Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.293
      1 /*	$NetBSD: vfs_bio.c,v 1.293 2020/04/11 14:48:19 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.293 2020/04/11 14:48:19 jdolecek Exp $");
    127 
    128 #ifdef _KERNEL_OPT
    129 #include "opt_bufcache.h"
    130 #include "opt_dtrace.h"
    131 #include "opt_biohist.h"
    132 #endif
    133 
    134 #include <sys/param.h>
    135 #include <sys/systm.h>
    136 #include <sys/kernel.h>
    137 #include <sys/proc.h>
    138 #include <sys/buf.h>
    139 #include <sys/vnode.h>
    140 #include <sys/mount.h>
    141 #include <sys/resourcevar.h>
    142 #include <sys/sysctl.h>
    143 #include <sys/conf.h>
    144 #include <sys/kauth.h>
    145 #include <sys/fstrans.h>
    146 #include <sys/intr.h>
    147 #include <sys/cpu.h>
    148 #include <sys/wapbl.h>
    149 #include <sys/bitops.h>
    150 #include <sys/cprng.h>
    151 #include <sys/sdt.h>
    152 
    153 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    154 
    155 #include <miscfs/specfs/specdev.h>
    156 
    157 SDT_PROVIDER_DEFINE(io);
    158 
    159 SDT_PROBE_DEFINE4(io, kernel, , bbusy__start,
    160     "struct buf *"/*bp*/,
    161     "bool"/*intr*/, "int"/*timo*/, "kmutex_t *"/*interlock*/);
    162 SDT_PROBE_DEFINE5(io, kernel, , bbusy__done,
    163     "struct buf *"/*bp*/,
    164     "bool"/*intr*/,
    165     "int"/*timo*/,
    166     "kmutex_t *"/*interlock*/,
    167     "int"/*error*/);
    168 SDT_PROBE_DEFINE0(io, kernel, , getnewbuf__start);
    169 SDT_PROBE_DEFINE1(io, kernel, , getnewbuf__done,  "struct buf *"/*bp*/);
    170 SDT_PROBE_DEFINE3(io, kernel, , getblk__start,
    171     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/);
    172 SDT_PROBE_DEFINE4(io, kernel, , getblk__done,
    173     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/,
    174     "struct buf *"/*bp*/);
    175 SDT_PROBE_DEFINE2(io, kernel, , brelse, "struct buf *"/*bp*/, "int"/*set*/);
    176 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
    177 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
    178 
    179 #ifndef	BUFPAGES
    180 # define BUFPAGES 0
    181 #endif
    182 
    183 #ifdef BUFCACHE
    184 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    185 #  error BUFCACHE is not between 5 and 95
    186 # endif
    187 #else
    188 # define BUFCACHE 15
    189 #endif
    190 
    191 u_int	nbuf;			/* desired number of buffer headers */
    192 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    193 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    194 
    195 /*
    196  * Definitions for the buffer free lists.
    197  */
    198 #define	BQUEUES		3		/* number of free buffer queues */
    199 
    200 #define	BQ_LOCKED	0		/* super-blocks &c */
    201 #define	BQ_LRU		1		/* lru, useful buffers */
    202 #define	BQ_AGE		2		/* rubbish */
    203 
    204 struct bqueue {
    205 	TAILQ_HEAD(, buf) bq_queue;
    206 	uint64_t bq_bytes;
    207 	buf_t *bq_marker;
    208 };
    209 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
    210 
    211 /* Function prototypes */
    212 static void buf_setwm(void);
    213 static int buf_trim(void);
    214 static void *bufpool_page_alloc(struct pool *, int);
    215 static void bufpool_page_free(struct pool *, void *);
    216 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
    217 static buf_t *getnewbuf(int, int, int);
    218 static int buf_lotsfree(void);
    219 static int buf_canrelease(void);
    220 static u_long buf_mempoolidx(u_long);
    221 static u_long buf_roundsize(u_long);
    222 static void *buf_alloc(size_t);
    223 static void buf_mrelease(void *, size_t);
    224 static void binsheadfree(buf_t *, struct bqueue *);
    225 static void binstailfree(buf_t *, struct bqueue *);
    226 #ifdef DEBUG
    227 static int checkfreelist(buf_t *, struct bqueue *, int);
    228 #endif
    229 static void biointr(void *);
    230 static void biodone2(buf_t *);
    231 static void sysctl_kern_buf_setup(void);
    232 static void sysctl_vm_buf_setup(void);
    233 
    234 /* Initialization for biohist */
    235 
    236 #include <sys/biohist.h>
    237 
    238 BIOHIST_DEFINE(biohist);
    239 
    240 void
    241 biohist_init(void)
    242 {
    243 
    244 	BIOHIST_INIT(biohist, BIOHIST_SIZE);
    245 }
    246 
    247 /*
    248  * Definitions for the buffer hash lists.
    249  */
    250 #define	BUFHASH(dvp, lbn)	\
    251 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    252 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    253 u_long	bufhash;
    254 
    255 static kcondvar_t needbuffer_cv;
    256 
    257 /*
    258  * Buffer queue lock.
    259  */
    260 kmutex_t bufcache_lock __cacheline_aligned;
    261 kmutex_t buffer_lock __cacheline_aligned;
    262 
    263 /* Software ISR for completed transfers. */
    264 static void *biodone_sih;
    265 
    266 /* Buffer pool for I/O buffers. */
    267 static pool_cache_t buf_cache;
    268 static pool_cache_t bufio_cache;
    269 
    270 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    271 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    272 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    273 
    274 /* Buffer memory pools */
    275 static struct pool bmempools[NMEMPOOLS];
    276 
    277 static struct vm_map *buf_map;
    278 
    279 /*
    280  * Buffer memory pool allocator.
    281  */
    282 static void *
    283 bufpool_page_alloc(struct pool *pp, int flags)
    284 {
    285 
    286 	return (void *)uvm_km_alloc(buf_map,
    287 	    MAXBSIZE, MAXBSIZE,
    288 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    289 	    | UVM_KMF_WIRED);
    290 }
    291 
    292 static void
    293 bufpool_page_free(struct pool *pp, void *v)
    294 {
    295 
    296 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    297 }
    298 
    299 static struct pool_allocator bufmempool_allocator = {
    300 	.pa_alloc = bufpool_page_alloc,
    301 	.pa_free = bufpool_page_free,
    302 	.pa_pagesz = MAXBSIZE,
    303 };
    304 
    305 /* Buffer memory management variables */
    306 u_long bufmem_valimit;
    307 u_long bufmem_hiwater;
    308 u_long bufmem_lowater;
    309 u_long bufmem;
    310 
    311 /*
    312  * MD code can call this to set a hard limit on the amount
    313  * of virtual memory used by the buffer cache.
    314  */
    315 int
    316 buf_setvalimit(vsize_t sz)
    317 {
    318 
    319 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    320 	if (sz < NMEMPOOLS * MAXBSIZE)
    321 		return EINVAL;
    322 
    323 	bufmem_valimit = sz;
    324 	return 0;
    325 }
    326 
    327 static void
    328 buf_setwm(void)
    329 {
    330 
    331 	bufmem_hiwater = buf_memcalc();
    332 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    333 #define	BUFMEM_WMSHIFT	3
    334 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    335 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    336 		/* Ensure a reasonable minimum value */
    337 		bufmem_hiwater = BUFMEM_HIWMMIN;
    338 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    339 }
    340 
    341 #ifdef DEBUG
    342 int debug_verify_freelist = 0;
    343 static int
    344 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    345 {
    346 	buf_t *b;
    347 
    348 	if (!debug_verify_freelist)
    349 		return 1;
    350 
    351 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    352 		if (b == bp)
    353 			return ison ? 1 : 0;
    354 	}
    355 
    356 	return ison ? 0 : 1;
    357 }
    358 #endif
    359 
    360 /*
    361  * Insq/Remq for the buffer hash lists.
    362  * Call with buffer queue locked.
    363  */
    364 static void
    365 binsheadfree(buf_t *bp, struct bqueue *dp)
    366 {
    367 
    368 	KASSERT(mutex_owned(&bufcache_lock));
    369 	KASSERT(bp->b_freelistindex == -1);
    370 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    371 	dp->bq_bytes += bp->b_bufsize;
    372 	bp->b_freelistindex = dp - bufqueues;
    373 }
    374 
    375 static void
    376 binstailfree(buf_t *bp, struct bqueue *dp)
    377 {
    378 
    379 	KASSERT(mutex_owned(&bufcache_lock));
    380 	KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
    381 	    "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
    382 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    383 	dp->bq_bytes += bp->b_bufsize;
    384 	bp->b_freelistindex = dp - bufqueues;
    385 }
    386 
    387 void
    388 bremfree(buf_t *bp)
    389 {
    390 	struct bqueue *dp;
    391 	int bqidx = bp->b_freelistindex;
    392 
    393 	KASSERT(mutex_owned(&bufcache_lock));
    394 
    395 	KASSERT(bqidx != -1);
    396 	dp = &bufqueues[bqidx];
    397 	KDASSERT(checkfreelist(bp, dp, 1));
    398 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    399 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    400 	dp->bq_bytes -= bp->b_bufsize;
    401 
    402 	/* For the sysctl helper. */
    403 	if (bp == dp->bq_marker)
    404 		dp->bq_marker = NULL;
    405 
    406 #if defined(DIAGNOSTIC)
    407 	bp->b_freelistindex = -1;
    408 #endif /* defined(DIAGNOSTIC) */
    409 }
    410 
    411 /*
    412  * note that for some ports this is used by pmap bootstrap code to
    413  * determine kva size.
    414  */
    415 u_long
    416 buf_memcalc(void)
    417 {
    418 	u_long n;
    419 	vsize_t mapsz = 0;
    420 
    421 	/*
    422 	 * Determine the upper bound of memory to use for buffers.
    423 	 *
    424 	 *	- If bufpages is specified, use that as the number
    425 	 *	  pages.
    426 	 *
    427 	 *	- Otherwise, use bufcache as the percentage of
    428 	 *	  physical memory.
    429 	 */
    430 	if (bufpages != 0) {
    431 		n = bufpages;
    432 	} else {
    433 		if (bufcache < 5) {
    434 			printf("forcing bufcache %d -> 5", bufcache);
    435 			bufcache = 5;
    436 		}
    437 		if (bufcache > 95) {
    438 			printf("forcing bufcache %d -> 95", bufcache);
    439 			bufcache = 95;
    440 		}
    441 		if (buf_map != NULL)
    442 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
    443 		n = calc_cache_size(mapsz, bufcache,
    444 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    445 		    / PAGE_SIZE;
    446 	}
    447 
    448 	n <<= PAGE_SHIFT;
    449 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    450 		n = bufmem_valimit;
    451 
    452 	return (n);
    453 }
    454 
    455 /*
    456  * Initialize buffers and hash links for buffers.
    457  */
    458 void
    459 bufinit(void)
    460 {
    461 	struct bqueue *dp;
    462 	int use_std;
    463 	u_int i;
    464 
    465 	biodone_vfs = biodone;
    466 
    467 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    468 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    469 	cv_init(&needbuffer_cv, "needbuf");
    470 
    471 	if (bufmem_valimit != 0) {
    472 		vaddr_t minaddr = 0, maxaddr;
    473 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    474 					  bufmem_valimit, 0, false, 0);
    475 		if (buf_map == NULL)
    476 			panic("bufinit: cannot allocate submap");
    477 	} else
    478 		buf_map = kernel_map;
    479 
    480 	/*
    481 	 * Initialize buffer cache memory parameters.
    482 	 */
    483 	bufmem = 0;
    484 	buf_setwm();
    485 
    486 	/* On "small" machines use small pool page sizes where possible */
    487 	use_std = (physmem < atop(16*1024*1024));
    488 
    489 	/*
    490 	 * Also use them on systems that can map the pool pages using
    491 	 * a direct-mapped segment.
    492 	 */
    493 #ifdef PMAP_MAP_POOLPAGE
    494 	use_std = 1;
    495 #endif
    496 
    497 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    498 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    499 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    500 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    501 
    502 	for (i = 0; i < NMEMPOOLS; i++) {
    503 		struct pool_allocator *pa;
    504 		struct pool *pp = &bmempools[i];
    505 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    506 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    507 		if (__predict_false(size >= 1048576))
    508 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    509 		else if (__predict_true(size >= 1024))
    510 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    511 		else
    512 			(void)snprintf(name, 8, "buf%ub", size);
    513 		pa = (size <= PAGE_SIZE && use_std)
    514 			? &pool_allocator_nointr
    515 			: &bufmempool_allocator;
    516 		pool_init(pp, size, DEV_BSIZE, 0, 0, name, pa, IPL_NONE);
    517 		pool_setlowat(pp, 1);
    518 		pool_sethiwat(pp, 1);
    519 	}
    520 
    521 	/* Initialize the buffer queues */
    522 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    523 		TAILQ_INIT(&dp->bq_queue);
    524 		dp->bq_bytes = 0;
    525 	}
    526 
    527 	/*
    528 	 * Estimate hash table size based on the amount of memory we
    529 	 * intend to use for the buffer cache. The average buffer
    530 	 * size is dependent on our clients (i.e. filesystems).
    531 	 *
    532 	 * For now, use an empirical 3K per buffer.
    533 	 */
    534 	nbuf = (bufmem_hiwater / 1024) / 3;
    535 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    536 
    537 	sysctl_kern_buf_setup();
    538 	sysctl_vm_buf_setup();
    539 }
    540 
    541 void
    542 bufinit2(void)
    543 {
    544 
    545 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    546 	    NULL);
    547 	if (biodone_sih == NULL)
    548 		panic("bufinit2: can't establish soft interrupt");
    549 }
    550 
    551 static int
    552 buf_lotsfree(void)
    553 {
    554 	u_long guess;
    555 
    556 	/* Always allocate if less than the low water mark. */
    557 	if (bufmem < bufmem_lowater)
    558 		return 1;
    559 
    560 	/* Never allocate if greater than the high water mark. */
    561 	if (bufmem > bufmem_hiwater)
    562 		return 0;
    563 
    564 	/* If there's anything on the AGE list, it should be eaten. */
    565 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    566 		return 0;
    567 
    568 	/*
    569 	 * The probabily of getting a new allocation is inversely
    570 	 * proportional  to the current size of the cache above
    571 	 * the low water mark.  Divide the total first to avoid overflows
    572 	 * in the product.
    573 	 */
    574 	guess = cprng_fast32() % 16;
    575 
    576 	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
    577 	    (bufmem - bufmem_lowater))
    578 		return 1;
    579 
    580 	/* Otherwise don't allocate. */
    581 	return 0;
    582 }
    583 
    584 /*
    585  * Return estimate of bytes we think need to be
    586  * released to help resolve low memory conditions.
    587  *
    588  * => called with bufcache_lock held.
    589  */
    590 static int
    591 buf_canrelease(void)
    592 {
    593 	int pagedemand, ninvalid = 0;
    594 
    595 	KASSERT(mutex_owned(&bufcache_lock));
    596 
    597 	if (bufmem < bufmem_lowater)
    598 		return 0;
    599 
    600 	if (bufmem > bufmem_hiwater)
    601 		return bufmem - bufmem_hiwater;
    602 
    603 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    604 
    605 	pagedemand = uvmexp.freetarg - uvm_availmem();
    606 	if (pagedemand < 0)
    607 		return ninvalid;
    608 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    609 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    610 }
    611 
    612 /*
    613  * Buffer memory allocation helper functions
    614  */
    615 static u_long
    616 buf_mempoolidx(u_long size)
    617 {
    618 	u_int n = 0;
    619 
    620 	size -= 1;
    621 	size >>= MEMPOOL_INDEX_OFFSET;
    622 	while (size) {
    623 		size >>= 1;
    624 		n += 1;
    625 	}
    626 	if (n >= NMEMPOOLS)
    627 		panic("buf mem pool index %d", n);
    628 	return n;
    629 }
    630 
    631 static u_long
    632 buf_roundsize(u_long size)
    633 {
    634 	/* Round up to nearest power of 2 */
    635 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    636 }
    637 
    638 static void *
    639 buf_alloc(size_t size)
    640 {
    641 	u_int n = buf_mempoolidx(size);
    642 	void *addr;
    643 
    644 	while (1) {
    645 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    646 		if (addr != NULL)
    647 			break;
    648 
    649 		/* No memory, see if we can free some. If so, try again */
    650 		mutex_enter(&bufcache_lock);
    651 		if (buf_drain(1) > 0) {
    652 			mutex_exit(&bufcache_lock);
    653 			continue;
    654 		}
    655 
    656 		if (curlwp == uvm.pagedaemon_lwp) {
    657 			mutex_exit(&bufcache_lock);
    658 			return NULL;
    659 		}
    660 
    661 		/* Wait for buffers to arrive on the LRU queue */
    662 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    663 		mutex_exit(&bufcache_lock);
    664 	}
    665 
    666 	return addr;
    667 }
    668 
    669 static void
    670 buf_mrelease(void *addr, size_t size)
    671 {
    672 
    673 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    674 }
    675 
    676 /*
    677  * bread()/breadn() helper.
    678  */
    679 static buf_t *
    680 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
    681 {
    682 	buf_t *bp;
    683 	struct mount *mp;
    684 
    685 	bp = getblk(vp, blkno, size, 0, 0);
    686 
    687 	/*
    688 	 * getblk() may return NULL if we are the pagedaemon.
    689 	 */
    690 	if (bp == NULL) {
    691 		KASSERT(curlwp == uvm.pagedaemon_lwp);
    692 		return NULL;
    693 	}
    694 
    695 	/*
    696 	 * If buffer does not have data valid, start a read.
    697 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    698 	 * Therefore, it's valid if its I/O has completed or been delayed.
    699 	 */
    700 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    701 		/* Start I/O for the buffer. */
    702 		SET(bp->b_flags, B_READ | async);
    703 		if (async)
    704 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    705 		else
    706 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    707 		VOP_STRATEGY(vp, bp);
    708 
    709 		/* Pay for the read. */
    710 		curlwp->l_ru.ru_inblock++;
    711 	} else if (async)
    712 		brelse(bp, 0);
    713 
    714 	if (vp->v_type == VBLK)
    715 		mp = spec_node_getmountedfs(vp);
    716 	else
    717 		mp = vp->v_mount;
    718 
    719 	/*
    720 	 * Collect statistics on synchronous and asynchronous reads.
    721 	 * Reads from block devices are charged to their associated
    722 	 * filesystem (if any).
    723 	 */
    724 	if (mp != NULL) {
    725 		if (async == 0)
    726 			mp->mnt_stat.f_syncreads++;
    727 		else
    728 			mp->mnt_stat.f_asyncreads++;
    729 	}
    730 
    731 	return (bp);
    732 }
    733 
    734 /*
    735  * Read a disk block.
    736  * This algorithm described in Bach (p.54).
    737  */
    738 int
    739 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
    740 {
    741 	buf_t *bp;
    742 	int error;
    743 
    744 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    745 
    746 	/* Get buffer for block. */
    747 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    748 	if (bp == NULL)
    749 		return ENOMEM;
    750 
    751 	/* Wait for the read to complete, and return result. */
    752 	error = biowait(bp);
    753 	if (error == 0 && (flags & B_MODIFY) != 0)
    754 		error = fscow_run(bp, true);
    755 	if (error) {
    756 		brelse(bp, 0);
    757 		*bpp = NULL;
    758 	}
    759 
    760 	return error;
    761 }
    762 
    763 /*
    764  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    765  * Trivial modification to the breada algorithm presented in Bach (p.55).
    766  */
    767 int
    768 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    769     int *rasizes, int nrablks, int flags, buf_t **bpp)
    770 {
    771 	buf_t *bp;
    772 	int error, i;
    773 
    774 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    775 
    776 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    777 	if (bp == NULL)
    778 		return ENOMEM;
    779 
    780 	/*
    781 	 * For each of the read-ahead blocks, start a read, if necessary.
    782 	 */
    783 	mutex_enter(&bufcache_lock);
    784 	for (i = 0; i < nrablks; i++) {
    785 		/* If it's in the cache, just go on to next one. */
    786 		if (incore(vp, rablks[i]))
    787 			continue;
    788 
    789 		/* Get a buffer for the read-ahead block */
    790 		mutex_exit(&bufcache_lock);
    791 		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
    792 		mutex_enter(&bufcache_lock);
    793 	}
    794 	mutex_exit(&bufcache_lock);
    795 
    796 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    797 	error = biowait(bp);
    798 	if (error == 0 && (flags & B_MODIFY) != 0)
    799 		error = fscow_run(bp, true);
    800 	if (error) {
    801 		brelse(bp, 0);
    802 		*bpp = NULL;
    803 	}
    804 
    805 	return error;
    806 }
    807 
    808 /*
    809  * Block write.  Described in Bach (p.56)
    810  */
    811 int
    812 bwrite(buf_t *bp)
    813 {
    814 	int rv, sync, wasdelayed;
    815 	struct vnode *vp;
    816 	struct mount *mp;
    817 
    818 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    819 	    (uintptr_t)bp, 0, 0, 0);
    820 
    821 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    822 	KASSERT(!cv_has_waiters(&bp->b_done));
    823 
    824 	vp = bp->b_vp;
    825 
    826 	/*
    827 	 * dholland 20160728 AFAICT vp==NULL must be impossible as it
    828 	 * will crash upon reaching VOP_STRATEGY below... see further
    829 	 * analysis on tech-kern.
    830 	 */
    831 	KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
    832 
    833 	if (vp != NULL) {
    834 		KASSERT(bp->b_objlock == vp->v_interlock);
    835 		if (vp->v_type == VBLK)
    836 			mp = spec_node_getmountedfs(vp);
    837 		else
    838 			mp = vp->v_mount;
    839 	} else {
    840 		mp = NULL;
    841 	}
    842 
    843 	if (mp && mp->mnt_wapbl) {
    844 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    845 			bdwrite(bp);
    846 			return 0;
    847 		}
    848 	}
    849 
    850 	/*
    851 	 * Remember buffer type, to switch on it later.  If the write was
    852 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    853 	 * convert it to a delayed write.
    854 	 * XXX note that this relies on delayed tape writes being converted
    855 	 * to async, not sync writes (which is safe, but ugly).
    856 	 */
    857 	sync = !ISSET(bp->b_flags, B_ASYNC);
    858 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    859 		bdwrite(bp);
    860 		return (0);
    861 	}
    862 
    863 	/*
    864 	 * Collect statistics on synchronous and asynchronous writes.
    865 	 * Writes to block devices are charged to their associated
    866 	 * filesystem (if any).
    867 	 */
    868 	if (mp != NULL) {
    869 		if (sync)
    870 			mp->mnt_stat.f_syncwrites++;
    871 		else
    872 			mp->mnt_stat.f_asyncwrites++;
    873 	}
    874 
    875 	/*
    876 	 * Pay for the I/O operation and make sure the buf is on the correct
    877 	 * vnode queue.
    878 	 */
    879 	bp->b_error = 0;
    880 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    881 	CLR(bp->b_flags, B_READ);
    882 	if (wasdelayed) {
    883 		mutex_enter(&bufcache_lock);
    884 		mutex_enter(bp->b_objlock);
    885 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    886 		reassignbuf(bp, bp->b_vp);
    887 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    888 		cv_broadcast(&bp->b_busy);
    889 		mutex_exit(&bufcache_lock);
    890 	} else {
    891 		curlwp->l_ru.ru_oublock++;
    892 		mutex_enter(bp->b_objlock);
    893 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    894 	}
    895 	if (vp != NULL)
    896 		vp->v_numoutput++;
    897 	mutex_exit(bp->b_objlock);
    898 
    899 	/* Initiate disk write. */
    900 	if (sync)
    901 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    902 	else
    903 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    904 
    905 	VOP_STRATEGY(vp, bp);
    906 
    907 	if (sync) {
    908 		/* If I/O was synchronous, wait for it to complete. */
    909 		rv = biowait(bp);
    910 
    911 		/* Release the buffer. */
    912 		brelse(bp, 0);
    913 
    914 		return (rv);
    915 	} else {
    916 		return (0);
    917 	}
    918 }
    919 
    920 int
    921 vn_bwrite(void *v)
    922 {
    923 	struct vop_bwrite_args *ap = v;
    924 
    925 	return (bwrite(ap->a_bp));
    926 }
    927 
    928 /*
    929  * Delayed write.
    930  *
    931  * The buffer is marked dirty, but is not queued for I/O.
    932  * This routine should be used when the buffer is expected
    933  * to be modified again soon, typically a small write that
    934  * partially fills a buffer.
    935  *
    936  * NB: magnetic tapes cannot be delayed; they must be
    937  * written in the order that the writes are requested.
    938  *
    939  * Described in Leffler, et al. (pp. 208-213).
    940  */
    941 void
    942 bdwrite(buf_t *bp)
    943 {
    944 
    945 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    946 	    (uintptr_t)bp, 0, 0, 0);
    947 
    948 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    949 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    950 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    951 	KASSERT(!cv_has_waiters(&bp->b_done));
    952 
    953 	/* If this is a tape block, write the block now. */
    954 	if (bdev_type(bp->b_dev) == D_TAPE) {
    955 		bawrite(bp);
    956 		return;
    957 	}
    958 
    959 	if (wapbl_vphaswapbl(bp->b_vp)) {
    960 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    961 
    962 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    963 			WAPBL_ADD_BUF(mp, bp);
    964 		}
    965 	}
    966 
    967 	/*
    968 	 * If the block hasn't been seen before:
    969 	 *	(1) Mark it as having been seen,
    970 	 *	(2) Charge for the write,
    971 	 *	(3) Make sure it's on its vnode's correct block list.
    972 	 */
    973 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    974 
    975 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    976 		mutex_enter(&bufcache_lock);
    977 		mutex_enter(bp->b_objlock);
    978 		SET(bp->b_oflags, BO_DELWRI);
    979 		curlwp->l_ru.ru_oublock++;
    980 		reassignbuf(bp, bp->b_vp);
    981 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    982 		cv_broadcast(&bp->b_busy);
    983 		mutex_exit(&bufcache_lock);
    984 	} else {
    985 		mutex_enter(bp->b_objlock);
    986 	}
    987 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    988 	CLR(bp->b_oflags, BO_DONE);
    989 	mutex_exit(bp->b_objlock);
    990 
    991 	brelse(bp, 0);
    992 }
    993 
    994 /*
    995  * Asynchronous block write; just an asynchronous bwrite().
    996  */
    997 void
    998 bawrite(buf_t *bp)
    999 {
   1000 
   1001 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1002 	KASSERT(bp->b_vp != NULL);
   1003 
   1004 	SET(bp->b_flags, B_ASYNC);
   1005 	VOP_BWRITE(bp->b_vp, bp);
   1006 }
   1007 
   1008 /*
   1009  * Release a buffer on to the free lists.
   1010  * Described in Bach (p. 46).
   1011  */
   1012 void
   1013 brelsel(buf_t *bp, int set)
   1014 {
   1015 	struct bqueue *bufq;
   1016 	struct vnode *vp;
   1017 
   1018 	SDT_PROBE2(io, kernel, , brelse,  bp, set);
   1019 
   1020 	KASSERT(bp != NULL);
   1021 	KASSERT(mutex_owned(&bufcache_lock));
   1022 	KASSERT(!cv_has_waiters(&bp->b_done));
   1023 
   1024 	SET(bp->b_cflags, set);
   1025 
   1026 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1027 	KASSERT(bp->b_iodone == NULL);
   1028 
   1029 	/* Wake up any processes waiting for any buffer to become free. */
   1030 	cv_signal(&needbuffer_cv);
   1031 
   1032 	/* Wake up any proceeses waiting for _this_ buffer to become free */
   1033 	if (ISSET(bp->b_cflags, BC_WANTED))
   1034 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
   1035 
   1036 	/* If it's clean clear the copy-on-write flag. */
   1037 	if (ISSET(bp->b_flags, B_COWDONE)) {
   1038 		mutex_enter(bp->b_objlock);
   1039 		if (!ISSET(bp->b_oflags, BO_DELWRI))
   1040 			CLR(bp->b_flags, B_COWDONE);
   1041 		mutex_exit(bp->b_objlock);
   1042 	}
   1043 
   1044 	/*
   1045 	 * Determine which queue the buffer should be on, then put it there.
   1046 	 */
   1047 
   1048 	/* If it's locked, don't report an error; try again later. */
   1049 	if (ISSET(bp->b_flags, B_LOCKED))
   1050 		bp->b_error = 0;
   1051 
   1052 	/* If it's not cacheable, or an error, mark it invalid. */
   1053 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1054 		SET(bp->b_cflags, BC_INVAL);
   1055 
   1056 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1057 		/*
   1058 		 * This is a delayed write buffer that was just flushed to
   1059 		 * disk.  It is still on the LRU queue.  If it's become
   1060 		 * invalid, then we need to move it to a different queue;
   1061 		 * otherwise leave it in its current position.
   1062 		 */
   1063 		CLR(bp->b_cflags, BC_VFLUSH);
   1064 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1065 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1066 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1067 			goto already_queued;
   1068 		} else {
   1069 			bremfree(bp);
   1070 		}
   1071 	}
   1072 
   1073 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1074 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1075 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1076 
   1077 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1078 		/*
   1079 		 * If it's invalid or empty, dissociate it from its vnode
   1080 		 * and put on the head of the appropriate queue.
   1081 		 */
   1082 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1083 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1084 				struct mount *mp = wapbl_vptomp(vp);
   1085 
   1086 				KASSERT(bp->b_iodone
   1087 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1088 				WAPBL_REMOVE_BUF(mp, bp);
   1089 			}
   1090 		}
   1091 
   1092 		mutex_enter(bp->b_objlock);
   1093 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1094 		if ((vp = bp->b_vp) != NULL) {
   1095 			KASSERT(bp->b_objlock == vp->v_interlock);
   1096 			reassignbuf(bp, bp->b_vp);
   1097 			brelvp(bp);
   1098 			mutex_exit(vp->v_interlock);
   1099 		} else {
   1100 			KASSERT(bp->b_objlock == &buffer_lock);
   1101 			mutex_exit(bp->b_objlock);
   1102 		}
   1103 		/* We want to dispose of the buffer, so wake everybody. */
   1104 		cv_broadcast(&bp->b_busy);
   1105 		if (bp->b_bufsize <= 0)
   1106 			/* no data */
   1107 			goto already_queued;
   1108 		else
   1109 			/* invalid data */
   1110 			bufq = &bufqueues[BQ_AGE];
   1111 		binsheadfree(bp, bufq);
   1112 	} else  {
   1113 		/*
   1114 		 * It has valid data.  Put it on the end of the appropriate
   1115 		 * queue, so that it'll stick around for as long as possible.
   1116 		 * If buf is AGE, but has dependencies, must put it on last
   1117 		 * bufqueue to be scanned, ie LRU. This protects against the
   1118 		 * livelock where BQ_AGE only has buffers with dependencies,
   1119 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1120 		 */
   1121 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1122 			/* locked in core */
   1123 			bufq = &bufqueues[BQ_LOCKED];
   1124 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1125 			/* valid data */
   1126 			bufq = &bufqueues[BQ_LRU];
   1127 		} else {
   1128 			/* stale but valid data */
   1129 			bufq = &bufqueues[BQ_AGE];
   1130 		}
   1131 		binstailfree(bp, bufq);
   1132 	}
   1133 already_queued:
   1134 	/* Unlock the buffer. */
   1135 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1136 	CLR(bp->b_flags, B_ASYNC);
   1137 
   1138 	/*
   1139 	 * Wake only the highest priority waiter on the lock, in order to
   1140 	 * prevent a thundering herd: many LWPs simultaneously awakening and
   1141 	 * competing for the buffer's lock.  Testing in 2019 revealed this
   1142 	 * to reduce contention on bufcache_lock tenfold during a kernel
   1143 	 * compile.  Here and elsewhere, when the buffer is changing
   1144 	 * identity, being disposed of, or moving from one list to another,
   1145 	 * we wake all lock requestors.
   1146 	 */
   1147 	if (bp->b_bufsize <= 0) {
   1148 		cv_broadcast(&bp->b_busy);
   1149 		buf_destroy(bp);
   1150 #ifdef DEBUG
   1151 		memset((char *)bp, 0, sizeof(*bp));
   1152 #endif
   1153 		pool_cache_put(buf_cache, bp);
   1154 	} else
   1155 		cv_signal(&bp->b_busy);
   1156 }
   1157 
   1158 void
   1159 brelse(buf_t *bp, int set)
   1160 {
   1161 
   1162 	mutex_enter(&bufcache_lock);
   1163 	brelsel(bp, set);
   1164 	mutex_exit(&bufcache_lock);
   1165 }
   1166 
   1167 /*
   1168  * Determine if a block is in the cache.
   1169  * Just look on what would be its hash chain.  If it's there, return
   1170  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1171  * we normally don't return the buffer, unless the caller explicitly
   1172  * wants us to.
   1173  */
   1174 buf_t *
   1175 incore(struct vnode *vp, daddr_t blkno)
   1176 {
   1177 	buf_t *bp;
   1178 
   1179 	KASSERT(mutex_owned(&bufcache_lock));
   1180 
   1181 	/* Search hash chain */
   1182 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1183 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1184 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1185 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1186 		    	return (bp);
   1187 		}
   1188 	}
   1189 
   1190 	return (NULL);
   1191 }
   1192 
   1193 /*
   1194  * Get a block of requested size that is associated with
   1195  * a given vnode and block offset. If it is found in the
   1196  * block cache, mark it as having been found, make it busy
   1197  * and return it. Otherwise, return an empty block of the
   1198  * correct size. It is up to the caller to insure that the
   1199  * cached blocks be of the correct size.
   1200  */
   1201 buf_t *
   1202 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1203 {
   1204 	int err, preserve;
   1205 	buf_t *bp;
   1206 
   1207 	mutex_enter(&bufcache_lock);
   1208 	SDT_PROBE3(io, kernel, , getblk__start,  vp, blkno, size);
   1209  loop:
   1210 	bp = incore(vp, blkno);
   1211 	if (bp != NULL) {
   1212 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1213 		if (err != 0) {
   1214 			if (err == EPASSTHROUGH)
   1215 				goto loop;
   1216 			mutex_exit(&bufcache_lock);
   1217 			SDT_PROBE4(io, kernel, , getblk__done,
   1218 			    vp, blkno, size, NULL);
   1219 			return (NULL);
   1220 		}
   1221 		KASSERT(!cv_has_waiters(&bp->b_done));
   1222 #ifdef DIAGNOSTIC
   1223 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1224 		    bp->b_bcount < size && vp->v_type != VBLK)
   1225 			panic("getblk: block size invariant failed");
   1226 #endif
   1227 		bremfree(bp);
   1228 		preserve = 1;
   1229 	} else {
   1230 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1231 			goto loop;
   1232 
   1233 		if (incore(vp, blkno) != NULL) {
   1234 			/* The block has come into memory in the meantime. */
   1235 			brelsel(bp, 0);
   1236 			goto loop;
   1237 		}
   1238 
   1239 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1240 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1241 		mutex_enter(vp->v_interlock);
   1242 		bgetvp(vp, bp);
   1243 		mutex_exit(vp->v_interlock);
   1244 		preserve = 0;
   1245 	}
   1246 	mutex_exit(&bufcache_lock);
   1247 
   1248 	/*
   1249 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1250 	 * if we re-size buffers here.
   1251 	 */
   1252 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1253 		KASSERT(bp->b_bufsize >= size);
   1254 	} else {
   1255 		if (allocbuf(bp, size, preserve)) {
   1256 			mutex_enter(&bufcache_lock);
   1257 			LIST_REMOVE(bp, b_hash);
   1258 			brelsel(bp, BC_INVAL);
   1259 			mutex_exit(&bufcache_lock);
   1260 			SDT_PROBE4(io, kernel, , getblk__done,
   1261 			    vp, blkno, size, NULL);
   1262 			return NULL;
   1263 		}
   1264 	}
   1265 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1266 	SDT_PROBE4(io, kernel, , getblk__done,  vp, blkno, size, bp);
   1267 	return (bp);
   1268 }
   1269 
   1270 /*
   1271  * Get an empty, disassociated buffer of given size.
   1272  */
   1273 buf_t *
   1274 geteblk(int size)
   1275 {
   1276 	buf_t *bp;
   1277 	int error __diagused;
   1278 
   1279 	mutex_enter(&bufcache_lock);
   1280 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1281 		;
   1282 
   1283 	SET(bp->b_cflags, BC_INVAL);
   1284 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1285 	mutex_exit(&bufcache_lock);
   1286 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1287 	error = allocbuf(bp, size, 0);
   1288 	KASSERT(error == 0);
   1289 	return (bp);
   1290 }
   1291 
   1292 /*
   1293  * Expand or contract the actual memory allocated to a buffer.
   1294  *
   1295  * If the buffer shrinks, data is lost, so it's up to the
   1296  * caller to have written it out *first*; this routine will not
   1297  * start a write.  If the buffer grows, it's the callers
   1298  * responsibility to fill out the buffer's additional contents.
   1299  */
   1300 int
   1301 allocbuf(buf_t *bp, int size, int preserve)
   1302 {
   1303 	void *addr;
   1304 	vsize_t oldsize, desired_size;
   1305 	int oldcount;
   1306 	int delta;
   1307 
   1308 	desired_size = buf_roundsize(size);
   1309 	if (desired_size > MAXBSIZE)
   1310 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1311 
   1312 	oldcount = bp->b_bcount;
   1313 
   1314 	bp->b_bcount = size;
   1315 
   1316 	oldsize = bp->b_bufsize;
   1317 	if (oldsize == desired_size) {
   1318 		/*
   1319 		 * Do not short cut the WAPBL resize, as the buffer length
   1320 		 * could still have changed and this would corrupt the
   1321 		 * tracking of the transaction length.
   1322 		 */
   1323 		goto out;
   1324 	}
   1325 
   1326 	/*
   1327 	 * If we want a buffer of a different size, re-allocate the
   1328 	 * buffer's memory; copy old content only if needed.
   1329 	 */
   1330 	addr = buf_alloc(desired_size);
   1331 	if (addr == NULL)
   1332 		return ENOMEM;
   1333 	if (preserve)
   1334 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1335 	if (bp->b_data != NULL)
   1336 		buf_mrelease(bp->b_data, oldsize);
   1337 	bp->b_data = addr;
   1338 	bp->b_bufsize = desired_size;
   1339 
   1340 	/*
   1341 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1342 	 */
   1343 	delta = (long)desired_size - (long)oldsize;
   1344 
   1345 	mutex_enter(&bufcache_lock);
   1346 	if ((bufmem += delta) > bufmem_hiwater) {
   1347 		/*
   1348 		 * Need to trim overall memory usage.
   1349 		 */
   1350 		while (buf_canrelease()) {
   1351 			if (preempt_needed()) {
   1352 				mutex_exit(&bufcache_lock);
   1353 				preempt();
   1354 				mutex_enter(&bufcache_lock);
   1355 			}
   1356 			if (buf_trim() == 0)
   1357 				break;
   1358 		}
   1359 	}
   1360 	mutex_exit(&bufcache_lock);
   1361 
   1362  out:
   1363 	if (wapbl_vphaswapbl(bp->b_vp))
   1364 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1365 
   1366 	return 0;
   1367 }
   1368 
   1369 /*
   1370  * Find a buffer which is available for use.
   1371  * Select something from a free list.
   1372  * Preference is to AGE list, then LRU list.
   1373  *
   1374  * Called with the buffer queues locked.
   1375  * Return buffer locked.
   1376  */
   1377 static buf_t *
   1378 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1379 {
   1380 	buf_t *bp;
   1381 	struct vnode *vp;
   1382 	struct mount *transmp = NULL;
   1383 
   1384 	SDT_PROBE0(io, kernel, , getnewbuf__start);
   1385 
   1386  start:
   1387 	KASSERT(mutex_owned(&bufcache_lock));
   1388 
   1389 	/*
   1390 	 * Get a new buffer from the pool.
   1391 	 */
   1392 	if (!from_bufq && buf_lotsfree()) {
   1393 		mutex_exit(&bufcache_lock);
   1394 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1395 		if (bp != NULL) {
   1396 			memset((char *)bp, 0, sizeof(*bp));
   1397 			buf_init(bp);
   1398 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1399 			mutex_enter(&bufcache_lock);
   1400 #if defined(DIAGNOSTIC)
   1401 			bp->b_freelistindex = -1;
   1402 #endif /* defined(DIAGNOSTIC) */
   1403 			SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1404 			return (bp);
   1405 		}
   1406 		mutex_enter(&bufcache_lock);
   1407 	}
   1408 
   1409 	KASSERT(mutex_owned(&bufcache_lock));
   1410 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
   1411 		KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
   1412 	} else {
   1413 		TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
   1414 			if (ISSET(bp->b_cflags, BC_VFLUSH) ||
   1415 			    !ISSET(bp->b_oflags, BO_DELWRI))
   1416 				break;
   1417 			if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
   1418 				KASSERT(transmp == NULL);
   1419 				transmp = bp->b_vp->v_mount;
   1420 				break;
   1421 			}
   1422 		}
   1423 	}
   1424 	if (bp != NULL) {
   1425 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1426 		bremfree(bp);
   1427 
   1428 		/* Buffer is no longer on free lists. */
   1429 		SET(bp->b_cflags, BC_BUSY);
   1430 
   1431 		/* Wake anyone trying to lock the old identity. */
   1432 		cv_broadcast(&bp->b_busy);
   1433 	} else {
   1434 		/*
   1435 		 * XXX: !from_bufq should be removed.
   1436 		 */
   1437 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1438 			/* wait for a free buffer of any kind */
   1439 			if ((slpflag & PCATCH) != 0)
   1440 				(void)cv_timedwait_sig(&needbuffer_cv,
   1441 				    &bufcache_lock, slptimeo);
   1442 			else
   1443 				(void)cv_timedwait(&needbuffer_cv,
   1444 				    &bufcache_lock, slptimeo);
   1445 		}
   1446 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1447 		return (NULL);
   1448 	}
   1449 
   1450 #ifdef DIAGNOSTIC
   1451 	if (bp->b_bufsize <= 0)
   1452 		panic("buffer %p: on queue but empty", bp);
   1453 #endif
   1454 
   1455 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1456 		/*
   1457 		 * This is a delayed write buffer being flushed to disk.  Make
   1458 		 * sure it gets aged out of the queue when it's finished, and
   1459 		 * leave it off the LRU queue.
   1460 		 */
   1461 		CLR(bp->b_cflags, BC_VFLUSH);
   1462 		SET(bp->b_cflags, BC_AGE);
   1463 		goto start;
   1464 	}
   1465 
   1466 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1467     	KASSERT(!cv_has_waiters(&bp->b_done));
   1468 
   1469 	/*
   1470 	 * If buffer was a delayed write, start it and return NULL
   1471 	 * (since we might sleep while starting the write).
   1472 	 */
   1473 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1474 		/*
   1475 		 * This buffer has gone through the LRU, so make sure it gets
   1476 		 * reused ASAP.
   1477 		 */
   1478 		SET(bp->b_cflags, BC_AGE);
   1479 		mutex_exit(&bufcache_lock);
   1480 		bawrite(bp);
   1481 		KASSERT(transmp != NULL);
   1482 		fstrans_done(transmp);
   1483 		mutex_enter(&bufcache_lock);
   1484 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1485 		return (NULL);
   1486 	}
   1487 
   1488 	KASSERT(transmp == NULL);
   1489 
   1490 	vp = bp->b_vp;
   1491 
   1492 	/* clear out various other fields */
   1493 	bp->b_cflags = BC_BUSY;
   1494 	bp->b_oflags = 0;
   1495 	bp->b_flags = 0;
   1496 	bp->b_dev = NODEV;
   1497 	bp->b_blkno = 0;
   1498 	bp->b_lblkno = 0;
   1499 	bp->b_rawblkno = 0;
   1500 	bp->b_iodone = 0;
   1501 	bp->b_error = 0;
   1502 	bp->b_resid = 0;
   1503 	bp->b_bcount = 0;
   1504 
   1505 	LIST_REMOVE(bp, b_hash);
   1506 
   1507 	/* Disassociate us from our vnode, if we had one... */
   1508 	if (vp != NULL) {
   1509 		mutex_enter(vp->v_interlock);
   1510 		brelvp(bp);
   1511 		mutex_exit(vp->v_interlock);
   1512 	}
   1513 
   1514 	SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1515 	return (bp);
   1516 }
   1517 
   1518 /*
   1519  * Attempt to free an aged buffer off the queues.
   1520  * Called with queue lock held.
   1521  * Returns the amount of buffer memory freed.
   1522  */
   1523 static int
   1524 buf_trim(void)
   1525 {
   1526 	buf_t *bp;
   1527 	long size;
   1528 
   1529 	KASSERT(mutex_owned(&bufcache_lock));
   1530 
   1531 	/* Instruct getnewbuf() to get buffers off the queues */
   1532 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1533 		return 0;
   1534 
   1535 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1536 	size = bp->b_bufsize;
   1537 	bufmem -= size;
   1538 	if (size > 0) {
   1539 		buf_mrelease(bp->b_data, size);
   1540 		bp->b_bcount = bp->b_bufsize = 0;
   1541 	}
   1542 	/* brelse() will return the buffer to the global buffer pool */
   1543 	brelsel(bp, 0);
   1544 	return size;
   1545 }
   1546 
   1547 int
   1548 buf_drain(int n)
   1549 {
   1550 	int size = 0, sz;
   1551 
   1552 	KASSERT(mutex_owned(&bufcache_lock));
   1553 
   1554 	while (size < n && bufmem > bufmem_lowater) {
   1555 		sz = buf_trim();
   1556 		if (sz <= 0)
   1557 			break;
   1558 		size += sz;
   1559 	}
   1560 
   1561 	return size;
   1562 }
   1563 
   1564 /*
   1565  * Wait for operations on the buffer to complete.
   1566  * When they do, extract and return the I/O's error value.
   1567  */
   1568 int
   1569 biowait(buf_t *bp)
   1570 {
   1571 
   1572 	BIOHIST_FUNC(__func__);
   1573 
   1574 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1575 
   1576 	SDT_PROBE1(io, kernel, , wait__start, bp);
   1577 
   1578 	mutex_enter(bp->b_objlock);
   1579 
   1580 	BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
   1581 	    (uintptr_t)bp, bp->b_oflags,
   1582 	    (uintptr_t)__builtin_return_address(0), 0);
   1583 
   1584 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
   1585 		BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1586 		cv_wait(&bp->b_done, bp->b_objlock);
   1587 	}
   1588 	mutex_exit(bp->b_objlock);
   1589 
   1590 	SDT_PROBE1(io, kernel, , wait__done, bp);
   1591 
   1592 	BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
   1593 
   1594 	return bp->b_error;
   1595 }
   1596 
   1597 /*
   1598  * Mark I/O complete on a buffer.
   1599  *
   1600  * If a callback has been requested, e.g. the pageout
   1601  * daemon, do so. Otherwise, awaken waiting processes.
   1602  *
   1603  * [ Leffler, et al., says on p.247:
   1604  *	"This routine wakes up the blocked process, frees the buffer
   1605  *	for an asynchronous write, or, for a request by the pagedaemon
   1606  *	process, invokes a procedure specified in the buffer structure" ]
   1607  *
   1608  * In real life, the pagedaemon (or other system processes) wants
   1609  * to do async stuff too, and doesn't want the buffer brelse()'d.
   1610  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1611  * for the vn device, that puts allocated buffers on the free lists!)
   1612  */
   1613 void
   1614 biodone(buf_t *bp)
   1615 {
   1616 	int s;
   1617 
   1618 	BIOHIST_FUNC(__func__);
   1619 
   1620 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1621 
   1622 	if (cpu_intr_p()) {
   1623 		/* From interrupt mode: defer to a soft interrupt. */
   1624 		s = splvm();
   1625 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1626 
   1627 		BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
   1628 		    (uintptr_t)bp, 0, 0, 0);
   1629 		softint_schedule(biodone_sih);
   1630 		splx(s);
   1631 	} else {
   1632 		/* Process now - the buffer may be freed soon. */
   1633 		biodone2(bp);
   1634 	}
   1635 }
   1636 
   1637 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
   1638 
   1639 static void
   1640 biodone2(buf_t *bp)
   1641 {
   1642 	void (*callout)(buf_t *);
   1643 
   1644 	SDT_PROBE1(io, kernel, ,done, bp);
   1645 
   1646 	BIOHIST_FUNC(__func__);
   1647 	BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1648 
   1649 	mutex_enter(bp->b_objlock);
   1650 	/* Note that the transfer is done. */
   1651 	if (ISSET(bp->b_oflags, BO_DONE))
   1652 		panic("biodone2 already");
   1653 	CLR(bp->b_flags, B_COWDONE);
   1654 	SET(bp->b_oflags, BO_DONE);
   1655 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1656 
   1657 	/* Wake up waiting writers. */
   1658 	if (!ISSET(bp->b_flags, B_READ))
   1659 		vwakeup(bp);
   1660 
   1661 	if ((callout = bp->b_iodone) != NULL) {
   1662 		BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
   1663 		    0, 0, 0);
   1664 
   1665 		/* Note callout done, then call out. */
   1666 		KASSERT(!cv_has_waiters(&bp->b_done));
   1667 		bp->b_iodone = NULL;
   1668 		mutex_exit(bp->b_objlock);
   1669 		(*callout)(bp);
   1670 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1671 		/* If async, release. */
   1672 		BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
   1673 		KASSERT(!cv_has_waiters(&bp->b_done));
   1674 		mutex_exit(bp->b_objlock);
   1675 		brelse(bp, 0);
   1676 	} else {
   1677 		/* Otherwise just wake up waiters in biowait(). */
   1678 		BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
   1679 		cv_broadcast(&bp->b_done);
   1680 		mutex_exit(bp->b_objlock);
   1681 	}
   1682 }
   1683 
   1684 static void
   1685 biointr(void *cookie)
   1686 {
   1687 	struct cpu_info *ci;
   1688 	buf_t *bp;
   1689 	int s;
   1690 
   1691 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
   1692 
   1693 	ci = curcpu();
   1694 
   1695 	s = splvm();
   1696 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1697 		KASSERT(curcpu() == ci);
   1698 
   1699 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1700 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1701 		splx(s);
   1702 
   1703 		BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1704 		biodone2(bp);
   1705 
   1706 		s = splvm();
   1707 	}
   1708 	splx(s);
   1709 }
   1710 
   1711 /*
   1712  * Wait for all buffers to complete I/O
   1713  * Return the number of "stuck" buffers.
   1714  */
   1715 int
   1716 buf_syncwait(void)
   1717 {
   1718 	buf_t *bp;
   1719 	int iter, nbusy, nbusy_prev = 0, ihash;
   1720 
   1721 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
   1722 
   1723 	for (iter = 0; iter < 20;) {
   1724 		mutex_enter(&bufcache_lock);
   1725 		nbusy = 0;
   1726 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1727 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1728 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
   1729 				nbusy += ((bp->b_flags & B_READ) == 0);
   1730 		    }
   1731 		}
   1732 		mutex_exit(&bufcache_lock);
   1733 
   1734 		if (nbusy == 0)
   1735 			break;
   1736 		if (nbusy_prev == 0)
   1737 			nbusy_prev = nbusy;
   1738 		printf("%d ", nbusy);
   1739 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
   1740 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
   1741 			iter++;
   1742 		else
   1743 			nbusy_prev = nbusy;
   1744 	}
   1745 
   1746 	if (nbusy) {
   1747 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
   1748 		printf("giving up\nPrinting vnodes for busy buffers\n");
   1749 		for (ihash = 0; ihash < bufhash+1; ihash++) {
   1750 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
   1751 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
   1752 			    (bp->b_flags & B_READ) == 0)
   1753 				vprint(NULL, bp->b_vp);
   1754 		    }
   1755 		}
   1756 #endif
   1757 	}
   1758 
   1759 	return nbusy;
   1760 }
   1761 
   1762 static void
   1763 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
   1764 {
   1765 	const bool allowaddr = get_expose_address(curproc);
   1766 
   1767 	memset(o, 0, sizeof(*o));
   1768 
   1769 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1770 	o->b_error = i->b_error;
   1771 	o->b_prio = i->b_prio;
   1772 	o->b_dev = i->b_dev;
   1773 	o->b_bufsize = i->b_bufsize;
   1774 	o->b_bcount = i->b_bcount;
   1775 	o->b_resid = i->b_resid;
   1776 	COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
   1777 	o->b_blkno = i->b_blkno;
   1778 	o->b_rawblkno = i->b_rawblkno;
   1779 	COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
   1780 	COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
   1781 	COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
   1782 	COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
   1783 	o->b_lblkno = i->b_lblkno;
   1784 }
   1785 
   1786 #define KERN_BUFSLOP 20
   1787 static int
   1788 sysctl_dobuf(SYSCTLFN_ARGS)
   1789 {
   1790 	buf_t *bp;
   1791 	struct buf_sysctl bs;
   1792 	struct bqueue *bq;
   1793 	char *dp;
   1794 	u_int i, op, arg;
   1795 	size_t len, needed, elem_size, out_size;
   1796 	int error, elem_count, retries;
   1797 
   1798 	if (namelen == 1 && name[0] == CTL_QUERY)
   1799 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1800 
   1801 	if (namelen != 4)
   1802 		return (EINVAL);
   1803 
   1804 	retries = 100;
   1805  retry:
   1806 	dp = oldp;
   1807 	len = (oldp != NULL) ? *oldlenp : 0;
   1808 	op = name[0];
   1809 	arg = name[1];
   1810 	elem_size = name[2];
   1811 	elem_count = name[3];
   1812 	out_size = MIN(sizeof(bs), elem_size);
   1813 
   1814 	/*
   1815 	 * at the moment, these are just "placeholders" to make the
   1816 	 * API for retrieving kern.buf data more extensible in the
   1817 	 * future.
   1818 	 *
   1819 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1820 	 * these will be resolved at a later point.
   1821 	 */
   1822 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1823 	    elem_size < 1 || elem_count < 0)
   1824 		return (EINVAL);
   1825 
   1826 	error = 0;
   1827 	needed = 0;
   1828 	sysctl_unlock();
   1829 	mutex_enter(&bufcache_lock);
   1830 	for (i = 0; i < BQUEUES; i++) {
   1831 		bq = &bufqueues[i];
   1832 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1833 			bq->bq_marker = bp;
   1834 			if (len >= elem_size && elem_count > 0) {
   1835 				sysctl_fillbuf(bp, &bs);
   1836 				mutex_exit(&bufcache_lock);
   1837 				error = copyout(&bs, dp, out_size);
   1838 				mutex_enter(&bufcache_lock);
   1839 				if (error)
   1840 					break;
   1841 				if (bq->bq_marker != bp) {
   1842 					/*
   1843 					 * This sysctl node is only for
   1844 					 * statistics.  Retry; if the
   1845 					 * queue keeps changing, then
   1846 					 * bail out.
   1847 					 */
   1848 					if (retries-- == 0) {
   1849 						error = EAGAIN;
   1850 						break;
   1851 					}
   1852 					mutex_exit(&bufcache_lock);
   1853 					sysctl_relock();
   1854 					goto retry;
   1855 				}
   1856 				dp += elem_size;
   1857 				len -= elem_size;
   1858 			}
   1859 			needed += elem_size;
   1860 			if (elem_count > 0 && elem_count != INT_MAX)
   1861 				elem_count--;
   1862 		}
   1863 		if (error != 0)
   1864 			break;
   1865 	}
   1866 	mutex_exit(&bufcache_lock);
   1867 	sysctl_relock();
   1868 
   1869 	*oldlenp = needed;
   1870 	if (oldp == NULL)
   1871 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
   1872 
   1873 	return (error);
   1874 }
   1875 
   1876 static int
   1877 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1878 {
   1879 	int error, rv;
   1880 	struct sysctlnode node;
   1881 	unsigned int temp_bufcache;
   1882 	unsigned long temp_water;
   1883 
   1884 	/* Take a copy of the supplied node and its data */
   1885 	node = *rnode;
   1886 	if (node.sysctl_data == &bufcache) {
   1887 	    node.sysctl_data = &temp_bufcache;
   1888 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
   1889 	} else {
   1890 	    node.sysctl_data = &temp_water;
   1891 	    temp_water = *(unsigned long *)rnode->sysctl_data;
   1892 	}
   1893 
   1894 	/* Update the copy */
   1895 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1896 	if (error || newp == NULL)
   1897 		return (error);
   1898 
   1899 	if (rnode->sysctl_data == &bufcache) {
   1900 		if (temp_bufcache > 100)
   1901 			return (EINVAL);
   1902 		bufcache = temp_bufcache;
   1903 		buf_setwm();
   1904 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1905 		if (bufmem_hiwater - temp_water < 16)
   1906 			return (EINVAL);
   1907 		bufmem_lowater = temp_water;
   1908 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1909 		if (temp_water - bufmem_lowater < 16)
   1910 			return (EINVAL);
   1911 		bufmem_hiwater = temp_water;
   1912 	} else
   1913 		return (EINVAL);
   1914 
   1915 	/* Drain until below new high water mark */
   1916 	sysctl_unlock();
   1917 	mutex_enter(&bufcache_lock);
   1918 	while (bufmem > bufmem_hiwater) {
   1919 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
   1920 		if (rv <= 0)
   1921 			break;
   1922 	}
   1923 	mutex_exit(&bufcache_lock);
   1924 	sysctl_relock();
   1925 
   1926 	return 0;
   1927 }
   1928 
   1929 static struct sysctllog *vfsbio_sysctllog;
   1930 
   1931 static void
   1932 sysctl_kern_buf_setup(void)
   1933 {
   1934 
   1935 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1936 		       CTLFLAG_PERMANENT,
   1937 		       CTLTYPE_NODE, "buf",
   1938 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1939 		       sysctl_dobuf, 0, NULL, 0,
   1940 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1941 }
   1942 
   1943 static void
   1944 sysctl_vm_buf_setup(void)
   1945 {
   1946 
   1947 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1948 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1949 		       CTLTYPE_INT, "bufcache",
   1950 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1951 				    "buffer cache"),
   1952 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1953 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1954 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1955 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1956 		       CTLTYPE_LONG, "bufmem",
   1957 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1958 				    "cache"),
   1959 		       NULL, 0, &bufmem, 0,
   1960 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1961 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1962 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1963 		       CTLTYPE_LONG, "bufmem_lowater",
   1964 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1965 				    "reserve for buffer cache"),
   1966 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1967 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1968 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1969 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1970 		       CTLTYPE_LONG, "bufmem_hiwater",
   1971 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1972 				    "for buffer cache"),
   1973 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1974 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1975 }
   1976 
   1977 #ifdef DEBUG
   1978 /*
   1979  * Print out statistics on the current allocation of the buffer pool.
   1980  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   1981  * in vfs_syscalls.c using sysctl.
   1982  */
   1983 void
   1984 vfs_bufstats(void)
   1985 {
   1986 	int i, j, count;
   1987 	buf_t *bp;
   1988 	struct bqueue *dp;
   1989 	int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
   1990 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   1991 
   1992 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   1993 		count = 0;
   1994 		memset(counts, 0, sizeof(counts));
   1995 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   1996 			counts[bp->b_bufsize / PAGE_SIZE]++;
   1997 			count++;
   1998 		}
   1999 		printf("%s: total-%d", bname[i], count);
   2000 		for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
   2001 			if (counts[j] != 0)
   2002 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   2003 		printf("\n");
   2004 	}
   2005 }
   2006 #endif /* DEBUG */
   2007 
   2008 /* ------------------------------ */
   2009 
   2010 buf_t *
   2011 getiobuf(struct vnode *vp, bool waitok)
   2012 {
   2013 	buf_t *bp;
   2014 
   2015 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   2016 	if (bp == NULL)
   2017 		return bp;
   2018 
   2019 	buf_init(bp);
   2020 
   2021 	if ((bp->b_vp = vp) != NULL) {
   2022 		bp->b_objlock = vp->v_interlock;
   2023 	} else {
   2024 		KASSERT(bp->b_objlock == &buffer_lock);
   2025 	}
   2026 
   2027 	return bp;
   2028 }
   2029 
   2030 void
   2031 putiobuf(buf_t *bp)
   2032 {
   2033 
   2034 	buf_destroy(bp);
   2035 	pool_cache_put(bufio_cache, bp);
   2036 }
   2037 
   2038 /*
   2039  * nestiobuf_iodone: b_iodone callback for nested buffers.
   2040  */
   2041 
   2042 void
   2043 nestiobuf_iodone(buf_t *bp)
   2044 {
   2045 	buf_t *mbp = bp->b_private;
   2046 	int error;
   2047 	int donebytes;
   2048 
   2049 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   2050 	KASSERT(mbp != bp);
   2051 
   2052 	error = bp->b_error;
   2053 	if (bp->b_error == 0 &&
   2054 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   2055 		/*
   2056 		 * Not all got transferred, raise an error. We have no way to
   2057 		 * propagate these conditions to mbp.
   2058 		 */
   2059 		error = EIO;
   2060 	}
   2061 
   2062 	donebytes = bp->b_bufsize;
   2063 
   2064 	putiobuf(bp);
   2065 	nestiobuf_done(mbp, donebytes, error);
   2066 }
   2067 
   2068 /*
   2069  * nestiobuf_setup: setup a "nested" buffer.
   2070  *
   2071  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   2072  * => 'bp' should be a buffer allocated by getiobuf.
   2073  * => 'offset' is a byte offset in the master buffer.
   2074  * => 'size' is a size in bytes of this nested buffer.
   2075  */
   2076 
   2077 void
   2078 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   2079 {
   2080 	const int b_pass = mbp->b_flags & (B_READ|B_MEDIA_FLAGS);
   2081 	struct vnode *vp = mbp->b_vp;
   2082 
   2083 	KASSERT(mbp->b_bcount >= offset + size);
   2084 	bp->b_vp = vp;
   2085 	bp->b_dev = mbp->b_dev;
   2086 	bp->b_objlock = mbp->b_objlock;
   2087 	bp->b_cflags = BC_BUSY;
   2088 	bp->b_flags = B_ASYNC | b_pass;
   2089 	bp->b_iodone = nestiobuf_iodone;
   2090 	bp->b_data = (char *)mbp->b_data + offset;
   2091 	bp->b_resid = bp->b_bcount = size;
   2092 	bp->b_bufsize = bp->b_bcount;
   2093 	bp->b_private = mbp;
   2094 	BIO_COPYPRIO(bp, mbp);
   2095 	if (BUF_ISWRITE(bp) && vp != NULL) {
   2096 		mutex_enter(vp->v_interlock);
   2097 		vp->v_numoutput++;
   2098 		mutex_exit(vp->v_interlock);
   2099 	}
   2100 }
   2101 
   2102 /*
   2103  * nestiobuf_done: propagate completion to the master buffer.
   2104  *
   2105  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   2106  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   2107  */
   2108 
   2109 void
   2110 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   2111 {
   2112 
   2113 	if (donebytes == 0) {
   2114 		return;
   2115 	}
   2116 	mutex_enter(mbp->b_objlock);
   2117 	KASSERT(mbp->b_resid >= donebytes);
   2118 	mbp->b_resid -= donebytes;
   2119 	if (error)
   2120 		mbp->b_error = error;
   2121 	if (mbp->b_resid == 0) {
   2122 		if (mbp->b_error)
   2123 			mbp->b_resid = mbp->b_bcount;
   2124 		mutex_exit(mbp->b_objlock);
   2125 		biodone(mbp);
   2126 	} else
   2127 		mutex_exit(mbp->b_objlock);
   2128 }
   2129 
   2130 void
   2131 buf_init(buf_t *bp)
   2132 {
   2133 
   2134 	cv_init(&bp->b_busy, "biolock");
   2135 	cv_init(&bp->b_done, "biowait");
   2136 	bp->b_dev = NODEV;
   2137 	bp->b_error = 0;
   2138 	bp->b_flags = 0;
   2139 	bp->b_cflags = 0;
   2140 	bp->b_oflags = 0;
   2141 	bp->b_objlock = &buffer_lock;
   2142 	bp->b_iodone = NULL;
   2143 	bp->b_dev = NODEV;
   2144 	bp->b_vnbufs.le_next = NOLIST;
   2145 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2146 }
   2147 
   2148 void
   2149 buf_destroy(buf_t *bp)
   2150 {
   2151 
   2152 	cv_destroy(&bp->b_done);
   2153 	cv_destroy(&bp->b_busy);
   2154 }
   2155 
   2156 int
   2157 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2158 {
   2159 	int error;
   2160 
   2161 	KASSERT(mutex_owned(&bufcache_lock));
   2162 
   2163 	SDT_PROBE4(io, kernel, , bbusy__start,  bp, intr, timo, interlock);
   2164 
   2165 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2166 		if (curlwp == uvm.pagedaemon_lwp) {
   2167 			error = EDEADLK;
   2168 			goto out;
   2169 		}
   2170 		bp->b_cflags |= BC_WANTED;
   2171 		if (interlock != NULL)
   2172 			mutex_exit(interlock);
   2173 		if (intr) {
   2174 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2175 			    timo);
   2176 		} else {
   2177 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2178 			    timo);
   2179 		}
   2180 		/*
   2181 		 * At this point the buffer may be gone: don't touch it
   2182 		 * again.  The caller needs to find it again and retry.
   2183 		 */
   2184 		if (interlock != NULL)
   2185 			mutex_enter(interlock);
   2186 		if (error == 0)
   2187 			error = EPASSTHROUGH;
   2188 	} else {
   2189 		bp->b_cflags |= BC_BUSY;
   2190 		error = 0;
   2191 	}
   2192 
   2193 out:	SDT_PROBE5(io, kernel, , bbusy__done,
   2194 	    bp, intr, timo, interlock, error);
   2195 	return error;
   2196 }
   2197 
   2198 /*
   2199  * Nothing outside this file should really need to know about nbuf,
   2200  * but a few things still want to read it, so give them a way to do that.
   2201  */
   2202 u_int
   2203 buf_nbuf(void)
   2204 {
   2205 
   2206 	return nbuf;
   2207 }
   2208