vfs_bio.c revision 1.42 1 /* $NetBSD: vfs_bio.c,v 1.42 1996/02/18 11:57:08 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/trace.h>
58 #include <sys/malloc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/conf.h>
61 #include <sys/cpu.h>
62
63 /* Macros to clear/set/test flags. */
64 #define SET(t, f) (t) |= (f)
65 #define CLR(t, f) (t) &= ~(f)
66 #define ISSET(t, f) ((t) & (f))
67
68 /*
69 * Definitions for the buffer hash lists.
70 */
71 #define BUFHASH(dvp, lbn) \
72 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
73 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
74 u_long bufhash;
75
76 /*
77 * Insq/Remq for the buffer hash lists.
78 */
79 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
80 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
81
82 /*
83 * Definitions for the buffer free lists.
84 */
85 #define BQUEUES 4 /* number of free buffer queues */
86
87 #define BQ_LOCKED 0 /* super-blocks &c */
88 #define BQ_LRU 1 /* lru, useful buffers */
89 #define BQ_AGE 2 /* rubbish */
90 #define BQ_EMPTY 3 /* buffer headers with no memory */
91
92 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
93 int needbuffer;
94
95 /*
96 * Insq/Remq for the buffer free lists.
97 */
98 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
99 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
100
101 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
102 struct ucred *, int));
103 int count_lock_queue __P((void));
104
105 void
106 bremfree(bp)
107 struct buf *bp;
108 {
109 struct bqueues *dp = NULL;
110
111 /*
112 * We only calculate the head of the freelist when removing
113 * the last element of the list as that is the only time that
114 * it is needed (e.g. to reset the tail pointer).
115 *
116 * NB: This makes an assumption about how tailq's are implemented.
117 */
118 if (bp->b_freelist.tqe_next == NULL) {
119 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
120 if (dp->tqh_last == &bp->b_freelist.tqe_next)
121 break;
122 if (dp == &bufqueues[BQUEUES])
123 panic("bremfree: lost tail");
124 }
125 TAILQ_REMOVE(dp, bp, b_freelist);
126 }
127
128 /*
129 * Initialize buffers and hash links for buffers.
130 */
131 void
132 bufinit()
133 {
134 register struct buf *bp;
135 struct bqueues *dp;
136 register int i;
137 int base, residual;
138
139 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
140 TAILQ_INIT(dp);
141 bufhashtbl = hashinit(nbuf, M_CACHE, &bufhash);
142 base = bufpages / nbuf;
143 residual = bufpages % nbuf;
144 for (i = 0; i < nbuf; i++) {
145 bp = &buf[i];
146 bzero((char *)bp, sizeof *bp);
147 bp->b_dev = NODEV;
148 bp->b_rcred = NOCRED;
149 bp->b_wcred = NOCRED;
150 bp->b_vnbufs.le_next = NOLIST;
151 bp->b_data = buffers + i * MAXBSIZE;
152 if (i < residual)
153 bp->b_bufsize = (base + 1) * CLBYTES;
154 else
155 bp->b_bufsize = base * CLBYTES;
156 bp->b_flags = B_INVAL;
157 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
158 binsheadfree(bp, dp);
159 binshash(bp, &invalhash);
160 }
161 }
162
163 static __inline struct buf *
164 bio_doread(vp, blkno, size, cred, async)
165 struct vnode *vp;
166 daddr_t blkno;
167 int size;
168 struct ucred *cred;
169 int async;
170 {
171 register struct buf *bp;
172
173 bp = getblk(vp, blkno, size, 0, 0);
174
175 /*
176 * If buffer does not have data valid, start a read.
177 * Note that if buffer is B_INVAL, getblk() won't return it.
178 * Therefore, it's valid if it's I/O has completed or been delayed.
179 */
180 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
181 /* Start I/O for the buffer (keeping credentials). */
182 SET(bp->b_flags, B_READ | async);
183 if (cred != NOCRED && bp->b_rcred == NOCRED) {
184 crhold(cred);
185 bp->b_rcred = cred;
186 }
187 VOP_STRATEGY(bp);
188
189 /* Pay for the read. */
190 curproc->p_stats->p_ru.ru_inblock++; /* XXX */
191 } else if (async) {
192 brelse(bp);
193 }
194
195 return (bp);
196 }
197
198 /*
199 * Read a disk block.
200 * This algorithm described in Bach (p.54).
201 */
202 int
203 bread(vp, blkno, size, cred, bpp)
204 struct vnode *vp;
205 daddr_t blkno;
206 int size;
207 struct ucred *cred;
208 struct buf **bpp;
209 {
210 register struct buf *bp;
211
212 /* Get buffer for block. */
213 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
214
215 /* Wait for the read to complete, and return result. */
216 return (biowait(bp));
217 }
218
219 /*
220 * Read-ahead multiple disk blocks. The first is sync, the rest async.
221 * Trivial modification to the breada algorithm presented in Bach (p.55).
222 */
223 int
224 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
225 struct vnode *vp;
226 daddr_t blkno; int size;
227 daddr_t rablks[]; int rasizes[];
228 int nrablks;
229 struct ucred *cred;
230 struct buf **bpp;
231 {
232 register struct buf *bp;
233 int i;
234
235 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
236
237 /*
238 * For each of the read-ahead blocks, start a read, if necessary.
239 */
240 for (i = 0; i < nrablks; i++) {
241 /* If it's in the cache, just go on to next one. */
242 if (incore(vp, rablks[i]))
243 continue;
244
245 /* Get a buffer for the read-ahead block */
246 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
247 }
248
249 /* Otherwise, we had to start a read for it; wait until it's valid. */
250 return (biowait(bp));
251 }
252
253 /*
254 * Read with single-block read-ahead. Defined in Bach (p.55), but
255 * implemented as a call to breadn().
256 * XXX for compatibility with old file systems.
257 */
258 int
259 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
260 struct vnode *vp;
261 daddr_t blkno; int size;
262 daddr_t rablkno; int rabsize;
263 struct ucred *cred;
264 struct buf **bpp;
265 {
266
267 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
268 }
269
270 /*
271 * Block write. Described in Bach (p.56)
272 */
273 int
274 bwrite(bp)
275 struct buf *bp;
276 {
277 int rv, sync, wasdelayed;
278
279 /*
280 * Remember buffer type, to switch on it later. If the write was
281 * synchronous, but the file system was mounted with MNT_ASYNC,
282 * convert it to a delayed write.
283 * XXX note that this relies on delayed tape writes being converted
284 * to async, not sync writes (which is safe, but ugly).
285 */
286 sync = !ISSET(bp->b_flags, B_ASYNC);
287 if (sync && bp->b_vp && bp->b_vp->v_mount &&
288 ISSET(bp->b_vp->v_mount->mnt_flag, MNT_ASYNC)) {
289 bdwrite(bp);
290 return (0);
291 }
292 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
293 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
294
295 if (!sync) {
296 /*
297 * If not synchronous, pay for the I/O operation and make
298 * sure the buf is on the correct vnode queue. We have
299 * to do this now, because if we don't, the vnode may not
300 * be properly notified that its I/O has completed.
301 */
302 if (wasdelayed)
303 reassignbuf(bp, bp->b_vp);
304 else
305 curproc->p_stats->p_ru.ru_oublock++;
306 }
307
308 /* Initiate disk write. Make sure the appropriate party is charged. */
309 SET(bp->b_flags, B_WRITEINPROG);
310 bp->b_vp->v_numoutput++;
311 VOP_STRATEGY(bp);
312
313 if (sync) {
314 /*
315 * If I/O was synchronous, wait for it to complete.
316 */
317 rv = biowait(bp);
318
319 /*
320 * Pay for the I/O operation, if it's not been paid for, and
321 * make sure it's on the correct vnode queue. (async operatings
322 * were payed for above.)
323 */
324 if (wasdelayed)
325 reassignbuf(bp, bp->b_vp);
326 else
327 curproc->p_stats->p_ru.ru_oublock++;
328
329 /* Release the buffer. */
330 brelse(bp);
331
332 return (rv);
333 } else {
334 return (0);
335 }
336 }
337
338 int
339 vn_bwrite(v)
340 void *v;
341 {
342 struct vop_bwrite_args *ap = v;
343
344 return (bwrite(ap->a_bp));
345 }
346
347 /*
348 * Delayed write.
349 *
350 * The buffer is marked dirty, but is not queued for I/O.
351 * This routine should be used when the buffer is expected
352 * to be modified again soon, typically a small write that
353 * partially fills a buffer.
354 *
355 * NB: magnetic tapes cannot be delayed; they must be
356 * written in the order that the writes are requested.
357 *
358 * Described in Leffler, et al. (pp. 208-213).
359 */
360 void
361 bdwrite(bp)
362 struct buf *bp;
363 {
364
365 /*
366 * If the block hasn't been seen before:
367 * (1) Mark it as having been seen,
368 * (2) Charge for the write.
369 * (3) Make sure it's on its vnode's correct block list,
370 */
371 if (!ISSET(bp->b_flags, B_DELWRI)) {
372 SET(bp->b_flags, B_DELWRI);
373 curproc->p_stats->p_ru.ru_oublock++; /* XXX */
374 reassignbuf(bp, bp->b_vp);
375 }
376
377 /* If this is a tape block, write the block now. */
378 if (bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
379 bawrite(bp);
380 return;
381 }
382
383 /* Otherwise, the "write" is done, so mark and release the buffer. */
384 CLR(bp->b_flags, B_NEEDCOMMIT);
385 SET(bp->b_flags, B_DONE);
386 brelse(bp);
387 }
388
389 /*
390 * Asynchronous block write; just an asynchronous bwrite().
391 */
392 void
393 bawrite(bp)
394 struct buf *bp;
395 {
396
397 SET(bp->b_flags, B_ASYNC);
398 VOP_BWRITE(bp);
399 }
400
401 /*
402 * Release a buffer on to the free lists.
403 * Described in Bach (p. 46).
404 */
405 void
406 brelse(bp)
407 struct buf *bp;
408 {
409 struct bqueues *bufq;
410 int s;
411
412 /* Wake up any processes waiting for any buffer to become free. */
413 if (needbuffer) {
414 needbuffer = 0;
415 wakeup(&needbuffer);
416 }
417
418 /* Wake up any proceeses waiting for _this_ buffer to become free. */
419 if (ISSET(bp->b_flags, B_WANTED)) {
420 CLR(bp->b_flags, B_WANTED);
421 wakeup(bp);
422 }
423
424 /* Block disk interrupts. */
425 s = splbio();
426
427 /*
428 * Determine which queue the buffer should be on, then put it there.
429 */
430
431 /* If it's locked, don't report an error; try again later. */
432 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
433 CLR(bp->b_flags, B_ERROR);
434
435 /* If it's not cacheable, or an error, mark it invalid. */
436 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
437 SET(bp->b_flags, B_INVAL);
438
439 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
440 /*
441 * If it's invalid or empty, dissociate it from its vnode
442 * and put on the head of the appropriate queue.
443 */
444 if (bp->b_vp)
445 brelvp(bp);
446 CLR(bp->b_flags, B_DELWRI);
447 if (bp->b_bufsize <= 0)
448 /* no data */
449 bufq = &bufqueues[BQ_EMPTY];
450 else
451 /* invalid data */
452 bufq = &bufqueues[BQ_AGE];
453 binsheadfree(bp, bufq);
454 } else {
455 /*
456 * It has valid data. Put it on the end of the appropriate
457 * queue, so that it'll stick around for as long as possible.
458 */
459 if (ISSET(bp->b_flags, B_LOCKED))
460 /* locked in core */
461 bufq = &bufqueues[BQ_LOCKED];
462 else if (ISSET(bp->b_flags, B_AGE))
463 /* stale but valid data */
464 bufq = &bufqueues[BQ_AGE];
465 else
466 /* valid data */
467 bufq = &bufqueues[BQ_LRU];
468 binstailfree(bp, bufq);
469 }
470
471 /* Unlock the buffer. */
472 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_BUSY | B_NOCACHE));
473
474 /* Allow disk interrupts. */
475 splx(s);
476 }
477
478 /*
479 * Determine if a block is in the cache.
480 * Just look on what would be its hash chain. If it's there, return
481 * a pointer to it, unless it's marked invalid. If it's marked invalid,
482 * we normally don't return the buffer, unless the caller explicitly
483 * wants us to.
484 */
485 struct buf *
486 incore(vp, blkno)
487 struct vnode *vp;
488 daddr_t blkno;
489 {
490 struct buf *bp;
491
492 bp = BUFHASH(vp, blkno)->lh_first;
493
494 /* Search hash chain */
495 for (; bp != NULL; bp = bp->b_hash.le_next) {
496 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
497 !ISSET(bp->b_flags, B_INVAL))
498 return (bp);
499 }
500
501 return (0);
502 }
503
504 /*
505 * Get a block of requested size that is associated with
506 * a given vnode and block offset. If it is found in the
507 * block cache, mark it as having been found, make it busy
508 * and return it. Otherwise, return an empty block of the
509 * correct size. It is up to the caller to insure that the
510 * cached blocks be of the correct size.
511 */
512 struct buf *
513 getblk(vp, blkno, size, slpflag, slptimeo)
514 register struct vnode *vp;
515 daddr_t blkno;
516 int size, slpflag, slptimeo;
517 {
518 struct bufhashhdr *bh;
519 struct buf *bp;
520 int s, err;
521
522 /*
523 * XXX
524 * The following is an inlined version of 'incore()', but with
525 * the 'invalid' test moved to after the 'busy' test. It's
526 * necessary because there are some cases in which the NFS
527 * code sets B_INVAL prior to writing data to the server, but
528 * in which the buffers actually contain valid data. In this
529 * case, we can't allow the system to allocate a new buffer for
530 * the block until the write is finished.
531 */
532 bh = BUFHASH(vp, blkno);
533 start:
534 bp = bh->lh_first;
535 for (; bp != NULL; bp = bp->b_hash.le_next) {
536 if (bp->b_lblkno != blkno || bp->b_vp != vp)
537 continue;
538
539 s = splbio();
540 if (ISSET(bp->b_flags, B_BUSY)) {
541 SET(bp->b_flags, B_WANTED);
542 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
543 slptimeo);
544 splx(s);
545 if (err)
546 return (NULL);
547 goto start;
548 }
549
550 if (!ISSET(bp->b_flags, B_INVAL)) {
551 SET(bp->b_flags, (B_BUSY | B_CACHE));
552 bremfree(bp);
553 splx(s);
554 break;
555 }
556 splx(s);
557 }
558
559 if (bp == NULL) {
560 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
561 goto start;
562 binshash(bp, bh);
563 bp->b_blkno = bp->b_lblkno = blkno;
564 s = splbio();
565 bgetvp(vp, bp);
566 splx(s);
567 }
568 allocbuf(bp, size);
569 return (bp);
570 }
571
572 /*
573 * Get an empty, disassociated buffer of given size.
574 */
575 struct buf *
576 geteblk(size)
577 int size;
578 {
579 struct buf *bp;
580
581 while ((bp = getnewbuf(0, 0)) == 0)
582 ;
583 SET(bp->b_flags, B_INVAL);
584 binshash(bp, &invalhash);
585 allocbuf(bp, size);
586
587 return (bp);
588 }
589
590 /*
591 * Expand or contract the actual memory allocated to a buffer.
592 *
593 * If the buffer shrinks, data is lost, so it's up to the
594 * caller to have written it out *first*; this routine will not
595 * start a write. If the buffer grows, it's the callers
596 * responsibility to fill out the buffer's additional contents.
597 */
598 void
599 allocbuf(bp, size)
600 struct buf *bp;
601 int size;
602 {
603 struct buf *nbp;
604 vm_size_t desired_size;
605 int s;
606
607 desired_size = roundup(size, CLBYTES);
608 if (desired_size > MAXBSIZE)
609 panic("allocbuf: buffer larger than MAXBSIZE requested");
610
611 if (bp->b_bufsize == desired_size)
612 goto out;
613
614 /*
615 * If the buffer is smaller than the desired size, we need to snarf
616 * it from other buffers. Get buffers (via getnewbuf()), and
617 * steal their pages.
618 */
619 while (bp->b_bufsize < desired_size) {
620 int amt;
621
622 /* find a buffer */
623 while ((nbp = getnewbuf(0, 0)) == NULL)
624 ;
625 SET(nbp->b_flags, B_INVAL);
626 binshash(nbp, &invalhash);
627
628 /* and steal its pages, up to the amount we need */
629 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
630 pagemove((nbp->b_data + nbp->b_bufsize - amt),
631 bp->b_data + bp->b_bufsize, amt);
632 bp->b_bufsize += amt;
633 nbp->b_bufsize -= amt;
634
635 /* reduce transfer count if we stole some data */
636 if (nbp->b_bcount > nbp->b_bufsize)
637 nbp->b_bcount = nbp->b_bufsize;
638
639 #ifdef DIAGNOSTIC
640 if (nbp->b_bufsize < 0)
641 panic("allocbuf: negative bufsize");
642 #endif
643
644 brelse(nbp);
645 }
646
647 /*
648 * If we want a buffer smaller than the current size,
649 * shrink this buffer. Grab a buf head from the EMPTY queue,
650 * move a page onto it, and put it on front of the AGE queue.
651 * If there are no free buffer headers, leave the buffer alone.
652 */
653 if (bp->b_bufsize > desired_size) {
654 s = splbio();
655 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
656 /* No free buffer head */
657 splx(s);
658 goto out;
659 }
660 bremfree(nbp);
661 SET(nbp->b_flags, B_BUSY);
662 splx(s);
663
664 /* move the page to it and note this change */
665 pagemove(bp->b_data + desired_size,
666 nbp->b_data, bp->b_bufsize - desired_size);
667 nbp->b_bufsize = bp->b_bufsize - desired_size;
668 bp->b_bufsize = desired_size;
669 nbp->b_bcount = 0;
670 SET(nbp->b_flags, B_INVAL);
671
672 /* release the newly-filled buffer and leave */
673 brelse(nbp);
674 }
675
676 out:
677 bp->b_bcount = size;
678 }
679
680 /*
681 * Find a buffer which is available for use.
682 * Select something from a free list.
683 * Preference is to AGE list, then LRU list.
684 */
685 struct buf *
686 getnewbuf(slpflag, slptimeo)
687 int slpflag, slptimeo;
688 {
689 register struct buf *bp;
690 int s;
691
692 start:
693 s = splbio();
694 if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
695 (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
696 bremfree(bp);
697 } else {
698 /* wait for a free buffer of any kind */
699 needbuffer = 1;
700 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
701 splx(s);
702 return (0);
703 }
704
705 /* Buffer is no longer on free lists. */
706 SET(bp->b_flags, B_BUSY);
707
708 /* If buffer was a delayed write, start it, and go back to the top. */
709 if (ISSET(bp->b_flags, B_DELWRI)) {
710 splx(s);
711 bawrite (bp);
712 goto start;
713 }
714
715 /* disassociate us from our vnode, if we had one... */
716 if (bp->b_vp)
717 brelvp(bp);
718 splx(s);
719
720 /* clear out various other fields */
721 bp->b_flags = B_BUSY;
722 bp->b_dev = NODEV;
723 bp->b_blkno = bp->b_lblkno = 0;
724 bp->b_iodone = 0;
725 bp->b_error = 0;
726 bp->b_resid = 0;
727 bp->b_bcount = 0;
728 bp->b_dirtyoff = bp->b_dirtyend = 0;
729 bp->b_validoff = bp->b_validend = 0;
730
731 /* nuke any credentials we were holding */
732 if (bp->b_rcred != NOCRED) {
733 crfree(bp->b_rcred);
734 bp->b_rcred = NOCRED;
735 }
736 if (bp->b_wcred != NOCRED) {
737 crfree(bp->b_wcred);
738 bp->b_wcred = NOCRED;
739 }
740
741 bremhash(bp);
742 return (bp);
743 }
744
745 /*
746 * Wait for operations on the buffer to complete.
747 * When they do, extract and return the I/O's error value.
748 */
749 int
750 biowait(bp)
751 struct buf *bp;
752 {
753 int s;
754
755 s = splbio();
756 while (!ISSET(bp->b_flags, B_DONE))
757 tsleep(bp, PRIBIO + 1, "biowait", 0);
758 splx(s);
759
760 /* check for interruption of I/O (e.g. via NFS), then errors. */
761 if (ISSET(bp->b_flags, B_EINTR)) {
762 CLR(bp->b_flags, B_EINTR);
763 return (EINTR);
764 } else if (ISSET(bp->b_flags, B_ERROR))
765 return (bp->b_error ? bp->b_error : EIO);
766 else
767 return (0);
768 }
769
770 /*
771 * Mark I/O complete on a buffer.
772 *
773 * If a callback has been requested, e.g. the pageout
774 * daemon, do so. Otherwise, awaken waiting processes.
775 *
776 * [ Leffler, et al., says on p.247:
777 * "This routine wakes up the blocked process, frees the buffer
778 * for an asynchronous write, or, for a request by the pagedaemon
779 * process, invokes a procedure specified in the buffer structure" ]
780 *
781 * In real life, the pagedaemon (or other system processes) wants
782 * to do async stuff to, and doesn't want the buffer brelse()'d.
783 * (for swap pager, that puts swap buffers on the free lists (!!!),
784 * for the vn device, that puts malloc'd buffers on the free lists!)
785 */
786 void
787 biodone(bp)
788 struct buf *bp;
789 {
790 if (ISSET(bp->b_flags, B_DONE))
791 panic("biodone already");
792 SET(bp->b_flags, B_DONE); /* note that it's done */
793
794 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
795 vwakeup(bp);
796
797 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
798 CLR(bp->b_flags, B_CALL); /* but note callout done */
799 (*bp->b_iodone)(bp);
800 } else if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release it */
801 brelse(bp);
802 else { /* or just wakeup the buffer */
803 CLR(bp->b_flags, B_WANTED);
804 wakeup(bp);
805 }
806 }
807
808 /*
809 * Return a count of buffers on the "locked" queue.
810 */
811 int
812 count_lock_queue()
813 {
814 register struct buf *bp;
815 register int n = 0;
816
817 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
818 bp = bp->b_freelist.tqe_next)
819 n++;
820 return (n);
821 }
822
823 #ifdef DEBUG
824 /*
825 * Print out statistics on the current allocation of the buffer pool.
826 * Can be enabled to print out on every ``sync'' by setting "syncprt"
827 * in vfs_syscalls.c using sysctl.
828 */
829 void
830 vfs_bufstats()
831 {
832 int s, i, j, count;
833 register struct buf *bp;
834 register struct bqueues *dp;
835 int counts[MAXBSIZE/CLBYTES+1];
836 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
837
838 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
839 count = 0;
840 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
841 counts[j] = 0;
842 s = splbio();
843 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
844 counts[bp->b_bufsize/CLBYTES]++;
845 count++;
846 }
847 splx(s);
848 printf("%s: total-%d", bname[i], count);
849 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
850 if (counts[j] != 0)
851 printf(", %d-%d", j * CLBYTES, counts[j]);
852 printf("\n");
853 }
854 }
855 #endif /* DEBUG */
856