Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.288
      1 /*	$NetBSD: vfs_bio.c,v 1.288 2020/02/20 15:48:38 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.288 2020/02/20 15:48:38 riastradh Exp $");
    127 
    128 #ifdef _KERNEL_OPT
    129 #include "opt_bufcache.h"
    130 #include "opt_dtrace.h"
    131 #include "opt_biohist.h"
    132 #endif
    133 
    134 #include <sys/param.h>
    135 #include <sys/systm.h>
    136 #include <sys/kernel.h>
    137 #include <sys/proc.h>
    138 #include <sys/buf.h>
    139 #include <sys/vnode.h>
    140 #include <sys/mount.h>
    141 #include <sys/resourcevar.h>
    142 #include <sys/sysctl.h>
    143 #include <sys/conf.h>
    144 #include <sys/kauth.h>
    145 #include <sys/fstrans.h>
    146 #include <sys/intr.h>
    147 #include <sys/cpu.h>
    148 #include <sys/wapbl.h>
    149 #include <sys/bitops.h>
    150 #include <sys/cprng.h>
    151 #include <sys/sdt.h>
    152 
    153 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    154 
    155 #include <miscfs/specfs/specdev.h>
    156 
    157 SDT_PROVIDER_DEFINE(io);
    158 
    159 SDT_PROBE_DEFINE4(io, kernel, , bbusy__start,
    160     "struct buf *"/*bp*/,
    161     "bool"/*intr*/, "int"/*timo*/, "kmutex_t *"/*interlock*/);
    162 SDT_PROBE_DEFINE5(io, kernel, , bbusy__done,
    163     "struct buf *"/*bp*/,
    164     "bool"/*intr*/,
    165     "int"/*timo*/,
    166     "kmutex_t *"/*interlock*/,
    167     "int"/*error*/);
    168 SDT_PROBE_DEFINE0(io, kernel, , getnewbuf__start);
    169 SDT_PROBE_DEFINE1(io, kernel, , getnewbuf__done,  "struct buf *"/*bp*/);
    170 SDT_PROBE_DEFINE3(io, kernel, , getblk__start,
    171     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/);
    172 SDT_PROBE_DEFINE4(io, kernel, , getblk__done,
    173     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/,
    174     "struct buf *"/*bp*/);
    175 SDT_PROBE_DEFINE2(io, kernel, , brelse, "struct buf *"/*bp*/, "int"/*set*/);
    176 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
    177 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
    178 
    179 #ifndef	BUFPAGES
    180 # define BUFPAGES 0
    181 #endif
    182 
    183 #ifdef BUFCACHE
    184 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    185 #  error BUFCACHE is not between 5 and 95
    186 # endif
    187 #else
    188 # define BUFCACHE 15
    189 #endif
    190 
    191 u_int	nbuf;			/* desired number of buffer headers */
    192 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    193 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    194 
    195 /*
    196  * Definitions for the buffer free lists.
    197  */
    198 #define	BQUEUES		3		/* number of free buffer queues */
    199 
    200 #define	BQ_LOCKED	0		/* super-blocks &c */
    201 #define	BQ_LRU		1		/* lru, useful buffers */
    202 #define	BQ_AGE		2		/* rubbish */
    203 
    204 struct bqueue {
    205 	TAILQ_HEAD(, buf) bq_queue;
    206 	uint64_t bq_bytes;
    207 	buf_t *bq_marker;
    208 };
    209 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
    210 
    211 /* Function prototypes */
    212 static void buf_setwm(void);
    213 static int buf_trim(void);
    214 static void *bufpool_page_alloc(struct pool *, int);
    215 static void bufpool_page_free(struct pool *, void *);
    216 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
    217 static buf_t *getnewbuf(int, int, int);
    218 static int buf_lotsfree(void);
    219 static int buf_canrelease(void);
    220 static u_long buf_mempoolidx(u_long);
    221 static u_long buf_roundsize(u_long);
    222 static void *buf_alloc(size_t);
    223 static void buf_mrelease(void *, size_t);
    224 static void binsheadfree(buf_t *, struct bqueue *);
    225 static void binstailfree(buf_t *, struct bqueue *);
    226 #ifdef DEBUG
    227 static int checkfreelist(buf_t *, struct bqueue *, int);
    228 #endif
    229 static void biointr(void *);
    230 static void biodone2(buf_t *);
    231 static void bref(buf_t *);
    232 static void brele(buf_t *);
    233 static void sysctl_kern_buf_setup(void);
    234 static void sysctl_vm_buf_setup(void);
    235 
    236 /* Initialization for biohist */
    237 
    238 #include <sys/biohist.h>
    239 
    240 BIOHIST_DEFINE(biohist);
    241 
    242 void
    243 biohist_init(void)
    244 {
    245 
    246 	BIOHIST_INIT(biohist, BIOHIST_SIZE);
    247 }
    248 
    249 /*
    250  * Definitions for the buffer hash lists.
    251  */
    252 #define	BUFHASH(dvp, lbn)	\
    253 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    254 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    255 u_long	bufhash;
    256 
    257 static kcondvar_t needbuffer_cv;
    258 
    259 /*
    260  * Buffer queue lock.
    261  */
    262 kmutex_t bufcache_lock __cacheline_aligned;
    263 kmutex_t buffer_lock __cacheline_aligned;
    264 
    265 /* Software ISR for completed transfers. */
    266 static void *biodone_sih;
    267 
    268 /* Buffer pool for I/O buffers. */
    269 static pool_cache_t buf_cache;
    270 static pool_cache_t bufio_cache;
    271 
    272 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    273 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    274 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    275 
    276 /* Buffer memory pools */
    277 static struct pool bmempools[NMEMPOOLS];
    278 
    279 static struct vm_map *buf_map;
    280 
    281 /*
    282  * Buffer memory pool allocator.
    283  */
    284 static void *
    285 bufpool_page_alloc(struct pool *pp, int flags)
    286 {
    287 
    288 	return (void *)uvm_km_alloc(buf_map,
    289 	    MAXBSIZE, MAXBSIZE,
    290 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    291 	    | UVM_KMF_WIRED);
    292 }
    293 
    294 static void
    295 bufpool_page_free(struct pool *pp, void *v)
    296 {
    297 
    298 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    299 }
    300 
    301 static struct pool_allocator bufmempool_allocator = {
    302 	.pa_alloc = bufpool_page_alloc,
    303 	.pa_free = bufpool_page_free,
    304 	.pa_pagesz = MAXBSIZE,
    305 };
    306 
    307 /* Buffer memory management variables */
    308 u_long bufmem_valimit;
    309 u_long bufmem_hiwater;
    310 u_long bufmem_lowater;
    311 u_long bufmem;
    312 
    313 /*
    314  * MD code can call this to set a hard limit on the amount
    315  * of virtual memory used by the buffer cache.
    316  */
    317 int
    318 buf_setvalimit(vsize_t sz)
    319 {
    320 
    321 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    322 	if (sz < NMEMPOOLS * MAXBSIZE)
    323 		return EINVAL;
    324 
    325 	bufmem_valimit = sz;
    326 	return 0;
    327 }
    328 
    329 static void
    330 buf_setwm(void)
    331 {
    332 
    333 	bufmem_hiwater = buf_memcalc();
    334 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    335 #define	BUFMEM_WMSHIFT	3
    336 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    337 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    338 		/* Ensure a reasonable minimum value */
    339 		bufmem_hiwater = BUFMEM_HIWMMIN;
    340 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    341 }
    342 
    343 #ifdef DEBUG
    344 int debug_verify_freelist = 0;
    345 static int
    346 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    347 {
    348 	buf_t *b;
    349 
    350 	if (!debug_verify_freelist)
    351 		return 1;
    352 
    353 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    354 		if (b == bp)
    355 			return ison ? 1 : 0;
    356 	}
    357 
    358 	return ison ? 0 : 1;
    359 }
    360 #endif
    361 
    362 /*
    363  * Insq/Remq for the buffer hash lists.
    364  * Call with buffer queue locked.
    365  */
    366 static void
    367 binsheadfree(buf_t *bp, struct bqueue *dp)
    368 {
    369 
    370 	KASSERT(mutex_owned(&bufcache_lock));
    371 	KASSERT(bp->b_freelistindex == -1);
    372 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    373 	dp->bq_bytes += bp->b_bufsize;
    374 	bp->b_freelistindex = dp - bufqueues;
    375 }
    376 
    377 static void
    378 binstailfree(buf_t *bp, struct bqueue *dp)
    379 {
    380 
    381 	KASSERT(mutex_owned(&bufcache_lock));
    382 	KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
    383 	    "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
    384 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    385 	dp->bq_bytes += bp->b_bufsize;
    386 	bp->b_freelistindex = dp - bufqueues;
    387 }
    388 
    389 void
    390 bremfree(buf_t *bp)
    391 {
    392 	struct bqueue *dp;
    393 	int bqidx = bp->b_freelistindex;
    394 
    395 	KASSERT(mutex_owned(&bufcache_lock));
    396 
    397 	KASSERT(bqidx != -1);
    398 	dp = &bufqueues[bqidx];
    399 	KDASSERT(checkfreelist(bp, dp, 1));
    400 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    401 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    402 	dp->bq_bytes -= bp->b_bufsize;
    403 
    404 	/* For the sysctl helper. */
    405 	if (bp == dp->bq_marker)
    406 		dp->bq_marker = NULL;
    407 
    408 #if defined(DIAGNOSTIC)
    409 	bp->b_freelistindex = -1;
    410 #endif /* defined(DIAGNOSTIC) */
    411 }
    412 
    413 /*
    414  * Add a reference to an buffer structure that came from buf_cache.
    415  */
    416 static inline void
    417 bref(buf_t *bp)
    418 {
    419 
    420 	KASSERT(mutex_owned(&bufcache_lock));
    421 	KASSERT(bp->b_refcnt > 0);
    422 
    423 	bp->b_refcnt++;
    424 }
    425 
    426 /*
    427  * Free an unused buffer structure that came from buf_cache.
    428  */
    429 static inline void
    430 brele(buf_t *bp)
    431 {
    432 
    433 	KASSERT(mutex_owned(&bufcache_lock));
    434 	KASSERT(bp->b_refcnt > 0);
    435 
    436 	if (bp->b_refcnt-- == 1) {
    437 		buf_destroy(bp);
    438 #ifdef DEBUG
    439 		memset((char *)bp, 0, sizeof(*bp));
    440 #endif
    441 		pool_cache_put(buf_cache, bp);
    442 	}
    443 }
    444 
    445 /*
    446  * note that for some ports this is used by pmap bootstrap code to
    447  * determine kva size.
    448  */
    449 u_long
    450 buf_memcalc(void)
    451 {
    452 	u_long n;
    453 	vsize_t mapsz = 0;
    454 
    455 	/*
    456 	 * Determine the upper bound of memory to use for buffers.
    457 	 *
    458 	 *	- If bufpages is specified, use that as the number
    459 	 *	  pages.
    460 	 *
    461 	 *	- Otherwise, use bufcache as the percentage of
    462 	 *	  physical memory.
    463 	 */
    464 	if (bufpages != 0) {
    465 		n = bufpages;
    466 	} else {
    467 		if (bufcache < 5) {
    468 			printf("forcing bufcache %d -> 5", bufcache);
    469 			bufcache = 5;
    470 		}
    471 		if (bufcache > 95) {
    472 			printf("forcing bufcache %d -> 95", bufcache);
    473 			bufcache = 95;
    474 		}
    475 		if (buf_map != NULL)
    476 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
    477 		n = calc_cache_size(mapsz, bufcache,
    478 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    479 		    / PAGE_SIZE;
    480 	}
    481 
    482 	n <<= PAGE_SHIFT;
    483 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    484 		n = bufmem_valimit;
    485 
    486 	return (n);
    487 }
    488 
    489 /*
    490  * Initialize buffers and hash links for buffers.
    491  */
    492 void
    493 bufinit(void)
    494 {
    495 	struct bqueue *dp;
    496 	int use_std;
    497 	u_int i;
    498 
    499 	biodone_vfs = biodone;
    500 
    501 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    502 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    503 	cv_init(&needbuffer_cv, "needbuf");
    504 
    505 	if (bufmem_valimit != 0) {
    506 		vaddr_t minaddr = 0, maxaddr;
    507 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    508 					  bufmem_valimit, 0, false, 0);
    509 		if (buf_map == NULL)
    510 			panic("bufinit: cannot allocate submap");
    511 	} else
    512 		buf_map = kernel_map;
    513 
    514 	/*
    515 	 * Initialize buffer cache memory parameters.
    516 	 */
    517 	bufmem = 0;
    518 	buf_setwm();
    519 
    520 	/* On "small" machines use small pool page sizes where possible */
    521 	use_std = (physmem < atop(16*1024*1024));
    522 
    523 	/*
    524 	 * Also use them on systems that can map the pool pages using
    525 	 * a direct-mapped segment.
    526 	 */
    527 #ifdef PMAP_MAP_POOLPAGE
    528 	use_std = 1;
    529 #endif
    530 
    531 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    532 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    533 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    534 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    535 
    536 	for (i = 0; i < NMEMPOOLS; i++) {
    537 		struct pool_allocator *pa;
    538 		struct pool *pp = &bmempools[i];
    539 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    540 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    541 		if (__predict_false(size >= 1048576))
    542 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    543 		else if (__predict_true(size >= 1024))
    544 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    545 		else
    546 			(void)snprintf(name, 8, "buf%ub", size);
    547 		pa = (size <= PAGE_SIZE && use_std)
    548 			? &pool_allocator_nointr
    549 			: &bufmempool_allocator;
    550 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
    551 		pool_setlowat(pp, 1);
    552 		pool_sethiwat(pp, 1);
    553 	}
    554 
    555 	/* Initialize the buffer queues */
    556 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    557 		TAILQ_INIT(&dp->bq_queue);
    558 		dp->bq_bytes = 0;
    559 	}
    560 
    561 	/*
    562 	 * Estimate hash table size based on the amount of memory we
    563 	 * intend to use for the buffer cache. The average buffer
    564 	 * size is dependent on our clients (i.e. filesystems).
    565 	 *
    566 	 * For now, use an empirical 3K per buffer.
    567 	 */
    568 	nbuf = (bufmem_hiwater / 1024) / 3;
    569 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    570 
    571 	sysctl_kern_buf_setup();
    572 	sysctl_vm_buf_setup();
    573 }
    574 
    575 void
    576 bufinit2(void)
    577 {
    578 
    579 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    580 	    NULL);
    581 	if (biodone_sih == NULL)
    582 		panic("bufinit2: can't establish soft interrupt");
    583 }
    584 
    585 static int
    586 buf_lotsfree(void)
    587 {
    588 	u_long guess;
    589 
    590 	/* Always allocate if less than the low water mark. */
    591 	if (bufmem < bufmem_lowater)
    592 		return 1;
    593 
    594 	/* Never allocate if greater than the high water mark. */
    595 	if (bufmem > bufmem_hiwater)
    596 		return 0;
    597 
    598 	/* If there's anything on the AGE list, it should be eaten. */
    599 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    600 		return 0;
    601 
    602 	/*
    603 	 * The probabily of getting a new allocation is inversely
    604 	 * proportional  to the current size of the cache above
    605 	 * the low water mark.  Divide the total first to avoid overflows
    606 	 * in the product.
    607 	 */
    608 	guess = cprng_fast32() % 16;
    609 
    610 	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
    611 	    (bufmem - bufmem_lowater))
    612 		return 1;
    613 
    614 	/* Otherwise don't allocate. */
    615 	return 0;
    616 }
    617 
    618 /*
    619  * Return estimate of bytes we think need to be
    620  * released to help resolve low memory conditions.
    621  *
    622  * => called with bufcache_lock held.
    623  */
    624 static int
    625 buf_canrelease(void)
    626 {
    627 	int pagedemand, ninvalid = 0;
    628 
    629 	KASSERT(mutex_owned(&bufcache_lock));
    630 
    631 	if (bufmem < bufmem_lowater)
    632 		return 0;
    633 
    634 	if (bufmem > bufmem_hiwater)
    635 		return bufmem - bufmem_hiwater;
    636 
    637 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    638 
    639 	pagedemand = uvmexp.freetarg - uvm_availmem();
    640 	if (pagedemand < 0)
    641 		return ninvalid;
    642 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    643 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    644 }
    645 
    646 /*
    647  * Buffer memory allocation helper functions
    648  */
    649 static u_long
    650 buf_mempoolidx(u_long size)
    651 {
    652 	u_int n = 0;
    653 
    654 	size -= 1;
    655 	size >>= MEMPOOL_INDEX_OFFSET;
    656 	while (size) {
    657 		size >>= 1;
    658 		n += 1;
    659 	}
    660 	if (n >= NMEMPOOLS)
    661 		panic("buf mem pool index %d", n);
    662 	return n;
    663 }
    664 
    665 static u_long
    666 buf_roundsize(u_long size)
    667 {
    668 	/* Round up to nearest power of 2 */
    669 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    670 }
    671 
    672 static void *
    673 buf_alloc(size_t size)
    674 {
    675 	u_int n = buf_mempoolidx(size);
    676 	void *addr;
    677 
    678 	while (1) {
    679 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    680 		if (addr != NULL)
    681 			break;
    682 
    683 		/* No memory, see if we can free some. If so, try again */
    684 		mutex_enter(&bufcache_lock);
    685 		if (buf_drain(1) > 0) {
    686 			mutex_exit(&bufcache_lock);
    687 			continue;
    688 		}
    689 
    690 		if (curlwp == uvm.pagedaemon_lwp) {
    691 			mutex_exit(&bufcache_lock);
    692 			return NULL;
    693 		}
    694 
    695 		/* Wait for buffers to arrive on the LRU queue */
    696 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    697 		mutex_exit(&bufcache_lock);
    698 	}
    699 
    700 	return addr;
    701 }
    702 
    703 static void
    704 buf_mrelease(void *addr, size_t size)
    705 {
    706 
    707 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    708 }
    709 
    710 /*
    711  * bread()/breadn() helper.
    712  */
    713 static buf_t *
    714 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
    715 {
    716 	buf_t *bp;
    717 	struct mount *mp;
    718 
    719 	bp = getblk(vp, blkno, size, 0, 0);
    720 
    721 	/*
    722 	 * getblk() may return NULL if we are the pagedaemon.
    723 	 */
    724 	if (bp == NULL) {
    725 		KASSERT(curlwp == uvm.pagedaemon_lwp);
    726 		return NULL;
    727 	}
    728 
    729 	/*
    730 	 * If buffer does not have data valid, start a read.
    731 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    732 	 * Therefore, it's valid if its I/O has completed or been delayed.
    733 	 */
    734 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    735 		/* Start I/O for the buffer. */
    736 		SET(bp->b_flags, B_READ | async);
    737 		if (async)
    738 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    739 		else
    740 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    741 		VOP_STRATEGY(vp, bp);
    742 
    743 		/* Pay for the read. */
    744 		curlwp->l_ru.ru_inblock++;
    745 	} else if (async)
    746 		brelse(bp, 0);
    747 
    748 	if (vp->v_type == VBLK)
    749 		mp = spec_node_getmountedfs(vp);
    750 	else
    751 		mp = vp->v_mount;
    752 
    753 	/*
    754 	 * Collect statistics on synchronous and asynchronous reads.
    755 	 * Reads from block devices are charged to their associated
    756 	 * filesystem (if any).
    757 	 */
    758 	if (mp != NULL) {
    759 		if (async == 0)
    760 			mp->mnt_stat.f_syncreads++;
    761 		else
    762 			mp->mnt_stat.f_asyncreads++;
    763 	}
    764 
    765 	return (bp);
    766 }
    767 
    768 /*
    769  * Read a disk block.
    770  * This algorithm described in Bach (p.54).
    771  */
    772 int
    773 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
    774 {
    775 	buf_t *bp;
    776 	int error;
    777 
    778 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    779 
    780 	/* Get buffer for block. */
    781 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    782 	if (bp == NULL)
    783 		return ENOMEM;
    784 
    785 	/* Wait for the read to complete, and return result. */
    786 	error = biowait(bp);
    787 	if (error == 0 && (flags & B_MODIFY) != 0)
    788 		error = fscow_run(bp, true);
    789 	if (error) {
    790 		brelse(bp, 0);
    791 		*bpp = NULL;
    792 	}
    793 
    794 	return error;
    795 }
    796 
    797 /*
    798  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    799  * Trivial modification to the breada algorithm presented in Bach (p.55).
    800  */
    801 int
    802 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    803     int *rasizes, int nrablks, int flags, buf_t **bpp)
    804 {
    805 	buf_t *bp;
    806 	int error, i;
    807 
    808 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    809 
    810 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    811 	if (bp == NULL)
    812 		return ENOMEM;
    813 
    814 	/*
    815 	 * For each of the read-ahead blocks, start a read, if necessary.
    816 	 */
    817 	mutex_enter(&bufcache_lock);
    818 	for (i = 0; i < nrablks; i++) {
    819 		/* If it's in the cache, just go on to next one. */
    820 		if (incore(vp, rablks[i]))
    821 			continue;
    822 
    823 		/* Get a buffer for the read-ahead block */
    824 		mutex_exit(&bufcache_lock);
    825 		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
    826 		mutex_enter(&bufcache_lock);
    827 	}
    828 	mutex_exit(&bufcache_lock);
    829 
    830 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    831 	error = biowait(bp);
    832 	if (error == 0 && (flags & B_MODIFY) != 0)
    833 		error = fscow_run(bp, true);
    834 	if (error) {
    835 		brelse(bp, 0);
    836 		*bpp = NULL;
    837 	}
    838 
    839 	return error;
    840 }
    841 
    842 /*
    843  * Block write.  Described in Bach (p.56)
    844  */
    845 int
    846 bwrite(buf_t *bp)
    847 {
    848 	int rv, sync, wasdelayed;
    849 	struct vnode *vp;
    850 	struct mount *mp;
    851 
    852 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    853 	    (uintptr_t)bp, 0, 0, 0);
    854 
    855 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    856 	KASSERT(!cv_has_waiters(&bp->b_done));
    857 
    858 	vp = bp->b_vp;
    859 
    860 	/*
    861 	 * dholland 20160728 AFAICT vp==NULL must be impossible as it
    862 	 * will crash upon reaching VOP_STRATEGY below... see further
    863 	 * analysis on tech-kern.
    864 	 */
    865 	KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
    866 
    867 	if (vp != NULL) {
    868 		KASSERT(bp->b_objlock == vp->v_interlock);
    869 		if (vp->v_type == VBLK)
    870 			mp = spec_node_getmountedfs(vp);
    871 		else
    872 			mp = vp->v_mount;
    873 	} else {
    874 		mp = NULL;
    875 	}
    876 
    877 	if (mp && mp->mnt_wapbl) {
    878 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    879 			bdwrite(bp);
    880 			return 0;
    881 		}
    882 	}
    883 
    884 	/*
    885 	 * Remember buffer type, to switch on it later.  If the write was
    886 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    887 	 * convert it to a delayed write.
    888 	 * XXX note that this relies on delayed tape writes being converted
    889 	 * to async, not sync writes (which is safe, but ugly).
    890 	 */
    891 	sync = !ISSET(bp->b_flags, B_ASYNC);
    892 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    893 		bdwrite(bp);
    894 		return (0);
    895 	}
    896 
    897 	/*
    898 	 * Collect statistics on synchronous and asynchronous writes.
    899 	 * Writes to block devices are charged to their associated
    900 	 * filesystem (if any).
    901 	 */
    902 	if (mp != NULL) {
    903 		if (sync)
    904 			mp->mnt_stat.f_syncwrites++;
    905 		else
    906 			mp->mnt_stat.f_asyncwrites++;
    907 	}
    908 
    909 	/*
    910 	 * Pay for the I/O operation and make sure the buf is on the correct
    911 	 * vnode queue.
    912 	 */
    913 	bp->b_error = 0;
    914 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    915 	CLR(bp->b_flags, B_READ);
    916 	if (wasdelayed) {
    917 		mutex_enter(&bufcache_lock);
    918 		mutex_enter(bp->b_objlock);
    919 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    920 		reassignbuf(bp, bp->b_vp);
    921 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    922 		cv_broadcast(&bp->b_busy);
    923 		mutex_exit(&bufcache_lock);
    924 	} else {
    925 		curlwp->l_ru.ru_oublock++;
    926 		mutex_enter(bp->b_objlock);
    927 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    928 	}
    929 	if (vp != NULL)
    930 		vp->v_numoutput++;
    931 	mutex_exit(bp->b_objlock);
    932 
    933 	/* Initiate disk write. */
    934 	if (sync)
    935 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    936 	else
    937 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    938 
    939 	VOP_STRATEGY(vp, bp);
    940 
    941 	if (sync) {
    942 		/* If I/O was synchronous, wait for it to complete. */
    943 		rv = biowait(bp);
    944 
    945 		/* Release the buffer. */
    946 		brelse(bp, 0);
    947 
    948 		return (rv);
    949 	} else {
    950 		return (0);
    951 	}
    952 }
    953 
    954 int
    955 vn_bwrite(void *v)
    956 {
    957 	struct vop_bwrite_args *ap = v;
    958 
    959 	return (bwrite(ap->a_bp));
    960 }
    961 
    962 /*
    963  * Delayed write.
    964  *
    965  * The buffer is marked dirty, but is not queued for I/O.
    966  * This routine should be used when the buffer is expected
    967  * to be modified again soon, typically a small write that
    968  * partially fills a buffer.
    969  *
    970  * NB: magnetic tapes cannot be delayed; they must be
    971  * written in the order that the writes are requested.
    972  *
    973  * Described in Leffler, et al. (pp. 208-213).
    974  */
    975 void
    976 bdwrite(buf_t *bp)
    977 {
    978 
    979 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    980 	    (uintptr_t)bp, 0, 0, 0);
    981 
    982 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    983 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    984 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    985 	KASSERT(!cv_has_waiters(&bp->b_done));
    986 
    987 	/* If this is a tape block, write the block now. */
    988 	if (bdev_type(bp->b_dev) == D_TAPE) {
    989 		bawrite(bp);
    990 		return;
    991 	}
    992 
    993 	if (wapbl_vphaswapbl(bp->b_vp)) {
    994 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    995 
    996 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    997 			WAPBL_ADD_BUF(mp, bp);
    998 		}
    999 	}
   1000 
   1001 	/*
   1002 	 * If the block hasn't been seen before:
   1003 	 *	(1) Mark it as having been seen,
   1004 	 *	(2) Charge for the write,
   1005 	 *	(3) Make sure it's on its vnode's correct block list.
   1006 	 */
   1007 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
   1008 
   1009 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
   1010 		mutex_enter(&bufcache_lock);
   1011 		mutex_enter(bp->b_objlock);
   1012 		SET(bp->b_oflags, BO_DELWRI);
   1013 		curlwp->l_ru.ru_oublock++;
   1014 		reassignbuf(bp, bp->b_vp);
   1015 		/* Wake anyone trying to busy the buffer via vnode's lists. */
   1016 		cv_broadcast(&bp->b_busy);
   1017 		mutex_exit(&bufcache_lock);
   1018 	} else {
   1019 		mutex_enter(bp->b_objlock);
   1020 	}
   1021 	/* Otherwise, the "write" is done, so mark and release the buffer. */
   1022 	CLR(bp->b_oflags, BO_DONE);
   1023 	mutex_exit(bp->b_objlock);
   1024 
   1025 	brelse(bp, 0);
   1026 }
   1027 
   1028 /*
   1029  * Asynchronous block write; just an asynchronous bwrite().
   1030  */
   1031 void
   1032 bawrite(buf_t *bp)
   1033 {
   1034 
   1035 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1036 	KASSERT(bp->b_vp != NULL);
   1037 
   1038 	SET(bp->b_flags, B_ASYNC);
   1039 	VOP_BWRITE(bp->b_vp, bp);
   1040 }
   1041 
   1042 /*
   1043  * Release a buffer on to the free lists.
   1044  * Described in Bach (p. 46).
   1045  */
   1046 void
   1047 brelsel(buf_t *bp, int set)
   1048 {
   1049 	struct bqueue *bufq;
   1050 	struct vnode *vp;
   1051 
   1052 	SDT_PROBE2(io, kernel, , brelse,  bp, set);
   1053 
   1054 	KASSERT(bp != NULL);
   1055 	KASSERT(mutex_owned(&bufcache_lock));
   1056 	KASSERT(!cv_has_waiters(&bp->b_done));
   1057 	KASSERT(bp->b_refcnt > 0);
   1058 
   1059 	SET(bp->b_cflags, set);
   1060 
   1061 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1062 	KASSERT(bp->b_iodone == NULL);
   1063 
   1064 	/* Wake up any processes waiting for any buffer to become free. */
   1065 	cv_signal(&needbuffer_cv);
   1066 
   1067 	/* Wake up any proceeses waiting for _this_ buffer to become free */
   1068 	if (ISSET(bp->b_cflags, BC_WANTED))
   1069 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
   1070 
   1071 	/* If it's clean clear the copy-on-write flag. */
   1072 	if (ISSET(bp->b_flags, B_COWDONE)) {
   1073 		mutex_enter(bp->b_objlock);
   1074 		if (!ISSET(bp->b_oflags, BO_DELWRI))
   1075 			CLR(bp->b_flags, B_COWDONE);
   1076 		mutex_exit(bp->b_objlock);
   1077 	}
   1078 
   1079 	/*
   1080 	 * Determine which queue the buffer should be on, then put it there.
   1081 	 */
   1082 
   1083 	/* If it's locked, don't report an error; try again later. */
   1084 	if (ISSET(bp->b_flags, B_LOCKED))
   1085 		bp->b_error = 0;
   1086 
   1087 	/* If it's not cacheable, or an error, mark it invalid. */
   1088 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1089 		SET(bp->b_cflags, BC_INVAL);
   1090 
   1091 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1092 		/*
   1093 		 * This is a delayed write buffer that was just flushed to
   1094 		 * disk.  It is still on the LRU queue.  If it's become
   1095 		 * invalid, then we need to move it to a different queue;
   1096 		 * otherwise leave it in its current position.
   1097 		 */
   1098 		CLR(bp->b_cflags, BC_VFLUSH);
   1099 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1100 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1101 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1102 			goto already_queued;
   1103 		} else {
   1104 			bremfree(bp);
   1105 		}
   1106 	}
   1107 
   1108 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1109 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1110 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1111 
   1112 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1113 		/*
   1114 		 * If it's invalid or empty, dissociate it from its vnode
   1115 		 * and put on the head of the appropriate queue.
   1116 		 */
   1117 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1118 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1119 				struct mount *mp = wapbl_vptomp(vp);
   1120 
   1121 				KASSERT(bp->b_iodone
   1122 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1123 				WAPBL_REMOVE_BUF(mp, bp);
   1124 			}
   1125 		}
   1126 
   1127 		mutex_enter(bp->b_objlock);
   1128 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1129 		if ((vp = bp->b_vp) != NULL) {
   1130 			KASSERT(bp->b_objlock == vp->v_interlock);
   1131 			reassignbuf(bp, bp->b_vp);
   1132 			brelvp(bp);
   1133 			mutex_exit(vp->v_interlock);
   1134 		} else {
   1135 			KASSERT(bp->b_objlock == &buffer_lock);
   1136 			mutex_exit(bp->b_objlock);
   1137 		}
   1138 		/* We want to dispose of the buffer, so wake everybody. */
   1139 		cv_broadcast(&bp->b_busy);
   1140 		if (bp->b_bufsize <= 0)
   1141 			/* no data */
   1142 			goto already_queued;
   1143 		else
   1144 			/* invalid data */
   1145 			bufq = &bufqueues[BQ_AGE];
   1146 		binsheadfree(bp, bufq);
   1147 	} else  {
   1148 		/*
   1149 		 * It has valid data.  Put it on the end of the appropriate
   1150 		 * queue, so that it'll stick around for as long as possible.
   1151 		 * If buf is AGE, but has dependencies, must put it on last
   1152 		 * bufqueue to be scanned, ie LRU. This protects against the
   1153 		 * livelock where BQ_AGE only has buffers with dependencies,
   1154 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1155 		 */
   1156 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1157 			/* locked in core */
   1158 			bufq = &bufqueues[BQ_LOCKED];
   1159 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1160 			/* valid data */
   1161 			bufq = &bufqueues[BQ_LRU];
   1162 		} else {
   1163 			/* stale but valid data */
   1164 			bufq = &bufqueues[BQ_AGE];
   1165 		}
   1166 		binstailfree(bp, bufq);
   1167 	}
   1168 already_queued:
   1169 	/* Unlock the buffer. */
   1170 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1171 	CLR(bp->b_flags, B_ASYNC);
   1172 
   1173 	/*
   1174 	 * Wake only the highest priority waiter on the lock, in order to
   1175 	 * prevent a thundering herd: many LWPs simultaneously awakening and
   1176 	 * competing for the buffer's lock.  Testing in 2019 revealed this
   1177 	 * to reduce contention on bufcache_lock tenfold during a kernel
   1178 	 * compile.  Elsewhere, when the buffer is changing identity, being
   1179 	 * disposed of, or moving from one list to another, we wake all lock
   1180 	 * requestors.
   1181 	 */
   1182 	cv_signal(&bp->b_busy);
   1183 
   1184 	if (bp->b_bufsize <= 0)
   1185 		brele(bp);
   1186 }
   1187 
   1188 void
   1189 brelse(buf_t *bp, int set)
   1190 {
   1191 
   1192 	mutex_enter(&bufcache_lock);
   1193 	brelsel(bp, set);
   1194 	mutex_exit(&bufcache_lock);
   1195 }
   1196 
   1197 /*
   1198  * Determine if a block is in the cache.
   1199  * Just look on what would be its hash chain.  If it's there, return
   1200  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1201  * we normally don't return the buffer, unless the caller explicitly
   1202  * wants us to.
   1203  */
   1204 buf_t *
   1205 incore(struct vnode *vp, daddr_t blkno)
   1206 {
   1207 	buf_t *bp;
   1208 
   1209 	KASSERT(mutex_owned(&bufcache_lock));
   1210 
   1211 	/* Search hash chain */
   1212 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1213 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1214 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1215 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1216 		    	return (bp);
   1217 		}
   1218 	}
   1219 
   1220 	return (NULL);
   1221 }
   1222 
   1223 /*
   1224  * Get a block of requested size that is associated with
   1225  * a given vnode and block offset. If it is found in the
   1226  * block cache, mark it as having been found, make it busy
   1227  * and return it. Otherwise, return an empty block of the
   1228  * correct size. It is up to the caller to insure that the
   1229  * cached blocks be of the correct size.
   1230  */
   1231 buf_t *
   1232 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1233 {
   1234 	int err, preserve;
   1235 	buf_t *bp;
   1236 
   1237 	mutex_enter(&bufcache_lock);
   1238 	SDT_PROBE3(io, kernel, , getblk__start,  vp, blkno, size);
   1239  loop:
   1240 	bp = incore(vp, blkno);
   1241 	if (bp != NULL) {
   1242 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1243 		if (err != 0) {
   1244 			if (err == EPASSTHROUGH)
   1245 				goto loop;
   1246 			mutex_exit(&bufcache_lock);
   1247 			SDT_PROBE4(io, kernel, , getblk__done,
   1248 			    vp, blkno, size, NULL);
   1249 			return (NULL);
   1250 		}
   1251 		KASSERT(!cv_has_waiters(&bp->b_done));
   1252 #ifdef DIAGNOSTIC
   1253 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1254 		    bp->b_bcount < size && vp->v_type != VBLK)
   1255 			panic("getblk: block size invariant failed");
   1256 #endif
   1257 		bremfree(bp);
   1258 		preserve = 1;
   1259 	} else {
   1260 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1261 			goto loop;
   1262 
   1263 		if (incore(vp, blkno) != NULL) {
   1264 			/* The block has come into memory in the meantime. */
   1265 			brelsel(bp, 0);
   1266 			goto loop;
   1267 		}
   1268 
   1269 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1270 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1271 		mutex_enter(vp->v_interlock);
   1272 		bgetvp(vp, bp);
   1273 		mutex_exit(vp->v_interlock);
   1274 		preserve = 0;
   1275 	}
   1276 	mutex_exit(&bufcache_lock);
   1277 
   1278 	/*
   1279 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1280 	 * if we re-size buffers here.
   1281 	 */
   1282 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1283 		KASSERT(bp->b_bufsize >= size);
   1284 	} else {
   1285 		if (allocbuf(bp, size, preserve)) {
   1286 			mutex_enter(&bufcache_lock);
   1287 			LIST_REMOVE(bp, b_hash);
   1288 			brelsel(bp, BC_INVAL);
   1289 			mutex_exit(&bufcache_lock);
   1290 			SDT_PROBE4(io, kernel, , getblk__done,
   1291 			    vp, blkno, size, NULL);
   1292 			return NULL;
   1293 		}
   1294 	}
   1295 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1296 	SDT_PROBE4(io, kernel, , getblk__done,  vp, blkno, size, bp);
   1297 	return (bp);
   1298 }
   1299 
   1300 /*
   1301  * Get an empty, disassociated buffer of given size.
   1302  */
   1303 buf_t *
   1304 geteblk(int size)
   1305 {
   1306 	buf_t *bp;
   1307 	int error __diagused;
   1308 
   1309 	mutex_enter(&bufcache_lock);
   1310 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1311 		;
   1312 
   1313 	SET(bp->b_cflags, BC_INVAL);
   1314 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1315 	mutex_exit(&bufcache_lock);
   1316 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1317 	error = allocbuf(bp, size, 0);
   1318 	KASSERT(error == 0);
   1319 	return (bp);
   1320 }
   1321 
   1322 /*
   1323  * Expand or contract the actual memory allocated to a buffer.
   1324  *
   1325  * If the buffer shrinks, data is lost, so it's up to the
   1326  * caller to have written it out *first*; this routine will not
   1327  * start a write.  If the buffer grows, it's the callers
   1328  * responsibility to fill out the buffer's additional contents.
   1329  */
   1330 int
   1331 allocbuf(buf_t *bp, int size, int preserve)
   1332 {
   1333 	void *addr;
   1334 	vsize_t oldsize, desired_size;
   1335 	int oldcount;
   1336 	int delta;
   1337 
   1338 	desired_size = buf_roundsize(size);
   1339 	if (desired_size > MAXBSIZE)
   1340 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1341 
   1342 	oldcount = bp->b_bcount;
   1343 
   1344 	bp->b_bcount = size;
   1345 
   1346 	oldsize = bp->b_bufsize;
   1347 	if (oldsize == desired_size) {
   1348 		/*
   1349 		 * Do not short cut the WAPBL resize, as the buffer length
   1350 		 * could still have changed and this would corrupt the
   1351 		 * tracking of the transaction length.
   1352 		 */
   1353 		goto out;
   1354 	}
   1355 
   1356 	/*
   1357 	 * If we want a buffer of a different size, re-allocate the
   1358 	 * buffer's memory; copy old content only if needed.
   1359 	 */
   1360 	addr = buf_alloc(desired_size);
   1361 	if (addr == NULL)
   1362 		return ENOMEM;
   1363 	if (preserve)
   1364 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1365 	if (bp->b_data != NULL)
   1366 		buf_mrelease(bp->b_data, oldsize);
   1367 	bp->b_data = addr;
   1368 	bp->b_bufsize = desired_size;
   1369 
   1370 	/*
   1371 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1372 	 */
   1373 	delta = (long)desired_size - (long)oldsize;
   1374 
   1375 	mutex_enter(&bufcache_lock);
   1376 	if ((bufmem += delta) > bufmem_hiwater) {
   1377 		/*
   1378 		 * Need to trim overall memory usage.
   1379 		 */
   1380 		while (buf_canrelease()) {
   1381 			if (curcpu()->ci_schedstate.spc_flags &
   1382 			    SPCF_SHOULDYIELD) {
   1383 				mutex_exit(&bufcache_lock);
   1384 				preempt();
   1385 				mutex_enter(&bufcache_lock);
   1386 			}
   1387 			if (buf_trim() == 0)
   1388 				break;
   1389 		}
   1390 	}
   1391 	mutex_exit(&bufcache_lock);
   1392 
   1393  out:
   1394 	if (wapbl_vphaswapbl(bp->b_vp))
   1395 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1396 
   1397 	return 0;
   1398 }
   1399 
   1400 /*
   1401  * Find a buffer which is available for use.
   1402  * Select something from a free list.
   1403  * Preference is to AGE list, then LRU list.
   1404  *
   1405  * Called with the buffer queues locked.
   1406  * Return buffer locked.
   1407  */
   1408 static buf_t *
   1409 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1410 {
   1411 	buf_t *bp;
   1412 	struct vnode *vp;
   1413 	struct mount *transmp = NULL;
   1414 
   1415 	SDT_PROBE0(io, kernel, , getnewbuf__start);
   1416 
   1417  start:
   1418 	KASSERT(mutex_owned(&bufcache_lock));
   1419 
   1420 	/*
   1421 	 * Get a new buffer from the pool.
   1422 	 */
   1423 	if (!from_bufq && buf_lotsfree()) {
   1424 		mutex_exit(&bufcache_lock);
   1425 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1426 		if (bp != NULL) {
   1427 			memset((char *)bp, 0, sizeof(*bp));
   1428 			buf_init(bp);
   1429 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1430 			mutex_enter(&bufcache_lock);
   1431 #if defined(DIAGNOSTIC)
   1432 			bp->b_freelistindex = -1;
   1433 #endif /* defined(DIAGNOSTIC) */
   1434 			SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1435 			return (bp);
   1436 		}
   1437 		mutex_enter(&bufcache_lock);
   1438 	}
   1439 
   1440 	KASSERT(mutex_owned(&bufcache_lock));
   1441 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
   1442 		KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
   1443 	} else {
   1444 		TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
   1445 			if (ISSET(bp->b_cflags, BC_VFLUSH) ||
   1446 			    !ISSET(bp->b_oflags, BO_DELWRI))
   1447 				break;
   1448 			if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
   1449 				KASSERT(transmp == NULL);
   1450 				transmp = bp->b_vp->v_mount;
   1451 				break;
   1452 			}
   1453 		}
   1454 	}
   1455 	if (bp != NULL) {
   1456 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1457 		bremfree(bp);
   1458 
   1459 		/* Buffer is no longer on free lists. */
   1460 		SET(bp->b_cflags, BC_BUSY);
   1461 
   1462 		/* Wake anyone trying to lock the old identity. */
   1463 		cv_broadcast(&bp->b_busy);
   1464 	} else {
   1465 		/*
   1466 		 * XXX: !from_bufq should be removed.
   1467 		 */
   1468 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1469 			/* wait for a free buffer of any kind */
   1470 			if ((slpflag & PCATCH) != 0)
   1471 				(void)cv_timedwait_sig(&needbuffer_cv,
   1472 				    &bufcache_lock, slptimeo);
   1473 			else
   1474 				(void)cv_timedwait(&needbuffer_cv,
   1475 				    &bufcache_lock, slptimeo);
   1476 		}
   1477 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1478 		return (NULL);
   1479 	}
   1480 
   1481 #ifdef DIAGNOSTIC
   1482 	if (bp->b_bufsize <= 0)
   1483 		panic("buffer %p: on queue but empty", bp);
   1484 #endif
   1485 
   1486 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1487 		/*
   1488 		 * This is a delayed write buffer being flushed to disk.  Make
   1489 		 * sure it gets aged out of the queue when it's finished, and
   1490 		 * leave it off the LRU queue.
   1491 		 */
   1492 		CLR(bp->b_cflags, BC_VFLUSH);
   1493 		SET(bp->b_cflags, BC_AGE);
   1494 		goto start;
   1495 	}
   1496 
   1497 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1498 	KASSERT(bp->b_refcnt > 0);
   1499     	KASSERT(!cv_has_waiters(&bp->b_done));
   1500 
   1501 	/*
   1502 	 * If buffer was a delayed write, start it and return NULL
   1503 	 * (since we might sleep while starting the write).
   1504 	 */
   1505 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1506 		/*
   1507 		 * This buffer has gone through the LRU, so make sure it gets
   1508 		 * reused ASAP.
   1509 		 */
   1510 		SET(bp->b_cflags, BC_AGE);
   1511 		mutex_exit(&bufcache_lock);
   1512 		bawrite(bp);
   1513 		KASSERT(transmp != NULL);
   1514 		fstrans_done(transmp);
   1515 		mutex_enter(&bufcache_lock);
   1516 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1517 		return (NULL);
   1518 	}
   1519 
   1520 	KASSERT(transmp == NULL);
   1521 
   1522 	vp = bp->b_vp;
   1523 
   1524 	/* clear out various other fields */
   1525 	bp->b_cflags = BC_BUSY;
   1526 	bp->b_oflags = 0;
   1527 	bp->b_flags = 0;
   1528 	bp->b_dev = NODEV;
   1529 	bp->b_blkno = 0;
   1530 	bp->b_lblkno = 0;
   1531 	bp->b_rawblkno = 0;
   1532 	bp->b_iodone = 0;
   1533 	bp->b_error = 0;
   1534 	bp->b_resid = 0;
   1535 	bp->b_bcount = 0;
   1536 
   1537 	LIST_REMOVE(bp, b_hash);
   1538 
   1539 	/* Disassociate us from our vnode, if we had one... */
   1540 	if (vp != NULL) {
   1541 		mutex_enter(vp->v_interlock);
   1542 		brelvp(bp);
   1543 		mutex_exit(vp->v_interlock);
   1544 	}
   1545 
   1546 	SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1547 	return (bp);
   1548 }
   1549 
   1550 /*
   1551  * Attempt to free an aged buffer off the queues.
   1552  * Called with queue lock held.
   1553  * Returns the amount of buffer memory freed.
   1554  */
   1555 static int
   1556 buf_trim(void)
   1557 {
   1558 	buf_t *bp;
   1559 	long size;
   1560 
   1561 	KASSERT(mutex_owned(&bufcache_lock));
   1562 
   1563 	/* Instruct getnewbuf() to get buffers off the queues */
   1564 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1565 		return 0;
   1566 
   1567 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1568 	size = bp->b_bufsize;
   1569 	bufmem -= size;
   1570 	if (size > 0) {
   1571 		buf_mrelease(bp->b_data, size);
   1572 		bp->b_bcount = bp->b_bufsize = 0;
   1573 	}
   1574 	/* brelse() will return the buffer to the global buffer pool */
   1575 	brelsel(bp, 0);
   1576 	return size;
   1577 }
   1578 
   1579 int
   1580 buf_drain(int n)
   1581 {
   1582 	int size = 0, sz;
   1583 
   1584 	KASSERT(mutex_owned(&bufcache_lock));
   1585 
   1586 	while (size < n && bufmem > bufmem_lowater) {
   1587 		sz = buf_trim();
   1588 		if (sz <= 0)
   1589 			break;
   1590 		size += sz;
   1591 	}
   1592 
   1593 	return size;
   1594 }
   1595 
   1596 /*
   1597  * Wait for operations on the buffer to complete.
   1598  * When they do, extract and return the I/O's error value.
   1599  */
   1600 int
   1601 biowait(buf_t *bp)
   1602 {
   1603 
   1604 	BIOHIST_FUNC(__func__);
   1605 
   1606 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1607 	KASSERT(bp->b_refcnt > 0);
   1608 
   1609 	SDT_PROBE1(io, kernel, , wait__start, bp);
   1610 
   1611 	mutex_enter(bp->b_objlock);
   1612 
   1613 	BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
   1614 	    (uintptr_t)bp, bp->b_oflags,
   1615 	    (uintptr_t)__builtin_return_address(0), 0);
   1616 
   1617 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
   1618 		BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1619 		cv_wait(&bp->b_done, bp->b_objlock);
   1620 	}
   1621 	mutex_exit(bp->b_objlock);
   1622 
   1623 	SDT_PROBE1(io, kernel, , wait__done, bp);
   1624 
   1625 	BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
   1626 
   1627 	return bp->b_error;
   1628 }
   1629 
   1630 /*
   1631  * Mark I/O complete on a buffer.
   1632  *
   1633  * If a callback has been requested, e.g. the pageout
   1634  * daemon, do so. Otherwise, awaken waiting processes.
   1635  *
   1636  * [ Leffler, et al., says on p.247:
   1637  *	"This routine wakes up the blocked process, frees the buffer
   1638  *	for an asynchronous write, or, for a request by the pagedaemon
   1639  *	process, invokes a procedure specified in the buffer structure" ]
   1640  *
   1641  * In real life, the pagedaemon (or other system processes) wants
   1642  * to do async stuff too, and doesn't want the buffer brelse()'d.
   1643  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1644  * for the vn device, that puts allocated buffers on the free lists!)
   1645  */
   1646 void
   1647 biodone(buf_t *bp)
   1648 {
   1649 	int s;
   1650 
   1651 	BIOHIST_FUNC(__func__);
   1652 
   1653 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1654 
   1655 	if (cpu_intr_p()) {
   1656 		/* From interrupt mode: defer to a soft interrupt. */
   1657 		s = splvm();
   1658 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1659 
   1660 		BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
   1661 		    (uintptr_t)bp, 0, 0, 0);
   1662 		softint_schedule(biodone_sih);
   1663 		splx(s);
   1664 	} else {
   1665 		/* Process now - the buffer may be freed soon. */
   1666 		biodone2(bp);
   1667 	}
   1668 }
   1669 
   1670 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
   1671 
   1672 static void
   1673 biodone2(buf_t *bp)
   1674 {
   1675 	void (*callout)(buf_t *);
   1676 
   1677 	SDT_PROBE1(io, kernel, ,done, bp);
   1678 
   1679 	BIOHIST_FUNC(__func__);
   1680 	BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1681 
   1682 	mutex_enter(bp->b_objlock);
   1683 	/* Note that the transfer is done. */
   1684 	if (ISSET(bp->b_oflags, BO_DONE))
   1685 		panic("biodone2 already");
   1686 	CLR(bp->b_flags, B_COWDONE);
   1687 	SET(bp->b_oflags, BO_DONE);
   1688 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1689 
   1690 	/* Wake up waiting writers. */
   1691 	if (!ISSET(bp->b_flags, B_READ))
   1692 		vwakeup(bp);
   1693 
   1694 	if ((callout = bp->b_iodone) != NULL) {
   1695 		BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
   1696 		    0, 0, 0);
   1697 
   1698 		/* Note callout done, then call out. */
   1699 		KASSERT(!cv_has_waiters(&bp->b_done));
   1700 		bp->b_iodone = NULL;
   1701 		mutex_exit(bp->b_objlock);
   1702 		(*callout)(bp);
   1703 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1704 		/* If async, release. */
   1705 		BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
   1706 		KASSERT(!cv_has_waiters(&bp->b_done));
   1707 		mutex_exit(bp->b_objlock);
   1708 		brelse(bp, 0);
   1709 	} else {
   1710 		/* Otherwise just wake up waiters in biowait(). */
   1711 		BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
   1712 		cv_broadcast(&bp->b_done);
   1713 		mutex_exit(bp->b_objlock);
   1714 	}
   1715 }
   1716 
   1717 static void
   1718 biointr(void *cookie)
   1719 {
   1720 	struct cpu_info *ci;
   1721 	buf_t *bp;
   1722 	int s;
   1723 
   1724 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
   1725 
   1726 	ci = curcpu();
   1727 
   1728 	s = splvm();
   1729 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1730 		KASSERT(curcpu() == ci);
   1731 
   1732 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1733 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1734 		splx(s);
   1735 
   1736 		BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1737 		biodone2(bp);
   1738 
   1739 		s = splvm();
   1740 	}
   1741 	splx(s);
   1742 }
   1743 
   1744 /*
   1745  * Wait for all buffers to complete I/O
   1746  * Return the number of "stuck" buffers.
   1747  */
   1748 int
   1749 buf_syncwait(void)
   1750 {
   1751 	buf_t *bp;
   1752 	int iter, nbusy, nbusy_prev = 0, ihash;
   1753 
   1754 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
   1755 
   1756 	for (iter = 0; iter < 20;) {
   1757 		mutex_enter(&bufcache_lock);
   1758 		nbusy = 0;
   1759 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1760 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1761 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1762 				nbusy += ((bp->b_flags & B_READ) == 0);
   1763 		    }
   1764 		}
   1765 		mutex_exit(&bufcache_lock);
   1766 
   1767 		if (nbusy == 0)
   1768 			break;
   1769 		if (nbusy_prev == 0)
   1770 			nbusy_prev = nbusy;
   1771 		printf("%d ", nbusy);
   1772 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
   1773 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1774 			iter++;
   1775 		else
   1776 			nbusy_prev = nbusy;
   1777 	}
   1778 
   1779 	if (nbusy) {
   1780 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1781 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1782 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1783 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1784 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1785 			    (bp->b_flags & B_READ) == 0)
   1786 				vprint(NULL, bp->b_vp);
   1787 		    }
   1788 		}
   1789 #endif
   1790 	}
   1791 
   1792 	return nbusy;
   1793 }
   1794 
   1795 static void
   1796 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
   1797 {
   1798 	const bool allowaddr = get_expose_address(curproc);
   1799 
   1800 	memset(o, 0, sizeof(*o));
   1801 
   1802 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1803 	o->b_error = i->b_error;
   1804 	o->b_prio = i->b_prio;
   1805 	o->b_dev = i->b_dev;
   1806 	o->b_bufsize = i->b_bufsize;
   1807 	o->b_bcount = i->b_bcount;
   1808 	o->b_resid = i->b_resid;
   1809 	COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
   1810 	o->b_blkno = i->b_blkno;
   1811 	o->b_rawblkno = i->b_rawblkno;
   1812 	COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
   1813 	COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
   1814 	COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
   1815 	COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
   1816 	o->b_lblkno = i->b_lblkno;
   1817 }
   1818 
   1819 #define KERN_BUFSLOP 20
   1820 static int
   1821 sysctl_dobuf(SYSCTLFN_ARGS)
   1822 {
   1823 	buf_t *bp;
   1824 	struct buf_sysctl bs;
   1825 	struct bqueue *bq;
   1826 	char *dp;
   1827 	u_int i, op, arg;
   1828 	size_t len, needed, elem_size, out_size;
   1829 	int error, elem_count, retries;
   1830 
   1831 	if (namelen == 1 && name[0] == CTL_QUERY)
   1832 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1833 
   1834 	if (namelen != 4)
   1835 		return (EINVAL);
   1836 
   1837 	retries = 100;
   1838  retry:
   1839 	dp = oldp;
   1840 	len = (oldp != NULL) ? *oldlenp : 0;
   1841 	op = name[0];
   1842 	arg = name[1];
   1843 	elem_size = name[2];
   1844 	elem_count = name[3];
   1845 	out_size = MIN(sizeof(bs), elem_size);
   1846 
   1847 	/*
   1848 	 * at the moment, these are just "placeholders" to make the
   1849 	 * API for retrieving kern.buf data more extensible in the
   1850 	 * future.
   1851 	 *
   1852 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1853 	 * these will be resolved at a later point.
   1854 	 */
   1855 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1856 	    elem_size < 1 || elem_count < 0)
   1857 		return (EINVAL);
   1858 
   1859 	error = 0;
   1860 	needed = 0;
   1861 	sysctl_unlock();
   1862 	mutex_enter(&bufcache_lock);
   1863 	for (i = 0; i < BQUEUES; i++) {
   1864 		bq = &bufqueues[i];
   1865 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1866 			bq->bq_marker = bp;
   1867 			if (len >= elem_size && elem_count > 0) {
   1868 				sysctl_fillbuf(bp, &bs);
   1869 				mutex_exit(&bufcache_lock);
   1870 				error = copyout(&bs, dp, out_size);
   1871 				mutex_enter(&bufcache_lock);
   1872 				if (error)
   1873 					break;
   1874 				if (bq->bq_marker != bp) {
   1875 					/*
   1876 					 * This sysctl node is only for
   1877 					 * statistics.  Retry; if the
   1878 					 * queue keeps changing, then
   1879 					 * bail out.
   1880 					 */
   1881 					if (retries-- == 0) {
   1882 						error = EAGAIN;
   1883 						break;
   1884 					}
   1885 					mutex_exit(&bufcache_lock);
   1886 					sysctl_relock();
   1887 					goto retry;
   1888 				}
   1889 				dp += elem_size;
   1890 				len -= elem_size;
   1891 			}
   1892 			needed += elem_size;
   1893 			if (elem_count > 0 && elem_count != INT_MAX)
   1894 				elem_count--;
   1895 		}
   1896 		if (error != 0)
   1897 			break;
   1898 	}
   1899 	mutex_exit(&bufcache_lock);
   1900 	sysctl_relock();
   1901 
   1902 	*oldlenp = needed;
   1903 	if (oldp == NULL)
   1904 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1905 
   1906 	return (error);
   1907 }
   1908 
   1909 static int
   1910 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1911 {
   1912 	int error, rv;
   1913 	struct sysctlnode node;
   1914 	unsigned int temp_bufcache;
   1915 	unsigned long temp_water;
   1916 
   1917 	/* Take a copy of the supplied node and its data */
   1918 	node = *rnode;
   1919 	if (node.sysctl_data == &bufcache) {
   1920 	    node.sysctl_data = &temp_bufcache;
   1921 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
   1922 	} else {
   1923 	    node.sysctl_data = &temp_water;
   1924 	    temp_water = *(unsigned long *)rnode->sysctl_data;
   1925 	}
   1926 
   1927 	/* Update the copy */
   1928 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1929 	if (error || newp == NULL)
   1930 		return (error);
   1931 
   1932 	if (rnode->sysctl_data == &bufcache) {
   1933 		if (temp_bufcache > 100)
   1934 			return (EINVAL);
   1935 		bufcache = temp_bufcache;
   1936 		buf_setwm();
   1937 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1938 		if (bufmem_hiwater - temp_water < 16)
   1939 			return (EINVAL);
   1940 		bufmem_lowater = temp_water;
   1941 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1942 		if (temp_water - bufmem_lowater < 16)
   1943 			return (EINVAL);
   1944 		bufmem_hiwater = temp_water;
   1945 	} else
   1946 		return (EINVAL);
   1947 
   1948 	/* Drain until below new high water mark */
   1949 	sysctl_unlock();
   1950 	mutex_enter(&bufcache_lock);
   1951 	while (bufmem > bufmem_hiwater) {
   1952 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
   1953 		if (rv <= 0)
   1954 			break;
   1955 	}
   1956 	mutex_exit(&bufcache_lock);
   1957 	sysctl_relock();
   1958 
   1959 	return 0;
   1960 }
   1961 
   1962 static struct sysctllog *vfsbio_sysctllog;
   1963 
   1964 static void
   1965 sysctl_kern_buf_setup(void)
   1966 {
   1967 
   1968 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1969 		       CTLFLAG_PERMANENT,
   1970 		       CTLTYPE_NODE, "buf",
   1971 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1972 		       sysctl_dobuf, 0, NULL, 0,
   1973 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1974 }
   1975 
   1976 static void
   1977 sysctl_vm_buf_setup(void)
   1978 {
   1979 
   1980 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1981 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1982 		       CTLTYPE_INT, "bufcache",
   1983 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1984 				    "buffer cache"),
   1985 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1986 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1987 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1988 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1989 		       CTLTYPE_LONG, "bufmem",
   1990 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1991 				    "cache"),
   1992 		       NULL, 0, &bufmem, 0,
   1993 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1994 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1995 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1996 		       CTLTYPE_LONG, "bufmem_lowater",
   1997 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1998 				    "reserve for buffer cache"),
   1999 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   2000 		       CTL_VM, CTL_CREATE, CTL_EOL);
   2001 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   2002 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2003 		       CTLTYPE_LONG, "bufmem_hiwater",
   2004 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   2005 				    "for buffer cache"),
   2006 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   2007 		       CTL_VM, CTL_CREATE, CTL_EOL);
   2008 }
   2009 
   2010 #ifdef DEBUG
   2011 /*
   2012  * Print out statistics on the current allocation of the buffer pool.
   2013  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   2014  * in vfs_syscalls.c using sysctl.
   2015  */
   2016 void
   2017 vfs_bufstats(void)
   2018 {
   2019 	int i, j, count;
   2020 	buf_t *bp;
   2021 	struct bqueue *dp;
   2022 	int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
   2023 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   2024 
   2025 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   2026 		count = 0;
   2027 		memset(counts, 0, sizeof(counts));
   2028 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   2029 			counts[bp->b_bufsize / PAGE_SIZE]++;
   2030 			count++;
   2031 		}
   2032 		printf("%s: total-%d", bname[i], count);
   2033 		for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
   2034 			if (counts[j] != 0)
   2035 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   2036 		printf("\n");
   2037 	}
   2038 }
   2039 #endif /* DEBUG */
   2040 
   2041 /* ------------------------------ */
   2042 
   2043 buf_t *
   2044 getiobuf(struct vnode *vp, bool waitok)
   2045 {
   2046 	buf_t *bp;
   2047 
   2048 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   2049 	if (bp == NULL)
   2050 		return bp;
   2051 
   2052 	buf_init(bp);
   2053 
   2054 	if ((bp->b_vp = vp) != NULL) {
   2055 		bp->b_objlock = vp->v_interlock;
   2056 	} else {
   2057 		KASSERT(bp->b_objlock == &buffer_lock);
   2058 	}
   2059 
   2060 	return bp;
   2061 }
   2062 
   2063 void
   2064 putiobuf(buf_t *bp)
   2065 {
   2066 
   2067 	buf_destroy(bp);
   2068 	pool_cache_put(bufio_cache, bp);
   2069 }
   2070 
   2071 /*
   2072  * nestiobuf_iodone: b_iodone callback for nested buffers.
   2073  */
   2074 
   2075 void
   2076 nestiobuf_iodone(buf_t *bp)
   2077 {
   2078 	buf_t *mbp = bp->b_private;
   2079 	int error;
   2080 	int donebytes;
   2081 
   2082 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   2083 	KASSERT(mbp != bp);
   2084 
   2085 	error = bp->b_error;
   2086 	if (bp->b_error == 0 &&
   2087 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   2088 		/*
   2089 		 * Not all got transferred, raise an error. We have no way to
   2090 		 * propagate these conditions to mbp.
   2091 		 */
   2092 		error = EIO;
   2093 	}
   2094 
   2095 	donebytes = bp->b_bufsize;
   2096 
   2097 	putiobuf(bp);
   2098 	nestiobuf_done(mbp, donebytes, error);
   2099 }
   2100 
   2101 /*
   2102  * nestiobuf_setup: setup a "nested" buffer.
   2103  *
   2104  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   2105  * => 'bp' should be a buffer allocated by getiobuf.
   2106  * => 'offset' is a byte offset in the master buffer.
   2107  * => 'size' is a size in bytes of this nested buffer.
   2108  */
   2109 
   2110 void
   2111 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   2112 {
   2113 	const int b_pass = mbp->b_flags & (B_READ|B_MEDIA_FLAGS);
   2114 	struct vnode *vp = mbp->b_vp;
   2115 
   2116 	KASSERT(mbp->b_bcount >= offset + size);
   2117 	bp->b_vp = vp;
   2118 	bp->b_dev = mbp->b_dev;
   2119 	bp->b_objlock = mbp->b_objlock;
   2120 	bp->b_cflags = BC_BUSY;
   2121 	bp->b_flags = B_ASYNC | b_pass;
   2122 	bp->b_iodone = nestiobuf_iodone;
   2123 	bp->b_data = (char *)mbp->b_data + offset;
   2124 	bp->b_resid = bp->b_bcount = size;
   2125 	bp->b_bufsize = bp->b_bcount;
   2126 	bp->b_private = mbp;
   2127 	BIO_COPYPRIO(bp, mbp);
   2128 	if (BUF_ISWRITE(bp) && vp != NULL) {
   2129 		mutex_enter(vp->v_interlock);
   2130 		vp->v_numoutput++;
   2131 		mutex_exit(vp->v_interlock);
   2132 	}
   2133 }
   2134 
   2135 /*
   2136  * nestiobuf_done: propagate completion to the master buffer.
   2137  *
   2138  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   2139  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   2140  */
   2141 
   2142 void
   2143 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   2144 {
   2145 
   2146 	if (donebytes == 0) {
   2147 		return;
   2148 	}
   2149 	mutex_enter(mbp->b_objlock);
   2150 	KASSERT(mbp->b_resid >= donebytes);
   2151 	mbp->b_resid -= donebytes;
   2152 	if (error)
   2153 		mbp->b_error = error;
   2154 	if (mbp->b_resid == 0) {
   2155 		if (mbp->b_error)
   2156 			mbp->b_resid = mbp->b_bcount;
   2157 		mutex_exit(mbp->b_objlock);
   2158 		biodone(mbp);
   2159 	} else
   2160 		mutex_exit(mbp->b_objlock);
   2161 }
   2162 
   2163 void
   2164 buf_init(buf_t *bp)
   2165 {
   2166 
   2167 	cv_init(&bp->b_busy, "biolock");
   2168 	cv_init(&bp->b_done, "biowait");
   2169 	bp->b_dev = NODEV;
   2170 	bp->b_error = 0;
   2171 	bp->b_flags = 0;
   2172 	bp->b_cflags = 0;
   2173 	bp->b_oflags = 0;
   2174 	bp->b_objlock = &buffer_lock;
   2175 	bp->b_iodone = NULL;
   2176 	bp->b_refcnt = 1;
   2177 	bp->b_dev = NODEV;
   2178 	bp->b_vnbufs.le_next = NOLIST;
   2179 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2180 }
   2181 
   2182 void
   2183 buf_destroy(buf_t *bp)
   2184 {
   2185 
   2186 	cv_destroy(&bp->b_done);
   2187 	cv_destroy(&bp->b_busy);
   2188 }
   2189 
   2190 int
   2191 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2192 {
   2193 	int error;
   2194 
   2195 	KASSERT(mutex_owned(&bufcache_lock));
   2196 
   2197 	SDT_PROBE4(io, kernel, , bbusy__start,  bp, intr, timo, interlock);
   2198 
   2199 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2200 		if (curlwp == uvm.pagedaemon_lwp) {
   2201 			error = EDEADLK;
   2202 			goto out;
   2203 		}
   2204 		bp->b_cflags |= BC_WANTED;
   2205 		bref(bp);
   2206 		if (interlock != NULL)
   2207 			mutex_exit(interlock);
   2208 		if (intr) {
   2209 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2210 			    timo);
   2211 		} else {
   2212 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2213 			    timo);
   2214 		}
   2215 		brele(bp);
   2216 		if (interlock != NULL)
   2217 			mutex_enter(interlock);
   2218 		if (error != 0)
   2219 			goto out;
   2220 		error = EPASSTHROUGH;
   2221 		goto out;
   2222 	}
   2223 	bp->b_cflags |= BC_BUSY;
   2224 	error = 0;
   2225 
   2226 out:	SDT_PROBE5(io, kernel, , bbusy__done,
   2227 	    bp, intr, timo, interlock, error);
   2228 	return 0;
   2229 }
   2230 
   2231 /*
   2232  * Nothing outside this file should really need to know about nbuf,
   2233  * but a few things still want to read it, so give them a way to do that.
   2234  */
   2235 u_int
   2236 buf_nbuf(void)
   2237 {
   2238 
   2239 	return nbuf;
   2240 }
   2241