vfs_bio.c revision 1.295 1 /* $NetBSD: vfs_bio.c,v 1.295 2020/04/27 07:51:02 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
66 */
67
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
98 *
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
100 */
101
102 /*
103 * The buffer cache subsystem.
104 *
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
109 *
110 * Locking
111 *
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116 *
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
119 *
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
123 */
124
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.295 2020/04/27 07:51:02 jdolecek Exp $");
127
128 #ifdef _KERNEL_OPT
129 #include "opt_bufcache.h"
130 #include "opt_dtrace.h"
131 #include "opt_biohist.h"
132 #endif
133
134 #include <sys/param.h>
135 #include <sys/systm.h>
136 #include <sys/kernel.h>
137 #include <sys/proc.h>
138 #include <sys/buf.h>
139 #include <sys/vnode.h>
140 #include <sys/mount.h>
141 #include <sys/resourcevar.h>
142 #include <sys/sysctl.h>
143 #include <sys/conf.h>
144 #include <sys/kauth.h>
145 #include <sys/fstrans.h>
146 #include <sys/intr.h>
147 #include <sys/cpu.h>
148 #include <sys/wapbl.h>
149 #include <sys/bitops.h>
150 #include <sys/cprng.h>
151 #include <sys/sdt.h>
152
153 #include <uvm/uvm.h> /* extern struct uvm uvm */
154
155 #include <miscfs/specfs/specdev.h>
156
157 SDT_PROVIDER_DEFINE(io);
158
159 SDT_PROBE_DEFINE4(io, kernel, , bbusy__start,
160 "struct buf *"/*bp*/,
161 "bool"/*intr*/, "int"/*timo*/, "kmutex_t *"/*interlock*/);
162 SDT_PROBE_DEFINE5(io, kernel, , bbusy__done,
163 "struct buf *"/*bp*/,
164 "bool"/*intr*/,
165 "int"/*timo*/,
166 "kmutex_t *"/*interlock*/,
167 "int"/*error*/);
168 SDT_PROBE_DEFINE0(io, kernel, , getnewbuf__start);
169 SDT_PROBE_DEFINE1(io, kernel, , getnewbuf__done, "struct buf *"/*bp*/);
170 SDT_PROBE_DEFINE3(io, kernel, , getblk__start,
171 "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/);
172 SDT_PROBE_DEFINE4(io, kernel, , getblk__done,
173 "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/,
174 "struct buf *"/*bp*/);
175 SDT_PROBE_DEFINE2(io, kernel, , brelse, "struct buf *"/*bp*/, "int"/*set*/);
176 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
177 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
178
179 #ifndef BUFPAGES
180 # define BUFPAGES 0
181 #endif
182
183 #ifdef BUFCACHE
184 # if (BUFCACHE < 5) || (BUFCACHE > 95)
185 # error BUFCACHE is not between 5 and 95
186 # endif
187 #else
188 # define BUFCACHE 15
189 #endif
190
191 u_int nbuf; /* desired number of buffer headers */
192 u_int bufpages = BUFPAGES; /* optional hardwired count */
193 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
194
195 /*
196 * Definitions for the buffer free lists.
197 */
198 #define BQUEUES 3 /* number of free buffer queues */
199
200 #define BQ_LOCKED 0 /* super-blocks &c */
201 #define BQ_LRU 1 /* lru, useful buffers */
202 #define BQ_AGE 2 /* rubbish */
203
204 struct bqueue {
205 TAILQ_HEAD(, buf) bq_queue;
206 uint64_t bq_bytes;
207 buf_t *bq_marker;
208 };
209 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
210
211 /* Function prototypes */
212 static void buf_setwm(void);
213 static int buf_trim(void);
214 static void *bufpool_page_alloc(struct pool *, int);
215 static void bufpool_page_free(struct pool *, void *);
216 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
217 static buf_t *getnewbuf(int, int, int);
218 static int buf_lotsfree(void);
219 static int buf_canrelease(void);
220 static u_long buf_mempoolidx(u_long);
221 static u_long buf_roundsize(u_long);
222 static void *buf_alloc(size_t);
223 static void buf_mrelease(void *, size_t);
224 static void binsheadfree(buf_t *, struct bqueue *);
225 static void binstailfree(buf_t *, struct bqueue *);
226 #ifdef DEBUG
227 static int checkfreelist(buf_t *, struct bqueue *, int);
228 #endif
229 static void biointr(void *);
230 static void biodone2(buf_t *);
231 static void sysctl_kern_buf_setup(void);
232 static void sysctl_vm_buf_setup(void);
233
234 /* Initialization for biohist */
235
236 #include <sys/biohist.h>
237
238 BIOHIST_DEFINE(biohist);
239
240 void
241 biohist_init(void)
242 {
243
244 BIOHIST_INIT(biohist, BIOHIST_SIZE);
245 }
246
247 /*
248 * Definitions for the buffer hash lists.
249 */
250 #define BUFHASH(dvp, lbn) \
251 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
252 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
253 u_long bufhash;
254
255 static kcondvar_t needbuffer_cv;
256
257 /*
258 * Buffer queue lock.
259 */
260 kmutex_t bufcache_lock __cacheline_aligned;
261 kmutex_t buffer_lock __cacheline_aligned;
262
263 /* Software ISR for completed transfers. */
264 static void *biodone_sih;
265
266 /* Buffer pool for I/O buffers. */
267 static pool_cache_t buf_cache;
268 static pool_cache_t bufio_cache;
269
270 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
271 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
272 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
273
274 /* Buffer memory pools */
275 static struct pool bmempools[NMEMPOOLS];
276
277 static struct vm_map *buf_map;
278
279 /*
280 * Buffer memory pool allocator.
281 */
282 static void *
283 bufpool_page_alloc(struct pool *pp, int flags)
284 {
285
286 return (void *)uvm_km_alloc(buf_map,
287 MAXBSIZE, MAXBSIZE,
288 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
289 | UVM_KMF_WIRED);
290 }
291
292 static void
293 bufpool_page_free(struct pool *pp, void *v)
294 {
295
296 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
297 }
298
299 static struct pool_allocator bufmempool_allocator = {
300 .pa_alloc = bufpool_page_alloc,
301 .pa_free = bufpool_page_free,
302 .pa_pagesz = MAXBSIZE,
303 };
304
305 /* Buffer memory management variables */
306 u_long bufmem_valimit;
307 u_long bufmem_hiwater;
308 u_long bufmem_lowater;
309 u_long bufmem;
310
311 /*
312 * MD code can call this to set a hard limit on the amount
313 * of virtual memory used by the buffer cache.
314 */
315 int
316 buf_setvalimit(vsize_t sz)
317 {
318
319 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
320 if (sz < NMEMPOOLS * MAXBSIZE)
321 return EINVAL;
322
323 bufmem_valimit = sz;
324 return 0;
325 }
326
327 static void
328 buf_setwm(void)
329 {
330
331 bufmem_hiwater = buf_memcalc();
332 /* lowater is approx. 2% of memory (with bufcache = 15) */
333 #define BUFMEM_WMSHIFT 3
334 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
335 if (bufmem_hiwater < BUFMEM_HIWMMIN)
336 /* Ensure a reasonable minimum value */
337 bufmem_hiwater = BUFMEM_HIWMMIN;
338 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
339 }
340
341 #ifdef DEBUG
342 int debug_verify_freelist = 0;
343 static int
344 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
345 {
346 buf_t *b;
347
348 if (!debug_verify_freelist)
349 return 1;
350
351 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
352 if (b == bp)
353 return ison ? 1 : 0;
354 }
355
356 return ison ? 0 : 1;
357 }
358 #endif
359
360 /*
361 * Insq/Remq for the buffer hash lists.
362 * Call with buffer queue locked.
363 */
364 static void
365 binsheadfree(buf_t *bp, struct bqueue *dp)
366 {
367
368 KASSERT(mutex_owned(&bufcache_lock));
369 KASSERT(bp->b_freelistindex == -1);
370 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
371 dp->bq_bytes += bp->b_bufsize;
372 bp->b_freelistindex = dp - bufqueues;
373 }
374
375 static void
376 binstailfree(buf_t *bp, struct bqueue *dp)
377 {
378
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
381 "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
382 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
383 dp->bq_bytes += bp->b_bufsize;
384 bp->b_freelistindex = dp - bufqueues;
385 }
386
387 void
388 bremfree(buf_t *bp)
389 {
390 struct bqueue *dp;
391 int bqidx = bp->b_freelistindex;
392
393 KASSERT(mutex_owned(&bufcache_lock));
394
395 KASSERT(bqidx != -1);
396 dp = &bufqueues[bqidx];
397 KDASSERT(checkfreelist(bp, dp, 1));
398 KASSERT(dp->bq_bytes >= bp->b_bufsize);
399 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
400 dp->bq_bytes -= bp->b_bufsize;
401
402 /* For the sysctl helper. */
403 if (bp == dp->bq_marker)
404 dp->bq_marker = NULL;
405
406 #if defined(DIAGNOSTIC)
407 bp->b_freelistindex = -1;
408 #endif /* defined(DIAGNOSTIC) */
409 }
410
411 /*
412 * note that for some ports this is used by pmap bootstrap code to
413 * determine kva size.
414 */
415 u_long
416 buf_memcalc(void)
417 {
418 u_long n;
419 vsize_t mapsz = 0;
420
421 /*
422 * Determine the upper bound of memory to use for buffers.
423 *
424 * - If bufpages is specified, use that as the number
425 * pages.
426 *
427 * - Otherwise, use bufcache as the percentage of
428 * physical memory.
429 */
430 if (bufpages != 0) {
431 n = bufpages;
432 } else {
433 if (bufcache < 5) {
434 printf("forcing bufcache %d -> 5", bufcache);
435 bufcache = 5;
436 }
437 if (bufcache > 95) {
438 printf("forcing bufcache %d -> 95", bufcache);
439 bufcache = 95;
440 }
441 if (buf_map != NULL)
442 mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
443 n = calc_cache_size(mapsz, bufcache,
444 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
445 / PAGE_SIZE;
446 }
447
448 n <<= PAGE_SHIFT;
449 if (bufmem_valimit != 0 && n > bufmem_valimit)
450 n = bufmem_valimit;
451
452 return (n);
453 }
454
455 /*
456 * Initialize buffers and hash links for buffers.
457 */
458 void
459 bufinit(void)
460 {
461 struct bqueue *dp;
462 int use_std;
463 u_int i;
464
465 biodone_vfs = biodone;
466
467 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
468 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
469 cv_init(&needbuffer_cv, "needbuf");
470
471 if (bufmem_valimit != 0) {
472 vaddr_t minaddr = 0, maxaddr;
473 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
474 bufmem_valimit, 0, false, 0);
475 if (buf_map == NULL)
476 panic("bufinit: cannot allocate submap");
477 } else
478 buf_map = kernel_map;
479
480 /*
481 * Initialize buffer cache memory parameters.
482 */
483 bufmem = 0;
484 buf_setwm();
485
486 /* On "small" machines use small pool page sizes where possible */
487 use_std = (physmem < atop(16*1024*1024));
488
489 /*
490 * Also use them on systems that can map the pool pages using
491 * a direct-mapped segment.
492 */
493 #ifdef PMAP_MAP_POOLPAGE
494 use_std = 1;
495 #endif
496
497 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
498 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
499 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
500 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
501
502 for (i = 0; i < NMEMPOOLS; i++) {
503 struct pool_allocator *pa;
504 struct pool *pp = &bmempools[i];
505 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
506 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
507 if (__predict_false(size >= 1048576))
508 (void)snprintf(name, 8, "buf%um", size / 1048576);
509 else if (__predict_true(size >= 1024))
510 (void)snprintf(name, 8, "buf%uk", size / 1024);
511 else
512 (void)snprintf(name, 8, "buf%ub", size);
513 pa = (size <= PAGE_SIZE && use_std)
514 ? &pool_allocator_nointr
515 : &bufmempool_allocator;
516 pool_init(pp, size, DEV_BSIZE, 0, 0, name, pa, IPL_NONE);
517 pool_setlowat(pp, 1);
518 pool_sethiwat(pp, 1);
519 }
520
521 /* Initialize the buffer queues */
522 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
523 TAILQ_INIT(&dp->bq_queue);
524 dp->bq_bytes = 0;
525 }
526
527 /*
528 * Estimate hash table size based on the amount of memory we
529 * intend to use for the buffer cache. The average buffer
530 * size is dependent on our clients (i.e. filesystems).
531 *
532 * For now, use an empirical 3K per buffer.
533 */
534 nbuf = (bufmem_hiwater / 1024) / 3;
535 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
536
537 sysctl_kern_buf_setup();
538 sysctl_vm_buf_setup();
539 }
540
541 void
542 bufinit2(void)
543 {
544
545 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
546 NULL);
547 if (biodone_sih == NULL)
548 panic("bufinit2: can't establish soft interrupt");
549 }
550
551 static int
552 buf_lotsfree(void)
553 {
554 u_long guess;
555
556 /* Always allocate if less than the low water mark. */
557 if (bufmem < bufmem_lowater)
558 return 1;
559
560 /* Never allocate if greater than the high water mark. */
561 if (bufmem > bufmem_hiwater)
562 return 0;
563
564 /* If there's anything on the AGE list, it should be eaten. */
565 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
566 return 0;
567
568 /*
569 * The probabily of getting a new allocation is inversely
570 * proportional to the current size of the cache above
571 * the low water mark. Divide the total first to avoid overflows
572 * in the product.
573 */
574 guess = cprng_fast32() % 16;
575
576 if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
577 (bufmem - bufmem_lowater))
578 return 1;
579
580 /* Otherwise don't allocate. */
581 return 0;
582 }
583
584 /*
585 * Return estimate of bytes we think need to be
586 * released to help resolve low memory conditions.
587 *
588 * => called with bufcache_lock held.
589 */
590 static int
591 buf_canrelease(void)
592 {
593 int pagedemand, ninvalid = 0;
594
595 KASSERT(mutex_owned(&bufcache_lock));
596
597 if (bufmem < bufmem_lowater)
598 return 0;
599
600 if (bufmem > bufmem_hiwater)
601 return bufmem - bufmem_hiwater;
602
603 ninvalid += bufqueues[BQ_AGE].bq_bytes;
604
605 pagedemand = uvmexp.freetarg - uvm_availmem();
606 if (pagedemand < 0)
607 return ninvalid;
608 return MAX(ninvalid, MIN(2 * MAXBSIZE,
609 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
610 }
611
612 /*
613 * Buffer memory allocation helper functions
614 */
615 static u_long
616 buf_mempoolidx(u_long size)
617 {
618 u_int n = 0;
619
620 size -= 1;
621 size >>= MEMPOOL_INDEX_OFFSET;
622 while (size) {
623 size >>= 1;
624 n += 1;
625 }
626 if (n >= NMEMPOOLS)
627 panic("buf mem pool index %d", n);
628 return n;
629 }
630
631 static u_long
632 buf_roundsize(u_long size)
633 {
634 /* Round up to nearest power of 2 */
635 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
636 }
637
638 static void *
639 buf_alloc(size_t size)
640 {
641 u_int n = buf_mempoolidx(size);
642 void *addr;
643
644 while (1) {
645 addr = pool_get(&bmempools[n], PR_NOWAIT);
646 if (addr != NULL)
647 break;
648
649 /* No memory, see if we can free some. If so, try again */
650 mutex_enter(&bufcache_lock);
651 if (buf_drain(1) > 0) {
652 mutex_exit(&bufcache_lock);
653 continue;
654 }
655
656 if (curlwp == uvm.pagedaemon_lwp) {
657 mutex_exit(&bufcache_lock);
658 return NULL;
659 }
660
661 /* Wait for buffers to arrive on the LRU queue */
662 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
663 mutex_exit(&bufcache_lock);
664 }
665
666 return addr;
667 }
668
669 static void
670 buf_mrelease(void *addr, size_t size)
671 {
672
673 pool_put(&bmempools[buf_mempoolidx(size)], addr);
674 }
675
676 /*
677 * bread()/breadn() helper.
678 */
679 static buf_t *
680 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
681 {
682 buf_t *bp;
683 struct mount *mp;
684
685 bp = getblk(vp, blkno, size, 0, 0);
686
687 /*
688 * getblk() may return NULL if we are the pagedaemon.
689 */
690 if (bp == NULL) {
691 KASSERT(curlwp == uvm.pagedaemon_lwp);
692 return NULL;
693 }
694
695 /*
696 * If buffer does not have data valid, start a read.
697 * Note that if buffer is BC_INVAL, getblk() won't return it.
698 * Therefore, it's valid if its I/O has completed or been delayed.
699 */
700 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
701 /* Start I/O for the buffer. */
702 SET(bp->b_flags, B_READ | async);
703 if (async)
704 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
705 else
706 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
707 VOP_STRATEGY(vp, bp);
708
709 /* Pay for the read. */
710 curlwp->l_ru.ru_inblock++;
711 } else if (async)
712 brelse(bp, 0);
713
714 if (vp->v_type == VBLK)
715 mp = spec_node_getmountedfs(vp);
716 else
717 mp = vp->v_mount;
718
719 /*
720 * Collect statistics on synchronous and asynchronous reads.
721 * Reads from block devices are charged to their associated
722 * filesystem (if any).
723 */
724 if (mp != NULL) {
725 if (async == 0)
726 mp->mnt_stat.f_syncreads++;
727 else
728 mp->mnt_stat.f_asyncreads++;
729 }
730
731 return (bp);
732 }
733
734 /*
735 * Read a disk block.
736 * This algorithm described in Bach (p.54).
737 */
738 int
739 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
740 {
741 buf_t *bp;
742 int error;
743
744 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
745
746 /* Get buffer for block. */
747 bp = *bpp = bio_doread(vp, blkno, size, 0);
748 if (bp == NULL)
749 return ENOMEM;
750
751 /* Wait for the read to complete, and return result. */
752 error = biowait(bp);
753 if (error == 0 && (flags & B_MODIFY) != 0)
754 error = fscow_run(bp, true);
755 if (error) {
756 brelse(bp, 0);
757 *bpp = NULL;
758 }
759
760 return error;
761 }
762
763 /*
764 * Read-ahead multiple disk blocks. The first is sync, the rest async.
765 * Trivial modification to the breada algorithm presented in Bach (p.55).
766 */
767 int
768 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
769 int *rasizes, int nrablks, int flags, buf_t **bpp)
770 {
771 buf_t *bp;
772 int error, i;
773
774 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
775
776 bp = *bpp = bio_doread(vp, blkno, size, 0);
777 if (bp == NULL)
778 return ENOMEM;
779
780 /*
781 * For each of the read-ahead blocks, start a read, if necessary.
782 */
783 mutex_enter(&bufcache_lock);
784 for (i = 0; i < nrablks; i++) {
785 /* If it's in the cache, just go on to next one. */
786 if (incore(vp, rablks[i]))
787 continue;
788
789 /* Get a buffer for the read-ahead block */
790 mutex_exit(&bufcache_lock);
791 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
792 mutex_enter(&bufcache_lock);
793 }
794 mutex_exit(&bufcache_lock);
795
796 /* Otherwise, we had to start a read for it; wait until it's valid. */
797 error = biowait(bp);
798 if (error == 0 && (flags & B_MODIFY) != 0)
799 error = fscow_run(bp, true);
800 if (error) {
801 brelse(bp, 0);
802 *bpp = NULL;
803 }
804
805 return error;
806 }
807
808 /*
809 * Block write. Described in Bach (p.56)
810 */
811 int
812 bwrite(buf_t *bp)
813 {
814 int rv, sync, wasdelayed;
815 struct vnode *vp;
816 struct mount *mp;
817
818 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
819 (uintptr_t)bp, 0, 0, 0);
820
821 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
822 KASSERT(!cv_has_waiters(&bp->b_done));
823
824 vp = bp->b_vp;
825
826 /*
827 * dholland 20160728 AFAICT vp==NULL must be impossible as it
828 * will crash upon reaching VOP_STRATEGY below... see further
829 * analysis on tech-kern.
830 */
831 KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
832
833 if (vp != NULL) {
834 KASSERT(bp->b_objlock == vp->v_interlock);
835 if (vp->v_type == VBLK)
836 mp = spec_node_getmountedfs(vp);
837 else
838 mp = vp->v_mount;
839 } else {
840 mp = NULL;
841 }
842
843 if (mp && mp->mnt_wapbl) {
844 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
845 bdwrite(bp);
846 return 0;
847 }
848 }
849
850 /*
851 * Remember buffer type, to switch on it later. If the write was
852 * synchronous, but the file system was mounted with MNT_ASYNC,
853 * convert it to a delayed write.
854 * XXX note that this relies on delayed tape writes being converted
855 * to async, not sync writes (which is safe, but ugly).
856 */
857 sync = !ISSET(bp->b_flags, B_ASYNC);
858 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
859 bdwrite(bp);
860 return (0);
861 }
862
863 /*
864 * Collect statistics on synchronous and asynchronous writes.
865 * Writes to block devices are charged to their associated
866 * filesystem (if any).
867 */
868 if (mp != NULL) {
869 if (sync)
870 mp->mnt_stat.f_syncwrites++;
871 else
872 mp->mnt_stat.f_asyncwrites++;
873 }
874
875 /*
876 * Pay for the I/O operation and make sure the buf is on the correct
877 * vnode queue.
878 */
879 bp->b_error = 0;
880 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
881 CLR(bp->b_flags, B_READ);
882 if (wasdelayed) {
883 mutex_enter(&bufcache_lock);
884 mutex_enter(bp->b_objlock);
885 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
886 reassignbuf(bp, bp->b_vp);
887 /* Wake anyone trying to busy the buffer via vnode's lists. */
888 cv_broadcast(&bp->b_busy);
889 mutex_exit(&bufcache_lock);
890 } else {
891 curlwp->l_ru.ru_oublock++;
892 mutex_enter(bp->b_objlock);
893 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
894 }
895 if (vp != NULL)
896 vp->v_numoutput++;
897 mutex_exit(bp->b_objlock);
898
899 /* Initiate disk write. */
900 if (sync)
901 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
902 else
903 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
904
905 VOP_STRATEGY(vp, bp);
906
907 if (sync) {
908 /* If I/O was synchronous, wait for it to complete. */
909 rv = biowait(bp);
910
911 /* Release the buffer. */
912 brelse(bp, 0);
913
914 return (rv);
915 } else {
916 return (0);
917 }
918 }
919
920 int
921 vn_bwrite(void *v)
922 {
923 struct vop_bwrite_args *ap = v;
924
925 return (bwrite(ap->a_bp));
926 }
927
928 /*
929 * Delayed write.
930 *
931 * The buffer is marked dirty, but is not queued for I/O.
932 * This routine should be used when the buffer is expected
933 * to be modified again soon, typically a small write that
934 * partially fills a buffer.
935 *
936 * NB: magnetic tapes cannot be delayed; they must be
937 * written in the order that the writes are requested.
938 *
939 * Described in Leffler, et al. (pp. 208-213).
940 */
941 void
942 bdwrite(buf_t *bp)
943 {
944
945 BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
946 (uintptr_t)bp, 0, 0, 0);
947
948 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
949 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
950 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
951 KASSERT(!cv_has_waiters(&bp->b_done));
952
953 /* If this is a tape block, write the block now. */
954 if (bdev_type(bp->b_dev) == D_TAPE) {
955 bawrite(bp);
956 return;
957 }
958
959 if (wapbl_vphaswapbl(bp->b_vp)) {
960 struct mount *mp = wapbl_vptomp(bp->b_vp);
961
962 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
963 WAPBL_ADD_BUF(mp, bp);
964 }
965 }
966
967 /*
968 * If the block hasn't been seen before:
969 * (1) Mark it as having been seen,
970 * (2) Charge for the write,
971 * (3) Make sure it's on its vnode's correct block list.
972 */
973 KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
974
975 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
976 mutex_enter(&bufcache_lock);
977 mutex_enter(bp->b_objlock);
978 SET(bp->b_oflags, BO_DELWRI);
979 curlwp->l_ru.ru_oublock++;
980 reassignbuf(bp, bp->b_vp);
981 /* Wake anyone trying to busy the buffer via vnode's lists. */
982 cv_broadcast(&bp->b_busy);
983 mutex_exit(&bufcache_lock);
984 } else {
985 mutex_enter(bp->b_objlock);
986 }
987 /* Otherwise, the "write" is done, so mark and release the buffer. */
988 CLR(bp->b_oflags, BO_DONE);
989 mutex_exit(bp->b_objlock);
990
991 brelse(bp, 0);
992 }
993
994 /*
995 * Asynchronous block write; just an asynchronous bwrite().
996 */
997 void
998 bawrite(buf_t *bp)
999 {
1000
1001 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1002 KASSERT(bp->b_vp != NULL);
1003
1004 SET(bp->b_flags, B_ASYNC);
1005 VOP_BWRITE(bp->b_vp, bp);
1006 }
1007
1008 /*
1009 * Release a buffer on to the free lists.
1010 * Described in Bach (p. 46).
1011 */
1012 void
1013 brelsel(buf_t *bp, int set)
1014 {
1015 struct bqueue *bufq;
1016 struct vnode *vp;
1017
1018 SDT_PROBE2(io, kernel, , brelse, bp, set);
1019
1020 KASSERT(bp != NULL);
1021 KASSERT(mutex_owned(&bufcache_lock));
1022 KASSERT(!cv_has_waiters(&bp->b_done));
1023
1024 SET(bp->b_cflags, set);
1025
1026 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1027 KASSERT(bp->b_iodone == NULL);
1028
1029 /* Wake up any processes waiting for any buffer to become free. */
1030 cv_signal(&needbuffer_cv);
1031
1032 /* Wake up any proceeses waiting for _this_ buffer to become free */
1033 if (ISSET(bp->b_cflags, BC_WANTED))
1034 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1035
1036 /* If it's clean clear the copy-on-write flag. */
1037 if (ISSET(bp->b_flags, B_COWDONE)) {
1038 mutex_enter(bp->b_objlock);
1039 if (!ISSET(bp->b_oflags, BO_DELWRI))
1040 CLR(bp->b_flags, B_COWDONE);
1041 mutex_exit(bp->b_objlock);
1042 }
1043
1044 /*
1045 * Determine which queue the buffer should be on, then put it there.
1046 */
1047
1048 /* If it's locked, don't report an error; try again later. */
1049 if (ISSET(bp->b_flags, B_LOCKED))
1050 bp->b_error = 0;
1051
1052 /* If it's not cacheable, or an error, mark it invalid. */
1053 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1054 SET(bp->b_cflags, BC_INVAL);
1055
1056 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1057 /*
1058 * This is a delayed write buffer that was just flushed to
1059 * disk. It is still on the LRU queue. If it's become
1060 * invalid, then we need to move it to a different queue;
1061 * otherwise leave it in its current position.
1062 */
1063 CLR(bp->b_cflags, BC_VFLUSH);
1064 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1065 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1066 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1067 goto already_queued;
1068 } else {
1069 bremfree(bp);
1070 }
1071 }
1072
1073 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1074 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1075 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1076
1077 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1078 /*
1079 * If it's invalid or empty, dissociate it from its vnode
1080 * and put on the head of the appropriate queue.
1081 */
1082 if (ISSET(bp->b_flags, B_LOCKED)) {
1083 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1084 struct mount *mp = wapbl_vptomp(vp);
1085
1086 KASSERT(bp->b_iodone
1087 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1088 WAPBL_REMOVE_BUF(mp, bp);
1089 }
1090 }
1091
1092 mutex_enter(bp->b_objlock);
1093 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1094 if ((vp = bp->b_vp) != NULL) {
1095 KASSERT(bp->b_objlock == vp->v_interlock);
1096 reassignbuf(bp, bp->b_vp);
1097 brelvp(bp);
1098 mutex_exit(vp->v_interlock);
1099 } else {
1100 KASSERT(bp->b_objlock == &buffer_lock);
1101 mutex_exit(bp->b_objlock);
1102 }
1103 /* We want to dispose of the buffer, so wake everybody. */
1104 cv_broadcast(&bp->b_busy);
1105 if (bp->b_bufsize <= 0)
1106 /* no data */
1107 goto already_queued;
1108 else
1109 /* invalid data */
1110 bufq = &bufqueues[BQ_AGE];
1111 binsheadfree(bp, bufq);
1112 } else {
1113 /*
1114 * It has valid data. Put it on the end of the appropriate
1115 * queue, so that it'll stick around for as long as possible.
1116 * If buf is AGE, but has dependencies, must put it on last
1117 * bufqueue to be scanned, ie LRU. This protects against the
1118 * livelock where BQ_AGE only has buffers with dependencies,
1119 * and we thus never get to the dependent buffers in BQ_LRU.
1120 */
1121 if (ISSET(bp->b_flags, B_LOCKED)) {
1122 /* locked in core */
1123 bufq = &bufqueues[BQ_LOCKED];
1124 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1125 /* valid data */
1126 bufq = &bufqueues[BQ_LRU];
1127 } else {
1128 /* stale but valid data */
1129 bufq = &bufqueues[BQ_AGE];
1130 }
1131 binstailfree(bp, bufq);
1132 }
1133 already_queued:
1134 /* Unlock the buffer. */
1135 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1136 CLR(bp->b_flags, B_ASYNC);
1137
1138 /*
1139 * Wake only the highest priority waiter on the lock, in order to
1140 * prevent a thundering herd: many LWPs simultaneously awakening and
1141 * competing for the buffer's lock. Testing in 2019 revealed this
1142 * to reduce contention on bufcache_lock tenfold during a kernel
1143 * compile. Here and elsewhere, when the buffer is changing
1144 * identity, being disposed of, or moving from one list to another,
1145 * we wake all lock requestors.
1146 */
1147 if (bp->b_bufsize <= 0) {
1148 cv_broadcast(&bp->b_busy);
1149 buf_destroy(bp);
1150 #ifdef DEBUG
1151 memset((char *)bp, 0, sizeof(*bp));
1152 #endif
1153 pool_cache_put(buf_cache, bp);
1154 } else
1155 cv_signal(&bp->b_busy);
1156 }
1157
1158 void
1159 brelse(buf_t *bp, int set)
1160 {
1161
1162 mutex_enter(&bufcache_lock);
1163 brelsel(bp, set);
1164 mutex_exit(&bufcache_lock);
1165 }
1166
1167 /*
1168 * Determine if a block is in the cache.
1169 * Just look on what would be its hash chain. If it's there, return
1170 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1171 * we normally don't return the buffer, unless the caller explicitly
1172 * wants us to.
1173 */
1174 buf_t *
1175 incore(struct vnode *vp, daddr_t blkno)
1176 {
1177 buf_t *bp;
1178
1179 KASSERT(mutex_owned(&bufcache_lock));
1180
1181 /* Search hash chain */
1182 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1183 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1184 !ISSET(bp->b_cflags, BC_INVAL)) {
1185 KASSERT(bp->b_objlock == vp->v_interlock);
1186 return (bp);
1187 }
1188 }
1189
1190 return (NULL);
1191 }
1192
1193 /*
1194 * Get a block of requested size that is associated with
1195 * a given vnode and block offset. If it is found in the
1196 * block cache, mark it as having been found, make it busy
1197 * and return it. Otherwise, return an empty block of the
1198 * correct size. It is up to the caller to insure that the
1199 * cached blocks be of the correct size.
1200 */
1201 buf_t *
1202 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1203 {
1204 int err, preserve;
1205 buf_t *bp;
1206
1207 mutex_enter(&bufcache_lock);
1208 SDT_PROBE3(io, kernel, , getblk__start, vp, blkno, size);
1209 loop:
1210 bp = incore(vp, blkno);
1211 if (bp != NULL) {
1212 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1213 if (err != 0) {
1214 if (err == EPASSTHROUGH)
1215 goto loop;
1216 mutex_exit(&bufcache_lock);
1217 SDT_PROBE4(io, kernel, , getblk__done,
1218 vp, blkno, size, NULL);
1219 return (NULL);
1220 }
1221 KASSERT(!cv_has_waiters(&bp->b_done));
1222 #ifdef DIAGNOSTIC
1223 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1224 bp->b_bcount < size && vp->v_type != VBLK)
1225 panic("getblk: block size invariant failed");
1226 #endif
1227 bremfree(bp);
1228 preserve = 1;
1229 } else {
1230 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1231 goto loop;
1232
1233 if (incore(vp, blkno) != NULL) {
1234 /* The block has come into memory in the meantime. */
1235 brelsel(bp, 0);
1236 goto loop;
1237 }
1238
1239 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1240 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1241 mutex_enter(vp->v_interlock);
1242 bgetvp(vp, bp);
1243 mutex_exit(vp->v_interlock);
1244 preserve = 0;
1245 }
1246 mutex_exit(&bufcache_lock);
1247
1248 /*
1249 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1250 * if we re-size buffers here.
1251 */
1252 if (ISSET(bp->b_flags, B_LOCKED)) {
1253 KASSERT(bp->b_bufsize >= size);
1254 } else {
1255 if (allocbuf(bp, size, preserve)) {
1256 mutex_enter(&bufcache_lock);
1257 LIST_REMOVE(bp, b_hash);
1258 brelsel(bp, BC_INVAL);
1259 mutex_exit(&bufcache_lock);
1260 SDT_PROBE4(io, kernel, , getblk__done,
1261 vp, blkno, size, NULL);
1262 return NULL;
1263 }
1264 }
1265 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1266 SDT_PROBE4(io, kernel, , getblk__done, vp, blkno, size, bp);
1267 return (bp);
1268 }
1269
1270 /*
1271 * Get an empty, disassociated buffer of given size.
1272 */
1273 buf_t *
1274 geteblk(int size)
1275 {
1276 buf_t *bp;
1277 int error __diagused;
1278
1279 mutex_enter(&bufcache_lock);
1280 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1281 ;
1282
1283 SET(bp->b_cflags, BC_INVAL);
1284 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1285 mutex_exit(&bufcache_lock);
1286 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1287 error = allocbuf(bp, size, 0);
1288 KASSERT(error == 0);
1289 return (bp);
1290 }
1291
1292 /*
1293 * Expand or contract the actual memory allocated to a buffer.
1294 *
1295 * If the buffer shrinks, data is lost, so it's up to the
1296 * caller to have written it out *first*; this routine will not
1297 * start a write. If the buffer grows, it's the callers
1298 * responsibility to fill out the buffer's additional contents.
1299 */
1300 int
1301 allocbuf(buf_t *bp, int size, int preserve)
1302 {
1303 void *addr;
1304 vsize_t oldsize, desired_size;
1305 int oldcount;
1306 int delta;
1307
1308 desired_size = buf_roundsize(size);
1309 if (desired_size > MAXBSIZE)
1310 printf("allocbuf: buffer larger than MAXBSIZE requested");
1311
1312 oldcount = bp->b_bcount;
1313
1314 bp->b_bcount = size;
1315
1316 oldsize = bp->b_bufsize;
1317 if (oldsize == desired_size) {
1318 /*
1319 * Do not short cut the WAPBL resize, as the buffer length
1320 * could still have changed and this would corrupt the
1321 * tracking of the transaction length.
1322 */
1323 goto out;
1324 }
1325
1326 /*
1327 * If we want a buffer of a different size, re-allocate the
1328 * buffer's memory; copy old content only if needed.
1329 */
1330 addr = buf_alloc(desired_size);
1331 if (addr == NULL)
1332 return ENOMEM;
1333 if (preserve)
1334 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1335 if (bp->b_data != NULL)
1336 buf_mrelease(bp->b_data, oldsize);
1337 bp->b_data = addr;
1338 bp->b_bufsize = desired_size;
1339
1340 /*
1341 * Update overall buffer memory counter (protected by bufcache_lock)
1342 */
1343 delta = (long)desired_size - (long)oldsize;
1344
1345 mutex_enter(&bufcache_lock);
1346 if ((bufmem += delta) > bufmem_hiwater) {
1347 /*
1348 * Need to trim overall memory usage.
1349 */
1350 while (buf_canrelease()) {
1351 if (preempt_needed()) {
1352 mutex_exit(&bufcache_lock);
1353 preempt();
1354 mutex_enter(&bufcache_lock);
1355 }
1356 if (buf_trim() == 0)
1357 break;
1358 }
1359 }
1360 mutex_exit(&bufcache_lock);
1361
1362 out:
1363 if (wapbl_vphaswapbl(bp->b_vp))
1364 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1365
1366 return 0;
1367 }
1368
1369 /*
1370 * Find a buffer which is available for use.
1371 * Select something from a free list.
1372 * Preference is to AGE list, then LRU list.
1373 *
1374 * Called with the buffer queues locked.
1375 * Return buffer locked.
1376 */
1377 static buf_t *
1378 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1379 {
1380 buf_t *bp;
1381 struct vnode *vp;
1382 struct mount *transmp = NULL;
1383
1384 SDT_PROBE0(io, kernel, , getnewbuf__start);
1385
1386 start:
1387 KASSERT(mutex_owned(&bufcache_lock));
1388
1389 /*
1390 * Get a new buffer from the pool.
1391 */
1392 if (!from_bufq && buf_lotsfree()) {
1393 mutex_exit(&bufcache_lock);
1394 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1395 if (bp != NULL) {
1396 memset((char *)bp, 0, sizeof(*bp));
1397 buf_init(bp);
1398 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1399 mutex_enter(&bufcache_lock);
1400 #if defined(DIAGNOSTIC)
1401 bp->b_freelistindex = -1;
1402 #endif /* defined(DIAGNOSTIC) */
1403 SDT_PROBE1(io, kernel, , getnewbuf__done, bp);
1404 return (bp);
1405 }
1406 mutex_enter(&bufcache_lock);
1407 }
1408
1409 KASSERT(mutex_owned(&bufcache_lock));
1410 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
1411 KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
1412 } else {
1413 TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
1414 if (ISSET(bp->b_cflags, BC_VFLUSH) ||
1415 !ISSET(bp->b_oflags, BO_DELWRI))
1416 break;
1417 if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
1418 KASSERT(transmp == NULL);
1419 transmp = bp->b_vp->v_mount;
1420 break;
1421 }
1422 }
1423 }
1424 if (bp != NULL) {
1425 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1426 bremfree(bp);
1427
1428 /* Buffer is no longer on free lists. */
1429 SET(bp->b_cflags, BC_BUSY);
1430
1431 /* Wake anyone trying to lock the old identity. */
1432 cv_broadcast(&bp->b_busy);
1433 } else {
1434 /*
1435 * XXX: !from_bufq should be removed.
1436 */
1437 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1438 /* wait for a free buffer of any kind */
1439 if ((slpflag & PCATCH) != 0)
1440 (void)cv_timedwait_sig(&needbuffer_cv,
1441 &bufcache_lock, slptimeo);
1442 else
1443 (void)cv_timedwait(&needbuffer_cv,
1444 &bufcache_lock, slptimeo);
1445 }
1446 SDT_PROBE1(io, kernel, , getnewbuf__done, NULL);
1447 return (NULL);
1448 }
1449
1450 #ifdef DIAGNOSTIC
1451 if (bp->b_bufsize <= 0)
1452 panic("buffer %p: on queue but empty", bp);
1453 #endif
1454
1455 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1456 /*
1457 * This is a delayed write buffer being flushed to disk. Make
1458 * sure it gets aged out of the queue when it's finished, and
1459 * leave it off the LRU queue.
1460 */
1461 CLR(bp->b_cflags, BC_VFLUSH);
1462 SET(bp->b_cflags, BC_AGE);
1463 goto start;
1464 }
1465
1466 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1467 KASSERT(!cv_has_waiters(&bp->b_done));
1468
1469 /*
1470 * If buffer was a delayed write, start it and return NULL
1471 * (since we might sleep while starting the write).
1472 */
1473 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1474 /*
1475 * This buffer has gone through the LRU, so make sure it gets
1476 * reused ASAP.
1477 */
1478 SET(bp->b_cflags, BC_AGE);
1479 mutex_exit(&bufcache_lock);
1480 bawrite(bp);
1481 KASSERT(transmp != NULL);
1482 fstrans_done(transmp);
1483 mutex_enter(&bufcache_lock);
1484 SDT_PROBE1(io, kernel, , getnewbuf__done, NULL);
1485 return (NULL);
1486 }
1487
1488 KASSERT(transmp == NULL);
1489
1490 vp = bp->b_vp;
1491
1492 /* clear out various other fields */
1493 bp->b_cflags = BC_BUSY;
1494 bp->b_oflags = 0;
1495 bp->b_flags = 0;
1496 bp->b_dev = NODEV;
1497 bp->b_blkno = 0;
1498 bp->b_lblkno = 0;
1499 bp->b_rawblkno = 0;
1500 bp->b_iodone = 0;
1501 bp->b_error = 0;
1502 bp->b_resid = 0;
1503 bp->b_bcount = 0;
1504
1505 LIST_REMOVE(bp, b_hash);
1506
1507 /* Disassociate us from our vnode, if we had one... */
1508 if (vp != NULL) {
1509 mutex_enter(vp->v_interlock);
1510 brelvp(bp);
1511 mutex_exit(vp->v_interlock);
1512 }
1513
1514 SDT_PROBE1(io, kernel, , getnewbuf__done, bp);
1515 return (bp);
1516 }
1517
1518 /*
1519 * Attempt to free an aged buffer off the queues.
1520 * Called with queue lock held.
1521 * Returns the amount of buffer memory freed.
1522 */
1523 static int
1524 buf_trim(void)
1525 {
1526 buf_t *bp;
1527 long size;
1528
1529 KASSERT(mutex_owned(&bufcache_lock));
1530
1531 /* Instruct getnewbuf() to get buffers off the queues */
1532 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1533 return 0;
1534
1535 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1536 size = bp->b_bufsize;
1537 bufmem -= size;
1538 if (size > 0) {
1539 buf_mrelease(bp->b_data, size);
1540 bp->b_bcount = bp->b_bufsize = 0;
1541 }
1542 /* brelse() will return the buffer to the global buffer pool */
1543 brelsel(bp, 0);
1544 return size;
1545 }
1546
1547 int
1548 buf_drain(int n)
1549 {
1550 int size = 0, sz;
1551
1552 KASSERT(mutex_owned(&bufcache_lock));
1553
1554 while (size < n && bufmem > bufmem_lowater) {
1555 sz = buf_trim();
1556 if (sz <= 0)
1557 break;
1558 size += sz;
1559 }
1560
1561 return size;
1562 }
1563
1564 /*
1565 * Wait for operations on the buffer to complete.
1566 * When they do, extract and return the I/O's error value.
1567 */
1568 int
1569 biowait(buf_t *bp)
1570 {
1571
1572 BIOHIST_FUNC(__func__);
1573
1574 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1575
1576 SDT_PROBE1(io, kernel, , wait__start, bp);
1577
1578 mutex_enter(bp->b_objlock);
1579
1580 BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
1581 (uintptr_t)bp, bp->b_oflags,
1582 (uintptr_t)__builtin_return_address(0), 0);
1583
1584 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
1585 BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1586 cv_wait(&bp->b_done, bp->b_objlock);
1587 }
1588 mutex_exit(bp->b_objlock);
1589
1590 SDT_PROBE1(io, kernel, , wait__done, bp);
1591
1592 BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
1593
1594 return bp->b_error;
1595 }
1596
1597 /*
1598 * Mark I/O complete on a buffer.
1599 *
1600 * If a callback has been requested, e.g. the pageout
1601 * daemon, do so. Otherwise, awaken waiting processes.
1602 *
1603 * [ Leffler, et al., says on p.247:
1604 * "This routine wakes up the blocked process, frees the buffer
1605 * for an asynchronous write, or, for a request by the pagedaemon
1606 * process, invokes a procedure specified in the buffer structure" ]
1607 *
1608 * In real life, the pagedaemon (or other system processes) wants
1609 * to do async stuff too, and doesn't want the buffer brelse()'d.
1610 * (for swap pager, that puts swap buffers on the free lists (!!!),
1611 * for the vn device, that puts allocated buffers on the free lists!)
1612 */
1613 void
1614 biodone(buf_t *bp)
1615 {
1616 int s;
1617
1618 BIOHIST_FUNC(__func__);
1619
1620 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1621
1622 if (cpu_intr_p()) {
1623 /* From interrupt mode: defer to a soft interrupt. */
1624 s = splvm();
1625 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1626
1627 BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
1628 (uintptr_t)bp, 0, 0, 0);
1629 softint_schedule(biodone_sih);
1630 splx(s);
1631 } else {
1632 /* Process now - the buffer may be freed soon. */
1633 biodone2(bp);
1634 }
1635 }
1636
1637 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
1638
1639 static void
1640 biodone2(buf_t *bp)
1641 {
1642 void (*callout)(buf_t *);
1643
1644 SDT_PROBE1(io, kernel, ,done, bp);
1645
1646 BIOHIST_FUNC(__func__);
1647 BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1648
1649 mutex_enter(bp->b_objlock);
1650 /* Note that the transfer is done. */
1651 if (ISSET(bp->b_oflags, BO_DONE))
1652 panic("biodone2 already");
1653 CLR(bp->b_flags, B_COWDONE);
1654 SET(bp->b_oflags, BO_DONE);
1655 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1656
1657 /* Wake up waiting writers. */
1658 if (!ISSET(bp->b_flags, B_READ))
1659 vwakeup(bp);
1660
1661 if ((callout = bp->b_iodone) != NULL) {
1662 BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
1663 0, 0, 0);
1664
1665 /* Note callout done, then call out. */
1666 KASSERT(!cv_has_waiters(&bp->b_done));
1667 bp->b_iodone = NULL;
1668 mutex_exit(bp->b_objlock);
1669 (*callout)(bp);
1670 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1671 /* If async, release. */
1672 BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
1673 KASSERT(!cv_has_waiters(&bp->b_done));
1674 mutex_exit(bp->b_objlock);
1675 brelse(bp, 0);
1676 } else {
1677 /* Otherwise just wake up waiters in biowait(). */
1678 BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
1679 cv_broadcast(&bp->b_done);
1680 mutex_exit(bp->b_objlock);
1681 }
1682 }
1683
1684 static void
1685 biointr(void *cookie)
1686 {
1687 struct cpu_info *ci;
1688 buf_t *bp;
1689 int s;
1690
1691 BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
1692
1693 ci = curcpu();
1694
1695 s = splvm();
1696 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1697 KASSERT(curcpu() == ci);
1698
1699 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1700 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1701 splx(s);
1702
1703 BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
1704 biodone2(bp);
1705
1706 s = splvm();
1707 }
1708 splx(s);
1709 }
1710
1711 static void
1712 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
1713 {
1714 const bool allowaddr = get_expose_address(curproc);
1715
1716 memset(o, 0, sizeof(*o));
1717
1718 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1719 o->b_error = i->b_error;
1720 o->b_prio = i->b_prio;
1721 o->b_dev = i->b_dev;
1722 o->b_bufsize = i->b_bufsize;
1723 o->b_bcount = i->b_bcount;
1724 o->b_resid = i->b_resid;
1725 COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
1726 o->b_blkno = i->b_blkno;
1727 o->b_rawblkno = i->b_rawblkno;
1728 COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
1729 COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
1730 COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
1731 COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
1732 o->b_lblkno = i->b_lblkno;
1733 }
1734
1735 #define KERN_BUFSLOP 20
1736 static int
1737 sysctl_dobuf(SYSCTLFN_ARGS)
1738 {
1739 buf_t *bp;
1740 struct buf_sysctl bs;
1741 struct bqueue *bq;
1742 char *dp;
1743 u_int i, op, arg;
1744 size_t len, needed, elem_size, out_size;
1745 int error, elem_count, retries;
1746
1747 if (namelen == 1 && name[0] == CTL_QUERY)
1748 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1749
1750 if (namelen != 4)
1751 return (EINVAL);
1752
1753 retries = 100;
1754 retry:
1755 dp = oldp;
1756 len = (oldp != NULL) ? *oldlenp : 0;
1757 op = name[0];
1758 arg = name[1];
1759 elem_size = name[2];
1760 elem_count = name[3];
1761 out_size = MIN(sizeof(bs), elem_size);
1762
1763 /*
1764 * at the moment, these are just "placeholders" to make the
1765 * API for retrieving kern.buf data more extensible in the
1766 * future.
1767 *
1768 * XXX kern.buf currently has "netbsd32" issues. hopefully
1769 * these will be resolved at a later point.
1770 */
1771 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1772 elem_size < 1 || elem_count < 0)
1773 return (EINVAL);
1774
1775 error = 0;
1776 needed = 0;
1777 sysctl_unlock();
1778 mutex_enter(&bufcache_lock);
1779 for (i = 0; i < BQUEUES; i++) {
1780 bq = &bufqueues[i];
1781 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1782 bq->bq_marker = bp;
1783 if (len >= elem_size && elem_count > 0) {
1784 sysctl_fillbuf(bp, &bs);
1785 mutex_exit(&bufcache_lock);
1786 error = copyout(&bs, dp, out_size);
1787 mutex_enter(&bufcache_lock);
1788 if (error)
1789 break;
1790 if (bq->bq_marker != bp) {
1791 /*
1792 * This sysctl node is only for
1793 * statistics. Retry; if the
1794 * queue keeps changing, then
1795 * bail out.
1796 */
1797 if (retries-- == 0) {
1798 error = EAGAIN;
1799 break;
1800 }
1801 mutex_exit(&bufcache_lock);
1802 sysctl_relock();
1803 goto retry;
1804 }
1805 dp += elem_size;
1806 len -= elem_size;
1807 }
1808 needed += elem_size;
1809 if (elem_count > 0 && elem_count != INT_MAX)
1810 elem_count--;
1811 }
1812 if (error != 0)
1813 break;
1814 }
1815 mutex_exit(&bufcache_lock);
1816 sysctl_relock();
1817
1818 *oldlenp = needed;
1819 if (oldp == NULL)
1820 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1821
1822 return (error);
1823 }
1824
1825 static int
1826 sysctl_bufvm_update(SYSCTLFN_ARGS)
1827 {
1828 int error, rv;
1829 struct sysctlnode node;
1830 unsigned int temp_bufcache;
1831 unsigned long temp_water;
1832
1833 /* Take a copy of the supplied node and its data */
1834 node = *rnode;
1835 if (node.sysctl_data == &bufcache) {
1836 node.sysctl_data = &temp_bufcache;
1837 temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1838 } else {
1839 node.sysctl_data = &temp_water;
1840 temp_water = *(unsigned long *)rnode->sysctl_data;
1841 }
1842
1843 /* Update the copy */
1844 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1845 if (error || newp == NULL)
1846 return (error);
1847
1848 if (rnode->sysctl_data == &bufcache) {
1849 if (temp_bufcache > 100)
1850 return (EINVAL);
1851 bufcache = temp_bufcache;
1852 buf_setwm();
1853 } else if (rnode->sysctl_data == &bufmem_lowater) {
1854 if (bufmem_hiwater - temp_water < 16)
1855 return (EINVAL);
1856 bufmem_lowater = temp_water;
1857 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1858 if (temp_water - bufmem_lowater < 16)
1859 return (EINVAL);
1860 bufmem_hiwater = temp_water;
1861 } else
1862 return (EINVAL);
1863
1864 /* Drain until below new high water mark */
1865 sysctl_unlock();
1866 mutex_enter(&bufcache_lock);
1867 while (bufmem > bufmem_hiwater) {
1868 rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1869 if (rv <= 0)
1870 break;
1871 }
1872 mutex_exit(&bufcache_lock);
1873 sysctl_relock();
1874
1875 return 0;
1876 }
1877
1878 static struct sysctllog *vfsbio_sysctllog;
1879
1880 static void
1881 sysctl_kern_buf_setup(void)
1882 {
1883
1884 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1885 CTLFLAG_PERMANENT,
1886 CTLTYPE_NODE, "buf",
1887 SYSCTL_DESCR("Kernel buffer cache information"),
1888 sysctl_dobuf, 0, NULL, 0,
1889 CTL_KERN, KERN_BUF, CTL_EOL);
1890 }
1891
1892 static void
1893 sysctl_vm_buf_setup(void)
1894 {
1895
1896 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1897 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1898 CTLTYPE_INT, "bufcache",
1899 SYSCTL_DESCR("Percentage of physical memory to use for "
1900 "buffer cache"),
1901 sysctl_bufvm_update, 0, &bufcache, 0,
1902 CTL_VM, CTL_CREATE, CTL_EOL);
1903 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1904 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1905 CTLTYPE_LONG, "bufmem",
1906 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1907 "cache"),
1908 NULL, 0, &bufmem, 0,
1909 CTL_VM, CTL_CREATE, CTL_EOL);
1910 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1911 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1912 CTLTYPE_LONG, "bufmem_lowater",
1913 SYSCTL_DESCR("Minimum amount of kernel memory to "
1914 "reserve for buffer cache"),
1915 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1916 CTL_VM, CTL_CREATE, CTL_EOL);
1917 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1918 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1919 CTLTYPE_LONG, "bufmem_hiwater",
1920 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1921 "for buffer cache"),
1922 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1923 CTL_VM, CTL_CREATE, CTL_EOL);
1924 }
1925
1926 #ifdef DEBUG
1927 /*
1928 * Print out statistics on the current allocation of the buffer pool.
1929 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1930 * in vfs_syscalls.c using sysctl.
1931 */
1932 void
1933 vfs_bufstats(void)
1934 {
1935 int i, j, count;
1936 buf_t *bp;
1937 struct bqueue *dp;
1938 int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
1939 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1940
1941 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1942 count = 0;
1943 memset(counts, 0, sizeof(counts));
1944 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1945 counts[bp->b_bufsize / PAGE_SIZE]++;
1946 count++;
1947 }
1948 printf("%s: total-%d", bname[i], count);
1949 for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
1950 if (counts[j] != 0)
1951 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1952 printf("\n");
1953 }
1954 }
1955 #endif /* DEBUG */
1956
1957 /* ------------------------------ */
1958
1959 buf_t *
1960 getiobuf(struct vnode *vp, bool waitok)
1961 {
1962 buf_t *bp;
1963
1964 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1965 if (bp == NULL)
1966 return bp;
1967
1968 buf_init(bp);
1969
1970 if ((bp->b_vp = vp) != NULL) {
1971 bp->b_objlock = vp->v_interlock;
1972 } else {
1973 KASSERT(bp->b_objlock == &buffer_lock);
1974 }
1975
1976 return bp;
1977 }
1978
1979 void
1980 putiobuf(buf_t *bp)
1981 {
1982
1983 buf_destroy(bp);
1984 pool_cache_put(bufio_cache, bp);
1985 }
1986
1987 /*
1988 * nestiobuf_iodone: b_iodone callback for nested buffers.
1989 */
1990
1991 void
1992 nestiobuf_iodone(buf_t *bp)
1993 {
1994 buf_t *mbp = bp->b_private;
1995 int error;
1996 int donebytes;
1997
1998 KASSERT(bp->b_bcount <= bp->b_bufsize);
1999 KASSERT(mbp != bp);
2000
2001 error = bp->b_error;
2002 if (bp->b_error == 0 &&
2003 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
2004 /*
2005 * Not all got transferred, raise an error. We have no way to
2006 * propagate these conditions to mbp.
2007 */
2008 error = EIO;
2009 }
2010
2011 donebytes = bp->b_bufsize;
2012
2013 putiobuf(bp);
2014 nestiobuf_done(mbp, donebytes, error);
2015 }
2016
2017 /*
2018 * nestiobuf_setup: setup a "nested" buffer.
2019 *
2020 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
2021 * => 'bp' should be a buffer allocated by getiobuf.
2022 * => 'offset' is a byte offset in the master buffer.
2023 * => 'size' is a size in bytes of this nested buffer.
2024 */
2025
2026 void
2027 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
2028 {
2029 const int b_pass = mbp->b_flags & (B_READ|B_PHYS|B_RAW|B_MEDIA_FLAGS);
2030 struct vnode *vp = mbp->b_vp;
2031
2032 KASSERT(mbp->b_bcount >= offset + size);
2033 bp->b_vp = vp;
2034 bp->b_dev = mbp->b_dev;
2035 bp->b_objlock = mbp->b_objlock;
2036 bp->b_cflags = BC_BUSY;
2037 bp->b_flags = B_ASYNC | b_pass;
2038 bp->b_iodone = nestiobuf_iodone;
2039 bp->b_data = (char *)mbp->b_data + offset;
2040 bp->b_resid = bp->b_bcount = size;
2041 bp->b_bufsize = bp->b_bcount;
2042 bp->b_private = mbp;
2043 BIO_COPYPRIO(bp, mbp);
2044 if (BUF_ISWRITE(bp) && vp != NULL) {
2045 mutex_enter(vp->v_interlock);
2046 vp->v_numoutput++;
2047 mutex_exit(vp->v_interlock);
2048 }
2049 }
2050
2051 /*
2052 * nestiobuf_done: propagate completion to the master buffer.
2053 *
2054 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2055 * => 'error' is an errno(2) that 'donebytes' has been completed with.
2056 */
2057
2058 void
2059 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2060 {
2061
2062 if (donebytes == 0) {
2063 return;
2064 }
2065 mutex_enter(mbp->b_objlock);
2066 KASSERT(mbp->b_resid >= donebytes);
2067 mbp->b_resid -= donebytes;
2068 if (error)
2069 mbp->b_error = error;
2070 if (mbp->b_resid == 0) {
2071 if (mbp->b_error)
2072 mbp->b_resid = mbp->b_bcount;
2073 mutex_exit(mbp->b_objlock);
2074 biodone(mbp);
2075 } else
2076 mutex_exit(mbp->b_objlock);
2077 }
2078
2079 void
2080 buf_init(buf_t *bp)
2081 {
2082
2083 cv_init(&bp->b_busy, "biolock");
2084 cv_init(&bp->b_done, "biowait");
2085 bp->b_dev = NODEV;
2086 bp->b_error = 0;
2087 bp->b_flags = 0;
2088 bp->b_cflags = 0;
2089 bp->b_oflags = 0;
2090 bp->b_objlock = &buffer_lock;
2091 bp->b_iodone = NULL;
2092 bp->b_dev = NODEV;
2093 bp->b_vnbufs.le_next = NOLIST;
2094 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2095 }
2096
2097 void
2098 buf_destroy(buf_t *bp)
2099 {
2100
2101 cv_destroy(&bp->b_done);
2102 cv_destroy(&bp->b_busy);
2103 }
2104
2105 int
2106 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2107 {
2108 int error;
2109
2110 KASSERT(mutex_owned(&bufcache_lock));
2111
2112 SDT_PROBE4(io, kernel, , bbusy__start, bp, intr, timo, interlock);
2113
2114 if ((bp->b_cflags & BC_BUSY) != 0) {
2115 if (curlwp == uvm.pagedaemon_lwp) {
2116 error = EDEADLK;
2117 goto out;
2118 }
2119 bp->b_cflags |= BC_WANTED;
2120 if (interlock != NULL)
2121 mutex_exit(interlock);
2122 if (intr) {
2123 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2124 timo);
2125 } else {
2126 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2127 timo);
2128 }
2129 /*
2130 * At this point the buffer may be gone: don't touch it
2131 * again. The caller needs to find it again and retry.
2132 */
2133 if (interlock != NULL)
2134 mutex_enter(interlock);
2135 if (error == 0)
2136 error = EPASSTHROUGH;
2137 } else {
2138 bp->b_cflags |= BC_BUSY;
2139 error = 0;
2140 }
2141
2142 out: SDT_PROBE5(io, kernel, , bbusy__done,
2143 bp, intr, timo, interlock, error);
2144 return error;
2145 }
2146
2147 /*
2148 * Nothing outside this file should really need to know about nbuf,
2149 * but a few things still want to read it, so give them a way to do that.
2150 */
2151 u_int
2152 buf_nbuf(void)
2153 {
2154
2155 return nbuf;
2156 }
2157