM;
791
792 /*
793 * For each of the read-ahead blocks, start a read, if necessary.
794 */
795 mutex_enter(&bufcache_lock);
796 for (i = 0; i < nrablks; i++) {
797 /* If it's in the cache, just go on to next one. */
798 if (incore(vp, rablks[i]))
799 continue;
800
801 /* Get a buffer for the read-ahead block */
802 mutex_exit(&bufcache_lock);
803 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
804 mutex_enter(&bufcache_lock);
805 }
806 mutex_exit(&bufcache_lock);
807
808 /* Otherwise, we had to start a read for it; wait until it's valid. */
809 error = biowait(bp);
810 if (error == 0 && (flags & B_MODIFY) != 0)
811 error = fscow_run(bp, true);
812 if (error) {
813 brelse(bp, 0);
814 *bpp = NULL;
815 }
816
817 return error;
818 }
819
820 /*
821 * Block write. Described in Bach (p.56)
822 */
823 int
824 bwrite(buf_t *bp)
825 {
826 int rv, sync, wasdelayed;
827 struct vnode *vp;
828 struct mount *mp;
829
830 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
831 (uintptr_t)bp, 0, 0, 0);
832
833 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
834 KASSERT(!cv_has_waiters(&bp->b_done));
835
836 vp = bp->b_vp;
837
838 /*
839 * dholland 20160728 AFAICT vp==NULL must be impossible as it
840 * will crash upon reaching VOP_STRATEGY below... see further
841 * analysis on tech-kern.
842 */
843 KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
844
845 if (vp != NULL) {
846 KASSERT(bp->b_objlock == vp->v_interlock);
847 if (vp->v_type == VBLK)
848 mp = spec_node_getmountedfs(vp);
849 else
850 mp = vp->v_mount;
851 } else {
852 mp = NULL;
853 }
854
855 if (mp && mp->mnt_wapbl) {
856 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
857 bdwrite(bp);
858 return 0;
859 }
860 }
861
862 /*
863 * Remember buffer type, to switch on it later. If the write was
864 * synchronous, but the file system was mounted with MNT_ASYNC,
865 * convert it to a delayed write.
866 * XXX note that this relies on delayed tape writes being converted
867 * to async, not sync writes (which is safe, but ugly).
868 */
869 sync = !ISSET(bp->b_flags, B_ASYNC);
870 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
871 bdwrite(bp);
872 return (0);
873 }
874
875 /*
876 * Collect statistics on synchronous and asynchronous writes.
877 * Writes to block devices are charged to their associated
878 * filesystem (if any).
879 */
880 if (mp != NULL) {
881 if (sync)
882 mp->mnt_stat.f_syncwrites++;
883 else
884 mp->mnt_stat.f_asyncwrites++;
885 }
886
887 /*
888 * Pay for the I/O operation and make sure the buf is on the correct
889 * vnode queue.
890 */
891 bp->b_error = 0;
892 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
893 CLR(bp->b_flags, B_READ);
894 if (wasdelayed) {
895 mutex_enter(&bufcache_lock);
896 mutex_enter(bp->b_objlock);
897 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
898 reassignbuf(bp, bp->b_vp);
899 mutex_exit(&bufcache_lock);
900 } else {
901 curlwp->l_ru.ru_oublock++;
902 mutex_enter(bp->b_objlock);
903 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
904 }
905 if (vp != NULL)
906 vp->v_numoutput++;
907 mutex_exit(bp->b_objlock);
908
909 /* Initiate disk write. */
910 if (sync)
911 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
912 else
913 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
914
915 VOP_STRATEGY(vp, bp);
916
917 if (sync) {
918 /* If I/O was synchronous, wait for it to complete. */
919 rv = biowait(bp);
920
921 /* Release the buffer. */
922 brelse(bp, 0);
923
924 return (rv);
925 } else {
926 return (0);
927 }
928 }
929
930 int
931 vn_bwrite(void *v)
932 {
933 struct vop_bwrite_args *ap = v;
934
935 return (bwrite(ap->a_bp));
936 }
937
938 /*
939 * Delayed write.
940 *
941 * The buffer is marked dirty, but is not queued for I/O.
942 * This routine should be used when the buffer is expected
943 * to be modified again soon, typically a small write that
944 * partially fills a buffer.
945 *
946 * NB: magnetic tapes cannot be delayed; they must be
947 * written in the order that the writes are requested.
948 *
949 * Described in Leffler, et al. (pp. 208-213).
950 */
951 void
952 bdwrite(buf_t *bp)
953 {
954
955 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
956 (uintptr_t)bp, 0, 0, 0);
957
958 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
959 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
960 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
961 KASSERT(!cv_has_waiters(&bp->b_done));
962
963 /* If this is a tape block, write the block now. */
964 if (bdev_type(bp->b_dev) == D_TAPE) {
965 bawrite(bp);
966 return;
967 }
968
969 if (wapbl_vphaswapbl(bp->b_vp)) {
970 struct mount *mp = wapbl_vptomp(bp->b_vp);
971
972 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
973 WAPBL_ADD_BUF(mp, bp);
974 }
975 }
976
977 /*
978 * If the block hasn't been seen before:
979 * (1) Mark it as having been seen,
980 * (2) Charge for the write,
981 * (3) Make sure it's on its vnode's correct block list.
982 */
983 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
984
985 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
986 mutex_enter(&bufcache_lock);
987 mutex_enter(bp->b_objlock);
988 SET(bp->b_oflags, BO_DELWRI);
989 curlwp->l_ru.ru_oublock++;
990 reassignbuf(bp, bp->b_vp);
991 mutex_exit(&bufcache_lock);
992 } else {
993 mutex_enter(bp->b_objlock);
994 }
995 /* Otherwise, the "write" is done, so mark and release the buffer. */
996 CLR(bp->b_oflags, BO_DONE);
997 mutex_exit(bp->b_objlock);
998
999 brelse(bp, 0);
1000 }
1001
1002 /*
1003 * Asynchronous block write; just an asynchronous bwrite().
1004 */
1005 void
1006 bawrite(buf_t *bp)
1007 {
1008
1009 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1010 KASSERT(bp->b_vp != NULL);
1011
1012 SET(bp->b_flags, B_ASYNC);
1013 VOP_BWRITE(bp->b_vp, bp);
1014 }
1015
1016 /*
1017 * Release a buffer on to the free lists.
1018 * Described in Bach (p. 46).
1019 */
1020 void
1021 brelsel(buf_t *bp, int set)
1022 {
1023 struct bqueue *bufq;
1024 struct vnode *vp;
1025
1026 KASSERT(bp != NULL);
1027 KASSERT(mutex_owned(&bufcache_lock));
1028 KASSERT(!cv_has_waiters(&bp->b_done));
1029 KASSERT(bp->b_refcnt > 0);
1030
1031 SET(bp->b_cflags, set);
1032
1033 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1034 KASSERT(bp->b_iodone == NULL);
1035
1036 /* Wake up any processes waiting for any buffer to become free. */
1037 cv_signal(&needbuffer_cv);
1038
1039 /* Wake up any proceeses waiting for _this_ buffer to become free */
1040 if (ISSET(bp->b_cflags, BC_WANTED))
1041 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1042
1043 /* If it's clean clear the copy-on-write flag. */
1044 if (ISSET(bp->b_flags, B_COWDONE)) {
1045 mutex_enter(bp->b_objlock);
1046 if (!ISSET(bp->b_oflags, BO_DELWRI))
1047 CLR(bp->b_flags, B_COWDONE);
1048 mutex_exit(bp->b_objlock);
1049 }
1050
1051 /*
1052 * Determine which queue the buffer should be on, then put it there.
1053 */
1054
1055 /* If it's locked, don't report an error; try again later. */
1056 if (ISSET(bp->b_flags, B_LOCKED))
1057 bp->b_error = 0;
1058
1059 /* If it's not cacheable, or an error, mark it invalid. */
1060 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1061 SET(bp->b_cflags, BC_INVAL);
1062
1063 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1064 /*
1065 * This is a delayed write buffer that was just flushed to
1066 * disk. It is still on the LRU queue. If it's become
1067 * invalid, then we need to move it to a different queue;
1068 * otherwise leave it in its current position.
1069 */
1070 CLR(bp->b_cflags, BC_VFLUSH);
1071 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1072 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1073 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1074 goto already_queued;
1075 } else {
1076 bremfree(bp);
1077 }
1078 }
1079
1080 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1081 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1082 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1083
1084 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1085 /*
1086 * If it's invalid or empty, dissociate it from its vnode
1087 * and put on the head of the appropriate queue.
1088 */
1089 if (ISSET(bp->b_flags, B_LOCKED)) {
1090 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1091 struct mount *mp = wapbl_vptomp(vp);
1092
1093 KASSERT(bp->b_iodone
1094 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1095 WAPBL_REMOVE_BUF(mp, bp);
1096 }
1097 }
1098
1099 mutex_enter(bp->b_objlock);
1100 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1101 if ((vp = bp->b_vp) != NULL) {
1102 KASSERT(bp->b_objlock == vp->v_interlock);
1103 reassignbuf(bp, bp->b_vp);
1104 brelvp(bp);
1105 mutex_exit(vp->v_interlock);
1106 } else {
1107 KASSERT(bp->b_objlock == &buffer_lock);
1108 mutex_exit(bp->b_objlock);
1109 }
1110 /* We want to dispose of the buffer, so wake everybody. */
1111 cv_broadcast(&bp->b_busy);
1112 if (bp->b_bufsize <= 0)
1113 /* no data */
1114 goto already_queued;
1115 else
1116 /* invalid data */
1117 bufq = &bufqueues[BQ_AGE];
1118 binsheadfree(bp, bufq);
1119 } else {
1120 /*
1121 * It has valid data. Put it on the end of the appropriate
1122 * queue, so that it'll stick around for as long as possible.
1123 * If buf is AGE, but has dependencies, must put it on last
1124 * bufqueue to be scanned, ie LRU. This protects against the
1125 * livelock where BQ_AGE only has buffers with dependencies,
1126 * and we thus never get to the dependent buffers in BQ_LRU.
1127 */
1128 if (ISSET(bp->b_flags, B_LOCKED)) {
1129 /* locked in core */
1130 bufq = &bufqueues[BQ_LOCKED];
1131 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1132 /* valid data */
1133 bufq = &bufqueues[BQ_LRU];
1134 } else {
1135 /* stale but valid data */
1136 bufq = &bufqueues[BQ_AGE];
1137 }
1138 binstailfree(bp, bufq);
1139 }
1140 already_queued:
1141 /* Unlock the buffer. */
1142 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1143 CLR(bp->b_flags, B_ASYNC);
1144 cv_signal(&bp->b_busy);
1145
1146 if (bp->b_bufsize <= 0)
1147 brele(bp);
1148 }
1149
1150 void
1151 brelse(buf_t *bp, int set)
1152 {
1153
1154 mutex_enter(&bufcache_lock);
1155 brelsel(bp, set);
1156 mutex_exit(&bufcache_lock);
1157 }
1158
1159 /*
1160 * Determine if a block is in the cache.
1161 * Just look on what would be its hash chain. If it's there, return
1162 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1163 * we normally don't return the buffer, unless the caller explicitly
1164 * wants us to.
1165 */
1166 buf_t *
1167 incore(struct vnode *vp, daddr_t blkno)
1168 {
1169 buf_t *bp;
1170
1171 KASSERT(mutex_owned(&bufcache_lock));
1172
1173 /* Search hash chain */
1174 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1175 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1176 !ISSET(bp->b_cflags, BC_INVAL)) {
1177 KASSERT(bp->b_objlock == vp->v_interlock);
1178 return (bp);
1179 }
1180 }
1181
1182 return (NULL);
1183 }
1184
1185 /*
1186 * Get a block of requested size that is associated with
1187 * a given vnode and block offset. If it is found in the
1188 * block cache, mark it as having been found, make it busy
1189 * and return it. Otherwise, return an empty block of the
1190 * correct size. It is up to the caller to insure that the
1191 * cached blocks be of the correct size.
1192 */
1193 buf_t *
1194 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1195 {
1196 int err, preserve;
1197 buf_t *bp;
1198
1199 mutex_enter(&bufcache_lock);
1200 loop:
1201 bp = incore(vp, blkno);
1202 if (bp != NULL) {
1203 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1204 if (err != 0) {
1205 if (err == EPASSTHROUGH)
1206 goto loop;
1207 mutex_exit(&bufcache_lock);
1208 return (NULL);
1209 }
1210 KASSERT(!cv_has_waiters(&bp->b_done));
1211 #ifdef DIAGNOSTIC
1212 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1213 bp->b_bcount < size && vp->v_type != VBLK)
1214 panic("getblk: block size invariant failed");
1215 #endif
1216 bremfree(bp);
1217 preserve = 1;
1218 } else {
1219 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1220 goto loop;
1221
1222 if (incore(vp, blkno) != NULL) {
1223 /* The block has come into memory in the meantime. */
1224 brelsel(bp, 0);
1225 goto loop;
1226 }
1227
1228 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1229 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1230 mutex_enter(vp->v_interlock);
1231 bgetvp(vp, bp);
1232 mutex_exit(vp->v_interlock);
1233 preserve = 0;
1234 }
1235 mutex_exit(&bufcache_lock);
1236
1237 /*
1238 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1239 * if we re-size buffers here.
1240 */
1241 if (ISSET(bp->b_flags, B_LOCKED)) {
1242 KASSERT(bp->b_bufsize >= size);
1243 } else {
1244 if (allocbuf(bp, size, preserve)) {
1245 mutex_enter(&bufcache_lock);
1246 LIST_REMOVE(bp, b_hash);
1247 brelsel(bp, BC_INVAL);
1248 mutex_exit(&bufcache_lock);
1249 return NULL;
1250 }
1251 }
1252 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1253 return (bp);
1254 }
1255
1256 /*
1257 * Get an empty, disassociated buffer of given size.
1258 */
1259 buf_t *
1260 geteblk(int size)
1261 {
1262 buf_t *bp;
1263 int error __diagused;
1264
1265 mutex_enter(&bufcache_lock);
1266 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1267 ;
1268
1269 SET(bp->b_cflags, BC_INVAL);
1270 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1271 mutex_exit(&bufcache_lock);
1272 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1273 error = allocbuf(bp, size, 0);
1274 KASSERT(error == 0);
1275 return (bp);
1276 }
1277
1278 /*
1279 * Expand or contract the actual memory allocated to a buffer.
1280 *
1281 * If the buffer shrinks, data is lost, so it's up to the
1282 * caller to have written it out *first*; this routine will not
1283 * start a write. If the buffer grows, it's the callers
1284 * responsibility to fill out the buffer's additional contents.
1285 */
1286 int
1287 allocbuf(buf_t *bp, int size, int preserve)
1288 {
1289 void *addr;
1290 vsize_t oldsize, desired_size;
1291 int oldcount;
1292 int delta;
1293
1294 desired_size = buf_roundsize(size);
1295 if (desired_size > MAXBSIZE)
1296 printf("allocbuf: buffer larger than MAXBSIZE requested");
1297
1298 oldcount = bp->b_bcount;
1299
1300 bp->b_bcount = size;
1301
1302 oldsize = bp->b_bufsize;
1303 if (oldsize == desired_size) {
1304 /*
1305 * Do not short cut the WAPBL resize, as the buffer length
1306 * could still have changed and this would corrupt the
1307 * tracking of the transaction length.
1308 */
1309 goto out;
1310 }
1311
1312 /*
1313 * If we want a buffer of a different size, re-allocate the
1314 * buffer's memory; copy old content only if needed.
1315 */
1316 addr = buf_alloc(desired_size);
1317 if (addr == NULL)
1318 return ENOMEM;
1319 if (preserve)
1320 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1321 if (bp->b_data != NULL)
1322 buf_mrelease(bp->b_data, oldsize);
1323 bp->b_data = addr;
1324 bp->b_bufsize = desired_size;
1325
1326 /*
1327 * Update overall buffer memory counter (protected by bufcache_lock)
1328 */
1329 delta = (long)desired_size - (long)oldsize;
1330
1331 mutex_enter(&bufcache_lock);
1332 if ((bufmem += delta) > bufmem_hiwater) {
1333 /*
1334 * Need to trim overall memory usage.
1335 */
1336 while (buf_canrelease()) {
1337 if (curcpu()->ci_schedstate.spc_flags &
1338 SPCF_SHOULDYIELD) {
1339 mutex_exit(&bufcache_lock);
1340 preempt();
1341 mutex_enter(&bufcache_lock);
1342 }
1343 if (buf_trim() == 0)
1344 break;
1345 }
1346 }
1347 mutex_exit(&bufcache_lock);
1348
1349 out:
1350 if (wapbl_vphaswapbl(bp->b_vp))
1351 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1352
1353 return 0;
1354 }
1355
1356 /*
1357 * Find a buffer which is available for use.
1358 * Select something from a free list.
1359 * Preference is to AGE list, then LRU list.
1360 *
1361 * Called with the buffer queues locked.
1362 * Return buffer locked.
1363 */
1364 static buf_t *
1365 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1366 {
1367 buf_t *bp;
1368 struct vnode *vp;
1369 struct mount *transmp = NULL;
1370
1371 start:
1372 KASSERT(mutex_owned(&bufcache_lock));
1373
1374 /*
1375 * Get a new buffer from the pool.
1376 */
1377 if (!from_bufq && buf_lotsfree()) {
1378 mutex_exit(&bufcache_lock);
1379 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1380 if (bp != NULL) {
1381 memset((char *)bp, 0, sizeof(*bp));
1382 buf_init(bp);
1383 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1384 mutex_enter(&bufcache_lock);
1385 #if defined(DIAGNOSTIC)
1386 bp->b_freelistindex = -1;
1387 #endif /* defined(DIAGNOSTIC) */
1388 return (bp);
1389 }
1390 mutex_enter(&bufcache_lock);
1391 }
1392
1393 KASSERT(mutex_owned(&bufcache_lock));
1394 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
1395 KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
1396 } else {
1397 TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
1398 if (ISSET(bp->b_cflags, BC_VFLUSH) ||
1399 !ISSET(bp->b_oflags, BO_DELWRI))
1400 break;
1401 if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
1402 KASSERT(transmp == NULL);
1403 transmp = bp->b_vp->v_mount;
1404 break;
1405 }
1406 }
1407 }
1408 if (bp != NULL) {
1409 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1410 bremfree(bp);
1411
1412 /* Buffer is no longer on free lists. */
1413 SET(bp->b_cflags, BC_BUSY);
1414 } else {
1415 /*
1416 * XXX: !from_bufq should be removed.
1417 */
1418 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1419 /* wait for a free buffer of any kind */
1420 if ((slpflag & PCATCH) != 0)
1421 (void)cv_timedwait_sig(&needbuffer_cv,
1422 &bufcache_lock, slptimeo);
1423 else
1424 (void)cv_timedwait(&needbuffer_cv,
1425 &bufcache_lock, slptimeo);
1426 }
1427 return (NULL);
1428 }
1429
1430 #ifdef DIAGNOSTIC
1431 if (bp->b_bufsize <= 0)
1432 panic("buffer %p: on queue but empty", bp);
1433 #endif
1434
1435 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1436 /*
1437 * This is a delayed write buffer being flushed to disk. Make
1438 * sure it gets aged out of the queue when it's finished, and
1439 * leave it off the LRU queue.
1440 */
1441 CLR(bp->b_cflags, BC_VFLUSH);
1442 SET(bp->b_cflags, BC_AGE);
1443 goto start;
1444 }
1445
1446 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1447 KASSERT(bp->b_refcnt > 0);
1448 KASSERT(!cv_has_waiters(&bp->b_done));
1449
1450 /*
1451 * If buffer was a delayed write, start it and return NULL
1452 * (since we might sleep while starting the write).
1453 */
1454 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1455 /*
1456 * This buffer has gone through the LRU, so make sure it gets
1457 * reused ASAP.
1458 */
1459 SET(bp->b_cflags, BC_AGE);
1460 mutex_exit(&bufcache_lock);
1461 bawrite(bp);
1462 KASSERT(transmp != NULL);
1463 fstrans_done(transmp);
1464 mutex_enter(&bufcache_lock);
1465 return (NULL);
1466 }
1467
1468 KASSERT(transmp == NULL);
1469
1470 vp = bp->b_vp;
1471
1472 /* clear out various other fields */
1473 bp->b_cflags = BC_BUSY;
1474 bp->b_oflags = 0;
1475 bp->b_flags = 0;
1476 bp->b_dev = NODEV;
1477 bp->b_blkno = 0;
1478 bp->b_lblkno = 0;
1479 bp->b_rawblkno = 0;
1480 bp->b_iodone = 0;
1481 bp->b_error = 0;
1482 bp->b_resid = 0;
1483 bp->b_bcount = 0;
1484
1485 LIST_REMOVE(bp, b_hash);
1486
1487 /* Disassociate us from our vnode, if we had one... */
1488 if (vp != NULL) {
1489 mutex_enter(vp->v_interlock);
1490 brelvp(bp);
1491 mutex_exit(vp->v_interlock);
1492 }
1493
1494 return (bp);
1495 }
1496
1497 /*
1498 * Attempt to free an aged buffer off the queues.
1499 * Called with queue lock held.
1500 * Returns the amount of buffer memory freed.
1501 */
1502 static int
1503 buf_trim(void)
1504 {
1505 buf_t *bp;
1506 long size;
1507
1508 KASSERT(mutex_owned(&bufcache_lock));
1509
1510 /* Instruct getnewbuf() to get buffers off the queues */
1511 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1512 return 0;
1513
1514 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1515 size = bp->b_bufsize;
1516 bufmem -= size;
1517 if (size > 0) {
1518 buf_mrelease(bp->b_data, size);
1519 bp->b_bcount = bp->b_bufsize = 0;
1520 }
1521 /* brelse() will return the buffer to the global buffer pool */
1522 brelsel(bp, 0);
1523 return size;
1524 }
1525
1526 int
1527 buf_drain(int n)
1528 {
1529 int size = 0, sz;
1530
1531 KASSERT(mutex_owned(&bufcache_lock));
1532
1533 while (size < n && bufmem > bufmem_lowater) {
1534 sz = buf_trim();
1535 if (sz <= 0)
1536 break;
1537 size += sz;
1538 }
1539
1540 return size;
1541 }
1542
1543 SDT_PROVIDER_DEFINE(io);
1544
1545 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1546 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1547
1548 /*
1549 * Wait for operations on the buffer to complete.
1550 * When they do, extract and return the I/O's error value.
1551 */
1552 int
1553 biowait(buf_t *bp)
1554 {
1555
1556 BIOHIST_FUNC(__func__);
1557
1558 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1559 KASSERT(bp->b_refcnt > 0);
1560
1561 SDT_PROBE1(io, kernel, , wait__start, bp);
1562
1563 mutex_enter(bp->b_objlock);
1564
1565 BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
1566 (uintptr_t)bp, bp->b_oflags,
1567 (uintptr_t)__builtin_return_address(0), 0);
1568
1569 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1570 BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1571 cv_wait(&bp->b_done, bp->b_objlock);
1572 }
1573 mutex_exit(bp->b_objlock);
1574
1575 SDT_PROBE1(io, kernel, , wait__done, bp);
1576
1577 BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
1578
1579 return bp->b_error;
1580 }
1581
1582 /*
1583 * Mark I/O complete on a buffer.
1584 *
1585 * If a callback has been requested, e.g. the pageout
1586 * daemon, do so. Otherwise, awaken waiting processes.
1587 *
1588 * [ Leffler, et al., says on p.247:
1589 * "This routine wakes up the blocked process, frees the buffer
1590 * for an asynchronous write, or, for a request by the pagedaemon
1591 * process, invokes a procedure specified in the buffer structure" ]
1592 *
1593 * In real life, the pagedaemon (or other system processes) wants
1594 * to do async stuff too, and doesn't want the buffer brelse()'d.
1595 * (for swap pager, that puts swap buffers on the free lists (!!!),
1596 * for the vn device, that puts allocated buffers on the free lists!)
1597 */
1598 void
1599 biodone(buf_t *bp)
1600 {
1601 int s;
1602
1603 BIOHIST_FUNC(__func__);
1604
1605 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1606
1607 if (cpu_intr_p()) {
1608 /* From interrupt mode: defer to a soft interrupt. */
1609 s = splvm();
1610 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1611
1612 BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
1613 (uintptr_t)bp, 0, 0, 0);
1614 softint_schedule(biodone_sih);
1615 splx(s);
1616 } else {
1617 /* Process now - the buffer may be freed soon. */
1618 biodone2(bp);
1619 }
1620 }
1621
1622 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1623
1624 static void
1625 biodone2(buf_t *bp)
1626 {
1627 void (*callout)(buf_t *);
1628
1629 SDT_PROBE1(io, kernel, ,done, bp);
1630
1631 BIOHIST_FUNC(__func__);
1632 BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1633
1634 mutex_enter(bp->b_objlock);
1635 /* Note that the transfer is done. */
1636 if (ISSET(bp->b_oflags, BO_DONE))
1637 panic("biodone2 already");
1638 CLR(bp->b_flags, B_COWDONE);
1639 SET(bp->b_oflags, BO_DONE);
1640 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1641
1642 /* Wake up waiting writers. */
1643 if (!ISSET(bp->b_flags, B_READ))
1644 vwakeup(bp);
1645
1646 if ((callout = bp->b_iodone) != NULL) {
1647 BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
1648 0, 0, 0);
1649
1650 /* Note callout done, then call out. */
1651 KASSERT(!cv_has_waiters(&bp->b_done));
1652 KERNEL_LOCK(1, NULL); /* XXXSMP */
1653 bp->b_iodone = NULL;
1654 mutex_exit(bp->b_objlock);
1655 (*callout)(bp);
1656 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1657 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1658 /* If async, release. */
1659 BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
1660 KASSERT(!cv_has_waiters(&bp->b_done));
1661 mutex_exit(bp->b_objlock);
1662 brelse(bp, 0);
1663 } else {
1664 /* Otherwise just wake up waiters in biowait(). */
1665 BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1666 cv_broadcast(&bp->b_done);
1667 mutex_exit(bp->b_objlock);
1668 }
1669 }
1670
1671 static void
1672 biointr(void *cookie)
1673 {
1674 struct cpu_info *ci;
1675 buf_t *bp;
1676 int s;
1677
1678 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1679
1680 ci = curcpu();
1681
1682 s = splvm();
1683 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1684 KASSERT(curcpu() == ci);
1685
1686 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1687 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1688 splx(s);
1689
1690 BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1691 biodone2(bp);
1692
1693 s = splvm();
1694 }
1695 splx(s);
1696 }
1697
1698 /*
1699 * Wait for all buffers to complete I/O
1700 * Return the number of "stuck" buffers.
1701 */
1702 int
1703 buf_syncwait(void)
1704 {
1705 buf_t *bp;
1706 int iter, nbusy, nbusy_prev = 0, ihash;
1707
1708 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1709
1710 for (iter = 0; iter < 20;) {
1711 mutex_enter(&bufcache_lock);
1712 nbusy = 0;
1713 for (ihash = 0; ihash < bufhash+1; ihash++) {
1714 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1715 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1716 nbusy += ((bp->b_flags & B_READ) == 0);
1717 }
1718 }
1719 mutex_exit(&bufcache_lock);
1720
1721 if (nbusy == 0)
1722 break;
1723 if (nbusy_prev == 0)
1724 nbusy_prev = nbusy;
1725 printf("%d ", nbusy);
1726 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1727 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1728 iter++;
1729 else
1730 nbusy_prev = nbusy;
1731 }
1732
1733 if (nbusy) {
1734 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1735 printf("giving up\nPrinting vnodes for busy buffers\n");
1736 for (ihash = 0; ihash < bufhash+1; ihash++) {
1737 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1738 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1739 (bp->b_flags & B_READ) == 0)
1740 vprint(NULL, bp->b_vp);
1741 }
1742 }
1743 #endif
1744 }
1745
1746 return nbusy;
1747 }
1748
1749 static void
1750 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
1751 {
1752 const bool allowaddr = get_expose_address(curproc);
1753
1754 memset(o, 0, sizeof(*o));
1755
1756 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1757 o->b_error = i->b_error;
1758 o->b_prio = i->b_prio;
1759 o->b_dev = i->b_dev;
1760 o->b_bufsize = i->b_bufsize;
1761 o->b_bcount = i->b_bcount;
1762 o->b_resid = i->b_resid;
1763 COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
1764 o->b_blkno = i->b_blkno;
1765 o->b_rawblkno = i->b_rawblkno;
1766 COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
1767 COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
1768 COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
1769 COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
1770 o->b_lblkno = i->b_lblkno;
1771 }
1772
1773 #define KERN_BUFSLOP 20
1774 static int
1775 sysctl_dobuf(SYSCTLFN_ARGS)
1776 {
1777 buf_t *bp;
1778 struct buf_sysctl bs;
1779 struct bqueue *bq;
1780 char *dp;
1781 u_int i, op, arg;
1782 size_t len, needed, elem_size, out_size;
1783 int error, elem_count, retries;
1784
1785 if (namelen == 1 && name[0] == CTL_QUERY)
1786 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1787
1788 if (namelen != 4)
1789 return (EINVAL);
1790
1791 retries = 100;
1792 retry:
1793 dp = oldp;
1794 len = (oldp != NULL) ? *oldlenp : 0;
1795 op = name[0];
1796 arg = name[1];
1797 elem_size = name[2];
1798 elem_count = name[3];
1799 out_size = MIN(sizeof(bs), elem_size);
1800
1801 /*
1802 * at the moment, these are just "placeholders" to make the
1803 * API for retrieving kern.buf data more extensible in the
1804 * future.
1805 *
1806 * XXX kern.buf currently has "netbsd32" issues. hopefully
1807 * these will be resolved at a later point.
1808 */
1809 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1810 elem_size < 1 || elem_count < 0)
1811 return (EINVAL);
1812
1813 error = 0;
1814 needed = 0;
1815 sysctl_unlock();
1816 mutex_enter(&bufcache_lock);
1817 for (i = 0; i < BQUEUES; i++) {
1818 bq = &bufqueues[i];
1819 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1820 bq->bq_marker = bp;
1821 if (len >= elem_size && elem_count > 0) {
1822 sysctl_fillbuf(bp, &bs);
1823 mutex_exit(&bufcache_lock);
1824 error = copyout(&bs, dp, out_size);
1825 mutex_enter(&bufcache_lock);
1826 if (error)
1827 break;
1828 if (bq->bq_marker != bp) {
1829 /*
1830 * This sysctl node is only for
1831 * statistics. Retry; if the
1832 * queue keeps changing, then
1833 * bail out.
1834 */
1835 if (retries-- == 0) {
1836 error = EAGAIN;
1837 break;
1838 }
1839 mutex_exit(&bufcache_lock);
1840 sysctl_relock();
1841 goto retry;
1842 }
1843 dp += elem_size;
1844 len -= elem_size;
1845 }
1846 needed += elem_size;
1847 if (elem_count > 0 && elem_count != INT_MAX)
1848 elem_count--;
1849 }
1850 if (error != 0)
1851 break;
1852 }
1853 mutex_exit(&bufcache_lock);
1854 sysctl_relock();
1855
1856 *oldlenp = needed;
1857 if (oldp == NULL)
1858 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1859
1860 return (error);
1861 }
1862
1863 static int
1864 sysctl_bufvm_update(SYSCTLFN_ARGS)
1865 {
1866 int error, rv;
1867 struct sysctlnode node;
1868 unsigned int temp_bufcache;
1869 unsigned long temp_water;
1870
1871 /* Take a copy of the supplied node and its data */
1872 node = *rnode;
1873 if (node.sysctl_data == &bufcache) {
1874 node.sysctl_data = &temp_bufcache;
1875 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1876 } else {
1877 node.sysctl_data = &temp_water;
1878 temp_water = *(unsigned long *)rnode->sysctl_data;
1879 }
1880
1881 /* Update the copy */
1882 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1883 if (error || newp == NULL)
1884 return (error);
1885
1886 if (rnode->sysctl_data == &bufcache) {
1887 if (temp_bufcache > 100)
1888 return (EINVAL);
1889 bufcache = temp_bufcache;
1890 buf_setwm();
1891 } else if (rnode->sysctl_data == &bufmem_lowater) {
1892 if (bufmem_hiwater - temp_water < 16)
1893 return (EINVAL);
1894 bufmem_lowater = temp_water;
1895 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1896 if (temp_water - bufmem_lowater < 16)
1897 return (EINVAL);
1898 bufmem_hiwater = temp_water;
1899 } else
1900 return (EINVAL);
1901
1902 /* Drain until below new high water mark */
1903 sysctl_unlock();
1904 mutex_enter(&bufcache_lock);
1905 while (bufmem > bufmem_hiwater) {
1906 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1907 if (rv <= 0)
1908 break;
1909 }
1910 mutex_exit(&bufcache_lock);
1911 sysctl_relock();
1912
1913 return 0;
1914 }
1915
1916 static struct sysctllog *vfsbio_sysctllog;
1917
1918 static void
1919 sysctl_kern_buf_setup(void)
1920 {
1921
1922 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1923 CTLFLAG_PERMANENT,
1924 CTLTYPE_NODE, "buf",
1925 SYSCTL_DESCR("Kernel buffer cache information"),
1926 sysctl_dobuf, 0, NULL, 0,
1927 CTL_KERN, KERN_BUF, CTL_EOL);
1928 }
1929
1930 static void
1931 sysctl_vm_buf_setup(void)
1932 {
1933
1934 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1935 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1936 CTLTYPE_INT, "bufcache",
1937 SYSCTL_DESCR("Percentage of physical memory to use for "
1938 "buffer cache"),
1939 sysctl_bufvm_update, 0, &bufcache, 0,
1940 CTL_VM, CTL_CREATE, CTL_EOL);
1941 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1942 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1943 CTLTYPE_LONG, "bufmem",
1944 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1945 "cache"),
1946 NULL, 0, &bufmem, 0,
1947 CTL_VM, CTL_CREATE, CTL_EOL);
1948 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1949 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1950 CTLTYPE_LONG, "bufmem_lowater",
1951 SYSCTL_DESCR("Minimum amount of kernel memory to "
1952 "reserve for buffer cache"),
1953 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1954 CTL_VM, CTL_CREATE, CTL_EOL);
1955 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1956 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1957 CTLTYPE_LONG, "bufmem_hiwater",
1958 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1959 "for buffer cache"),
1960 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1961 CTL_VM, CTL_CREATE, CTL_EOL);
1962 }
1963
1964 #ifdef DEBUG
1965 /*
1966 * Print out statistics on the current allocation of the buffer pool.
1967 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1968 * in vfs_syscalls.c using sysctl.
1969 */
1970 void
1971 vfs_bufstats(void)
1972 {
1973 int i, j, count;
1974 buf_t *bp;
1975 struct bqueue *dp;
1976 int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1977 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1978
1979 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1980 count = 0;
1981 memset(counts, 0, sizeof(counts));
1982 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1983 counts[bp->b_bufsize / PAGE_SIZE]++;
1984 count++;
1985 }
1986 printf("%s: total-%d", bname[i], count);
1987 for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1988 if (counts[j] != 0)
1989 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1990 printf("\n");
1991 }
1992 }
1993 #endif /* DEBUG */
1994
1995 /* ------------------------------ */
1996
1997 buf_t *
1998 getiobuf(struct vnode *vp, bool waitok)
1999 {
2000 buf_t *bp;
2001
2002 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
2003 if (bp == NULL)
2004 return bp;
2005
2006 buf_init(bp);
2007
2008 if ((bp->b_vp = vp) != NULL) {
2009 bp->b_objlock = vp->v_interlock;
2010 } else {
2011 KASSERT(bp->b_objlock == &buffer_lock);
2012 }
2013
2014 return bp;
2015 }
2016
2017 void
2018 putiobuf(buf_t *bp)
2019 {
2020
2021 buf_destroy(bp);
2022 pool_cache_put(bufio_cache, bp);
2023 }
2024
2025 /*
2026 * nestiobuf_iodone: b_iodone callback for nested buffers.
2027 */
2028
2029 void
2030 nestiobuf_iodone(buf_t *bp)
2031 {
2032 buf_t *mbp = bp->b_private;
2033 int error;
2034 int donebytes;
2035
2036 KASSERT(bp->b_bcount <= bp->b_bufsize);
2037 KASSERT(mbp != bp);
2038
2039 error = bp->b_error;
2040 if (bp->b_error == 0 &&
2041 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2042 /*
2043 * Not all got transfered, raise an error. We have no way to
2044 * propagate these conditions to mbp.
2045 */
2046 error = EIO;
2047 }
2048
2049 donebytes = bp->b_bufsize;
2050
2051 putiobuf(bp);
2052 nestiobuf_done(mbp, donebytes, error);
2053 }
2054
2055 /*
2056 * nestiobuf_setup: setup a "nested" buffer.
2057 *
2058 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2059 * => 'bp' should be a buffer allocated by getiobuf.
2060 * => 'offset' is a byte offset in the master buffer.
2061 * => 'size' is a size in bytes of this nested buffer.
2062 */
2063
2064 void
2065 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2066 {
2067 const int b_pass = mbp->b_flags & (B_READ|B_MEDIA_FLAGS);
2068 struct vnode *vp = mbp->b_vp;
2069
2070 KASSERT(mbp->b_bcount >= offset + size);
2071 bp->b_vp = vp;
2072 bp->b_dev = mbp->b_dev;
2073 bp->b_objlock = mbp->b_objlock;
2074 bp->b_cflags = BC_BUSY;
2075 bp->b_flags = B_ASYNC | b_pass;
2076 bp->b_iodone = nestiobuf_iodone;
2077 bp->b_data = (char *)mbp->b_data + offset;
2078 bp->b_resid = bp->b_bcount = size;
2079 bp->b_bufsize = bp->b_bcount;
2080 bp->b_private = mbp;
2081 BIO_COPYPRIO(bp, mbp);
2082 if (BUF_ISWRITE(bp) && vp != NULL) {
2083 mutex_enter(vp->v_interlock);
2084 vp->v_numoutput++;
2085 mutex_exit(vp->v_interlock);
2086 }
2087 }
2088
2089 /*
2090 * nestiobuf_done: propagate completion to the master buffer.
2091 *
2092 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2093 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2094 */
2095
2096 void
2097 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2098 {
2099
2100 if (donebytes == 0) {
2101 return;
2102 }
2103 mutex_enter(mbp->b_objlock);
2104 KASSERT(mbp->b_resid >= donebytes);
2105 mbp->b_resid -= donebytes;
2106 if (error)
2107 mbp->b_error = error;
2108 if (mbp->b_resid == 0) {
2109 if (mbp->b_error)
2110 mbp->b_resid = mbp->b_bcount;
2111 mutex_exit(mbp->b_objlock);
2112 biodone(mbp);
2113 } else
2114 mutex_exit(mbp->b_objlock);
2115 }
2116
2117 void
2118 buf_init(buf_t *bp)
2119 {
2120
2121 cv_init(&bp->b_busy, "biolock");
2122 cv_init(&bp->b_done, "biowait");
2123 bp->b_dev = NODEV;
2124 bp->b_error = 0;
2125 bp->b_flags = 0;
2126 bp->b_cflags = 0;
2127 bp->b_oflags = 0;
2128 bp->b_objlock = &buffer_lock;
2129 bp->b_iodone = NULL;
2130 bp->b_refcnt = 1;
2131 bp->b_dev = NODEV;
2132 bp->b_vnbufs.le_next = NOLIST;
2133 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2134 }
2135
2136 void
2137 buf_destroy(buf_t *bp)
2138 {
2139
2140 cv_destroy(&bp->b_done);
2141 cv_destroy(&bp->b_busy);
2142 }
2143
2144 int
2145 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2146 {
2147 int error;
2148
2149 KASSERT(mutex_owned(&bufcache_lock));
2150
2151 if ((bp->b_cflags & BC_BUSY) != 0) {
2152 if (curlwp == uvm.pagedaemon_lwp)
2153 return EDEADLK;
2154 bp->b_cflags |= BC_WANTED;
2155 bref(bp);
2156 if (interlock != NULL)
2157 mutex_exit(interlock);
2158 if (intr) {
2159 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2160 timo);
2161 } else {
2162 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2163 timo);
2164 }
2165 brele(bp);
2166 if (interlock != NULL)
2167 mutex_enter(interlock);
2168 if (error != 0)
2169 return error;
2170 return EPASSTHROUGH;
2171 }
2172 bp->b_cflags |= BC_BUSY;
2173
2174 return 0;
2175 }
2176
2177 /*
2178 * Nothing outside this file should really need to know about nbuf,
2179 * but a few things still want to read it, so give them a way to do that.
2180 */
2181 u_int
2182 buf_nbuf(void)
2183 {
2184
2185 return nbuf;
2186 }
2187