Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.301
      1 /*	$NetBSD: vfs_bio.c,v 1.301 2021/07/25 06:06:40 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.301 2021/07/25 06:06:40 simonb Exp $");
    127 
    128 #ifdef _KERNEL_OPT
    129 #include "opt_bufcache.h"
    130 #include "opt_dtrace.h"
    131 #include "opt_biohist.h"
    132 #endif
    133 
    134 #include <sys/param.h>
    135 #include <sys/systm.h>
    136 #include <sys/kernel.h>
    137 #include <sys/proc.h>
    138 #include <sys/buf.h>
    139 #include <sys/vnode.h>
    140 #include <sys/mount.h>
    141 #include <sys/resourcevar.h>
    142 #include <sys/sysctl.h>
    143 #include <sys/conf.h>
    144 #include <sys/kauth.h>
    145 #include <sys/fstrans.h>
    146 #include <sys/intr.h>
    147 #include <sys/cpu.h>
    148 #include <sys/wapbl.h>
    149 #include <sys/bitops.h>
    150 #include <sys/cprng.h>
    151 #include <sys/sdt.h>
    152 
    153 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    154 
    155 #include <miscfs/specfs/specdev.h>
    156 
    157 SDT_PROVIDER_DEFINE(io);
    158 
    159 SDT_PROBE_DEFINE4(io, kernel, , bbusy__start,
    160     "struct buf *"/*bp*/,
    161     "bool"/*intr*/, "int"/*timo*/, "kmutex_t *"/*interlock*/);
    162 SDT_PROBE_DEFINE5(io, kernel, , bbusy__done,
    163     "struct buf *"/*bp*/,
    164     "bool"/*intr*/,
    165     "int"/*timo*/,
    166     "kmutex_t *"/*interlock*/,
    167     "int"/*error*/);
    168 SDT_PROBE_DEFINE0(io, kernel, , getnewbuf__start);
    169 SDT_PROBE_DEFINE1(io, kernel, , getnewbuf__done,  "struct buf *"/*bp*/);
    170 SDT_PROBE_DEFINE3(io, kernel, , getblk__start,
    171     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/);
    172 SDT_PROBE_DEFINE4(io, kernel, , getblk__done,
    173     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/,
    174     "struct buf *"/*bp*/);
    175 SDT_PROBE_DEFINE2(io, kernel, , brelse, "struct buf *"/*bp*/, "int"/*set*/);
    176 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
    177 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
    178 
    179 #ifndef	BUFPAGES
    180 # define BUFPAGES 0
    181 #endif
    182 
    183 #ifdef BUFCACHE
    184 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    185 #  error BUFCACHE is not between 5 and 95
    186 # endif
    187 #else
    188 # define BUFCACHE 15
    189 #endif
    190 
    191 u_int	nbuf;			/* desired number of buffer headers */
    192 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    193 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    194 
    195 /*
    196  * Definitions for the buffer free lists.
    197  */
    198 #define	BQUEUES		3		/* number of free buffer queues */
    199 
    200 #define	BQ_LOCKED	0		/* super-blocks &c */
    201 #define	BQ_LRU		1		/* lru, useful buffers */
    202 #define	BQ_AGE		2		/* rubbish */
    203 
    204 struct bqueue {
    205 	TAILQ_HEAD(, buf) bq_queue;
    206 	uint64_t bq_bytes;
    207 	buf_t *bq_marker;
    208 };
    209 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
    210 
    211 /* Function prototypes */
    212 static void buf_setwm(void);
    213 static int buf_trim(void);
    214 static void *bufpool_page_alloc(struct pool *, int);
    215 static void bufpool_page_free(struct pool *, void *);
    216 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
    217 static buf_t *getnewbuf(int, int, int);
    218 static int buf_lotsfree(void);
    219 static int buf_canrelease(void);
    220 static u_long buf_mempoolidx(u_long);
    221 static u_long buf_roundsize(u_long);
    222 static void *buf_alloc(size_t);
    223 static void buf_mrelease(void *, size_t);
    224 static void binsheadfree(buf_t *, struct bqueue *);
    225 static void binstailfree(buf_t *, struct bqueue *);
    226 #ifdef DEBUG
    227 static int checkfreelist(buf_t *, struct bqueue *, int);
    228 #endif
    229 static void biointr(void *);
    230 static void biodone2(buf_t *);
    231 static void sysctl_kern_buf_setup(void);
    232 static void sysctl_vm_buf_setup(void);
    233 
    234 /* Initialization for biohist */
    235 
    236 #include <sys/biohist.h>
    237 
    238 BIOHIST_DEFINE(biohist);
    239 
    240 void
    241 biohist_init(void)
    242 {
    243 
    244 	BIOHIST_INIT(biohist, BIOHIST_SIZE);
    245 }
    246 
    247 /*
    248  * Definitions for the buffer hash lists.
    249  */
    250 #define	BUFHASH(dvp, lbn)	\
    251 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    252 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    253 u_long	bufhash;
    254 
    255 static int     bufhash_stats(struct hashstat_sysctl *, bool);
    256 
    257 static kcondvar_t needbuffer_cv;
    258 
    259 /*
    260  * Buffer queue lock.
    261  */
    262 kmutex_t bufcache_lock __cacheline_aligned;
    263 kmutex_t buffer_lock __cacheline_aligned;
    264 
    265 /* Software ISR for completed transfers. */
    266 static void *biodone_sih;
    267 
    268 /* Buffer pool for I/O buffers. */
    269 static pool_cache_t buf_cache;
    270 static pool_cache_t bufio_cache;
    271 
    272 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    273 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    274 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    275 
    276 /* Buffer memory pools */
    277 static struct pool bmempools[NMEMPOOLS];
    278 
    279 static struct vm_map *buf_map;
    280 
    281 /*
    282  * Buffer memory pool allocator.
    283  */
    284 static void *
    285 bufpool_page_alloc(struct pool *pp, int flags)
    286 {
    287 
    288 	return (void *)uvm_km_alloc(buf_map,
    289 	    MAXBSIZE, MAXBSIZE,
    290 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    291 	    | UVM_KMF_WIRED);
    292 }
    293 
    294 static void
    295 bufpool_page_free(struct pool *pp, void *v)
    296 {
    297 
    298 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    299 }
    300 
    301 static struct pool_allocator bufmempool_allocator = {
    302 	.pa_alloc = bufpool_page_alloc,
    303 	.pa_free = bufpool_page_free,
    304 	.pa_pagesz = MAXBSIZE,
    305 };
    306 
    307 /* Buffer memory management variables */
    308 u_long bufmem_valimit;
    309 u_long bufmem_hiwater;
    310 u_long bufmem_lowater;
    311 u_long bufmem;
    312 
    313 /*
    314  * MD code can call this to set a hard limit on the amount
    315  * of virtual memory used by the buffer cache.
    316  */
    317 int
    318 buf_setvalimit(vsize_t sz)
    319 {
    320 
    321 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    322 	if (sz < NMEMPOOLS * MAXBSIZE)
    323 		return EINVAL;
    324 
    325 	bufmem_valimit = sz;
    326 	return 0;
    327 }
    328 
    329 static void
    330 buf_setwm(void)
    331 {
    332 
    333 	bufmem_hiwater = buf_memcalc();
    334 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    335 #define	BUFMEM_WMSHIFT	3
    336 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    337 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    338 		/* Ensure a reasonable minimum value */
    339 		bufmem_hiwater = BUFMEM_HIWMMIN;
    340 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    341 }
    342 
    343 #ifdef DEBUG
    344 int debug_verify_freelist = 0;
    345 static int
    346 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    347 {
    348 	buf_t *b;
    349 
    350 	if (!debug_verify_freelist)
    351 		return 1;
    352 
    353 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    354 		if (b == bp)
    355 			return ison ? 1 : 0;
    356 	}
    357 
    358 	return ison ? 0 : 1;
    359 }
    360 #endif
    361 
    362 /*
    363  * Insq/Remq for the buffer hash lists.
    364  * Call with buffer queue locked.
    365  */
    366 static void
    367 binsheadfree(buf_t *bp, struct bqueue *dp)
    368 {
    369 
    370 	KASSERT(mutex_owned(&bufcache_lock));
    371 	KASSERT(bp->b_freelistindex == -1);
    372 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    373 	dp->bq_bytes += bp->b_bufsize;
    374 	bp->b_freelistindex = dp - bufqueues;
    375 }
    376 
    377 static void
    378 binstailfree(buf_t *bp, struct bqueue *dp)
    379 {
    380 
    381 	KASSERT(mutex_owned(&bufcache_lock));
    382 	KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
    383 	    "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
    384 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    385 	dp->bq_bytes += bp->b_bufsize;
    386 	bp->b_freelistindex = dp - bufqueues;
    387 }
    388 
    389 void
    390 bremfree(buf_t *bp)
    391 {
    392 	struct bqueue *dp;
    393 	int bqidx = bp->b_freelistindex;
    394 
    395 	KASSERT(mutex_owned(&bufcache_lock));
    396 
    397 	KASSERT(bqidx != -1);
    398 	dp = &bufqueues[bqidx];
    399 	KDASSERT(checkfreelist(bp, dp, 1));
    400 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    401 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    402 	dp->bq_bytes -= bp->b_bufsize;
    403 
    404 	/* For the sysctl helper. */
    405 	if (bp == dp->bq_marker)
    406 		dp->bq_marker = NULL;
    407 
    408 #if defined(DIAGNOSTIC)
    409 	bp->b_freelistindex = -1;
    410 #endif /* defined(DIAGNOSTIC) */
    411 }
    412 
    413 /*
    414  * note that for some ports this is used by pmap bootstrap code to
    415  * determine kva size.
    416  */
    417 u_long
    418 buf_memcalc(void)
    419 {
    420 	u_long n;
    421 	vsize_t mapsz = 0;
    422 
    423 	/*
    424 	 * Determine the upper bound of memory to use for buffers.
    425 	 *
    426 	 *	- If bufpages is specified, use that as the number
    427 	 *	  pages.
    428 	 *
    429 	 *	- Otherwise, use bufcache as the percentage of
    430 	 *	  physical memory.
    431 	 */
    432 	if (bufpages != 0) {
    433 		n = bufpages;
    434 	} else {
    435 		if (bufcache < 5) {
    436 			printf("forcing bufcache %d -> 5", bufcache);
    437 			bufcache = 5;
    438 		}
    439 		if (bufcache > 95) {
    440 			printf("forcing bufcache %d -> 95", bufcache);
    441 			bufcache = 95;
    442 		}
    443 		if (buf_map != NULL)
    444 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
    445 		n = calc_cache_size(mapsz, bufcache,
    446 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    447 		    / PAGE_SIZE;
    448 	}
    449 
    450 	n <<= PAGE_SHIFT;
    451 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    452 		n = bufmem_valimit;
    453 
    454 	return (n);
    455 }
    456 
    457 /*
    458  * Initialize buffers and hash links for buffers.
    459  */
    460 void
    461 bufinit(void)
    462 {
    463 	struct bqueue *dp;
    464 	int use_std;
    465 	u_int i;
    466 
    467 	biodone_vfs = biodone;
    468 
    469 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    470 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    471 	cv_init(&needbuffer_cv, "needbuf");
    472 
    473 	if (bufmem_valimit != 0) {
    474 		vaddr_t minaddr = 0, maxaddr;
    475 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    476 					  bufmem_valimit, 0, false, 0);
    477 		if (buf_map == NULL)
    478 			panic("bufinit: cannot allocate submap");
    479 	} else
    480 		buf_map = kernel_map;
    481 
    482 	/*
    483 	 * Initialize buffer cache memory parameters.
    484 	 */
    485 	bufmem = 0;
    486 	buf_setwm();
    487 
    488 	/* On "small" machines use small pool page sizes where possible */
    489 	use_std = (physmem < atop(16*1024*1024));
    490 
    491 	/*
    492 	 * Also use them on systems that can map the pool pages using
    493 	 * a direct-mapped segment.
    494 	 */
    495 #ifdef PMAP_MAP_POOLPAGE
    496 	use_std = 1;
    497 #endif
    498 
    499 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    500 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    501 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    502 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    503 
    504 	for (i = 0; i < NMEMPOOLS; i++) {
    505 		struct pool_allocator *pa;
    506 		struct pool *pp = &bmempools[i];
    507 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    508 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    509 		if (__predict_false(size >= 1048576))
    510 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    511 		else if (__predict_true(size >= 1024))
    512 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    513 		else
    514 			(void)snprintf(name, 8, "buf%ub", size);
    515 		pa = (size <= PAGE_SIZE && use_std)
    516 			? &pool_allocator_nointr
    517 			: &bufmempool_allocator;
    518 		pool_init(pp, size, DEV_BSIZE, 0, 0, name, pa, IPL_NONE);
    519 		pool_setlowat(pp, 1);
    520 		pool_sethiwat(pp, 1);
    521 	}
    522 
    523 	/* Initialize the buffer queues */
    524 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    525 		TAILQ_INIT(&dp->bq_queue);
    526 		dp->bq_bytes = 0;
    527 	}
    528 
    529 	/*
    530 	 * Estimate hash table size based on the amount of memory we
    531 	 * intend to use for the buffer cache. The average buffer
    532 	 * size is dependent on our clients (i.e. filesystems).
    533 	 *
    534 	 * For now, use an empirical 3K per buffer.
    535 	 */
    536 	nbuf = (bufmem_hiwater / 1024) / 3;
    537 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    538 
    539 	sysctl_kern_buf_setup();
    540 	sysctl_vm_buf_setup();
    541 	hashstat_register("bufhash", bufhash_stats);
    542 }
    543 
    544 void
    545 bufinit2(void)
    546 {
    547 
    548 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    549 	    NULL);
    550 	if (biodone_sih == NULL)
    551 		panic("bufinit2: can't establish soft interrupt");
    552 }
    553 
    554 static int
    555 buf_lotsfree(void)
    556 {
    557 	u_long guess;
    558 
    559 	/* Always allocate if less than the low water mark. */
    560 	if (bufmem < bufmem_lowater)
    561 		return 1;
    562 
    563 	/* Never allocate if greater than the high water mark. */
    564 	if (bufmem > bufmem_hiwater)
    565 		return 0;
    566 
    567 	/* If there's anything on the AGE list, it should be eaten. */
    568 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    569 		return 0;
    570 
    571 	/*
    572 	 * The probabily of getting a new allocation is inversely
    573 	 * proportional  to the current size of the cache above
    574 	 * the low water mark.  Divide the total first to avoid overflows
    575 	 * in the product.
    576 	 */
    577 	guess = cprng_fast32() % 16;
    578 
    579 	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
    580 	    (bufmem - bufmem_lowater))
    581 		return 1;
    582 
    583 	/* Otherwise don't allocate. */
    584 	return 0;
    585 }
    586 
    587 /*
    588  * Return estimate of bytes we think need to be
    589  * released to help resolve low memory conditions.
    590  *
    591  * => called with bufcache_lock held.
    592  */
    593 static int
    594 buf_canrelease(void)
    595 {
    596 	int pagedemand, ninvalid = 0;
    597 
    598 	KASSERT(mutex_owned(&bufcache_lock));
    599 
    600 	if (bufmem < bufmem_lowater)
    601 		return 0;
    602 
    603 	if (bufmem > bufmem_hiwater)
    604 		return bufmem - bufmem_hiwater;
    605 
    606 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    607 
    608 	pagedemand = uvmexp.freetarg - uvm_availmem(false);
    609 	if (pagedemand < 0)
    610 		return ninvalid;
    611 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    612 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    613 }
    614 
    615 /*
    616  * Buffer memory allocation helper functions
    617  */
    618 static u_long
    619 buf_mempoolidx(u_long size)
    620 {
    621 	u_int n = 0;
    622 
    623 	size -= 1;
    624 	size >>= MEMPOOL_INDEX_OFFSET;
    625 	while (size) {
    626 		size >>= 1;
    627 		n += 1;
    628 	}
    629 	if (n >= NMEMPOOLS)
    630 		panic("buf mem pool index %d", n);
    631 	return n;
    632 }
    633 
    634 static u_long
    635 buf_roundsize(u_long size)
    636 {
    637 	/* Round up to nearest power of 2 */
    638 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    639 }
    640 
    641 static void *
    642 buf_alloc(size_t size)
    643 {
    644 	u_int n = buf_mempoolidx(size);
    645 	void *addr;
    646 
    647 	while (1) {
    648 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    649 		if (addr != NULL)
    650 			break;
    651 
    652 		/* No memory, see if we can free some. If so, try again */
    653 		mutex_enter(&bufcache_lock);
    654 		if (buf_drain(1) > 0) {
    655 			mutex_exit(&bufcache_lock);
    656 			continue;
    657 		}
    658 
    659 		if (curlwp == uvm.pagedaemon_lwp) {
    660 			mutex_exit(&bufcache_lock);
    661 			return NULL;
    662 		}
    663 
    664 		/* Wait for buffers to arrive on the LRU queue */
    665 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    666 		mutex_exit(&bufcache_lock);
    667 	}
    668 
    669 	return addr;
    670 }
    671 
    672 static void
    673 buf_mrelease(void *addr, size_t size)
    674 {
    675 
    676 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    677 }
    678 
    679 /*
    680  * bread()/breadn() helper.
    681  */
    682 static buf_t *
    683 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
    684 {
    685 	buf_t *bp;
    686 	struct mount *mp;
    687 
    688 	bp = getblk(vp, blkno, size, 0, 0);
    689 
    690 	/*
    691 	 * getblk() may return NULL if we are the pagedaemon.
    692 	 */
    693 	if (bp == NULL) {
    694 		KASSERT(curlwp == uvm.pagedaemon_lwp);
    695 		return NULL;
    696 	}
    697 
    698 	/*
    699 	 * If buffer does not have data valid, start a read.
    700 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    701 	 * Therefore, it's valid if its I/O has completed or been delayed.
    702 	 */
    703 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    704 		/* Start I/O for the buffer. */
    705 		SET(bp->b_flags, B_READ | async);
    706 		if (async)
    707 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    708 		else
    709 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    710 		VOP_STRATEGY(vp, bp);
    711 
    712 		/* Pay for the read. */
    713 		curlwp->l_ru.ru_inblock++;
    714 	} else if (async)
    715 		brelse(bp, 0);
    716 
    717 	if (vp->v_type == VBLK)
    718 		mp = spec_node_getmountedfs(vp);
    719 	else
    720 		mp = vp->v_mount;
    721 
    722 	/*
    723 	 * Collect statistics on synchronous and asynchronous reads.
    724 	 * Reads from block devices are charged to their associated
    725 	 * filesystem (if any).
    726 	 */
    727 	if (mp != NULL) {
    728 		if (async == 0)
    729 			mp->mnt_stat.f_syncreads++;
    730 		else
    731 			mp->mnt_stat.f_asyncreads++;
    732 	}
    733 
    734 	return (bp);
    735 }
    736 
    737 /*
    738  * Read a disk block.
    739  * This algorithm described in Bach (p.54).
    740  */
    741 int
    742 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
    743 {
    744 	buf_t *bp;
    745 	int error;
    746 
    747 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    748 
    749 	/* Get buffer for block. */
    750 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    751 	if (bp == NULL)
    752 		return ENOMEM;
    753 
    754 	/* Wait for the read to complete, and return result. */
    755 	error = biowait(bp);
    756 	if (error == 0 && (flags & B_MODIFY) != 0)
    757 		error = fscow_run(bp, true);
    758 	if (error) {
    759 		brelse(bp, 0);
    760 		*bpp = NULL;
    761 	}
    762 
    763 	return error;
    764 }
    765 
    766 /*
    767  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    768  * Trivial modification to the breada algorithm presented in Bach (p.55).
    769  */
    770 int
    771 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    772     int *rasizes, int nrablks, int flags, buf_t **bpp)
    773 {
    774 	buf_t *bp;
    775 	int error, i;
    776 
    777 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    778 
    779 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    780 	if (bp == NULL)
    781 		return ENOMEM;
    782 
    783 	/*
    784 	 * For each of the read-ahead blocks, start a read, if necessary.
    785 	 */
    786 	mutex_enter(&bufcache_lock);
    787 	for (i = 0; i < nrablks; i++) {
    788 		/* If it's in the cache, just go on to next one. */
    789 		if (incore(vp, rablks[i]))
    790 			continue;
    791 
    792 		/* Get a buffer for the read-ahead block */
    793 		mutex_exit(&bufcache_lock);
    794 		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
    795 		mutex_enter(&bufcache_lock);
    796 	}
    797 	mutex_exit(&bufcache_lock);
    798 
    799 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    800 	error = biowait(bp);
    801 	if (error == 0 && (flags & B_MODIFY) != 0)
    802 		error = fscow_run(bp, true);
    803 	if (error) {
    804 		brelse(bp, 0);
    805 		*bpp = NULL;
    806 	}
    807 
    808 	return error;
    809 }
    810 
    811 /*
    812  * Block write.  Described in Bach (p.56)
    813  */
    814 int
    815 bwrite(buf_t *bp)
    816 {
    817 	int rv, sync, wasdelayed;
    818 	struct vnode *vp;
    819 	struct mount *mp;
    820 
    821 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    822 	    (uintptr_t)bp, 0, 0, 0);
    823 
    824 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    825 	KASSERT(!cv_has_waiters(&bp->b_done));
    826 
    827 	vp = bp->b_vp;
    828 
    829 	/*
    830 	 * dholland 20160728 AFAICT vp==NULL must be impossible as it
    831 	 * will crash upon reaching VOP_STRATEGY below... see further
    832 	 * analysis on tech-kern.
    833 	 */
    834 	KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
    835 
    836 	if (vp != NULL) {
    837 		KASSERT(bp->b_objlock == vp->v_interlock);
    838 		if (vp->v_type == VBLK)
    839 			mp = spec_node_getmountedfs(vp);
    840 		else
    841 			mp = vp->v_mount;
    842 	} else {
    843 		mp = NULL;
    844 	}
    845 
    846 	if (mp && mp->mnt_wapbl) {
    847 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    848 			bdwrite(bp);
    849 			return 0;
    850 		}
    851 	}
    852 
    853 	/*
    854 	 * Remember buffer type, to switch on it later.  If the write was
    855 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    856 	 * convert it to a delayed write.
    857 	 * XXX note that this relies on delayed tape writes being converted
    858 	 * to async, not sync writes (which is safe, but ugly).
    859 	 */
    860 	sync = !ISSET(bp->b_flags, B_ASYNC);
    861 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    862 		bdwrite(bp);
    863 		return (0);
    864 	}
    865 
    866 	/*
    867 	 * Collect statistics on synchronous and asynchronous writes.
    868 	 * Writes to block devices are charged to their associated
    869 	 * filesystem (if any).
    870 	 */
    871 	if (mp != NULL) {
    872 		if (sync)
    873 			mp->mnt_stat.f_syncwrites++;
    874 		else
    875 			mp->mnt_stat.f_asyncwrites++;
    876 	}
    877 
    878 	/*
    879 	 * Pay for the I/O operation and make sure the buf is on the correct
    880 	 * vnode queue.
    881 	 */
    882 	bp->b_error = 0;
    883 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    884 	CLR(bp->b_flags, B_READ);
    885 	if (wasdelayed) {
    886 		mutex_enter(&bufcache_lock);
    887 		mutex_enter(bp->b_objlock);
    888 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    889 		reassignbuf(bp, bp->b_vp);
    890 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    891 		cv_broadcast(&bp->b_busy);
    892 		mutex_exit(&bufcache_lock);
    893 	} else {
    894 		curlwp->l_ru.ru_oublock++;
    895 		mutex_enter(bp->b_objlock);
    896 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    897 	}
    898 	if (vp != NULL)
    899 		vp->v_numoutput++;
    900 	mutex_exit(bp->b_objlock);
    901 
    902 	/* Initiate disk write. */
    903 	if (sync)
    904 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    905 	else
    906 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    907 
    908 	VOP_STRATEGY(vp, bp);
    909 
    910 	if (sync) {
    911 		/* If I/O was synchronous, wait for it to complete. */
    912 		rv = biowait(bp);
    913 
    914 		/* Release the buffer. */
    915 		brelse(bp, 0);
    916 
    917 		return (rv);
    918 	} else {
    919 		return (0);
    920 	}
    921 }
    922 
    923 int
    924 vn_bwrite(void *v)
    925 {
    926 	struct vop_bwrite_args *ap = v;
    927 
    928 	return (bwrite(ap->a_bp));
    929 }
    930 
    931 /*
    932  * Delayed write.
    933  *
    934  * The buffer is marked dirty, but is not queued for I/O.
    935  * This routine should be used when the buffer is expected
    936  * to be modified again soon, typically a small write that
    937  * partially fills a buffer.
    938  *
    939  * NB: magnetic tapes cannot be delayed; they must be
    940  * written in the order that the writes are requested.
    941  *
    942  * Described in Leffler, et al. (pp. 208-213).
    943  */
    944 void
    945 bdwrite(buf_t *bp)
    946 {
    947 
    948 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    949 	    (uintptr_t)bp, 0, 0, 0);
    950 
    951 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    952 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    953 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    954 	KASSERT(!cv_has_waiters(&bp->b_done));
    955 
    956 	/* If this is a tape block, write the block now. */
    957 	if (bdev_type(bp->b_dev) == D_TAPE) {
    958 		bawrite(bp);
    959 		return;
    960 	}
    961 
    962 	if (wapbl_vphaswapbl(bp->b_vp)) {
    963 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    964 
    965 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    966 			WAPBL_ADD_BUF(mp, bp);
    967 		}
    968 	}
    969 
    970 	/*
    971 	 * If the block hasn't been seen before:
    972 	 *	(1) Mark it as having been seen,
    973 	 *	(2) Charge for the write,
    974 	 *	(3) Make sure it's on its vnode's correct block list.
    975 	 */
    976 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    977 
    978 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    979 		mutex_enter(&bufcache_lock);
    980 		mutex_enter(bp->b_objlock);
    981 		SET(bp->b_oflags, BO_DELWRI);
    982 		curlwp->l_ru.ru_oublock++;
    983 		reassignbuf(bp, bp->b_vp);
    984 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    985 		cv_broadcast(&bp->b_busy);
    986 		mutex_exit(&bufcache_lock);
    987 	} else {
    988 		mutex_enter(bp->b_objlock);
    989 	}
    990 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    991 	CLR(bp->b_oflags, BO_DONE);
    992 	mutex_exit(bp->b_objlock);
    993 
    994 	brelse(bp, 0);
    995 }
    996 
    997 /*
    998  * Asynchronous block write; just an asynchronous bwrite().
    999  */
   1000 void
   1001 bawrite(buf_t *bp)
   1002 {
   1003 
   1004 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1005 	KASSERT(bp->b_vp != NULL);
   1006 
   1007 	SET(bp->b_flags, B_ASYNC);
   1008 	VOP_BWRITE(bp->b_vp, bp);
   1009 }
   1010 
   1011 /*
   1012  * Release a buffer on to the free lists.
   1013  * Described in Bach (p. 46).
   1014  */
   1015 void
   1016 brelsel(buf_t *bp, int set)
   1017 {
   1018 	struct bqueue *bufq;
   1019 	struct vnode *vp;
   1020 
   1021 	SDT_PROBE2(io, kernel, , brelse,  bp, set);
   1022 
   1023 	KASSERT(bp != NULL);
   1024 	KASSERT(mutex_owned(&bufcache_lock));
   1025 	KASSERT(!cv_has_waiters(&bp->b_done));
   1026 
   1027 	SET(bp->b_cflags, set);
   1028 
   1029 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1030 	KASSERT(bp->b_iodone == NULL);
   1031 
   1032 	/* Wake up any processes waiting for any buffer to become free. */
   1033 	cv_signal(&needbuffer_cv);
   1034 
   1035 	/* Wake up any proceeses waiting for _this_ buffer to become free */
   1036 	if (ISSET(bp->b_cflags, BC_WANTED))
   1037 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
   1038 
   1039 	/* If it's clean clear the copy-on-write flag. */
   1040 	if (ISSET(bp->b_flags, B_COWDONE)) {
   1041 		mutex_enter(bp->b_objlock);
   1042 		if (!ISSET(bp->b_oflags, BO_DELWRI))
   1043 			CLR(bp->b_flags, B_COWDONE);
   1044 		mutex_exit(bp->b_objlock);
   1045 	}
   1046 
   1047 	/*
   1048 	 * Determine which queue the buffer should be on, then put it there.
   1049 	 */
   1050 
   1051 	/* If it's locked, don't report an error; try again later. */
   1052 	if (ISSET(bp->b_flags, B_LOCKED))
   1053 		bp->b_error = 0;
   1054 
   1055 	/* If it's not cacheable, or an error, mark it invalid. */
   1056 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1057 		SET(bp->b_cflags, BC_INVAL);
   1058 
   1059 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1060 		/*
   1061 		 * This is a delayed write buffer that was just flushed to
   1062 		 * disk.  It is still on the LRU queue.  If it's become
   1063 		 * invalid, then we need to move it to a different queue;
   1064 		 * otherwise leave it in its current position.
   1065 		 */
   1066 		CLR(bp->b_cflags, BC_VFLUSH);
   1067 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1068 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1069 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1070 			goto already_queued;
   1071 		} else {
   1072 			bremfree(bp);
   1073 		}
   1074 	}
   1075 
   1076 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1077 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1078 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1079 
   1080 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1081 		/*
   1082 		 * If it's invalid or empty, dissociate it from its vnode
   1083 		 * and put on the head of the appropriate queue.
   1084 		 */
   1085 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1086 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1087 				struct mount *mp = wapbl_vptomp(vp);
   1088 
   1089 				KASSERT(bp->b_iodone
   1090 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
   1091 				WAPBL_REMOVE_BUF(mp, bp);
   1092 			}
   1093 		}
   1094 
   1095 		mutex_enter(bp->b_objlock);
   1096 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1097 		if ((vp = bp->b_vp) != NULL) {
   1098 			KASSERT(bp->b_objlock == vp->v_interlock);
   1099 			reassignbuf(bp, bp->b_vp);
   1100 			brelvp(bp);
   1101 			mutex_exit(vp->v_interlock);
   1102 		} else {
   1103 			KASSERT(bp->b_objlock == &buffer_lock);
   1104 			mutex_exit(bp->b_objlock);
   1105 		}
   1106 		/* We want to dispose of the buffer, so wake everybody. */
   1107 		cv_broadcast(&bp->b_busy);
   1108 		if (bp->b_bufsize <= 0)
   1109 			/* no data */
   1110 			goto already_queued;
   1111 		else
   1112 			/* invalid data */
   1113 			bufq = &bufqueues[BQ_AGE];
   1114 		binsheadfree(bp, bufq);
   1115 	} else  {
   1116 		/*
   1117 		 * It has valid data.  Put it on the end of the appropriate
   1118 		 * queue, so that it'll stick around for as long as possible.
   1119 		 * If buf is AGE, but has dependencies, must put it on last
   1120 		 * bufqueue to be scanned, ie LRU. This protects against the
   1121 		 * livelock where BQ_AGE only has buffers with dependencies,
   1122 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1123 		 */
   1124 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1125 			/* locked in core */
   1126 			bufq = &bufqueues[BQ_LOCKED];
   1127 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1128 			/* valid data */
   1129 			bufq = &bufqueues[BQ_LRU];
   1130 		} else {
   1131 			/* stale but valid data */
   1132 			bufq = &bufqueues[BQ_AGE];
   1133 		}
   1134 		binstailfree(bp, bufq);
   1135 	}
   1136 already_queued:
   1137 	/* Unlock the buffer. */
   1138 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1139 	CLR(bp->b_flags, B_ASYNC);
   1140 
   1141 	/*
   1142 	 * Wake only the highest priority waiter on the lock, in order to
   1143 	 * prevent a thundering herd: many LWPs simultaneously awakening and
   1144 	 * competing for the buffer's lock.  Testing in 2019 revealed this
   1145 	 * to reduce contention on bufcache_lock tenfold during a kernel
   1146 	 * compile.  Here and elsewhere, when the buffer is changing
   1147 	 * identity, being disposed of, or moving from one list to another,
   1148 	 * we wake all lock requestors.
   1149 	 */
   1150 	if (bp->b_bufsize <= 0) {
   1151 		cv_broadcast(&bp->b_busy);
   1152 		buf_destroy(bp);
   1153 #ifdef DEBUG
   1154 		memset((char *)bp, 0, sizeof(*bp));
   1155 #endif
   1156 		pool_cache_put(buf_cache, bp);
   1157 	} else
   1158 		cv_signal(&bp->b_busy);
   1159 }
   1160 
   1161 void
   1162 brelse(buf_t *bp, int set)
   1163 {
   1164 
   1165 	mutex_enter(&bufcache_lock);
   1166 	brelsel(bp, set);
   1167 	mutex_exit(&bufcache_lock);
   1168 }
   1169 
   1170 /*
   1171  * Determine if a block is in the cache.
   1172  * Just look on what would be its hash chain.  If it's there, return
   1173  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1174  * we normally don't return the buffer, unless the caller explicitly
   1175  * wants us to.
   1176  */
   1177 buf_t *
   1178 incore(struct vnode *vp, daddr_t blkno)
   1179 {
   1180 	buf_t *bp;
   1181 
   1182 	KASSERT(mutex_owned(&bufcache_lock));
   1183 
   1184 	/* Search hash chain */
   1185 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1186 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1187 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1188 		    	KASSERT(bp->b_objlock == vp->v_interlock);
   1189 		    	return (bp);
   1190 		}
   1191 	}
   1192 
   1193 	return (NULL);
   1194 }
   1195 
   1196 /*
   1197  * Get a block of requested size that is associated with
   1198  * a given vnode and block offset. If it is found in the
   1199  * block cache, mark it as having been found, make it busy
   1200  * and return it. Otherwise, return an empty block of the
   1201  * correct size. It is up to the caller to insure that the
   1202  * cached blocks be of the correct size.
   1203  */
   1204 buf_t *
   1205 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1206 {
   1207 	int err, preserve;
   1208 	buf_t *bp;
   1209 
   1210 	mutex_enter(&bufcache_lock);
   1211 	SDT_PROBE3(io, kernel, , getblk__start,  vp, blkno, size);
   1212  loop:
   1213 	bp = incore(vp, blkno);
   1214 	if (bp != NULL) {
   1215 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1216 		if (err != 0) {
   1217 			if (err == EPASSTHROUGH)
   1218 				goto loop;
   1219 			mutex_exit(&bufcache_lock);
   1220 			SDT_PROBE4(io, kernel, , getblk__done,
   1221 			    vp, blkno, size, NULL);
   1222 			return (NULL);
   1223 		}
   1224 		KASSERT(!cv_has_waiters(&bp->b_done));
   1225 #ifdef DIAGNOSTIC
   1226 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1227 		    bp->b_bcount < size && vp->v_type != VBLK)
   1228 			panic("getblk: block size invariant failed");
   1229 #endif
   1230 		bremfree(bp);
   1231 		preserve = 1;
   1232 	} else {
   1233 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1234 			goto loop;
   1235 
   1236 		if (incore(vp, blkno) != NULL) {
   1237 			/* The block has come into memory in the meantime. */
   1238 			brelsel(bp, 0);
   1239 			goto loop;
   1240 		}
   1241 
   1242 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1243 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1244 		mutex_enter(vp->v_interlock);
   1245 		bgetvp(vp, bp);
   1246 		mutex_exit(vp->v_interlock);
   1247 		preserve = 0;
   1248 	}
   1249 	mutex_exit(&bufcache_lock);
   1250 
   1251 	/*
   1252 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1253 	 * if we re-size buffers here.
   1254 	 */
   1255 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1256 		KASSERT(bp->b_bufsize >= size);
   1257 	} else {
   1258 		if (allocbuf(bp, size, preserve)) {
   1259 			mutex_enter(&bufcache_lock);
   1260 			LIST_REMOVE(bp, b_hash);
   1261 			brelsel(bp, BC_INVAL);
   1262 			mutex_exit(&bufcache_lock);
   1263 			SDT_PROBE4(io, kernel, , getblk__done,
   1264 			    vp, blkno, size, NULL);
   1265 			return NULL;
   1266 		}
   1267 	}
   1268 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1269 	SDT_PROBE4(io, kernel, , getblk__done,  vp, blkno, size, bp);
   1270 	return (bp);
   1271 }
   1272 
   1273 /*
   1274  * Get an empty, disassociated buffer of given size.
   1275  */
   1276 buf_t *
   1277 geteblk(int size)
   1278 {
   1279 	buf_t *bp;
   1280 	int error __diagused;
   1281 
   1282 	mutex_enter(&bufcache_lock);
   1283 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1284 		;
   1285 
   1286 	SET(bp->b_cflags, BC_INVAL);
   1287 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1288 	mutex_exit(&bufcache_lock);
   1289 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1290 	error = allocbuf(bp, size, 0);
   1291 	KASSERT(error == 0);
   1292 	return (bp);
   1293 }
   1294 
   1295 /*
   1296  * Expand or contract the actual memory allocated to a buffer.
   1297  *
   1298  * If the buffer shrinks, data is lost, so it's up to the
   1299  * caller to have written it out *first*; this routine will not
   1300  * start a write.  If the buffer grows, it's the callers
   1301  * responsibility to fill out the buffer's additional contents.
   1302  */
   1303 int
   1304 allocbuf(buf_t *bp, int size, int preserve)
   1305 {
   1306 	void *addr;
   1307 	vsize_t oldsize, desired_size;
   1308 	int oldcount;
   1309 	int delta;
   1310 
   1311 	desired_size = buf_roundsize(size);
   1312 	if (desired_size > MAXBSIZE)
   1313 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1314 
   1315 	oldcount = bp->b_bcount;
   1316 
   1317 	bp->b_bcount = size;
   1318 
   1319 	oldsize = bp->b_bufsize;
   1320 	if (oldsize == desired_size) {
   1321 		/*
   1322 		 * Do not short cut the WAPBL resize, as the buffer length
   1323 		 * could still have changed and this would corrupt the
   1324 		 * tracking of the transaction length.
   1325 		 */
   1326 		goto out;
   1327 	}
   1328 
   1329 	/*
   1330 	 * If we want a buffer of a different size, re-allocate the
   1331 	 * buffer's memory; copy old content only if needed.
   1332 	 */
   1333 	addr = buf_alloc(desired_size);
   1334 	if (addr == NULL)
   1335 		return ENOMEM;
   1336 	if (preserve)
   1337 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1338 	if (bp->b_data != NULL)
   1339 		buf_mrelease(bp->b_data, oldsize);
   1340 	bp->b_data = addr;
   1341 	bp->b_bufsize = desired_size;
   1342 
   1343 	/*
   1344 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1345 	 */
   1346 	delta = (long)desired_size - (long)oldsize;
   1347 
   1348 	mutex_enter(&bufcache_lock);
   1349 	if ((bufmem += delta) > bufmem_hiwater) {
   1350 		/*
   1351 		 * Need to trim overall memory usage.
   1352 		 */
   1353 		while (buf_canrelease()) {
   1354 			if (preempt_needed()) {
   1355 				mutex_exit(&bufcache_lock);
   1356 				preempt();
   1357 				mutex_enter(&bufcache_lock);
   1358 			}
   1359 			if (buf_trim() == 0)
   1360 				break;
   1361 		}
   1362 	}
   1363 	mutex_exit(&bufcache_lock);
   1364 
   1365  out:
   1366 	if (wapbl_vphaswapbl(bp->b_vp))
   1367 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
   1368 
   1369 	return 0;
   1370 }
   1371 
   1372 /*
   1373  * Find a buffer which is available for use.
   1374  * Select something from a free list.
   1375  * Preference is to AGE list, then LRU list.
   1376  *
   1377  * Called with the buffer queues locked.
   1378  * Return buffer locked.
   1379  */
   1380 static buf_t *
   1381 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1382 {
   1383 	buf_t *bp;
   1384 	struct vnode *vp;
   1385 	struct mount *transmp = NULL;
   1386 
   1387 	SDT_PROBE0(io, kernel, , getnewbuf__start);
   1388 
   1389  start:
   1390 	KASSERT(mutex_owned(&bufcache_lock));
   1391 
   1392 	/*
   1393 	 * Get a new buffer from the pool.
   1394 	 */
   1395 	if (!from_bufq && buf_lotsfree()) {
   1396 		mutex_exit(&bufcache_lock);
   1397 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1398 		if (bp != NULL) {
   1399 			memset((char *)bp, 0, sizeof(*bp));
   1400 			buf_init(bp);
   1401 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1402 			mutex_enter(&bufcache_lock);
   1403 #if defined(DIAGNOSTIC)
   1404 			bp->b_freelistindex = -1;
   1405 #endif /* defined(DIAGNOSTIC) */
   1406 			SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1407 			return (bp);
   1408 		}
   1409 		mutex_enter(&bufcache_lock);
   1410 	}
   1411 
   1412 	KASSERT(mutex_owned(&bufcache_lock));
   1413 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
   1414 		KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
   1415 	} else {
   1416 		TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
   1417 			if (ISSET(bp->b_cflags, BC_VFLUSH) ||
   1418 			    !ISSET(bp->b_oflags, BO_DELWRI))
   1419 				break;
   1420 			if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
   1421 				KASSERT(transmp == NULL);
   1422 				transmp = bp->b_vp->v_mount;
   1423 				break;
   1424 			}
   1425 		}
   1426 	}
   1427 	if (bp != NULL) {
   1428 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
   1429 		bremfree(bp);
   1430 
   1431 		/* Buffer is no longer on free lists. */
   1432 		SET(bp->b_cflags, BC_BUSY);
   1433 
   1434 		/* Wake anyone trying to lock the old identity. */
   1435 		cv_broadcast(&bp->b_busy);
   1436 	} else {
   1437 		/*
   1438 		 * XXX: !from_bufq should be removed.
   1439 		 */
   1440 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1441 			/* wait for a free buffer of any kind */
   1442 			if ((slpflag & PCATCH) != 0)
   1443 				(void)cv_timedwait_sig(&needbuffer_cv,
   1444 				    &bufcache_lock, slptimeo);
   1445 			else
   1446 				(void)cv_timedwait(&needbuffer_cv,
   1447 				    &bufcache_lock, slptimeo);
   1448 		}
   1449 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1450 		return (NULL);
   1451 	}
   1452 
   1453 #ifdef DIAGNOSTIC
   1454 	if (bp->b_bufsize <= 0)
   1455 		panic("buffer %p: on queue but empty", bp);
   1456 #endif
   1457 
   1458 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1459 		/*
   1460 		 * This is a delayed write buffer being flushed to disk.  Make
   1461 		 * sure it gets aged out of the queue when it's finished, and
   1462 		 * leave it off the LRU queue.
   1463 		 */
   1464 		CLR(bp->b_cflags, BC_VFLUSH);
   1465 		SET(bp->b_cflags, BC_AGE);
   1466 		goto start;
   1467 	}
   1468 
   1469 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1470     	KASSERT(!cv_has_waiters(&bp->b_done));
   1471 
   1472 	/*
   1473 	 * If buffer was a delayed write, start it and return NULL
   1474 	 * (since we might sleep while starting the write).
   1475 	 */
   1476 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1477 		/*
   1478 		 * This buffer has gone through the LRU, so make sure it gets
   1479 		 * reused ASAP.
   1480 		 */
   1481 		SET(bp->b_cflags, BC_AGE);
   1482 		mutex_exit(&bufcache_lock);
   1483 		bawrite(bp);
   1484 		KASSERT(transmp != NULL);
   1485 		fstrans_done(transmp);
   1486 		mutex_enter(&bufcache_lock);
   1487 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1488 		return (NULL);
   1489 	}
   1490 
   1491 	KASSERT(transmp == NULL);
   1492 
   1493 	vp = bp->b_vp;
   1494 
   1495 	/* clear out various other fields */
   1496 	bp->b_cflags = BC_BUSY;
   1497 	bp->b_oflags = 0;
   1498 	bp->b_flags = 0;
   1499 	bp->b_dev = NODEV;
   1500 	bp->b_blkno = 0;
   1501 	bp->b_lblkno = 0;
   1502 	bp->b_rawblkno = 0;
   1503 	bp->b_iodone = 0;
   1504 	bp->b_error = 0;
   1505 	bp->b_resid = 0;
   1506 	bp->b_bcount = 0;
   1507 
   1508 	LIST_REMOVE(bp, b_hash);
   1509 
   1510 	/* Disassociate us from our vnode, if we had one... */
   1511 	if (vp != NULL) {
   1512 		mutex_enter(vp->v_interlock);
   1513 		brelvp(bp);
   1514 		mutex_exit(vp->v_interlock);
   1515 	}
   1516 
   1517 	SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1518 	return (bp);
   1519 }
   1520 
   1521 /*
   1522  * Invalidate the specified buffer if it exists.
   1523  */
   1524 void
   1525 binvalbuf(struct vnode *vp, daddr_t blkno)
   1526 {
   1527 	buf_t *bp;
   1528 	int err;
   1529 
   1530 	mutex_enter(&bufcache_lock);
   1531 
   1532  loop:
   1533 	bp = incore(vp, blkno);
   1534 	if (bp != NULL) {
   1535 		err = bbusy(bp, 0, 0, NULL);
   1536 		if (err == EPASSTHROUGH)
   1537 			goto loop;
   1538 		bremfree(bp);
   1539 		if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1540 			SET(bp->b_cflags, BC_NOCACHE);
   1541 			mutex_exit(&bufcache_lock);
   1542 			bwrite(bp);
   1543 		} else {
   1544 			brelsel(bp, BC_INVAL);
   1545 			mutex_exit(&bufcache_lock);
   1546 		}
   1547 	} else
   1548 		mutex_exit(&bufcache_lock);
   1549 }
   1550 
   1551 /*
   1552  * Attempt to free an aged buffer off the queues.
   1553  * Called with queue lock held.
   1554  * Returns the amount of buffer memory freed.
   1555  */
   1556 static int
   1557 buf_trim(void)
   1558 {
   1559 	buf_t *bp;
   1560 	long size;
   1561 
   1562 	KASSERT(mutex_owned(&bufcache_lock));
   1563 
   1564 	/* Instruct getnewbuf() to get buffers off the queues */
   1565 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1566 		return 0;
   1567 
   1568 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1569 	size = bp->b_bufsize;
   1570 	bufmem -= size;
   1571 	if (size > 0) {
   1572 		buf_mrelease(bp->b_data, size);
   1573 		bp->b_bcount = bp->b_bufsize = 0;
   1574 	}
   1575 	/* brelse() will return the buffer to the global buffer pool */
   1576 	brelsel(bp, 0);
   1577 	return size;
   1578 }
   1579 
   1580 int
   1581 buf_drain(int n)
   1582 {
   1583 	int size = 0, sz;
   1584 
   1585 	KASSERT(mutex_owned(&bufcache_lock));
   1586 
   1587 	while (size < n && bufmem > bufmem_lowater) {
   1588 		sz = buf_trim();
   1589 		if (sz <= 0)
   1590 			break;
   1591 		size += sz;
   1592 	}
   1593 
   1594 	return size;
   1595 }
   1596 
   1597 /*
   1598  * Wait for operations on the buffer to complete.
   1599  * When they do, extract and return the I/O's error value.
   1600  */
   1601 int
   1602 biowait(buf_t *bp)
   1603 {
   1604 
   1605 	BIOHIST_FUNC(__func__);
   1606 
   1607 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1608 
   1609 	SDT_PROBE1(io, kernel, , wait__start, bp);
   1610 
   1611 	mutex_enter(bp->b_objlock);
   1612 
   1613 	BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
   1614 	    (uintptr_t)bp, bp->b_oflags,
   1615 	    (uintptr_t)__builtin_return_address(0), 0);
   1616 
   1617 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
   1618 		BIOHIST_LOG(biohist, "waiting bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1619 		cv_wait(&bp->b_done, bp->b_objlock);
   1620 	}
   1621 	mutex_exit(bp->b_objlock);
   1622 
   1623 	SDT_PROBE1(io, kernel, , wait__done, bp);
   1624 
   1625 	BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
   1626 
   1627 	return bp->b_error;
   1628 }
   1629 
   1630 /*
   1631  * Mark I/O complete on a buffer.
   1632  *
   1633  * If a callback has been requested, e.g. the pageout
   1634  * daemon, do so. Otherwise, awaken waiting processes.
   1635  *
   1636  * [ Leffler, et al., says on p.247:
   1637  *	"This routine wakes up the blocked process, frees the buffer
   1638  *	for an asynchronous write, or, for a request by the pagedaemon
   1639  *	process, invokes a procedure specified in the buffer structure" ]
   1640  *
   1641  * In real life, the pagedaemon (or other system processes) wants
   1642  * to do async stuff too, and doesn't want the buffer brelse()'d.
   1643  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1644  * for the vn device, that puts allocated buffers on the free lists!)
   1645  */
   1646 void
   1647 biodone(buf_t *bp)
   1648 {
   1649 	int s;
   1650 
   1651 	BIOHIST_FUNC(__func__);
   1652 
   1653 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1654 
   1655 	if (cpu_intr_p()) {
   1656 		/* From interrupt mode: defer to a soft interrupt. */
   1657 		s = splvm();
   1658 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1659 
   1660 		BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
   1661 		    (uintptr_t)bp, 0, 0, 0);
   1662 		softint_schedule(biodone_sih);
   1663 		splx(s);
   1664 	} else {
   1665 		/* Process now - the buffer may be freed soon. */
   1666 		biodone2(bp);
   1667 	}
   1668 }
   1669 
   1670 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
   1671 
   1672 static void
   1673 biodone2(buf_t *bp)
   1674 {
   1675 	void (*callout)(buf_t *);
   1676 
   1677 	SDT_PROBE1(io, kernel, ,done, bp);
   1678 
   1679 	BIOHIST_FUNC(__func__);
   1680 	BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1681 
   1682 	mutex_enter(bp->b_objlock);
   1683 	/* Note that the transfer is done. */
   1684 	if (ISSET(bp->b_oflags, BO_DONE))
   1685 		panic("biodone2 already");
   1686 	CLR(bp->b_flags, B_COWDONE);
   1687 	SET(bp->b_oflags, BO_DONE);
   1688 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1689 
   1690 	/* Wake up waiting writers. */
   1691 	if (!ISSET(bp->b_flags, B_READ))
   1692 		vwakeup(bp);
   1693 
   1694 	if ((callout = bp->b_iodone) != NULL) {
   1695 		BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
   1696 		    0, 0, 0);
   1697 
   1698 		/* Note callout done, then call out. */
   1699 		KASSERT(!cv_has_waiters(&bp->b_done));
   1700 		bp->b_iodone = NULL;
   1701 		mutex_exit(bp->b_objlock);
   1702 		(*callout)(bp);
   1703 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1704 		/* If async, release. */
   1705 		BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
   1706 		KASSERT(!cv_has_waiters(&bp->b_done));
   1707 		mutex_exit(bp->b_objlock);
   1708 		brelse(bp, 0);
   1709 	} else {
   1710 		/* Otherwise just wake up waiters in biowait(). */
   1711 		BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
   1712 		cv_broadcast(&bp->b_done);
   1713 		mutex_exit(bp->b_objlock);
   1714 	}
   1715 }
   1716 
   1717 static void
   1718 biointr(void *cookie)
   1719 {
   1720 	struct cpu_info *ci;
   1721 	buf_t *bp;
   1722 	int s;
   1723 
   1724 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
   1725 
   1726 	ci = curcpu();
   1727 
   1728 	s = splvm();
   1729 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1730 		KASSERT(curcpu() == ci);
   1731 
   1732 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1733 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1734 		splx(s);
   1735 
   1736 		BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1737 		biodone2(bp);
   1738 
   1739 		s = splvm();
   1740 	}
   1741 	splx(s);
   1742 }
   1743 
   1744 static void
   1745 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
   1746 {
   1747 	const bool allowaddr = get_expose_address(curproc);
   1748 
   1749 	memset(o, 0, sizeof(*o));
   1750 
   1751 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1752 	o->b_error = i->b_error;
   1753 	o->b_prio = i->b_prio;
   1754 	o->b_dev = i->b_dev;
   1755 	o->b_bufsize = i->b_bufsize;
   1756 	o->b_bcount = i->b_bcount;
   1757 	o->b_resid = i->b_resid;
   1758 	COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
   1759 	o->b_blkno = i->b_blkno;
   1760 	o->b_rawblkno = i->b_rawblkno;
   1761 	COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
   1762 	COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
   1763 	COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
   1764 	COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
   1765 	o->b_lblkno = i->b_lblkno;
   1766 }
   1767 
   1768 static int
   1769 sysctl_dobuf(SYSCTLFN_ARGS)
   1770 {
   1771 	buf_t *bp;
   1772 	struct buf_sysctl bs;
   1773 	struct bqueue *bq;
   1774 	char *dp;
   1775 	u_int i, op, arg;
   1776 	size_t len, needed, elem_size, out_size;
   1777 	int error, elem_count, retries;
   1778 
   1779 	if (namelen == 1 && name[0] == CTL_QUERY)
   1780 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   1781 
   1782 	if (namelen != 4)
   1783 		return (EINVAL);
   1784 
   1785 	retries = 100;
   1786  retry:
   1787 	dp = oldp;
   1788 	len = (oldp != NULL) ? *oldlenp : 0;
   1789 	op = name[0];
   1790 	arg = name[1];
   1791 	elem_size = name[2];
   1792 	elem_count = name[3];
   1793 	out_size = MIN(sizeof(bs), elem_size);
   1794 
   1795 	/*
   1796 	 * at the moment, these are just "placeholders" to make the
   1797 	 * API for retrieving kern.buf data more extensible in the
   1798 	 * future.
   1799 	 *
   1800 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1801 	 * these will be resolved at a later point.
   1802 	 */
   1803 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1804 	    elem_size < 1 || elem_count < 0)
   1805 		return (EINVAL);
   1806 
   1807 	if (oldp == NULL) {
   1808 		/* count only, don't run through the buffer queues */
   1809 		needed = pool_cache_nget(buf_cache) - pool_cache_nput(buf_cache);
   1810 		*oldlenp = (needed + KERN_BUFSLOP) * elem_size;
   1811 
   1812 		return 0;
   1813 	}
   1814 
   1815 	error = 0;
   1816 	needed = 0;
   1817 	sysctl_unlock();
   1818 	mutex_enter(&bufcache_lock);
   1819 	for (i = 0; i < BQUEUES; i++) {
   1820 		bq = &bufqueues[i];
   1821 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1822 			bq->bq_marker = bp;
   1823 			if (len >= elem_size && elem_count > 0) {
   1824 				sysctl_fillbuf(bp, &bs);
   1825 				mutex_exit(&bufcache_lock);
   1826 				error = copyout(&bs, dp, out_size);
   1827 				mutex_enter(&bufcache_lock);
   1828 				if (error)
   1829 					break;
   1830 				if (bq->bq_marker != bp) {
   1831 					/*
   1832 					 * This sysctl node is only for
   1833 					 * statistics.  Retry; if the
   1834 					 * queue keeps changing, then
   1835 					 * bail out.
   1836 					 */
   1837 					if (retries-- == 0) {
   1838 						error = EAGAIN;
   1839 						break;
   1840 					}
   1841 					mutex_exit(&bufcache_lock);
   1842 					sysctl_relock();
   1843 					goto retry;
   1844 				}
   1845 				dp += elem_size;
   1846 				len -= elem_size;
   1847 			}
   1848 			needed += elem_size;
   1849 			if (elem_count > 0 && elem_count != INT_MAX)
   1850 				elem_count--;
   1851 		}
   1852 		if (error != 0)
   1853 			break;
   1854 	}
   1855 	mutex_exit(&bufcache_lock);
   1856 	sysctl_relock();
   1857 
   1858 	*oldlenp = needed;
   1859 
   1860 	return (error);
   1861 }
   1862 
   1863 static int
   1864 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1865 {
   1866 	int error, rv;
   1867 	struct sysctlnode node;
   1868 	unsigned int temp_bufcache;
   1869 	unsigned long temp_water;
   1870 
   1871 	/* Take a copy of the supplied node and its data */
   1872 	node = *rnode;
   1873 	if (node.sysctl_data == &bufcache) {
   1874 	    node.sysctl_data = &temp_bufcache;
   1875 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
   1876 	} else {
   1877 	    node.sysctl_data = &temp_water;
   1878 	    temp_water = *(unsigned long *)rnode->sysctl_data;
   1879 	}
   1880 
   1881 	/* Update the copy */
   1882 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1883 	if (error || newp == NULL)
   1884 		return (error);
   1885 
   1886 	if (rnode->sysctl_data == &bufcache) {
   1887 		if (temp_bufcache > 100)
   1888 			return (EINVAL);
   1889 		bufcache = temp_bufcache;
   1890 		buf_setwm();
   1891 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1892 		if (bufmem_hiwater - temp_water < 16)
   1893 			return (EINVAL);
   1894 		bufmem_lowater = temp_water;
   1895 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1896 		if (temp_water - bufmem_lowater < 16)
   1897 			return (EINVAL);
   1898 		bufmem_hiwater = temp_water;
   1899 	} else
   1900 		return (EINVAL);
   1901 
   1902 	/* Drain until below new high water mark */
   1903 	sysctl_unlock();
   1904 	mutex_enter(&bufcache_lock);
   1905 	while (bufmem > bufmem_hiwater) {
   1906 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
   1907 		if (rv <= 0)
   1908 			break;
   1909 	}
   1910 	mutex_exit(&bufcache_lock);
   1911 	sysctl_relock();
   1912 
   1913 	return 0;
   1914 }
   1915 
   1916 static struct sysctllog *vfsbio_sysctllog;
   1917 
   1918 static void
   1919 sysctl_kern_buf_setup(void)
   1920 {
   1921 
   1922 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1923 		       CTLFLAG_PERMANENT,
   1924 		       CTLTYPE_NODE, "buf",
   1925 		       SYSCTL_DESCR("Kernel buffer cache information"),
   1926 		       sysctl_dobuf, 0, NULL, 0,
   1927 		       CTL_KERN, KERN_BUF, CTL_EOL);
   1928 }
   1929 
   1930 static void
   1931 sysctl_vm_buf_setup(void)
   1932 {
   1933 
   1934 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1935 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1936 		       CTLTYPE_INT, "bufcache",
   1937 		       SYSCTL_DESCR("Percentage of physical memory to use for "
   1938 				    "buffer cache"),
   1939 		       sysctl_bufvm_update, 0, &bufcache, 0,
   1940 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1941 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1942 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1943 		       CTLTYPE_LONG, "bufmem",
   1944 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
   1945 				    "cache"),
   1946 		       NULL, 0, &bufmem, 0,
   1947 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1948 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1949 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1950 		       CTLTYPE_LONG, "bufmem_lowater",
   1951 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
   1952 				    "reserve for buffer cache"),
   1953 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1954 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1955 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1956 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1957 		       CTLTYPE_LONG, "bufmem_hiwater",
   1958 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
   1959 				    "for buffer cache"),
   1960 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1961 		       CTL_VM, CTL_CREATE, CTL_EOL);
   1962 }
   1963 
   1964 static int
   1965 bufhash_stats(struct hashstat_sysctl *hs, bool fill)
   1966 {
   1967 	buf_t *bp;
   1968 	uint64_t chain;
   1969 
   1970 	strlcpy(hs->hash_name, "bufhash", sizeof(hs->hash_name));
   1971 	strlcpy(hs->hash_desc, "buffer hash", sizeof(hs->hash_desc));
   1972 	if (!fill)
   1973 		return 0;
   1974 
   1975 	hs->hash_size = bufhash + 1;
   1976 
   1977 	for (size_t i = 0; i < hs->hash_size; i++) {
   1978 		chain = 0;
   1979 
   1980 		mutex_enter(&bufcache_lock);
   1981 		LIST_FOREACH(bp, &bufhashtbl[i], b_hash) {
   1982 			chain++;
   1983 		}
   1984 		mutex_exit(&bufcache_lock);
   1985 
   1986 		if (chain > 0) {
   1987 			hs->hash_used++;
   1988 			hs->hash_items += chain;
   1989 			if (chain > hs->hash_maxchain)
   1990 				hs->hash_maxchain = chain;
   1991 		}
   1992 		preempt_point();
   1993 	}
   1994 
   1995 	return 0;
   1996 }
   1997 
   1998 #ifdef DEBUG
   1999 /*
   2000  * Print out statistics on the current allocation of the buffer pool.
   2001  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   2002  * in vfs_syscalls.c using sysctl.
   2003  */
   2004 void
   2005 vfs_bufstats(void)
   2006 {
   2007 	int i, j, count;
   2008 	buf_t *bp;
   2009 	struct bqueue *dp;
   2010 	int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
   2011 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   2012 
   2013 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   2014 		count = 0;
   2015 		memset(counts, 0, sizeof(counts));
   2016 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   2017 			counts[bp->b_bufsize / PAGE_SIZE]++;
   2018 			count++;
   2019 		}
   2020 		printf("%s: total-%d", bname[i], count);
   2021 		for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
   2022 			if (counts[j] != 0)
   2023 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   2024 		printf("\n");
   2025 	}
   2026 }
   2027 #endif /* DEBUG */
   2028 
   2029 /* ------------------------------ */
   2030 
   2031 buf_t *
   2032 getiobuf(struct vnode *vp, bool waitok)
   2033 {
   2034 	buf_t *bp;
   2035 
   2036 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   2037 	if (bp == NULL)
   2038 		return bp;
   2039 
   2040 	buf_init(bp);
   2041 
   2042 	if ((bp->b_vp = vp) != NULL) {
   2043 		bp->b_objlock = vp->v_interlock;
   2044 	} else {
   2045 		KASSERT(bp->b_objlock == &buffer_lock);
   2046 	}
   2047 
   2048 	return bp;
   2049 }
   2050 
   2051 void
   2052 putiobuf(buf_t *bp)
   2053 {
   2054 
   2055 	buf_destroy(bp);
   2056 	pool_cache_put(bufio_cache, bp);
   2057 }
   2058 
   2059 /*
   2060  * nestiobuf_iodone: b_iodone callback for nested buffers.
   2061  */
   2062 
   2063 void
   2064 nestiobuf_iodone(buf_t *bp)
   2065 {
   2066 	buf_t *mbp = bp->b_private;
   2067 	int error;
   2068 	int donebytes;
   2069 
   2070 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   2071 	KASSERT(mbp != bp);
   2072 
   2073 	error = bp->b_error;
   2074 	if (bp->b_error == 0 &&
   2075 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   2076 		/*
   2077 		 * Not all got transferred, raise an error. We have no way to
   2078 		 * propagate these conditions to mbp.
   2079 		 */
   2080 		error = EIO;
   2081 	}
   2082 
   2083 	donebytes = bp->b_bufsize;
   2084 
   2085 	putiobuf(bp);
   2086 	nestiobuf_done(mbp, donebytes, error);
   2087 }
   2088 
   2089 /*
   2090  * nestiobuf_setup: setup a "nested" buffer.
   2091  *
   2092  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   2093  * => 'bp' should be a buffer allocated by getiobuf.
   2094  * => 'offset' is a byte offset in the master buffer.
   2095  * => 'size' is a size in bytes of this nested buffer.
   2096  */
   2097 
   2098 void
   2099 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   2100 {
   2101 	const int b_pass = mbp->b_flags & (B_READ|B_PHYS|B_RAW|B_MEDIA_FLAGS);
   2102 	struct vnode *vp = mbp->b_vp;
   2103 
   2104 	KASSERT(mbp->b_bcount >= offset + size);
   2105 	bp->b_vp = vp;
   2106 	bp->b_dev = mbp->b_dev;
   2107 	bp->b_objlock = mbp->b_objlock;
   2108 	bp->b_cflags = BC_BUSY;
   2109 	bp->b_flags = B_ASYNC | b_pass;
   2110 	bp->b_iodone = nestiobuf_iodone;
   2111 	bp->b_data = (char *)mbp->b_data + offset;
   2112 	bp->b_resid = bp->b_bcount = size;
   2113 	bp->b_bufsize = bp->b_bcount;
   2114 	bp->b_private = mbp;
   2115 	BIO_COPYPRIO(bp, mbp);
   2116 	if (BUF_ISWRITE(bp) && vp != NULL) {
   2117 		mutex_enter(vp->v_interlock);
   2118 		vp->v_numoutput++;
   2119 		mutex_exit(vp->v_interlock);
   2120 	}
   2121 }
   2122 
   2123 /*
   2124  * nestiobuf_done: propagate completion to the master buffer.
   2125  *
   2126  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   2127  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   2128  */
   2129 
   2130 void
   2131 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   2132 {
   2133 
   2134 	if (donebytes == 0) {
   2135 		return;
   2136 	}
   2137 	mutex_enter(mbp->b_objlock);
   2138 	KASSERT(mbp->b_resid >= donebytes);
   2139 	mbp->b_resid -= donebytes;
   2140 	if (error)
   2141 		mbp->b_error = error;
   2142 	if (mbp->b_resid == 0) {
   2143 		if (mbp->b_error)
   2144 			mbp->b_resid = mbp->b_bcount;
   2145 		mutex_exit(mbp->b_objlock);
   2146 		biodone(mbp);
   2147 	} else
   2148 		mutex_exit(mbp->b_objlock);
   2149 }
   2150 
   2151 void
   2152 buf_init(buf_t *bp)
   2153 {
   2154 
   2155 	cv_init(&bp->b_busy, "biolock");
   2156 	cv_init(&bp->b_done, "biowait");
   2157 	bp->b_dev = NODEV;
   2158 	bp->b_error = 0;
   2159 	bp->b_flags = 0;
   2160 	bp->b_cflags = 0;
   2161 	bp->b_oflags = 0;
   2162 	bp->b_objlock = &buffer_lock;
   2163 	bp->b_iodone = NULL;
   2164 	bp->b_dev = NODEV;
   2165 	bp->b_vnbufs.le_next = NOLIST;
   2166 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2167 }
   2168 
   2169 void
   2170 buf_destroy(buf_t *bp)
   2171 {
   2172 
   2173 	cv_destroy(&bp->b_done);
   2174 	cv_destroy(&bp->b_busy);
   2175 }
   2176 
   2177 int
   2178 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2179 {
   2180 	int error;
   2181 
   2182 	KASSERT(mutex_owned(&bufcache_lock));
   2183 
   2184 	SDT_PROBE4(io, kernel, , bbusy__start,  bp, intr, timo, interlock);
   2185 
   2186 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2187 		if (curlwp == uvm.pagedaemon_lwp) {
   2188 			error = EDEADLK;
   2189 			goto out;
   2190 		}
   2191 		bp->b_cflags |= BC_WANTED;
   2192 		if (interlock != NULL)
   2193 			mutex_exit(interlock);
   2194 		if (intr) {
   2195 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2196 			    timo);
   2197 		} else {
   2198 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2199 			    timo);
   2200 		}
   2201 		/*
   2202 		 * At this point the buffer may be gone: don't touch it
   2203 		 * again.  The caller needs to find it again and retry.
   2204 		 */
   2205 		if (interlock != NULL)
   2206 			mutex_enter(interlock);
   2207 		if (error == 0)
   2208 			error = EPASSTHROUGH;
   2209 	} else {
   2210 		bp->b_cflags |= BC_BUSY;
   2211 		error = 0;
   2212 	}
   2213 
   2214 out:	SDT_PROBE5(io, kernel, , bbusy__done,
   2215 	    bp, intr, timo, interlock, error);
   2216 	return error;
   2217 }
   2218 
   2219 /*
   2220  * Nothing outside this file should really need to know about nbuf,
   2221  * but a few things still want to read it, so give them a way to do that.
   2222  */
   2223 u_int
   2224 buf_nbuf(void)
   2225 {
   2226 
   2227 	return nbuf;
   2228 }
   2229