vfs_bio.c revision 1.50 1 /* $NetBSD: vfs_bio.c,v 1.50 1997/04/09 21:12:10 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/trace.h>
58 #include <sys/malloc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/conf.h>
61
62 #include <vm/vm.h>
63
64 /* Macros to clear/set/test flags. */
65 #define SET(t, f) (t) |= (f)
66 #define CLR(t, f) (t) &= ~(f)
67 #define ISSET(t, f) ((t) & (f))
68
69 /*
70 * Definitions for the buffer hash lists.
71 */
72 #define BUFHASH(dvp, lbn) \
73 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
74 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
75 u_long bufhash;
76
77 /*
78 * Insq/Remq for the buffer hash lists.
79 */
80 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
81 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
82
83 /*
84 * Definitions for the buffer free lists.
85 */
86 #define BQUEUES 4 /* number of free buffer queues */
87
88 #define BQ_LOCKED 0 /* super-blocks &c */
89 #define BQ_LRU 1 /* lru, useful buffers */
90 #define BQ_AGE 2 /* rubbish */
91 #define BQ_EMPTY 3 /* buffer headers with no memory */
92
93 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
94 int needbuffer;
95
96 /*
97 * Insq/Remq for the buffer free lists.
98 */
99 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
100 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
101
102 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
103 struct ucred *, int));
104 int count_lock_queue __P((void));
105
106 void
107 bremfree(bp)
108 struct buf *bp;
109 {
110 struct bqueues *dp = NULL;
111
112 /*
113 * We only calculate the head of the freelist when removing
114 * the last element of the list as that is the only time that
115 * it is needed (e.g. to reset the tail pointer).
116 *
117 * NB: This makes an assumption about how tailq's are implemented.
118 */
119 if (bp->b_freelist.tqe_next == NULL) {
120 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
121 if (dp->tqh_last == &bp->b_freelist.tqe_next)
122 break;
123 if (dp == &bufqueues[BQUEUES])
124 panic("bremfree: lost tail");
125 }
126 TAILQ_REMOVE(dp, bp, b_freelist);
127 }
128
129 /*
130 * Initialize buffers and hash links for buffers.
131 */
132 void
133 bufinit()
134 {
135 register struct buf *bp;
136 struct bqueues *dp;
137 register int i;
138 int base, residual;
139
140 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
141 TAILQ_INIT(dp);
142 bufhashtbl = hashinit(nbuf, M_CACHE, &bufhash);
143 base = bufpages / nbuf;
144 residual = bufpages % nbuf;
145 for (i = 0; i < nbuf; i++) {
146 bp = &buf[i];
147 bzero((char *)bp, sizeof *bp);
148 bp->b_dev = NODEV;
149 bp->b_rcred = NOCRED;
150 bp->b_wcred = NOCRED;
151 bp->b_vnbufs.le_next = NOLIST;
152 bp->b_data = buffers + i * MAXBSIZE;
153 if (i < residual)
154 bp->b_bufsize = (base + 1) * CLBYTES;
155 else
156 bp->b_bufsize = base * CLBYTES;
157 bp->b_flags = B_INVAL;
158 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
159 binsheadfree(bp, dp);
160 binshash(bp, &invalhash);
161 }
162 }
163
164 static __inline struct buf *
165 bio_doread(vp, blkno, size, cred, async)
166 struct vnode *vp;
167 daddr_t blkno;
168 int size;
169 struct ucred *cred;
170 int async;
171 {
172 register struct buf *bp;
173 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
174
175 bp = getblk(vp, blkno, size, 0, 0);
176
177 /*
178 * If buffer does not have data valid, start a read.
179 * Note that if buffer is B_INVAL, getblk() won't return it.
180 * Therefore, it's valid if it's I/O has completed or been delayed.
181 */
182 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
183 /* Start I/O for the buffer (keeping credentials). */
184 SET(bp->b_flags, B_READ | async);
185 if (cred != NOCRED && bp->b_rcred == NOCRED) {
186 crhold(cred);
187 bp->b_rcred = cred;
188 }
189 VOP_STRATEGY(bp);
190
191 /* Pay for the read. */
192 p->p_stats->p_ru.ru_inblock++;
193 } else if (async) {
194 brelse(bp);
195 }
196
197 return (bp);
198 }
199
200 /*
201 * Read a disk block.
202 * This algorithm described in Bach (p.54).
203 */
204 int
205 bread(vp, blkno, size, cred, bpp)
206 struct vnode *vp;
207 daddr_t blkno;
208 int size;
209 struct ucred *cred;
210 struct buf **bpp;
211 {
212 register struct buf *bp;
213
214 /* Get buffer for block. */
215 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
216
217 /* Wait for the read to complete, and return result. */
218 return (biowait(bp));
219 }
220
221 /*
222 * Read-ahead multiple disk blocks. The first is sync, the rest async.
223 * Trivial modification to the breada algorithm presented in Bach (p.55).
224 */
225 int
226 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
227 struct vnode *vp;
228 daddr_t blkno; int size;
229 daddr_t rablks[]; int rasizes[];
230 int nrablks;
231 struct ucred *cred;
232 struct buf **bpp;
233 {
234 register struct buf *bp;
235 int i;
236
237 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
238
239 /*
240 * For each of the read-ahead blocks, start a read, if necessary.
241 */
242 for (i = 0; i < nrablks; i++) {
243 /* If it's in the cache, just go on to next one. */
244 if (incore(vp, rablks[i]))
245 continue;
246
247 /* Get a buffer for the read-ahead block */
248 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
249 }
250
251 /* Otherwise, we had to start a read for it; wait until it's valid. */
252 return (biowait(bp));
253 }
254
255 /*
256 * Read with single-block read-ahead. Defined in Bach (p.55), but
257 * implemented as a call to breadn().
258 * XXX for compatibility with old file systems.
259 */
260 int
261 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
262 struct vnode *vp;
263 daddr_t blkno; int size;
264 daddr_t rablkno; int rabsize;
265 struct ucred *cred;
266 struct buf **bpp;
267 {
268
269 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
270 }
271
272 /*
273 * Block write. Described in Bach (p.56)
274 */
275 int
276 bwrite(bp)
277 struct buf *bp;
278 {
279 int rv, sync, wasdelayed, s;
280 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
281
282 /*
283 * Remember buffer type, to switch on it later. If the write was
284 * synchronous, but the file system was mounted with MNT_ASYNC,
285 * convert it to a delayed write.
286 * XXX note that this relies on delayed tape writes being converted
287 * to async, not sync writes (which is safe, but ugly).
288 */
289 sync = !ISSET(bp->b_flags, B_ASYNC);
290 if (sync && bp->b_vp && bp->b_vp->v_mount &&
291 ISSET(bp->b_vp->v_mount->mnt_flag, MNT_ASYNC)) {
292 bdwrite(bp);
293 return (0);
294 }
295
296 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
297 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
298
299 s = splbio();
300
301 /*
302 * Pay for the I/O operation and make sure the buf is on the correct
303 * vnode queue.
304 */
305 if (wasdelayed)
306 reassignbuf(bp, bp->b_vp);
307 else
308 p->p_stats->p_ru.ru_oublock++;
309
310 /* Initiate disk write. Make sure the appropriate party is charged. */
311 bp->b_vp->v_numoutput++;
312 splx(s);
313
314 SET(bp->b_flags, B_WRITEINPROG);
315 VOP_STRATEGY(bp);
316
317 if (sync) {
318 /* If I/O was synchronous, wait for it to complete. */
319 rv = biowait(bp);
320
321 /* Release the buffer. */
322 brelse(bp);
323
324 return (rv);
325 } else {
326 return (0);
327 }
328 }
329
330 int
331 vn_bwrite(v)
332 void *v;
333 {
334 struct vop_bwrite_args *ap = v;
335
336 return (bwrite(ap->a_bp));
337 }
338
339 /*
340 * Delayed write.
341 *
342 * The buffer is marked dirty, but is not queued for I/O.
343 * This routine should be used when the buffer is expected
344 * to be modified again soon, typically a small write that
345 * partially fills a buffer.
346 *
347 * NB: magnetic tapes cannot be delayed; they must be
348 * written in the order that the writes are requested.
349 *
350 * Described in Leffler, et al. (pp. 208-213).
351 */
352 void
353 bdwrite(bp)
354 struct buf *bp;
355 {
356 int s;
357 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
358
359 /* If this is a tape block, write the block now. */
360 if (bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
361 bawrite(bp);
362 return;
363 }
364
365 /*
366 * If the block hasn't been seen before:
367 * (1) Mark it as having been seen,
368 * (2) Charge for the write,
369 * (3) Make sure it's on its vnode's correct block list.
370 */
371 if (!ISSET(bp->b_flags, B_DELWRI)) {
372 SET(bp->b_flags, B_DELWRI);
373 p->p_stats->p_ru.ru_oublock++;
374 s = splbio();
375 reassignbuf(bp, bp->b_vp);
376 splx(s);
377 }
378
379 /* Otherwise, the "write" is done, so mark and release the buffer. */
380 CLR(bp->b_flags, B_NEEDCOMMIT);
381 SET(bp->b_flags, B_DONE);
382 brelse(bp);
383 }
384
385 /*
386 * Asynchronous block write; just an asynchronous bwrite().
387 */
388 void
389 bawrite(bp)
390 struct buf *bp;
391 {
392
393 SET(bp->b_flags, B_ASYNC);
394 VOP_BWRITE(bp);
395 }
396
397 /*
398 * Release a buffer on to the free lists.
399 * Described in Bach (p. 46).
400 */
401 void
402 brelse(bp)
403 struct buf *bp;
404 {
405 struct bqueues *bufq;
406 int s;
407
408 /* Wake up any processes waiting for any buffer to become free. */
409 if (needbuffer) {
410 needbuffer = 0;
411 wakeup(&needbuffer);
412 }
413
414 /* Wake up any proceeses waiting for _this_ buffer to become free. */
415 if (ISSET(bp->b_flags, B_WANTED)) {
416 CLR(bp->b_flags, B_WANTED);
417 wakeup(bp);
418 }
419
420 /* Block disk interrupts. */
421 s = splbio();
422
423 /*
424 * Determine which queue the buffer should be on, then put it there.
425 */
426
427 /* If it's locked, don't report an error; try again later. */
428 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
429 CLR(bp->b_flags, B_ERROR);
430
431 /* If it's not cacheable, or an error, mark it invalid. */
432 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
433 SET(bp->b_flags, B_INVAL);
434
435 if (ISSET(bp->b_flags, B_VFLUSH)) {
436 /*
437 * This is a delayed write buffer that was just flushed to
438 * disk. It is still on the LRU queue. If it's become
439 * invalid, then we need to move it to a different queue;
440 * otherwise leave it in its current position.
441 */
442 CLR(bp->b_flags, B_VFLUSH);
443 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
444 goto already_queued;
445 else
446 bremfree(bp);
447 }
448
449 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
450 /*
451 * If it's invalid or empty, dissociate it from its vnode
452 * and put on the head of the appropriate queue.
453 */
454 if (bp->b_vp)
455 brelvp(bp);
456 CLR(bp->b_flags, B_DELWRI);
457 if (bp->b_bufsize <= 0)
458 /* no data */
459 bufq = &bufqueues[BQ_EMPTY];
460 else
461 /* invalid data */
462 bufq = &bufqueues[BQ_AGE];
463 binsheadfree(bp, bufq);
464 } else {
465 /*
466 * It has valid data. Put it on the end of the appropriate
467 * queue, so that it'll stick around for as long as possible.
468 */
469 if (ISSET(bp->b_flags, B_LOCKED))
470 /* locked in core */
471 bufq = &bufqueues[BQ_LOCKED];
472 else if (ISSET(bp->b_flags, B_AGE))
473 /* stale but valid data */
474 bufq = &bufqueues[BQ_AGE];
475 else
476 /* valid data */
477 bufq = &bufqueues[BQ_LRU];
478 binstailfree(bp, bufq);
479 }
480
481 already_queued:
482 /* Unlock the buffer. */
483 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_BUSY | B_NOCACHE));
484
485 /* Allow disk interrupts. */
486 splx(s);
487 }
488
489 /*
490 * Determine if a block is in the cache.
491 * Just look on what would be its hash chain. If it's there, return
492 * a pointer to it, unless it's marked invalid. If it's marked invalid,
493 * we normally don't return the buffer, unless the caller explicitly
494 * wants us to.
495 */
496 struct buf *
497 incore(vp, blkno)
498 struct vnode *vp;
499 daddr_t blkno;
500 {
501 struct buf *bp;
502
503 bp = BUFHASH(vp, blkno)->lh_first;
504
505 /* Search hash chain */
506 for (; bp != NULL; bp = bp->b_hash.le_next) {
507 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
508 !ISSET(bp->b_flags, B_INVAL))
509 return (bp);
510 }
511
512 return (0);
513 }
514
515 /*
516 * Get a block of requested size that is associated with
517 * a given vnode and block offset. If it is found in the
518 * block cache, mark it as having been found, make it busy
519 * and return it. Otherwise, return an empty block of the
520 * correct size. It is up to the caller to insure that the
521 * cached blocks be of the correct size.
522 */
523 struct buf *
524 getblk(vp, blkno, size, slpflag, slptimeo)
525 register struct vnode *vp;
526 daddr_t blkno;
527 int size, slpflag, slptimeo;
528 {
529 struct bufhashhdr *bh;
530 struct buf *bp;
531 int s, err;
532
533 /*
534 * XXX
535 * The following is an inlined version of 'incore()', but with
536 * the 'invalid' test moved to after the 'busy' test. It's
537 * necessary because there are some cases in which the NFS
538 * code sets B_INVAL prior to writing data to the server, but
539 * in which the buffers actually contain valid data. In this
540 * case, we can't allow the system to allocate a new buffer for
541 * the block until the write is finished.
542 */
543 bh = BUFHASH(vp, blkno);
544 start:
545 bp = bh->lh_first;
546 for (; bp != NULL; bp = bp->b_hash.le_next) {
547 if (bp->b_lblkno != blkno || bp->b_vp != vp)
548 continue;
549
550 s = splbio();
551 if (ISSET(bp->b_flags, B_BUSY)) {
552 SET(bp->b_flags, B_WANTED);
553 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
554 slptimeo);
555 splx(s);
556 if (err)
557 return (NULL);
558 goto start;
559 }
560
561 if (!ISSET(bp->b_flags, B_INVAL)) {
562 SET(bp->b_flags, (B_BUSY | B_CACHE));
563 bremfree(bp);
564 splx(s);
565 break;
566 }
567 splx(s);
568 }
569
570 if (bp == NULL) {
571 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
572 goto start;
573 binshash(bp, bh);
574 bp->b_blkno = bp->b_lblkno = blkno;
575 s = splbio();
576 bgetvp(vp, bp);
577 splx(s);
578 }
579 allocbuf(bp, size);
580 return (bp);
581 }
582
583 /*
584 * Get an empty, disassociated buffer of given size.
585 */
586 struct buf *
587 geteblk(size)
588 int size;
589 {
590 struct buf *bp;
591
592 while ((bp = getnewbuf(0, 0)) == 0)
593 ;
594 SET(bp->b_flags, B_INVAL);
595 binshash(bp, &invalhash);
596 allocbuf(bp, size);
597
598 return (bp);
599 }
600
601 /*
602 * Expand or contract the actual memory allocated to a buffer.
603 *
604 * If the buffer shrinks, data is lost, so it's up to the
605 * caller to have written it out *first*; this routine will not
606 * start a write. If the buffer grows, it's the callers
607 * responsibility to fill out the buffer's additional contents.
608 */
609 void
610 allocbuf(bp, size)
611 struct buf *bp;
612 int size;
613 {
614 struct buf *nbp;
615 vm_size_t desired_size;
616 int s;
617
618 desired_size = roundup(size, CLBYTES);
619 if (desired_size > MAXBSIZE)
620 panic("allocbuf: buffer larger than MAXBSIZE requested");
621
622 if (bp->b_bufsize == desired_size)
623 goto out;
624
625 /*
626 * If the buffer is smaller than the desired size, we need to snarf
627 * it from other buffers. Get buffers (via getnewbuf()), and
628 * steal their pages.
629 */
630 while (bp->b_bufsize < desired_size) {
631 int amt;
632
633 /* find a buffer */
634 while ((nbp = getnewbuf(0, 0)) == NULL)
635 ;
636 SET(nbp->b_flags, B_INVAL);
637 binshash(nbp, &invalhash);
638
639 /* and steal its pages, up to the amount we need */
640 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
641 pagemove((nbp->b_data + nbp->b_bufsize - amt),
642 bp->b_data + bp->b_bufsize, amt);
643 bp->b_bufsize += amt;
644 nbp->b_bufsize -= amt;
645
646 /* reduce transfer count if we stole some data */
647 if (nbp->b_bcount > nbp->b_bufsize)
648 nbp->b_bcount = nbp->b_bufsize;
649
650 #ifdef DIAGNOSTIC
651 if (nbp->b_bufsize < 0)
652 panic("allocbuf: negative bufsize");
653 #endif
654
655 brelse(nbp);
656 }
657
658 /*
659 * If we want a buffer smaller than the current size,
660 * shrink this buffer. Grab a buf head from the EMPTY queue,
661 * move a page onto it, and put it on front of the AGE queue.
662 * If there are no free buffer headers, leave the buffer alone.
663 */
664 if (bp->b_bufsize > desired_size) {
665 s = splbio();
666 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
667 /* No free buffer head */
668 splx(s);
669 goto out;
670 }
671 bremfree(nbp);
672 SET(nbp->b_flags, B_BUSY);
673 splx(s);
674
675 /* move the page to it and note this change */
676 pagemove(bp->b_data + desired_size,
677 nbp->b_data, bp->b_bufsize - desired_size);
678 nbp->b_bufsize = bp->b_bufsize - desired_size;
679 bp->b_bufsize = desired_size;
680 nbp->b_bcount = 0;
681 SET(nbp->b_flags, B_INVAL);
682
683 /* release the newly-filled buffer and leave */
684 brelse(nbp);
685 }
686
687 out:
688 bp->b_bcount = size;
689 }
690
691 /*
692 * Find a buffer which is available for use.
693 * Select something from a free list.
694 * Preference is to AGE list, then LRU list.
695 */
696 struct buf *
697 getnewbuf(slpflag, slptimeo)
698 int slpflag, slptimeo;
699 {
700 register struct buf *bp;
701 int s;
702
703 start:
704 s = splbio();
705 if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
706 (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
707 bremfree(bp);
708 } else {
709 /* wait for a free buffer of any kind */
710 needbuffer = 1;
711 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
712 splx(s);
713 return (0);
714 }
715
716 if (ISSET(bp->b_flags, B_VFLUSH)) {
717 /*
718 * This is a delayed write buffer being flushed to disk. Make
719 * sure it gets aged out of the queue when it's finished, and
720 * leave it off the LRU queue.
721 */
722 CLR(bp->b_flags, B_VFLUSH);
723 SET(bp->b_flags, B_AGE);
724 splx(s);
725 goto start;
726 }
727
728 /* Buffer is no longer on free lists. */
729 SET(bp->b_flags, B_BUSY);
730
731 /* If buffer was a delayed write, start it, and go back to the top. */
732 if (ISSET(bp->b_flags, B_DELWRI)) {
733 splx(s);
734 /*
735 * This buffer has gone through the LRU, so make sure it gets
736 * reused ASAP.
737 */
738 SET(bp->b_flags, B_AGE);
739 bawrite(bp);
740 goto start;
741 }
742
743 /* disassociate us from our vnode, if we had one... */
744 if (bp->b_vp)
745 brelvp(bp);
746 splx(s);
747
748 /* clear out various other fields */
749 bp->b_flags = B_BUSY;
750 bp->b_dev = NODEV;
751 bp->b_blkno = bp->b_lblkno = 0;
752 bp->b_iodone = 0;
753 bp->b_error = 0;
754 bp->b_resid = 0;
755 bp->b_bcount = 0;
756 bp->b_dirtyoff = bp->b_dirtyend = 0;
757 bp->b_validoff = bp->b_validend = 0;
758
759 /* nuke any credentials we were holding */
760 if (bp->b_rcred != NOCRED) {
761 crfree(bp->b_rcred);
762 bp->b_rcred = NOCRED;
763 }
764 if (bp->b_wcred != NOCRED) {
765 crfree(bp->b_wcred);
766 bp->b_wcred = NOCRED;
767 }
768
769 bremhash(bp);
770 return (bp);
771 }
772
773 /*
774 * Wait for operations on the buffer to complete.
775 * When they do, extract and return the I/O's error value.
776 */
777 int
778 biowait(bp)
779 struct buf *bp;
780 {
781 int s;
782
783 s = splbio();
784 while (!ISSET(bp->b_flags, B_DONE))
785 tsleep(bp, PRIBIO + 1, "biowait", 0);
786 splx(s);
787
788 /* check for interruption of I/O (e.g. via NFS), then errors. */
789 if (ISSET(bp->b_flags, B_EINTR)) {
790 CLR(bp->b_flags, B_EINTR);
791 return (EINTR);
792 } else if (ISSET(bp->b_flags, B_ERROR))
793 return (bp->b_error ? bp->b_error : EIO);
794 else
795 return (0);
796 }
797
798 /*
799 * Mark I/O complete on a buffer.
800 *
801 * If a callback has been requested, e.g. the pageout
802 * daemon, do so. Otherwise, awaken waiting processes.
803 *
804 * [ Leffler, et al., says on p.247:
805 * "This routine wakes up the blocked process, frees the buffer
806 * for an asynchronous write, or, for a request by the pagedaemon
807 * process, invokes a procedure specified in the buffer structure" ]
808 *
809 * In real life, the pagedaemon (or other system processes) wants
810 * to do async stuff to, and doesn't want the buffer brelse()'d.
811 * (for swap pager, that puts swap buffers on the free lists (!!!),
812 * for the vn device, that puts malloc'd buffers on the free lists!)
813 */
814 void
815 biodone(bp)
816 struct buf *bp;
817 {
818 if (ISSET(bp->b_flags, B_DONE))
819 panic("biodone already");
820 SET(bp->b_flags, B_DONE); /* note that it's done */
821
822 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
823 vwakeup(bp);
824
825 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
826 CLR(bp->b_flags, B_CALL); /* but note callout done */
827 (*bp->b_iodone)(bp);
828 } else if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release it */
829 brelse(bp);
830 else { /* or just wakeup the buffer */
831 CLR(bp->b_flags, B_WANTED);
832 wakeup(bp);
833 }
834 }
835
836 /*
837 * Return a count of buffers on the "locked" queue.
838 */
839 int
840 count_lock_queue()
841 {
842 register struct buf *bp;
843 register int n = 0;
844
845 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
846 bp = bp->b_freelist.tqe_next)
847 n++;
848 return (n);
849 }
850
851 #ifdef DEBUG
852 /*
853 * Print out statistics on the current allocation of the buffer pool.
854 * Can be enabled to print out on every ``sync'' by setting "syncprt"
855 * in vfs_syscalls.c using sysctl.
856 */
857 void
858 vfs_bufstats()
859 {
860 int s, i, j, count;
861 register struct buf *bp;
862 register struct bqueues *dp;
863 int counts[MAXBSIZE/CLBYTES+1];
864 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
865
866 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
867 count = 0;
868 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
869 counts[j] = 0;
870 s = splbio();
871 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
872 counts[bp->b_bufsize/CLBYTES]++;
873 count++;
874 }
875 splx(s);
876 printf("%s: total-%d", bname[i], count);
877 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
878 if (counts[j] != 0)
879 printf(", %d-%d", j * CLBYTES, counts[j]);
880 printf("\n");
881 }
882 }
883 #endif /* DEBUG */
884