vfs_bio.c revision 1.282 1 /* $NetBSD: vfs_bio.c,v 1.282 2019/12/08 20:35:23 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.282 2019/12/08 20:35:23 ad Exp $");
127
128 #ifdef _KERNEL_OPT
129 #include "opt_bufcache.h"
130 #include "opt_dtrace.h"
131 #include "opt_biohist.h"
132 #endif
133
134 #include <sys/param.h>
135 #include <sys/systm.h>
136 #include <sys/kernel.h>
137 #include <sys/proc.h>
138 #include <sys/buf.h>
139 #include <sys/vnode.h>
140 #include <sys/mount.h>
141 #include <sys/resourcevar.h>
142 #include <sys/sysctl.h>
143 #include <sys/conf.h>
144 #include <sys/kauth.h>
145 #include <sys/fstrans.h>
146 #include <sys/intr.h>
147 #include <sys/cpu.h>
148 #include <sys/wapbl.h>
149 #include <sys/bitops.h>
150 #include <sys/cprng.h>
151 #include <sys/sdt.h>
152
153 #include <uvm/uvm.h> /* extern struct uvm uvm */
154
155 #include <miscfs/specfs/specdev.h>
156
157 #ifndef BUFPAGES
158 # define BUFPAGES 0
159 #endif
160
161 #ifdef BUFCACHE
162 # if (BUFCACHE < 5) || (BUFCACHE > 95)
163 # error BUFCACHE is not between 5 and 95
164 # endif
165 #else
166 # define BUFCACHE 15
167 #endif
168
169 u_int nbuf; /* desired number of buffer headers */
170 u_int bufpages = BUFPAGES; /* optional hardwired count */
171 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
172
173 /*
174 * Definitions for the buffer free lists.
175 */
176 #define BQUEUES 3 /* number of free buffer queues */
177
178 #define BQ_LOCKED 0 /* super-blocks &c */
179 #define BQ_LRU 1 /* lru, useful buffers */
180 #define BQ_AGE 2 /* rubbish */
181
182 struct bqueue {
183 TAILQ_HEAD(, buf) bq_queue;
184 uint64_t bq_bytes;
185 buf_t *bq_marker;
186 };
187 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
188
189 /* Function prototypes */
190 static void buf_setwm(void);
191 static int buf_trim(void);
192 static void *bufpool_page_alloc(struct pool *, int);
193 static void bufpool_page_free(struct pool *, void *);
194 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
195 static buf_t *getnewbuf(int, int, int);
196 static int buf_lotsfree(void);
197 static int buf_canrelease(void);
198 static u_long buf_mempoolidx(u_long);
199 static u_long buf_roundsize(u_long);
200 static void *buf_alloc(size_t);
201 static void buf_mrelease(void *, size_t);
202 static void binsheadfree(buf_t *, struct bqueue *);
203 static void binstailfree(buf_t *, struct bqueue *);
204 #ifdef DEBUG
205 static int checkfreelist(buf_t *, struct bqueue *, int);
206 #endif
207 static void biointr(void *);
208 static void biodone2(buf_t *);
209 static void bref(buf_t *);
210 static void brele(buf_t *);
211 static void sysctl_kern_buf_setup(void);
212 static void sysctl_vm_buf_setup(void);
213
214 /* Initialization for biohist */
215
216 #include <sys/biohist.h>
217
218 BIOHIST_DEFINE(biohist);
219
220 void
221 biohist_init(void)
222 {
223
224 BIOHIST_INIT(biohist, BIOHIST_SIZE);
225 }
226
227 /*
228 * Definitions for the buffer hash lists.
229 */
230 #define BUFHASH(dvp, lbn) \
231 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
232 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
233 u_long bufhash;
234
235 static kcondvar_t needbuffer_cv;
236
237 /*
238 * Buffer queue lock.
239 */
240 kmutex_t bufcache_lock __cacheline_aligned;
241 kmutex_t buffer_lock __cacheline_aligned;
242
243 /* Software ISR for completed transfers. */
244 static void *biodone_sih;
245
246 /* Buffer pool for I/O buffers. */
247 static pool_cache_t buf_cache;
248 static pool_cache_t bufio_cache;
249
250 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
251 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
252 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
253
254 /* Buffer memory pools */
255 static struct pool bmempools[NMEMPOOLS];
256
257 static struct vm_map *buf_map;
258
259 /*
260 * Buffer memory pool allocator.
261 */
262 static void *
263 bufpool_page_alloc(struct pool *pp, int flags)
264 {
265
266 return (void *)uvm_km_alloc(buf_map,
267 MAXBSIZE, MAXBSIZE,
268 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
269 | UVM_KMF_WIRED);
270 }
271
272 static void
273 bufpool_page_free(struct pool *pp, void *v)
274 {
275
276 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
277 }
278
279 static struct pool_allocator bufmempool_allocator = {
280 .pa_alloc = bufpool_page_alloc,
281 .pa_free = bufpool_page_free,
282 .pa_pagesz = MAXBSIZE,
283 };
284
285 /* Buffer memory management variables */
286 u_long bufmem_valimit;
287 u_long bufmem_hiwater;
288 u_long bufmem_lowater;
289 u_long bufmem;
290
291 /*
292 * MD code can call this to set a hard limit on the amount
293 * of virtual memory used by the buffer cache.
294 */
295 int
296 buf_setvalimit(vsize_t sz)
297 {
298
299 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
300 if (sz < NMEMPOOLS * MAXBSIZE)
301 return EINVAL;
302
303 bufmem_valimit = sz;
304 return 0;
305 }
306
307 static void
308 buf_setwm(void)
309 {
310
311 bufmem_hiwater = buf_memcalc();
312 /* lowater is approx. 2% of memory (with bufcache = 15) */
313 #define BUFMEM_WMSHIFT 3
314 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
315 if (bufmem_hiwater < BUFMEM_HIWMMIN)
316 /* Ensure a reasonable minimum value */
317 bufmem_hiwater = BUFMEM_HIWMMIN;
318 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
319 }
320
321 #ifdef DEBUG
322 int debug_verify_freelist = 0;
323 static int
324 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
325 {
326 buf_t *b;
327
328 if (!debug_verify_freelist)
329 return 1;
330
331 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
332 if (b == bp)
333 return ison ? 1 : 0;
334 }
335
336 return ison ? 0 : 1;
337 }
338 #endif
339
340 /*
341 * Insq/Remq for the buffer hash lists.
342 * Call with buffer queue locked.
343 */
344 static void
345 binsheadfree(buf_t *bp, struct bqueue *dp)
346 {
347
348 KASSERT(mutex_owned(&bufcache_lock));
349 KASSERT(bp->b_freelistindex == -1);
350 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
351 dp->bq_bytes += bp->b_bufsize;
352 bp->b_freelistindex = dp - bufqueues;
353 }
354
355 static void
356 binstailfree(buf_t *bp, struct bqueue *dp)
357 {
358
359 KASSERT(mutex_owned(&bufcache_lock));
360 KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
361 "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
362 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
363 dp->bq_bytes += bp->b_bufsize;
364 bp->b_freelistindex = dp - bufqueues;
365 }
366
367 void
368 bremfree(buf_t *bp)
369 {
370 struct bqueue *dp;
371 int bqidx = bp->b_freelistindex;
372
373 KASSERT(mutex_owned(&bufcache_lock));
374
375 KASSERT(bqidx != -1);
376 dp = &bufqueues[bqidx];
377 KDASSERT(checkfreelist(bp, dp, 1));
378 KASSERT(dp->bq_bytes >= bp->b_bufsize);
379 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
380 dp->bq_bytes -= bp->b_bufsize;
381
382 /* For the sysctl helper. */
383 if (bp == dp->bq_marker)
384 dp->bq_marker = NULL;
385
386 #if defined(DIAGNOSTIC)
387 bp->b_freelistindex = -1;
388 #endif /* defined(DIAGNOSTIC) */
389 }
390
391 /*
392 * Add a reference to an buffer structure that came from buf_cache.
393 */
394 static inline void
395 bref(buf_t *bp)
396 {
397
398 KASSERT(mutex_owned(&bufcache_lock));
399 KASSERT(bp->b_refcnt > 0);
400
401 bp->b_refcnt++;
402 }
403
404 /*
405 * Free an unused buffer structure that came from buf_cache.
406 */
407 static inline void
408 brele(buf_t *bp)
409 {
410
411 KASSERT(mutex_owned(&bufcache_lock));
412 KASSERT(bp->b_refcnt > 0);
413
414 if (bp->b_refcnt-- == 1) {
415 buf_destroy(bp);
416 #ifdef DEBUG
417 memset((char *)bp, 0, sizeof(*bp));
418 #endif
419 pool_cache_put(buf_cache, bp);
420 }
421 }
422
423 /*
424 * note that for some ports this is used by pmap bootstrap code to
425 * determine kva size.
426 */
427 u_long
428 buf_memcalc(void)
429 {
430 u_long n;
431 vsize_t mapsz = 0;
432
433 /*
434 * Determine the upper bound of memory to use for buffers.
435 *
436 * - If bufpages is specified, use that as the number
437 * pages.
438 *
439 * - Otherwise, use bufcache as the percentage of
440 * physical memory.
441 */
442 if (bufpages != 0) {
443 n = bufpages;
444 } else {
445 if (bufcache < 5) {
446 printf("forcing bufcache %d -> 5", bufcache);
447 bufcache = 5;
448 }
449 if (bufcache > 95) {
450 printf("forcing bufcache %d -> 95", bufcache);
451 bufcache = 95;
452 }
453 if (buf_map != NULL)
454 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
455 n = calc_cache_size(mapsz, bufcache,
456 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
457 / PAGE_SIZE;
458 }
459
460 n <<= PAGE_SHIFT;
461 if (bufmem_valimit != 0 && n > bufmem_valimit)
462 n = bufmem_valimit;
463
464 return (n);
465 }
466
467 /*
468 * Initialize buffers and hash links for buffers.
469 */
470 void
471 bufinit(void)
472 {
473 struct bqueue *dp;
474 int use_std;
475 u_int i;
476
477 biodone_vfs = biodone;
478
479 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
480 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
481 cv_init(&needbuffer_cv, "needbuf");
482
483 if (bufmem_valimit != 0) {
484 vaddr_t minaddr = 0, maxaddr;
485 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
486 bufmem_valimit, 0, false, 0);
487 if (buf_map == NULL)
488 panic("bufinit: cannot allocate submap");
489 } else
490 buf_map = kernel_map;
491
492 /*
493 * Initialize buffer cache memory parameters.
494 */
495 bufmem = 0;
496 buf_setwm();
497
498 /* On "small" machines use small pool page sizes where possible */
499 use_std = (physmem < atop(16*1024*1024));
500
501 /*
502 * Also use them on systems that can map the pool pages using
503 * a direct-mapped segment.
504 */
505 #ifdef PMAP_MAP_POOLPAGE
506 use_std = 1;
507 #endif
508
509 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
510 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
511 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
512 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
513
514 for (i = 0; i < NMEMPOOLS; i++) {
515 struct pool_allocator *pa;
516 struct pool *pp = &bmempools[i];
517 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
518 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
519 if (__predict_false(size >= 1048576))
520 (void)snprintf(name, 8, "buf%um", size / 1048576);
521 else if (__predict_true(size >= 1024))
522 (void)snprintf(name, 8, "buf%uk", size / 1024);
523 else
524 (void)snprintf(name, 8, "buf%ub", size);
525 pa = (size <= PAGE_SIZE && use_std)
526 ? &pool_allocator_nointr
527 : &bufmempool_allocator;
528 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
529 pool_setlowat(pp, 1);
530 pool_sethiwat(pp, 1);
531 }
532
533 /* Initialize the buffer queues */
534 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
535 TAILQ_INIT(&dp->bq_queue);
536 dp->bq_bytes = 0;
537 }
538
539 /*
540 * Estimate hash table size based on the amount of memory we
541 * intend to use for the buffer cache. The average buffer
542 * size is dependent on our clients (i.e. filesystems).
543 *
544 * For now, use an empirical 3K per buffer.
545 */
546 nbuf = (bufmem_hiwater / 1024) / 3;
547 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
548
549 sysctl_kern_buf_setup();
550 sysctl_vm_buf_setup();
551 }
552
553 void
554 bufinit2(void)
555 {
556
557 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
558 NULL);
559 if (biodone_sih == NULL)
560 panic("bufinit2: can't establish soft interrupt");
561 }
562
563 static int
564 buf_lotsfree(void)
565 {
566 u_long guess;
567
568 /* Always allocate if less than the low water mark. */
569 if (bufmem < bufmem_lowater)
570 return 1;
571
572 /* Never allocate if greater than the high water mark. */
573 if (bufmem > bufmem_hiwater)
574 return 0;
575
576 /* If there's anything on the AGE list, it should be eaten. */
577 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
578 return 0;
579
580 /*
581 * The probabily of getting a new allocation is inversely
582 * proportional to the current size of the cache above
583 * the low water mark. Divide the total first to avoid overflows
584 * in the product.
585 */
586 guess = cprng_fast32() % 16;
587
588 if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
589 (bufmem - bufmem_lowater))
590 return 1;
591
592 /* Otherwise don't allocate. */
593 return 0;
594 }
595
596 /*
597 * Return estimate of bytes we think need to be
598 * released to help resolve low memory conditions.
599 *
600 * => called with bufcache_lock held.
601 */
602 static int
603 buf_canrelease(void)
604 {
605 int pagedemand, ninvalid = 0;
606
607 KASSERT(mutex_owned(&bufcache_lock));
608
609 if (bufmem < bufmem_lowater)
610 return 0;
611
612 if (bufmem > bufmem_hiwater)
613 return bufmem - bufmem_hiwater;
614
615 ninvalid += bufqueues[BQ_AGE].bq_bytes;
616
617 pagedemand = uvmexp.freetarg - uvmexp.free;
618 if (pagedemand < 0)
619 return ninvalid;
620 return MAX(ninvalid, MIN(2 * MAXBSIZE,
621 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
622 }
623
624 /*
625 * Buffer memory allocation helper functions
626 */
627 static u_long
628 buf_mempoolidx(u_long size)
629 {
630 u_int n = 0;
631
632 size -= 1;
633 size >>= MEMPOOL_INDEX_OFFSET;
634 while (size) {
635 size >>= 1;
636 n += 1;
637 }
638 if (n >= NMEMPOOLS)
639 panic("buf mem pool index %d", n);
640 return n;
641 }
642
643 static u_long
644 buf_roundsize(u_long size)
645 {
646 /* Round up to nearest power of 2 */
647 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
648 }
649
650 static void *
651 buf_alloc(size_t size)
652 {
653 u_int n = buf_mempoolidx(size);
654 void *addr;
655
656 while (1) {
657 addr = pool_get(&bmempools[n], PR_NOWAIT);
658 if (addr != NULL)
659 break;
660
661 /* No memory, see if we can free some. If so, try again */
662 mutex_enter(&bufcache_lock);
663 if (buf_drain(1) > 0) {
664 mutex_exit(&bufcache_lock);
665 continue;
666 }
667
668 if (curlwp == uvm.pagedaemon_lwp) {
669 mutex_exit(&bufcache_lock);
670 return NULL;
671 }
672
673 /* Wait for buffers to arrive on the LRU queue */
674 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
675 mutex_exit(&bufcache_lock);
676 }
677
678 return addr;
679 }
680
681 static void
682 buf_mrelease(void *addr, size_t size)
683 {
684
685 pool_put(&bmempools[buf_mempoolidx(size)], addr);
686 }
687
688 /*
689 * bread()/breadn() helper.
690 */
691 static buf_t *
692 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
693 {
694 buf_t *bp;
695 struct mount *mp;
696
697 bp = getblk(vp, blkno, size, 0, 0);
698
699 /*
700 * getblk() may return NULL if we are the pagedaemon.
701 */
702 if (bp == NULL) {
703 KASSERT(curlwp == uvm.pagedaemon_lwp);
704 return NULL;
705 }
706
707 /*
708 * If buffer does not have data valid, start a read.
709 * Note that if buffer is BC_INVAL, getblk() won't return it.
710 * Therefore, it's valid if its I/O has completed or been delayed.
711 */
712 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
713 /* Start I/O for the buffer. */
714 SET(bp->b_flags, B_READ | async);
715 if (async)
716 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
717 else
718 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
719 VOP_STRATEGY(vp, bp);
720
721 /* Pay for the read. */
722 curlwp->l_ru.ru_inblock++;
723 } else if (async)
724 brelse(bp, 0);
725
726 if (vp->v_type == VBLK)
727 mp = spec_node_getmountedfs(vp);
728 else
729 mp = vp->v_mount;
730
731 /*
732 * Collect statistics on synchronous and asynchronous reads.
733 * Reads from block devices are charged to their associated
734 * filesystem (if any).
735 */
736 if (mp != NULL) {
737 if (async == 0)
738 mp->mnt_stat.f_syncreads++;
739 else
740 mp->mnt_stat.f_asyncreads++;
741 }
742
743 return (bp);
744 }
745
746 /*
747 * Read a disk block.
748 * This algorithm described in Bach (p.54).
749 */
750 int
751 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
752 {
753 buf_t *bp;
754 int error;
755
756 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
757
758 /* Get buffer for block. */
759 bp = *bpp = bio_doread(vp, blkno, size, 0);
760 if (bp == NULL)
761 return ENOMEM;
762
763 /* Wait for the read to complete, and return result. */
764 error = biowait(bp);
765 if (error == 0 && (flags & B_MODIFY) != 0)
766 error = fscow_run(bp, true);
767 if (error) {
768 brelse(bp, 0);
769 *bpp = NULL;
770 }
771
772 return error;
773 }
774
775 /*
776 * Read-ahead multiple disk blocks. The first is sync, the rest async.
777 * Trivial modification to the breada algorithm presented in Bach (p.55).
778 */
779 int
780 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
781 int *rasizes, int nrablks, int flags, buf_t **bpp)
782 {
783 buf_t *bp;
784 int error, i;
785
786 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
787
788 bp = *bpp = bio_doread(vp, blkno, size, 0);
789 if (bp == NULL)
790 return ENOMEM;
791
792 /*
793 * For each of the read-ahead blocks, start a read, if necessary.
794 */
795 mutex_enter(&bufcache_lock);
796 for (i = 0; i < nrablks; i++) {
797 /* If it's in the cache, just go on to next one. */
798 if (incore(vp, rablks[i]))
799 continue;
800
801 /* Get a buffer for the read-ahead block */
802 mutex_exit(&bufcache_lock);
803 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
804 mutex_enter(&bufcache_lock);
805 }
806 mutex_exit(&bufcache_lock);
807
808 /* Otherwise, we had to start a read for it; wait until it's valid. */
809 error = biowait(bp);
810 if (error == 0 && (flags & B_MODIFY) != 0)
811 error = fscow_run(bp, true);
812 if (error) {
813 brelse(bp, 0);
814 *bpp = NULL;
815 }
816
817 return error;
818 }
819
820 /*
821 * Block write. Described in Bach (p.56)
822 */
823 int
824 bwrite(buf_t *bp)
825 {
826 int rv, sync, wasdelayed;
827 struct vnode *vp;
828 struct mount *mp;
829
830 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
831 (uintptr_t)bp, 0, 0, 0);
832
833 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
834 KASSERT(!cv_has_waiters(&bp->b_done));
835
836 vp = bp->b_vp;
837
838 /*
839 * dholland 20160728 AFAICT vp==NULL must be impossible as it
840 * will crash upon reaching VOP_STRATEGY below... see further
841 * analysis on tech-kern.
842 */
843 KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
844
845 if (vp != NULL) {
846 KASSERT(bp->b_objlock == vp->v_interlock);
847 if (vp->v_type == VBLK)
848 mp = spec_node_getmountedfs(vp);
849 else
850 mp = vp->v_mount;
851 } else {
852 mp = NULL;
853 }
854
855 if (mp && mp->mnt_wapbl) {
856 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
857 bdwrite(bp);
858 return 0;
859 }
860 }
861
862 /*
863 * Remember buffer type, to switch on it later. If the write was
864 * synchronous, but the file system was mounted with MNT_ASYNC,
865 * convert it to a delayed write.
866 * XXX note that this relies on delayed tape writes being converted
867 * to async, not sync writes (which is safe, but ugly).
868 */
869 sync = !ISSET(bp->b_flags, B_ASYNC);
870 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
871 bdwrite(bp);
872 return (0);
873 }
874
875 /*
876 * Collect statistics on synchronous and asynchronous writes.
877 * Writes to block devices are charged to their associated
878 * filesystem (if any).
879 */
880 if (mp != NULL) {
881 if (sync)
882 mp->mnt_stat.f_syncwrites++;
883 else
884 mp->mnt_stat.f_asyncwrites++;
885 }
886
887 /*
888 * Pay for the I/O operation and make sure the buf is on the correct
889 * vnode queue.
890 */
891 bp->b_error = 0;
892 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
893 CLR(bp->b_flags, B_READ);
894 if (wasdelayed) {
895 mutex_enter(&bufcache_lock);
896 mutex_enter(bp->b_objlock);
897 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
898 reassignbuf(bp, bp->b_vp);
899 /* Wake anyone trying to busy the buffer via vnode's lists. */
900 cv_broadcast(&bp->b_busy);
901 mutex_exit(&bufcache_lock);
902 } else {
903 curlwp->l_ru.ru_oublock++;
904 mutex_enter(bp->b_objlock);
905 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
906 }
907 if (vp != NULL)
908 vp->v_numoutput++;
909 mutex_exit(bp->b_objlock);
910
911 /* Initiate disk write. */
912 if (sync)
913 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
914 else
915 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
916
917 VOP_STRATEGY(vp, bp);
918
919 if (sync) {
920 /* If I/O was synchronous, wait for it to complete. */
921 rv = biowait(bp);
922
923 /* Release the buffer. */
924 brelse(bp, 0);
925
926 return (rv);
927 } else {
928 return (0);
929 }
930 }
931
932 int
933 vn_bwrite(void *v)
934 {
935 struct vop_bwrite_args *ap = v;
936
937 return (bwrite(ap->a_bp));
938 }
939
940 /*
941 * Delayed write.
942 *
943 * The buffer is marked dirty, but is not queued for I/O.
944 * This routine should be used when the buffer is expected
945 * to be modified again soon, typically a small write that
946 * partially fills a buffer.
947 *
948 * NB: magnetic tapes cannot be delayed; they must be
949 * written in the order that the writes are requested.
950 *
951 * Described in Leffler, et al. (pp. 208-213).
952 */
953 void
954 bdwrite(buf_t *bp)
955 {
956
957 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
958 (uintptr_t)bp, 0, 0, 0);
959
960 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
961 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
962 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
963 KASSERT(!cv_has_waiters(&bp->b_done));
964
965 /* If this is a tape block, write the block now. */
966 if (bdev_type(bp->b_dev) == D_TAPE) {
967 bawrite(bp);
968 return;
969 }
970
971 if (wapbl_vphaswapbl(bp->b_vp)) {
972 struct mount *mp = wapbl_vptomp(bp->b_vp);
973
974 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
975 WAPBL_ADD_BUF(mp, bp);
976 }
977 }
978
979 /*
980 * If the block hasn't been seen before:
981 * (1) Mark it as having been seen,
982 * (2) Charge for the write,
983 * (3) Make sure it's on its vnode's correct block list.
984 */
985 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
986
987 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
988 mutex_enter(&bufcache_lock);
989 mutex_enter(bp->b_objlock);
990 SET(bp->b_oflags, BO_DELWRI);
991 curlwp->l_ru.ru_oublock++;
992 reassignbuf(bp, bp->b_vp);
993 /* Wake anyone trying to busy the buffer via vnode's lists. */
994 cv_broadcast(&bp->b_busy);
995 mutex_exit(&bufcache_lock);
996 } else {
997 mutex_enter(bp->b_objlock);
998 }
999 /* Otherwise, the "write" is done, so mark and release the buffer. */
1000 CLR(bp->b_oflags, BO_DONE);
1001 mutex_exit(bp->b_objlock);
1002
1003 brelse(bp, 0);
1004 }
1005
1006 /*
1007 * Asynchronous block write; just an asynchronous bwrite().
1008 */
1009 void
1010 bawrite(buf_t *bp)
1011 {
1012
1013 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1014 KASSERT(bp->b_vp != NULL);
1015
1016 SET(bp->b_flags, B_ASYNC);
1017 VOP_BWRITE(bp->b_vp, bp);
1018 }
1019
1020 /*
1021 * Release a buffer on to the free lists.
1022 * Described in Bach (p. 46).
1023 */
1024 void
1025 brelsel(buf_t *bp, int set)
1026 {
1027 struct bqueue *bufq;
1028 struct vnode *vp;
1029
1030 KASSERT(bp != NULL);
1031 KASSERT(mutex_owned(&bufcache_lock));
1032 KASSERT(!cv_has_waiters(&bp->b_done));
1033 KASSERT(bp->b_refcnt > 0);
1034
1035 SET(bp->b_cflags, set);
1036
1037 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1038 KASSERT(bp->b_iodone == NULL);
1039
1040 /* Wake up any processes waiting for any buffer to become free. */
1041 cv_signal(&needbuffer_cv);
1042
1043 /* Wake up any proceeses waiting for _this_ buffer to become free */
1044 if (ISSET(bp->b_cflags, BC_WANTED))
1045 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1046
1047 /* If it's clean clear the copy-on-write flag. */
1048 if (ISSET(bp->b_flags, B_COWDONE)) {
1049 mutex_enter(bp->b_objlock);
1050 if (!ISSET(bp->b_oflags, BO_DELWRI))
1051 CLR(bp->b_flags, B_COWDONE);
1052 mutex_exit(bp->b_objlock);
1053 }
1054
1055 /*
1056 * Determine which queue the buffer should be on, then put it there.
1057 */
1058
1059 /* If it's locked, don't report an error; try again later. */
1060 if (ISSET(bp->b_flags, B_LOCKED))
1061 bp->b_error = 0;
1062
1063 /* If it's not cacheable, or an error, mark it invalid. */
1064 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1065 SET(bp->b_cflags, BC_INVAL);
1066
1067 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1068 /*
1069 * This is a delayed write buffer that was just flushed to
1070 * disk. It is still on the LRU queue. If it's become
1071 * invalid, then we need to move it to a different queue;
1072 * otherwise leave it in its current position.
1073 */
1074 CLR(bp->b_cflags, BC_VFLUSH);
1075 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1076 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1077 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1078 goto already_queued;
1079 } else {
1080 bremfree(bp);
1081 }
1082 }
1083
1084 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1085 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1086 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1087
1088 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1089 /*
1090 * If it's invalid or empty, dissociate it from its vnode
1091 * and put on the head of the appropriate queue.
1092 */
1093 if (ISSET(bp->b_flags, B_LOCKED)) {
1094 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1095 struct mount *mp = wapbl_vptomp(vp);
1096
1097 KASSERT(bp->b_iodone
1098 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1099 WAPBL_REMOVE_BUF(mp, bp);
1100 }
1101 }
1102
1103 mutex_enter(bp->b_objlock);
1104 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1105 if ((vp = bp->b_vp) != NULL) {
1106 KASSERT(bp->b_objlock == vp->v_interlock);
1107 reassignbuf(bp, bp->b_vp);
1108 brelvp(bp);
1109 mutex_exit(vp->v_interlock);
1110 } else {
1111 KASSERT(bp->b_objlock == &buffer_lock);
1112 mutex_exit(bp->b_objlock);
1113 }
1114 /* We want to dispose of the buffer, so wake everybody. */
1115 cv_broadcast(&bp->b_busy);
1116 if (bp->b_bufsize <= 0)
1117 /* no data */
1118 goto already_queued;
1119 else
1120 /* invalid data */
1121 bufq = &bufqueues[BQ_AGE];
1122 binsheadfree(bp, bufq);
1123 } else {
1124 /*
1125 * It has valid data. Put it on the end of the appropriate
1126 * queue, so that it'll stick around for as long as possible.
1127 * If buf is AGE, but has dependencies, must put it on last
1128 * bufqueue to be scanned, ie LRU. This protects against the
1129 * livelock where BQ_AGE only has buffers with dependencies,
1130 * and we thus never get to the dependent buffers in BQ_LRU.
1131 */
1132 if (ISSET(bp->b_flags, B_LOCKED)) {
1133 /* locked in core */
1134 bufq = &bufqueues[BQ_LOCKED];
1135 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1136 /* valid data */
1137 bufq = &bufqueues[BQ_LRU];
1138 } else {
1139 /* stale but valid data */
1140 bufq = &bufqueues[BQ_AGE];
1141 }
1142 binstailfree(bp, bufq);
1143 }
1144 already_queued:
1145 /* Unlock the buffer. */
1146 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1147 CLR(bp->b_flags, B_ASYNC);
1148 cv_signal(&bp->b_busy);
1149
1150 if (bp->b_bufsize <= 0)
1151 brele(bp);
1152 }
1153
1154 void
1155 brelse(buf_t *bp, int set)
1156 {
1157
1158 mutex_enter(&bufcache_lock);
1159 brelsel(bp, set);
1160 mutex_exit(&bufcache_lock);
1161 }
1162
1163 /*
1164 * Determine if a block is in the cache.
1165 * Just look on what would be its hash chain. If it's there, return
1166 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1167 * we normally don't return the buffer, unless the caller explicitly
1168 * wants us to.
1169 */
1170 buf_t *
1171 incore(struct vnode *vp, daddr_t blkno)
1172 {
1173 buf_t *bp;
1174
1175 KASSERT(mutex_owned(&bufcache_lock));
1176
1177 /* Search hash chain */
1178 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1179 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1180 !ISSET(bp->b_cflags, BC_INVAL)) {
1181 KASSERT(bp->b_objlock == vp->v_interlock);
1182 return (bp);
1183 }
1184 }
1185
1186 return (NULL);
1187 }
1188
1189 /*
1190 * Get a block of requested size that is associated with
1191 * a given vnode and block offset. If it is found in the
1192 * block cache, mark it as having been found, make it busy
1193 * and return it. Otherwise, return an empty block of the
1194 * correct size. It is up to the caller to insure that the
1195 * cached blocks be of the correct size.
1196 */
1197 buf_t *
1198 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1199 {
1200 int err, preserve;
1201 buf_t *bp;
1202
1203 mutex_enter(&bufcache_lock);
1204 loop:
1205 bp = incore(vp, blkno);
1206 if (bp != NULL) {
1207 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1208 if (err != 0) {
1209 if (err == EPASSTHROUGH)
1210 goto loop;
1211 mutex_exit(&bufcache_lock);
1212 return (NULL);
1213 }
1214 KASSERT(!cv_has_waiters(&bp->b_done));
1215 #ifdef DIAGNOSTIC
1216 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1217 bp->b_bcount < size && vp->v_type != VBLK)
1218 panic("getblk: block size invariant failed");
1219 #endif
1220 bremfree(bp);
1221 preserve = 1;
1222 } else {
1223 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1224 goto loop;
1225
1226 if (incore(vp, blkno) != NULL) {
1227 /* The block has come into memory in the meantime. */
1228 brelsel(bp, 0);
1229 goto loop;
1230 }
1231
1232 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1233 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1234 mutex_enter(vp->v_interlock);
1235 bgetvp(vp, bp);
1236 mutex_exit(vp->v_interlock);
1237 preserve = 0;
1238 }
1239 mutex_exit(&bufcache_lock);
1240
1241 /*
1242 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1243 * if we re-size buffers here.
1244 */
1245 if (ISSET(bp->b_flags, B_LOCKED)) {
1246 KASSERT(bp->b_bufsize >= size);
1247 } else {
1248 if (allocbuf(bp, size, preserve)) {
1249 mutex_enter(&bufcache_lock);
1250 LIST_REMOVE(bp, b_hash);
1251 brelsel(bp, BC_INVAL);
1252 mutex_exit(&bufcache_lock);
1253 return NULL;
1254 }
1255 }
1256 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1257 return (bp);
1258 }
1259
1260 /*
1261 * Get an empty, disassociated buffer of given size.
1262 */
1263 buf_t *
1264 geteblk(int size)
1265 {
1266 buf_t *bp;
1267 int error __diagused;
1268
1269 mutex_enter(&bufcache_lock);
1270 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1271 ;
1272
1273 SET(bp->b_cflags, BC_INVAL);
1274 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1275 mutex_exit(&bufcache_lock);
1276 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1277 error = allocbuf(bp, size, 0);
1278 KASSERT(error == 0);
1279 return (bp);
1280 }
1281
1282 /*
1283 * Expand or contract the actual memory allocated to a buffer.
1284 *
1285 * If the buffer shrinks, data is lost, so it's up to the
1286 * caller to have written it out *first*; this routine will not
1287 * start a write. If the buffer grows, it's the callers
1288 * responsibility to fill out the buffer's additional contents.
1289 */
1290 int
1291 allocbuf(buf_t *bp, int size, int preserve)
1292 {
1293 void *addr;
1294 vsize_t oldsize, desired_size;
1295 int oldcount;
1296 int delta;
1297
1298 desired_size = buf_roundsize(size);
1299 if (desired_size > MAXBSIZE)
1300 printf("allocbuf: buffer larger than MAXBSIZE requested");
1301
1302 oldcount = bp->b_bcount;
1303
1304 bp->b_bcount = size;
1305
1306 oldsize = bp->b_bufsize;
1307 if (oldsize == desired_size) {
1308 /*
1309 * Do not short cut the WAPBL resize, as the buffer length
1310 * could still have changed and this would corrupt the
1311 * tracking of the transaction length.
1312 */
1313 goto out;
1314 }
1315
1316 /*
1317 * If we want a buffer of a different size, re-allocate the
1318 * buffer's memory; copy old content only if needed.
1319 */
1320 addr = buf_alloc(desired_size);
1321 if (addr == NULL)
1322 return ENOMEM;
1323 if (preserve)
1324 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1325 if (bp->b_data != NULL)
1326 buf_mrelease(bp->b_data, oldsize);
1327 bp->b_data = addr;
1328 bp->b_bufsize = desired_size;
1329
1330 /*
1331 * Update overall buffer memory counter (protected by bufcache_lock)
1332 */
1333 delta = (long)desired_size - (long)oldsize;
1334
1335 mutex_enter(&bufcache_lock);
1336 if ((bufmem += delta) > bufmem_hiwater) {
1337 /*
1338 * Need to trim overall memory usage.
1339 */
1340 while (buf_canrelease()) {
1341 if (curcpu()->ci_schedstate.spc_flags &
1342 SPCF_SHOULDYIELD) {
1343 mutex_exit(&bufcache_lock);
1344 preempt();
1345 mutex_enter(&bufcache_lock);
1346 }
1347 if (buf_trim() == 0)
1348 break;
1349 }
1350 }
1351 mutex_exit(&bufcache_lock);
1352
1353 out:
1354 if (wapbl_vphaswapbl(bp->b_vp))
1355 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1356
1357 return 0;
1358 }
1359
1360 /*
1361 * Find a buffer which is available for use.
1362 * Select something from a free list.
1363 * Preference is to AGE list, then LRU list.
1364 *
1365 * Called with the buffer queues locked.
1366 * Return buffer locked.
1367 */
1368 static buf_t *
1369 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1370 {
1371 buf_t *bp;
1372 struct vnode *vp;
1373 struct mount *transmp = NULL;
1374
1375 start:
1376 KASSERT(mutex_owned(&bufcache_lock));
1377
1378 /*
1379 * Get a new buffer from the pool.
1380 */
1381 if (!from_bufq && buf_lotsfree()) {
1382 mutex_exit(&bufcache_lock);
1383 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1384 if (bp != NULL) {
1385 memset((char *)bp, 0, sizeof(*bp));
1386 buf_init(bp);
1387 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1388 mutex_enter(&bufcache_lock);
1389 #if defined(DIAGNOSTIC)
1390 bp->b_freelistindex = -1;
1391 #endif /* defined(DIAGNOSTIC) */
1392 return (bp);
1393 }
1394 mutex_enter(&bufcache_lock);
1395 }
1396
1397 KASSERT(mutex_owned(&bufcache_lock));
1398 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
1399 KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
1400 } else {
1401 TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
1402 if (ISSET(bp->b_cflags, BC_VFLUSH) ||
1403 !ISSET(bp->b_oflags, BO_DELWRI))
1404 break;
1405 if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
1406 KASSERT(transmp == NULL);
1407 transmp = bp->b_vp->v_mount;
1408 break;
1409 }
1410 }
1411 }
1412 if (bp != NULL) {
1413 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1414 bremfree(bp);
1415
1416 /* Buffer is no longer on free lists. */
1417 SET(bp->b_cflags, BC_BUSY);
1418
1419 /* Wake anyone trying to lock the old identity. */
1420 cv_broadcast(&bp->b_busy);
1421 } else {
1422 /*
1423 * XXX: !from_bufq should be removed.
1424 */
1425 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1426 /* wait for a free buffer of any kind */
1427 if ((slpflag & PCATCH) != 0)
1428 (void)cv_timedwait_sig(&needbuffer_cv,
1429 &bufcache_lock, slptimeo);
1430 else
1431 (void)cv_timedwait(&needbuffer_cv,
1432 &bufcache_lock, slptimeo);
1433 }
1434 return (NULL);
1435 }
1436
1437 #ifdef DIAGNOSTIC
1438 if (bp->b_bufsize <= 0)
1439 panic("buffer %p: on queue but empty", bp);
1440 #endif
1441
1442 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1443 /*
1444 * This is a delayed write buffer being flushed to disk. Make
1445 * sure it gets aged out of the queue when it's finished, and
1446 * leave it off the LRU queue.
1447 */
1448 CLR(bp->b_cflags, BC_VFLUSH);
1449 SET(bp->b_cflags, BC_AGE);
1450 goto start;
1451 }
1452
1453 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1454 KASSERT(bp->b_refcnt > 0);
1455 KASSERT(!cv_has_waiters(&bp->b_done));
1456
1457 /*
1458 * If buffer was a delayed write, start it and return NULL
1459 * (since we might sleep while starting the write).
1460 */
1461 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1462 /*
1463 * This buffer has gone through the LRU, so make sure it gets
1464 * reused ASAP.
1465 */
1466 SET(bp->b_cflags, BC_AGE);
1467 mutex_exit(&bufcache_lock);
1468 bawrite(bp);
1469 KASSERT(transmp != NULL);
1470 fstrans_done(transmp);
1471 mutex_enter(&bufcache_lock);
1472 return (NULL);
1473 }
1474
1475 KASSERT(transmp == NULL);
1476
1477 vp = bp->b_vp;
1478
1479 /* clear out various other fields */
1480 bp->b_cflags = BC_BUSY;
1481 bp->b_oflags = 0;
1482 bp->b_flags = 0;
1483 bp->b_dev = NODEV;
1484 bp->b_blkno = 0;
1485 bp->b_lblkno = 0;
1486 bp->b_rawblkno = 0;
1487 bp->b_iodone = 0;
1488 bp->b_error = 0;
1489 bp->b_resid = 0;
1490 bp->b_bcount = 0;
1491
1492 LIST_REMOVE(bp, b_hash);
1493
1494 /* Disassociate us from our vnode, if we had one... */
1495 if (vp != NULL) {
1496 mutex_enter(vp->v_interlock);
1497 brelvp(bp);
1498 mutex_exit(vp->v_interlock);
1499 }
1500
1501 return (bp);
1502 }
1503
1504 /*
1505 * Attempt to free an aged buffer off the queues.
1506 * Called with queue lock held.
1507 * Returns the amount of buffer memory freed.
1508 */
1509 static int
1510 buf_trim(void)
1511 {
1512 buf_t *bp;
1513 long size;
1514
1515 KASSERT(mutex_owned(&bufcache_lock));
1516
1517 /* Instruct getnewbuf() to get buffers off the queues */
1518 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1519 return 0;
1520
1521 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1522 size = bp->b_bufsize;
1523 bufmem -= size;
1524 if (size > 0) {
1525 buf_mrelease(bp->b_data, size);
1526 bp->b_bcount = bp->b_bufsize = 0;
1527 }
1528 /* brelse() will return the buffer to the global buffer pool */
1529 brelsel(bp, 0);
1530 return size;
1531 }
1532
1533 int
1534 buf_drain(int n)
1535 {
1536 int size = 0, sz;
1537
1538 KASSERT(mutex_owned(&bufcache_lock));
1539
1540 while (size < n && bufmem > bufmem_lowater) {
1541 sz = buf_trim();
1542 if (sz <= 0)
1543 break;
1544 size += sz;
1545 }
1546
1547 return size;
1548 }
1549
1550 SDT_PROVIDER_DEFINE(io);
1551
1552 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
1553 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
1554
1555 /*
1556 * Wait for operations on the buffer to complete.
1557 * When they do, extract and return the I/O's error value.
1558 */
1559 int
1560 biowait(buf_t *bp)
1561 {
1562
1563 BIOHIST_FUNC(__func__);
1564
1565 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1566 KASSERT(bp->b_refcnt > 0);
1567
1568 SDT_PROBE1(io, kernel, , wait__start, bp);
1569
1570 mutex_enter(bp->b_objlock);
1571
1572 BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
1573 (uintptr_t)bp, bp->b_oflags,
1574 (uintptr_t)__builtin_return_address(0), 0);
1575
1576 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1577 BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1578 cv_wait(&bp->b_done, bp->b_objlock);
1579 }
1580 mutex_exit(bp->b_objlock);
1581
1582 SDT_PROBE1(io, kernel, , wait__done, bp);
1583
1584 BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
1585
1586 return bp->b_error;
1587 }
1588
1589 /*
1590 * Mark I/O complete on a buffer.
1591 *
1592 * If a callback has been requested, e.g. the pageout
1593 * daemon, do so. Otherwise, awaken waiting processes.
1594 *
1595 * [ Leffler, et al., says on p.247:
1596 * "This routine wakes up the blocked process, frees the buffer
1597 * for an asynchronous write, or, for a request by the pagedaemon
1598 * process, invokes a procedure specified in the buffer structure" ]
1599 *
1600 * In real life, the pagedaemon (or other system processes) wants
1601 * to do async stuff too, and doesn't want the buffer brelse()'d.
1602 * (for swap pager, that puts swap buffers on the free lists (!!!),
1603 * for the vn device, that puts allocated buffers on the free lists!)
1604 */
1605 void
1606 biodone(buf_t *bp)
1607 {
1608 int s;
1609
1610 BIOHIST_FUNC(__func__);
1611
1612 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1613
1614 if (cpu_intr_p()) {
1615 /* From interrupt mode: defer to a soft interrupt. */
1616 s = splvm();
1617 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1618
1619 BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
1620 (uintptr_t)bp, 0, 0, 0);
1621 softint_schedule(biodone_sih);
1622 splx(s);
1623 } else {
1624 /* Process now - the buffer may be freed soon. */
1625 biodone2(bp);
1626 }
1627 }
1628
1629 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1630
1631 static void
1632 biodone2(buf_t *bp)
1633 {
1634 void (*callout)(buf_t *);
1635
1636 SDT_PROBE1(io, kernel, ,done, bp);
1637
1638 BIOHIST_FUNC(__func__);
1639 BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1640
1641 mutex_enter(bp->b_objlock);
1642 /* Note that the transfer is done. */
1643 if (ISSET(bp->b_oflags, BO_DONE))
1644 panic("biodone2 already");
1645 CLR(bp->b_flags, B_COWDONE);
1646 SET(bp->b_oflags, BO_DONE);
1647 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1648
1649 /* Wake up waiting writers. */
1650 if (!ISSET(bp->b_flags, B_READ))
1651 vwakeup(bp);
1652
1653 if ((callout = bp->b_iodone) != NULL) {
1654 BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
1655 0, 0, 0);
1656
1657 /* Note callout done, then call out. */
1658 KASSERT(!cv_has_waiters(&bp->b_done));
1659 KERNEL_LOCK(1, NULL); /* XXXSMP */
1660 bp->b_iodone = NULL;
1661 mutex_exit(bp->b_objlock);
1662 (*callout)(bp);
1663 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1664 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1665 /* If async, release. */
1666 BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
1667 KASSERT(!cv_has_waiters(&bp->b_done));
1668 mutex_exit(bp->b_objlock);
1669 brelse(bp, 0);
1670 } else {
1671 /* Otherwise just wake up waiters in biowait(). */
1672 BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1673 cv_broadcast(&bp->b_done);
1674 mutex_exit(bp->b_objlock);
1675 }
1676 }
1677
1678 static void
1679 biointr(void *cookie)
1680 {
1681 struct cpu_info *ci;
1682 buf_t *bp;
1683 int s;
1684
1685 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1686
1687 ci = curcpu();
1688
1689 s = splvm();
1690 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1691 KASSERT(curcpu() == ci);
1692
1693 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1694 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1695 splx(s);
1696
1697 BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1698 biodone2(bp);
1699
1700 s = splvm();
1701 }
1702 splx(s);
1703 }
1704
1705 /*
1706 * Wait for all buffers to complete I/O
1707 * Return the number of "stuck" buffers.
1708 */
1709 int
1710 buf_syncwait(void)
1711 {
1712 buf_t *bp;
1713 int iter, nbusy, nbusy_prev = 0, ihash;
1714
1715 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1716
1717 for (iter = 0; iter < 20;) {
1718 mutex_enter(&bufcache_lock);
1719 nbusy = 0;
1720 for (ihash = 0; ihash < bufhash+1; ihash++) {
1721 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1722 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1723 nbusy += ((bp->b_flags & B_READ) == 0);
1724 }
1725 }
1726 mutex_exit(&bufcache_lock);
1727
1728 if (nbusy == 0)
1729 break;
1730 if (nbusy_prev == 0)
1731 nbusy_prev = nbusy;
1732 printf("%d ", nbusy);
1733 kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1734 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1735 iter++;
1736 else
1737 nbusy_prev = nbusy;
1738 }
1739
1740 if (nbusy) {
1741 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1742 printf("giving up\nPrinting vnodes for busy buffers\n");
1743 for (ihash = 0; ihash < bufhash+1; ihash++) {
1744 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1745 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1746 (bp->b_flags & B_READ) == 0)
1747 vprint(NULL, bp->b_vp);
1748 }
1749 }
1750 #endif
1751 }
1752
1753 return nbusy;
1754 }
1755
1756 static void
1757 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
1758 {
1759 const bool allowaddr = get_expose_address(curproc);
1760
1761 memset(o, 0, sizeof(*o));
1762
1763 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1764 o->b_error = i->b_error;
1765 o->b_prio = i->b_prio;
1766 o->b_dev = i->b_dev;
1767 o->b_bufsize = i->b_bufsize;
1768 o->b_bcount = i->b_bcount;
1769 o->b_resid = i->b_resid;
1770 COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
1771 o->b_blkno = i->b_blkno;
1772 o->b_rawblkno = i->b_rawblkno;
1773 COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
1774 COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
1775 COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
1776 COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
1777 o->b_lblkno = i->b_lblkno;
1778 }
1779
1780 #define KERN_BUFSLOP 20
1781 static int
1782 sysctl_dobuf(SYSCTLFN_ARGS)
1783 {
1784 buf_t *bp;
1785 struct buf_sysctl bs;
1786 struct bqueue *bq;
1787 char *dp;
1788 u_int i, op, arg;
1789 size_t len, needed, elem_size, out_size;
1790 int error, elem_count, retries;
1791
1792 if (namelen == 1 && name[0] == CTL_QUERY)
1793 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1794
1795 if (namelen != 4)
1796 return (EINVAL);
1797
1798 retries = 100;
1799 retry:
1800 dp = oldp;
1801 len = (oldp != NULL) ? *oldlenp : 0;
1802 op = name[0];
1803 arg = name[1];
1804 elem_size = name[2];
1805 elem_count = name[3];
1806 out_size = MIN(sizeof(bs), elem_size);
1807
1808 /*
1809 * at the moment, these are just "placeholders" to make the
1810 * API for retrieving kern.buf data more extensible in the
1811 * future.
1812 *
1813 * XXX kern.buf currently has "netbsd32" issues. hopefully
1814 * these will be resolved at a later point.
1815 */
1816 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1817 elem_size < 1 || elem_count < 0)
1818 return (EINVAL);
1819
1820 error = 0;
1821 needed = 0;
1822 sysctl_unlock();
1823 mutex_enter(&bufcache_lock);
1824 for (i = 0; i < BQUEUES; i++) {
1825 bq = &bufqueues[i];
1826 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1827 bq->bq_marker = bp;
1828 if (len >= elem_size && elem_count > 0) {
1829 sysctl_fillbuf(bp, &bs);
1830 mutex_exit(&bufcache_lock);
1831 error = copyout(&bs, dp, out_size);
1832 mutex_enter(&bufcache_lock);
1833 if (error)
1834 break;
1835 if (bq->bq_marker != bp) {
1836 /*
1837 * This sysctl node is only for
1838 * statistics. Retry; if the
1839 * queue keeps changing, then
1840 * bail out.
1841 */
1842 if (retries-- == 0) {
1843 error = EAGAIN;
1844 break;
1845 }
1846 mutex_exit(&bufcache_lock);
1847 sysctl_relock();
1848 goto retry;
1849 }
1850 dp += elem_size;
1851 len -= elem_size;
1852 }
1853 needed += elem_size;
1854 if (elem_count > 0 && elem_count != INT_MAX)
1855 elem_count--;
1856 }
1857 if (error != 0)
1858 break;
1859 }
1860 mutex_exit(&bufcache_lock);
1861 sysctl_relock();
1862
1863 *oldlenp = needed;
1864 if (oldp == NULL)
1865 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1866
1867 return (error);
1868 }
1869
1870 static int
1871 sysctl_bufvm_update(SYSCTLFN_ARGS)
1872 {
1873 int error, rv;
1874 struct sysctlnode node;
1875 unsigned int temp_bufcache;
1876 unsigned long temp_water;
1877
1878 /* Take a copy of the supplied node and its data */
1879 node = *rnode;
1880 if (node.sysctl_data == &bufcache) {
1881 node.sysctl_data = &temp_bufcache;
1882 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1883 } else {
1884 node.sysctl_data = &temp_water;
1885 temp_water = *(unsigned long *)rnode->sysctl_data;
1886 }
1887
1888 /* Update the copy */
1889 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1890 if (error || newp == NULL)
1891 return (error);
1892
1893 if (rnode->sysctl_data == &bufcache) {
1894 if (temp_bufcache > 100)
1895 return (EINVAL);
1896 bufcache = temp_bufcache;
1897 buf_setwm();
1898 } else if (rnode->sysctl_data == &bufmem_lowater) {
1899 if (bufmem_hiwater - temp_water < 16)
1900 return (EINVAL);
1901 bufmem_lowater = temp_water;
1902 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1903 if (temp_water - bufmem_lowater < 16)
1904 return (EINVAL);
1905 bufmem_hiwater = temp_water;
1906 } else
1907 return (EINVAL);
1908
1909 /* Drain until below new high water mark */
1910 sysctl_unlock();
1911 mutex_enter(&bufcache_lock);
1912 while (bufmem > bufmem_hiwater) {
1913 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1914 if (rv <= 0)
1915 break;
1916 }
1917 mutex_exit(&bufcache_lock);
1918 sysctl_relock();
1919
1920 return 0;
1921 }
1922
1923 static struct sysctllog *vfsbio_sysctllog;
1924
1925 static void
1926 sysctl_kern_buf_setup(void)
1927 {
1928
1929 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1930 CTLFLAG_PERMANENT,
1931 CTLTYPE_NODE, "buf",
1932 SYSCTL_DESCR("Kernel buffer cache information"),
1933 sysctl_dobuf, 0, NULL, 0,
1934 CTL_KERN, KERN_BUF, CTL_EOL);
1935 }
1936
1937 static void
1938 sysctl_vm_buf_setup(void)
1939 {
1940
1941 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1942 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1943 CTLTYPE_INT, "bufcache",
1944 SYSCTL_DESCR("Percentage of physical memory to use for "
1945 "buffer cache"),
1946 sysctl_bufvm_update, 0, &bufcache, 0,
1947 CTL_VM, CTL_CREATE, CTL_EOL);
1948 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1949 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1950 CTLTYPE_LONG, "bufmem",
1951 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1952 "cache"),
1953 NULL, 0, &bufmem, 0,
1954 CTL_VM, CTL_CREATE, CTL_EOL);
1955 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1956 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1957 CTLTYPE_LONG, "bufmem_lowater",
1958 SYSCTL_DESCR("Minimum amount of kernel memory to "
1959 "reserve for buffer cache"),
1960 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1961 CTL_VM, CTL_CREATE, CTL_EOL);
1962 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1963 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1964 CTLTYPE_LONG, "bufmem_hiwater",
1965 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1966 "for buffer cache"),
1967 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1968 CTL_VM, CTL_CREATE, CTL_EOL);
1969 }
1970
1971 #ifdef DEBUG
1972 /*
1973 * Print out statistics on the current allocation of the buffer pool.
1974 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1975 * in vfs_syscalls.c using sysctl.
1976 */
1977 void
1978 vfs_bufstats(void)
1979 {
1980 int i, j, count;
1981 buf_t *bp;
1982 struct bqueue *dp;
1983 int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1984 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1985
1986 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1987 count = 0;
1988 memset(counts, 0, sizeof(counts));
1989 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1990 counts[bp->b_bufsize / PAGE_SIZE]++;
1991 count++;
1992 }
1993 printf("%s: total-%d", bname[i], count);
1994 for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1995 if (counts[j] != 0)
1996 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1997 printf("\n");
1998 }
1999 }
2000 #endif /* DEBUG */
2001
2002 /* ------------------------------ */
2003
2004 buf_t *
2005 getiobuf(struct vnode *vp, bool waitok)
2006 {
2007 buf_t *bp;
2008
2009 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
2010 if (bp == NULL)
2011 return bp;
2012
2013 buf_init(bp);
2014
2015 if ((bp->b_vp = vp) != NULL) {
2016 bp->b_objlock = vp->v_interlock;
2017 } else {
2018 KASSERT(bp->b_objlock == &buffer_lock);
2019 }
2020
2021 return bp;
2022 }
2023
2024 void
2025 putiobuf(buf_t *bp)
2026 {
2027
2028 buf_destroy(bp);
2029 pool_cache_put(bufio_cache, bp);
2030 }
2031
2032 /*
2033 * nestiobuf_iodone: b_iodone callback for nested buffers.
2034 */
2035
2036 void
2037 nestiobuf_iodone(buf_t *bp)
2038 {
2039 buf_t *mbp = bp->b_private;
2040 int error;
2041 int donebytes;
2042
2043 KASSERT(bp->b_bcount <= bp->b_bufsize);
2044 KASSERT(mbp != bp);
2045
2046 error = bp->b_error;
2047 if (bp->b_error == 0 &&
2048 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2049 /*
2050 * Not all got transfered, raise an error. We have no way to
2051 * propagate these conditions to mbp.
2052 */
2053 error = EIO;
2054 }
2055
2056 donebytes = bp->b_bufsize;
2057
2058 putiobuf(bp);
2059 nestiobuf_done(mbp, donebytes, error);
2060 }
2061
2062 /*
2063 * nestiobuf_setup: setup a "nested" buffer.
2064 *
2065 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2066 * => 'bp' should be a buffer allocated by getiobuf.
2067 * => 'offset' is a byte offset in the master buffer.
2068 * => 'size' is a size in bytes of this nested buffer.
2069 */
2070
2071 void
2072 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2073 {
2074 const int b_pass = mbp->b_flags & (B_READ|B_MEDIA_FLAGS);
2075 struct vnode *vp = mbp->b_vp;
2076
2077 KASSERT(mbp->b_bcount >= offset + size);
2078 bp->b_vp = vp;
2079 bp->b_dev = mbp->b_dev;
2080 bp->b_objlock = mbp->b_objlock;
2081 bp->b_cflags = BC_BUSY;
2082 bp->b_flags = B_ASYNC | b_pass;
2083 bp->b_iodone = nestiobuf_iodone;
2084 bp->b_data = (char *)mbp->b_data + offset;
2085 bp->b_resid = bp->b_bcount = size;
2086 bp->b_bufsize = bp->b_bcount;
2087 bp->b_private = mbp;
2088 BIO_COPYPRIO(bp, mbp);
2089 if (BUF_ISWRITE(bp) && vp != NULL) {
2090 mutex_enter(vp->v_interlock);
2091 vp->v_numoutput++;
2092 mutex_exit(vp->v_interlock);
2093 }
2094 }
2095
2096 /*
2097 * nestiobuf_done: propagate completion to the master buffer.
2098 *
2099 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2100 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2101 */
2102
2103 void
2104 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2105 {
2106
2107 if (donebytes == 0) {
2108 return;
2109 }
2110 mutex_enter(mbp->b_objlock);
2111 KASSERT(mbp->b_resid >= donebytes);
2112 mbp->b_resid -= donebytes;
2113 if (error)
2114 mbp->b_error = error;
2115 if (mbp->b_resid == 0) {
2116 if (mbp->b_error)
2117 mbp->b_resid = mbp->b_bcount;
2118 mutex_exit(mbp->b_objlock);
2119 biodone(mbp);
2120 } else
2121 mutex_exit(mbp->b_objlock);
2122 }
2123
2124 void
2125 buf_init(buf_t *bp)
2126 {
2127
2128 cv_init(&bp->b_busy, "biolock");
2129 cv_init(&bp->b_done, "biowait");
2130 bp->b_dev = NODEV;
2131 bp->b_error = 0;
2132 bp->b_flags = 0;
2133 bp->b_cflags = 0;
2134 bp->b_oflags = 0;
2135 bp->b_objlock = &buffer_lock;
2136 bp->b_iodone = NULL;
2137 bp->b_refcnt = 1;
2138 bp->b_dev = NODEV;
2139 bp->b_vnbufs.le_next = NOLIST;
2140 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2141 }
2142
2143 void
2144 buf_destroy(buf_t *bp)
2145 {
2146
2147 cv_destroy(&bp->b_done);
2148 cv_destroy(&bp->b_busy);
2149 }
2150
2151 int
2152 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2153 {
2154 int error;
2155
2156 KASSERT(mutex_owned(&bufcache_lock));
2157
2158 if ((bp->b_cflags & BC_BUSY) != 0) {
2159 if (curlwp == uvm.pagedaemon_lwp)
2160 return EDEADLK;
2161 bp->b_cflags |= BC_WANTED;
2162 bref(bp);
2163 if (interlock != NULL)
2164 mutex_exit(interlock);
2165 if (intr) {
2166 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2167 timo);
2168 } else {
2169 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2170 timo);
2171 }
2172 brele(bp);
2173 if (interlock != NULL)
2174 mutex_enter(interlock);
2175 if (error != 0)
2176 return error;
2177 return EPASSTHROUGH;
2178 }
2179 bp->b_cflags |= BC_BUSY;
2180
2181 return 0;
2182 }
2183
2184 /*
2185 * Nothing outside this file should really need to know about nbuf,
2186 * but a few things still want to read it, so give them a way to do that.
2187 */
2188 u_int
2189 buf_nbuf(void)
2190 {
2191
2192 return nbuf;
2193 }
2194